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ABSTRACT

In this work, we investigate how a model’s tendency to broadly integrate its parametric
knowledge evolves throughout pretraining, and how this behavior affects overall perfor-
mance, particularly in terms of knowledge acquisition and forgetting. We introduce the
concept of knowledge entropy, which quantifies the range of memory sources the model
engages with; high knowledge entropy indicates that the model utilizes a wide range of
memory sources, while low knowledge entropy suggests reliance on specific sources with
greater certainty. Our analysis reveals a consistent decline in knowledge entropy as pre-
training advances. We also find that the decline is closely associated with a reduction
in the model’s ability to acquire and retain knowledge, leading us to conclude that di-
minishing knowledge entropy (smaller number of active memory sources) impairs the
model’s knowledge acquisition and retention capabilities. We find further support for this
by demonstrating that increasing the activity of inactive memory sources enhances the
model’s capacity for knowledge acquisition and retention.

1 INTRODUCTION

Recent works have analyzed how language models store world knowledge in their parameters and utilize
this knowledge to generate responses during inference time (Geva et al., 2021; Dai et al., 2022a;b; Meng
et al., 2022; Yao et al., 2024). However, little is known about how their behavior of integrating various
factual knowledge embedded in their parameters changes throughout the pretraining stage. In this work,
we perform deep analysis into how a model’s property of broadly integrating diverse parametric knowledge
evolves throughout pretraining and how these shifts affect overall performance, particularly in terms of
knowledge acquisition and forgetting in a continual learning setup. We hypothesize that this varying level of
integration may explain why models in the later stage of pretraining encounter challenges in acquiring new
knowledge (Dohare et al., 2024; Jang et al., 2022; Chang et al., 2024).

We introduce knowledge entropy, which reflects how a language model integrates various knowledge sources,
to investigate how this behavior evolves throughout pretraining. Recent studies have shown that feed-forward
layers (FFNs) serve as a key-value memory (Geva et al., 2022; 2021; Dai et al., 2022a). Building on this
research, as shown in Figure 1, we view the second projection matrix V as a memory, composed of memory
vectors, which store the model’s parametric knowledge, and view the first projection matrix K as generating
coefficients C̄ that determine how these memory vectors are combined. Knowledge entropy measures how
sparsely these memory coefficients are distributed; high knowledge entropy indicates that the model tends to
integrate broad memory vectors whereas the model with low knowledge entropy uses certain memory vector
with high certainty. We analyze models at different stages of pretraining to investigate how knowledge entropy
changes throughout pretraining. Our findings show that models in the later stages of pretraining tend to
exhibit lower knowledge entropy, suggesting a shift from utilizing a larger set of active memory vectors to a
smaller, more focused set as pretraining progresses.
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Figure 1: Illustration of our findings: distribution of memory coefficients C̄ in feed-forward layers become
sparser throughout pretraining, as indicated by a decrease in knowledge entropy H(θ). This sparsity deteri-
orates the model’s knowledge acquisition A(θ) and increases forgetting F(θ) when conducting continual
knowledge learning with models from different pretraining stages. Thereby, as denoted by the star, when we
artificially increase the knowledge entropy of the final stage model, both knowledge acquisition and retention
increase.

We hypothesize that knowledge entropy change would influences the model’s behavior when encountering
new knowledge. To test this, we conduct a thorough analysis of the model’s ability to acquire new knowledge
and retain existing knowledge in a continual knowledge learning1 scenario on a target corpora (Jang et al.,
2022; Wu et al., 2023), starting from different stages of pretraining. This involves further training the
pretrained model on new-domain corpora using a language modeling objective to integrate new knowledge.
Results show a strong correlation between knowledge entropy and the model’s ability to acquire and retain
knowledge: both knowledge entropy and knowledge acquisition and retention decrease as the pretraining
progresses.

We assume that this correlation arises because lower knowledge entropy indicates a smaller set of active
memory vectors, which leads to frequent overwriting on these memory vectors to store new knowledge.
To test this assumption, we conduct experiments where we artificially increase the activity of previously
inactive memory vectors, allowing the model to store new knowledge across a broader range of memory
vectors. Surprisingly, we observe that these modified models demonstrate improved knowledge acquisition
and reduced forgetting compared to the original models when undergo continual knowledge learning; though
not to the same extent as in the original pretrained model with equivalent knowledge entropy. Such a result
bolsters our hypothesis that having a limited number of active memory vectors (low knowledge entropy)
plays a critical part in explaining the degradation of the model’s ability to acquire and retain knowledge as
pretraining advances.

Overall, our findings reveal that as pretraining progresses, models exhibit narrower integration of memory
vectors, reflected by decreasing knowledge entropy, which hinders both knowledge acquisition and
retention. Models in the later stages of pretraining2, show low knowledge entropy, leading to poor knowledge
acquisition and higher forgetting rates despite being trained on larger datasets. In contrast, early-stage models
display high knowledge entropy, allowing them better in knowledge acquisition and retention; however, their
performance is often limited by weaker language modeling capabilities. Thus, mid-stage models strike a

1In this work, we use the term “continual knowledge learning” and “continual learning” interchangeably.
2We define the final stage as the last stage of the pre-determined learning rate schedule, with the most decayed learning

rate. The mid-stage refers to around 50% of the schedule, while the initial stage refers to around 20%.
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balance, showing strong knowledge acquisition and retention along with overall performance, making them a
practical choice for further training to inject new knowledge. To the best of our knowledge, this is the first
work to analyze how a model’s behavior in integrating various memory vectors changes across pretraining
stages and the subsequent effects on performance when acquiring new knowledge in a continual knowledge
learning setup.

2 RELATED WORKS

Dynamics of Knowledge in Language Models Recent studies have shown that language models embed
world knowledge within their parameters and integrate this knowledge to generate responses (Yang, 2024;
Petroni et al., 2019; Wang et al., 2021). Thereby, various research aims to understand these dynamics
of knowledge in language models (how they learn, store, and engage their parametric knowledge) during
inference and training phases. Several works have focused on investigating the inference process: Geva
et al. (2023) analyzes the role of different layers in language models. Allen-Zhu & Li (2024b) demonstrates
that model parameters have a limited knowledge capacity. Some studies suggest key-value memory (Geva
et al., 2021; Meng et al., 2022; Dai et al., 2022a). Other research focuses on the pretraining phase. Liu et al.
(2021) studies the sequence that language models learn various types of knowledge. Allen-Zhu & Li (2024a)
examines strategies to enhance knowledge storage and extraction. Teehan et al. analyzes internal structural
changes. Sun & Dredze (2024) investigates the interaction between pretraining and finetuning. Chang et al.
(2024) analyzes patterns of knowledge acquisition specifically during the pretraining process, addressing the
question of how language models acquire knowledge during pretraining. While their study shares similarities
with ours in investigating knowledge acquisition behavior during LLM training, our work takes a different
focus. We aim to understand why LLMs become increasingly difficult at acquiring new knowledge as
pretraining progresses, exploring the underlying reasons behind the challenges faced by later-stage models in
learning new knowledge. Our work is the first to explore how the behavior of language models in integrating
their knowledge evolves throughout the pretraining phase, and to analyze how these changes affect model
performance in terms of knowledge acquisition and forgetting in continual knowledge learning.

Entropy in Natural Language Processing In information theory, entropy quantifies the value of infor-
mation, where predictable (certain) events have low entropy and unpredictable (uncertain) events have high
entropy (Lairez, 2022; Majenz, 2018). In natural language processing (NLP), entropy is used in various
ways to measure the certainty of language models. Yang (2024) analyzes the entropy of model outputs based
on input prompts. Araujo et al. (2022) calculates the entropy of outputs at each layer to determine weight
adjustments in a continual learning setup. Other works focus on token probability entropy to understand the
information required to predict the next word in a sequence (Vazhentsev et al.; Geng et al., 2024; Malinin &
Gales, 2021). Lower entropy in a model’s predictions may indicate that the model has become more certain
about its predictions based on training data. Additionally, Kumar & Sarawagi (2019) measures entropy over
the cross-attention layer to assess the uncertainty in the attention layer of encoder-decoder models. The
entropy proposed in our paper, knowledge entropy, differs from previous works in that it focuses on the
entropy of a model’s parametric knowledge, assessing the uncertainty or variability in utilizing the knowledge
encoded within the language model.

3 KNOWLEDGE ENTROPY

In this section, we introduce knowledge entropy (Section 3.1) to examine how broadly the model integrates its
parametric knowledge and an experiment setup to measure it (Section 3.2). Next, in Section 3.3, we measure
knowledge entropy at various pretraining stages to analyze how the model’s knowledge integration behavior
evolves over pretraining. In Section 3.4, we extend our investigation by exploring alternative definitions of
entropy.
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3.1 DEFINITION

In this work, we introduce a new concept, knowledge entropy, to analyze the scope of a model’s access
patterns to its parametric knowledge. Low knowledge entropy suggests that the model relies more on a
narrower set of specific knowledge sources with high certainty whereas high knowledge entropy indicates
that the model integrates with a diverse range of knowledge sources. Inspired by prior works that consider
feed-forward layers (FFNs) as key-value memory containing model’s parametric memory (Geva et al., 2021;
Dai et al., 2022a; Meng et al., 2022; Dong et al., 2022), we consider the knowledge source to be the memory
vectors, which is the second projection matrix of FFN, and measurement of how broadly the model integrates
as memory coefficients, calculated by the first projection matrix.

Geva et al. (2021) propose the concept of key-value memory, demonstrating that FFNs function similarly to
the key-value neural memories (Sukhbaatar et al., 2015). The feed-forward layer consists of two projection
layers and activation in the middle:

FFN(x) = f(x ·KT ) · V (1)

where x ∈ Rd. The first projection matrix (K ∈ Rm×d) corresponds to the keys, and the second projection
matrix (V ∈ Rm×d) represents the values, or the memories comprised of memory vectors. The output,
FFN(x), is a linear combination of the memory vectors vi=1,··· ,m ∈ Rd which are the rows of V , where
the coefficients3 C are determined by f(x ·KT ), with f being a non-linear activation function such as ReLU.
Previous studies have shown that various types of factual and linguistic knowledge are encoded within these
memories (Dai et al., 2022a; Geva et al., 2022; Meng et al., 2022; Dong et al., 2022). Thus, the final output is
generated by combining the contributions of these memory vectors, where the memory coefficients determine
the combination.

Thereby knowledge entropy, H(θ), is calculated by the sum of layer-wise entropy H(θl), which is based on
the average coefficient C̄l ∈ Rm averaged across all tokens in dataset D, as described in Equation 2.

C̄l =
1

|D|

|D|∑
n=1

 1

Tn

Tn∑
j=1

C
(l)
n,j

 ; prob(c̄li) =
c̄li∑m

k=1 c̄
l
k

, for i = 1, 2, . . . ,m

H(θl) = −
m∑
i=1

prob(c̄li) · log(prob(c̄li)); H(θ) =

L∑
l=1

H(θl)

(2)

C
(l)
n,j represents the coefficient of j-th token position of n-th instance at layer l, c̄li indicates an i-th element

from C̄l, Tn is the sequence length of the n-th instance in the dataset D, m is the inner dimension of
feed-forward layer, and L denotes the number of layers in the model.

3.2 EXPERIMENT SETUP

To conduct the experiment, we use the OLMo (Groeneveld et al., 2024) models (1B and 7B), which are
open-source large language models with intermediate pretraining checkpoints released, trained on the Dolma
dataset (Soldaini et al., 2024)4. To measure knowledge entropy, we use a subset of Dolma, 2k instances
that appear in the first batch within the official pretraining data order to ensure that all models we are using
have seen the corpus during pretraining step. Please note that the trend persists across other corpora as

3We use the terms “coefficient” and “memory coefficient” interchangeably.
4We used OLMo and Dolma from the official repository

4
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Figure 2: Entropy (y-axis) across different model
states (x-axis) for OLMo 1B and 7B. The x-axis
represents the rate of the current step relative to the
last step (738k for 1B and 557k for 7B).
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Figure 3: Entropy (y-axis) defined with Attention
weight and next token prediction probability across
different model states (x-axis) for OLMo 1B.

well (Figure 7 in Appendix A.2); however, since we are analyzing the model’s behavior throughout training,
we define knowledge entropy based on calculations using the training dataset.

In the case of OLMo, the memory coefficient C(l)
n,j is calculated as C(l)

n,j = abs(SwiGLU(xj)) where xj is the
j-th token of input x and SwiGLU (Shazeer, 2020) is the activation function. We apply the absolute value
since the SwiGLU allows negative values and the magnitude determines the contribution of the corresponding
memory vector in the linear combination. Then, the absolute values are converted into probability distribution.
We also experiment that the trend persists with different choices of activation functions. Further details
regarding knowledge entropy can be found in Appendix A.2.

3.3 FINAL MODELS TEND TO EXHIBIT LOWER KNOWLEDGE ENTROPY

Figure 2 illustrates how knowledge entropy (y-axis) changes across different stages of pretraining (x-axis).
The results show a consistent decrease in knowledge entropy as pretraining progresses in both 1B and
7B models. This trend suggests that models in the later stage of pretraining tends to engage with a narrower
range of memories, relying more heavily on specific memory vectors rather than accessing and integrating
knowledge from a broader range of memories. Consistent reduction in knowledge entropy is observed across
all layers, with the most significant reduction occuring in the last layer, which closely resembles the output
distribution right before the token prediction (Figure 8 in Appendix).

3.4 SIMILAR TRENDS ARE OBSERVED BY DIFFERENT DEFINITIONS OF ENTROPY

While our work defines knowledge entropy focusing on the feed-forward layer, previous studies have exam-
ined entropy in different contexts, such as the entropy of attention (Kumar & Sarawagi, 2019) and the entropy
of next token prediction over the vocabulary space (Vazhentsev et al.; Malinin & Gales, 2021). To gain a
more comprehensive understanding of the model’s overall behavior, we extend our analysis by exploring
the entropy trends in both attention mechanisms and next token prediction. The formula and details are in
Appendix A.3)

Entropy of Attention Layers Following Kumar & Sarawagi (2019), we measure attention entropy to
capture the degree of uncertainty in attention weight. It is calculated as the sum of layer-wise entropy, where
the layer-wise entropy measures the sparsity of the attention weight in each attention head. Thus, attention
entropy reflects how much weight the model assigns to specific tokens with confidence when generating the

5
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next token given the input based on token relationships. Figure 3 shows that attention entropy consistently
decreases during pretraining, with a sharp decline in the early stages followed by a more gradual reduction.
This trend suggests that the model learns to focus on contextually important tokens within the attention layer.

Entropy of Next Token Prediction Entropy can also be measured based on the probability distribution of
the next token prediction over the vocabulary space (Vazhentsev et al.; Geng et al., 2024; Malinin & Gales,
2021). Figure 3 shows that the entropy of the next token prediction also consistently decreases throughout
pretraining, reflecting the model’s increasing certainty in its next token prediction.

4 KNOWLEDGE ACQUISITION AND FORGETTING

We hypothesize that the reduction of knowledge entropy as pretraining progresses impacts the model’s
knowledge acquisition and forgetting as low knowledge entropy indicates sparse activation of memory
vectors, thus the vectors are likely to be consistently overwritten when new knowledge is introduced. To test
this hypothesis, we measure knowledge acquisition and forgetting using checkpoints from different stages of
pretraining in a continual knowledge learning setup (Jang et al., 2022; Wu et al., 2023), where further training
is performed on new-domain corpora by next token prediction to inject new knowledge to the pretrained
models. Section 4.1 details the experimental setup and the metrics used. In Section 4.2, we present the
results of knowledge acquisition and forgetting across various pretraining stages. Section 4.3 further explores
whether a relationship exists between the two behaviors: activating the inactive memory vectors increases the
knowledge acquisition ability.

4.1 EXPERIMENT SETUP

Model & Hyperparameters We experiment using intermediate checkpoints from OLMo5. Hyperparame-
ters are chosen following previous research on continual knowledge learning (Jang et al., 2022; Kim et al.,
2023) and we test various combinations to assess their generalizability. For batch size, we test 128 and 2048;
for learning rate, we experiment with 1e-4, 4e-4, and 1e-3. We also investigate the effect of training duration
by comparing a single epoch to three epochs. Among these configurations, we focus primarily on batch size
128, learning rate 4e-4, and single epoch training as this setup most closely aligns with continual knowledge
learning.

Dataset We experiment on a subset of two datasets6: PubMed 7, a corpus of bio-medical and life science
topics with abstracts, and C4 (Raffel et al., 2020), a large-scale corpus comprising diverse text data gathered
from web pages. We use PubMed as the primary dataset as it contains more new knowledge, making it a
better fit for our continual knowledge learning setup (Appendix B.1). In addition to the dataset, we inject
synthetic knowledge during training to assess the model’s ability to acquire new information. Specifically, we
inject FICTIONAL KNOWLEDGE dataset (Chang et al., 2024), which is designed to assess how well language
models acquire factual knowledge during pretraining8. This dataset includes 130 paragraphs about fictional
yet realistic entities and 1,950 probes where each paragraphs contain 15 different probes. The passage
is incorporated into the training batch 10 times during the continual knowledge learning. After training,
we evaluate the models on evaluation probes of the Fictional Knowledge dataset to measure knowledge
acquisition, and evaluate on six downstream tasks in zero-shot manner (Sun & Dredze, 2024; Groeneveld
et al., 2024) to measure knowledge forgetting (SciQ (Welbl et al., 2017), Winogrande (Sakaguchi et al.,

5We select these intermediate checkpoints following Sun & Dredze (2024), which explores language model (OLMo)
throughout pretraining. Available checkpoints can be found here.

6We randomly sample 205k instances for each dataset.
7Datasets in huggingface
8We slightly modified the dataset to our setting of which details are in Appendix B.1

6
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Figure 4: (a) Rates of knowledge acquisition A(θ) and forgetting F(θ) (b) End performance of knowledge
probe K(θ) and downstream task P(θ) for OLMo 1B (solid line) and 7B (dotted line) across different model
states. The x-axis represents the ratio of the pretraining step of the initial model used in continual learning to
the final step. (738k for 1B and 557k for 7B)

2021), PIQA (Bisk et al., 2020), OBQA (Mihaylov et al., 2018), HellaSwag (Zellers et al., 2019), and ARC
Easy (Clark et al., 2018)). Detailed explanation is included in Appendix B.1.

Metric Knowledge acquisition of a language model θ is measured with the probing performance on
evaluation probes following Chang et al. (2024). When given the injected knowledge C, each instance
ci in a corpus has a corresponding set of probes Pci , containing 15 different probes. To measure how
well the model recalls the injected knowledge, we compute the probe performance K(θ), the average
log probability ℓ(pi;θ) of target span for each probe pi ∈ Pci across all instances in ci ∈ C and calculate
average; K(θ) = 1

|C|
∑

ci∈C
1

|Pci
|
∑

pi∈Pci
ℓ(pi; θ). The knowledge acquisition metric A(θ) is defined as

the improvement rate of K(θ) from θPT to θCL, where θPT represents the model checkpoint from a pretraining
step, which serves as the starting point and θCL represents the model after continual knowledge learning. High
A(θ) indicates the model has learned new knowledge well.

To measure knowledge forgetting of a language model, we measure average performance over six down-
stream tasks P(θ). Knowledge forgetting F(θ) is calculated by the reduction rate from θPT to θCL. Low
F(θ) indicates the models have retained its existing knowledge. Equation and detailed explanation is
presented in Appendix B.2.

4.2 KNOWLEDGE ACQUISITION AND RETENTION DECREASES ACROSS PRETRAINING STAGE

Figure 4a shows the performance of OLMo 1B and 7B models 9 corpus from various stages of pretraining as
an initial state. We observe that models in the final stage of pretraining struggle more with acquiring
new knowledge A(θ) and exhibit greater forgetting F(θ).As shown in Figure 4b, continually training
the models at the mid-point of the pretraining as the initial checkpoint tends to yield the best performance
in knowledge probing and downstream tasks compared to both models from the initial and final stage of
pretraining. While early-stage models demonstrate high knowledge acquisition with minimal forgetting, their
overall performance is limited by weaker language modeling capabilities. Conversely, later-stage models,
despite being trained on larger datasets, exhibit lower knowledge acquisition and higher rates of forgetting,

9For this experiment, we used PubMed as a training corpus, but we also experiment with C4 as a training corpus,
which presumably exhibits more similar distribution to pretraining corpus, Dolma. The comparison of the two corpus and
the results can be found in Appendix B.1 and B.4.2

7
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Figure 5: (a) Rates of knowledge acquisition A(θ) and forgetting F(θ) (b) End performance of knowledge
probe K(θ) and downstream task P(θ) after training with varying the amplifying factor q (x-axis) while p is
fixed as 50.

resulting in lower overall performance compared to the mid-stage models. This aligns with previous research
suggesting that a model in the final stage of pretraining tends to struggle when learning new knowledge,
showing a tradeoff between plasticity and stability (Dohare et al., 2024; Biesialska et al., 2020; Jang et al.,
2022). Therefore, we suggest that using a mid-stage checkpoint strikes a good balance, making it a practical
choice as an initial starting point for further training to inject new knowledge.

We consistently observe this pattern of later-stage models underperforming compared to earlier-stage models
across various hyperparameter settings, including batch size, learning rate, training corpus, and the number of
epochs. A detailed analysis of these results is provided in Appendix B.4.

4.3 RESUSCITATING INACTIVE MEMORY VECTORS INCREASES KNOWLEDGE ACQUISITION

We observe a strong correlation10 between the trend of knowledge entropy (Figure 2) and the model’s ability
to acquire and retain knowledge (Figure 4a).We assume that the model’s increasing reliance on a limited set
of memory vectors (decrease in knowledge entropy) leads to more frequent updates to these vectors, making
it difficult to acquire new knowledge and resulting in a higher rate of forgetting. To test this assumption, we
conduct experiments where we artificially increase the activity or resuscitate previously inactive memory
vectors.

To resuscitate inactive memory vectors, we modify the up-projection matrix K which engages with producing
memory coefficients C̄ (notations from Equation 2). Specifically, as shown in Algorithm 1, we identify the
lowest p% (resuscitation ratio) of memory coefficients and apply a multiplier m to parameters in K that
are associated with these p%. Multiplier m can be any numbers; in this experiment, we divide the mean
coefficient value of each layer by the respective coefficient value c̄li at each identified position i at layer l,
and then multiply the result by an amplifying factor q. By varying the value of q, we control the degree of
resuscitation applied to the p% low-activation coefficients, thereby influencing the magnitude of the average
coefficient and corresponding size of the parameter updates.

Figure 5a shows the knowledge acquisition and forgetting rates and Figure 5b presents the knowledge probe
and downstream task performance after continual learning with various resuscitation configurations. For the
experiment, we fix p to 50 with varying q and use the OLMo checkpoint at the last step of pretraining. Results
show that when q is set to 1 or greater, it generally yields better performance in both knowledge acquisition

10The Pearson correlation between knowledge entropy and knowledge acquisition is 0.94, and with forgetting, it is
-0.96. Both correlations are statistically significant, with p-values of 6e-5 and 1e-5, respectively.

8
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and retention compared to the original model. In contrast, when q is set to 0.5, which further reduces
already inactive memory coefficients, both acquisition and retention declines suggesting that concentrating
parameter updates more heavily on already active locations led to sparser updates, ultimately impairing overall
performance. These results suggest that having a narrower active memory vector (low knowledge entropy)
tends to reduce the model’s capacity to acquire new knowledge and increases knowledge forgetting.

Further experiments with fixed q and varying p shows that increasing p to activate a larger portion of inactive
parameters generally led to improved performance. Detailed result of this configuration is in Appendix B.5.
We also analyze how the result changes when using models from different stages of pretraining as the original
model. We could see that the trend persists over different checkpoints from the final-stage of pretraining
(554k). However, the effect of the resuscitation becomes more pronounced as the original model progresses
to later stages of pretraining. Detailed results are in Appendix B.6.

Our result indicates that resuscitating inactive memory vectors of final-stage models tends to enhance
knowledge acquisition and overall performance than the final-stage model alone. However, we observe that the
performance tends to be lower compared to models from the pretraining step with similar knowledge entropy,
such as the mid-stage model. This suggests that applying linear scaling to a subset of specific layers alone is
insufficient to induce fundamental behavioral changes in the model. In other words, to restore a model that
has lost its plasticity (Dohare et al., 2024) to its previous state, more fundamental and alternative approaches
are required. Further exploring methods for effectively modifying the parameters would be an interesting
direction for future work.

Algorithm 1 Resuscitating Low Memory Coefficients

Require: C̄ (average coefficients), p (resuscitation ratio), q (amplifying factor), K (up-projection matrix)
Ensure: Scaled up-projection matrix K using computed multiplier m

1: for each layer l in K do
2: Extract average activations for layer l:

C = C̄[l]

3: Compute the threshold t for the lowest p% activations:

t = quant(C, p)

4: Identify positions of values below the threshold t:

idx = (C ≤ t).nonzero( )

5: Compute the scaling factor multiplier m for coefficients in layer l:

m =
mean(C)

C
× q

6: Apply scaling to the up-projection weights Kl at the identified positions:

Kl[idx, :] ×= m[idx]

7: end for

5 CONCLUSION

In this work, we examine how large language models’ ability to broadly integrate their parametric knowledge
(measured by knowledge entropy) changes throughout pretraining and how these changes affect knowledge
acquisition and forgetting in a continual learning setup. Our findings reveal a strong correlation between
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knowledge entropy and the model’s capacity to acquire and retain knowledge. Models in the final stages
of pretraining tend to exhibit narrower integration of memory vectors, leading to lower knowledge entropy,
which negatively impacts both knowledge acquisition and retention. Interestingly, we could see that artificially
increasing knowledge entropy by modifying the parameters of final-stage models tends to improve these
capabilities. Based on our analysis, we suggest that models from the mid-stage of pretraining offer a good
balance between knowledge acquisition, retention, and overall performance, making them a good choice for
further training to introduce new knowledge.

6 LIMITATION & FUTURE WORK

Due to computational constraints, our study measures knowledge acquisition and forgetting in a continual
learning setup. Future work could explore whether these behaviors also occur during the pretraining phase.
We focused on OLMo 1B and 7B models, as they are the only models that publicly provide intermediate
pretraining checkpoints and demonstrate strong performance (Sun & Dredze, 2024; Chang et al., 2024).
Extending this investigation to other models would be a valuable direction for further research. Our re-
suscitation method, which arbitrarily modifies model parameters to test our hypothesis, showed promising
results in improving knowledge acquisition and retention. However, performance tended to decline when
resuscitating models in their initial or mid-stages. This suggests that more refined methods for resuscitating
model parameters—ones that avoid random modification and preserve language modeling capabilities—could
yield better outcomes. Additionally, while we observed that models in the mid-stage of pretraining strike
a good balance for further training on tasks that involve acquiring new knowledge, defining the mid-point
precisely remains an open question. In this study, we approximated the mid-point as 50% of the learning rate
schedule.
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A KNOWLEDGE ENTROPY

A.1 INTUITION BEHIND THE DEFINITION OF KNOWLEDGE ENTROPY

The mechanism behind the relationship between decreasing knowledge entropy and the ability to acquire
and retain knowledge during pretraining is that the coefficients in the linear combination of memory vectors
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Figure 6: Knowledge Entropy (y-axis) measured
with Dolma on different pretraining stages of Pythia
1.4B model.
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Figure 7: Knowledge Entropy(y-axis) measured with
Dolma, C4, Pubmed corpus across different pretrain-
ing stages

determine how the corresponding memory vectors are updated. As defined in Equation 1, the output
of the feed-forward layers (FFNs) is a linear combination of memory vectors vi=1,··· ,m ∈ Rd, the row
vectors of the V ∈ Rm×d, where the coefficients ci are given by f(x ·KT ). In other words, FFN(x) =
c1v1 + c2v2 + · · ·+ cmvm. Within a given layer, since the operations beyond the FFNs and the input to the
FFNs remain consistent across all memory vectors, the coefficients act as scaling factors for the gradient by
the chain rule. During training, the gradient ∂L

∂vi,j
for i = 1, 2, . . . ,m and j = 1, 2, . . . , d can be decomposed

as:
∂L

∂vi,j
=

∂L

∂FFN(x)
· ∂FFN(x)

∂vi,j

Here, ∂L
∂FFN(x) is the same for all vi, meaning that the relative magnitude of the gradient depends on

∂FFN(x)
∂vi,j

= ci. Thus, larger coefficients result in proportionally larger gradients being applied to the
corresponding memory vectors, amplifying their updates during backpropagation. As pretraining progresses,
a spikier coefficient distribution—captured by decreasing knowledge entropy—implies that gradient updates
become increasingly concentrated on specific positions where the average coefficients are larger. This
centralization can affect the model’s ability to evenly utilize its memory capacity, impacting knowledge
acquisition and retention.

A.2 KNOWLEDGE ENTROPY

Does the choice of model change the trend? To assess the generalizability of the trend observed in
Figure 2, we conducted experiments on the knowledge entropy trend using Pythia 1.4B model (Biderman
et al., 2023). As shown in Figure 6, knowledge entropy measured with the Pythia model also tends to decrease
as pretraining progresses.

Does the choice of dataset change the trend? As expressed in Equation 2, knowledge entropy is dependent
on the dataset D. We define D as the dataset used during pretraining, as knowledge entropy reflects how the
model integrates the knowledge stored in its memory vectors, learned during pretraining. However, to further
explore whether the choice of dataset influences the trend of knowledge entropy, we measure it using PubMed
and C4. Figure 7 shows that the trend remains consistent regardless of the dataset used when calculating
knowledge entropy.

14



658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2025

0 2 5 7 10 12 15
Layer

8.88
8.90
8.92
8.94
8.96
8.98
9.00

Kn
ow

le
dg

e 
En

tro
py

18k
369
738k

(a)

0 5 10 15 20 25 30
Layer

9.12
9.15
9.18
9.21
9.24
9.27
9.30

Kn
ow

le
dg

e 
En

tro
py

5k
278k
557k

(b)

Figure 8: Layer-wise Knowledge Entropy of OLMo-1B(a) and 7B(b)

Does the choice of activation function change the trend? We also explored an alternative where we do
not take the absolute value of the SwiGLU output. Instead, following the ReLU function (Agarap, 2018),
another widely used activation function, we replaced all negative values with 0. Figure 9 shows that the trend
remains consistent even under this modification.

C
(l)
n,j = ReLU(gate(xj))⊗ up(xj),
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Figure 9: Knowledge Entropy(y-axis) when employ-
ing original SwiGLU(solid line) and ReLU activa-
tion(dotted line) across different pretraining stages
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Figure 10: Histogram of average perplexity of enti-
ties in C4 and Pubmed corpus

Layer-wise Knowledge Entropy Figure 8 shows how knowledge entropy changes during pretraining by
layer. Knowledge entropy consistently decreases in every layer, with the most significant reduction occuring
in the last layer, which closely resembles the output distribution right before the token prediction. OLMo-7B
also shows similar trend with 1B model.
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A.3 ENTROPY OF ATTENTION LAYERS

Inspired by previous research that emphasizes attention layer’s role of attribute extraction (Geva et al., 2023),
we also measure attention entropy H(θatt) similarly to Kumar & Sarawagi (2019)11. Attention weights,
output of softmax normalization after key-query-value operation, can be interpreted as weight assigned
to the previous tokens. As attention weight for each token position in each attention head is probability
distribution(summing to 1), calculating entropy follows normal entropy formula. Then, layer-wise entropy
H(θlatt) is averaged over token position and attention heads and attention entropy H(θatt) is the sum of
layer-wise entropy H(θlatt). Following the notations from Geva et al. (2023), attention entropy is calculated
as:

Hn,j(θh,latt ) = −
j∑

i=1

Ah,l,n
i,j · log(Ah,l,n

i,j ) for i = 1, 2, . . . , Tn and j = 1, 2, . . . , Tn

H(θh,latt ) =
1

|D|

|D|∑
n=1

 1

Tn

Tn∑
j=1

Hn,j(θh,latt )

 ; H(θlatt) =
1

N

N∑
h=1

H(θh,latt ); H(θatt) =
L∑

l=1

H(θlatt)

(3)

where Ah,l,n ∈ RTn×Tn represents the attention weights of the h-th attention head in layer l for n-th instance,
Tn is the sequence length of the n-th instance in the training dataset D, N denotes the number of attention
heads, and L denotes the number of layers in the model.

A.4 ENTROPY OF NEXT TOKEN PREDICTION

The entropy of next token prediction (Vazhentsev et al.; Geng et al., 2024; Malinin & Gales, 2021) is defined
as H(θn,jntp ) = −

∑|V|
i=1 pi · log(pi), where pi represents the probability of the i-th token. This is then averaged

over the sequence length (Tn) and the dataset size (|D|).

B KNOWLEDGE ACQUISITION AND FORGETTING

B.1 DATASETS

Training Dataset for Continual Knowledge Learning In this section, we share a brief description over
the datasets we used. For continual knowledge learning, we experiment over PubMed and C4. The PubMed
dataset consists of biomedical literature abstracts from the PubMed database, containing articles across a
wide range of topics in medicine and biology. The C4 (Colossal Clean Crawled Corpus) dataset (Raffel
et al., 2020) is a large-scale, preprocessed collection of text scraped from the web, designed to be a clean and
diverse representation of natural language.

To compare the distribution of C4, PubMed, and Dolma, we evaluate the average perplexity of entities for C4
and PubMed, as shown in Figure 10. On the x-axis, we plot the range of an average perplexity of instances,
while the y-axis represents the number of instances. We randomly sample 10,000 instances from each corpus,
extract entities using GPT-4o, and calculate perplexity with the last checkpoint of OLMo. The perplexity
values from the last checkpoint of OLMo indicate how likely these entities are to appear in the pretraining
corpus, Dolma. The results reveal that PubMed exhibits a broad distribution of perplexity, with a higher

11Kumar & Sarawagi (2019) measures entropy using attention weights from cross-attention in an encoder-decoder
architecture. However, as we employ a decoder-only model, we modify the equation to use attention weights from
self-attention.
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number of instances having high perplexity values. In contrast, C4 shows a tendency towards lower perplexity,
suggesting that the distribution of entities in PubMed differs from that in Dolma, while the distribution in C4
tends to be more similar to Dolma.

Evaluation Dataset to measure Knowledge Acquisition To measure knowledge acquisition of language
model, we use the fictional knowledge dataset (Chang et al., 2024), which is designed to assess how well
LLMs acquire factual knowledge during pretraining. This dataset includes 130 paragraphs 12 presented in a
Wikipedia-style format with fictional yet realistic entities (injected knowledge) and 1,950 probes which are
cloze-task-style sentences to query the information within the corpus. The final span of each probe, referred
to as the target span, is used to evaluate the model’s prediction probability, which serves as a measure of
knowledge acquisition performance.

In Chang et al. (2024), the probes are divided into three levels of difficulty, with five sentences created for
each level. This results in 15 probes per corpus. The difficulty levels are as follows: 1) Memorization
probes directly ask about sentences explicitly present in the fictional corpus. 2) Semantic generalization
probes are paraphrased versions of the memorization probes to test the model’s understanding of meaning
beyond surface forms. 3) Compositional generalization probes are designed to assess whether the model
can integrate multiple pieces of knowledge from the fictional corpus. The injected knowledge is incorporated
into the training corpus during continual learning, with updates occurring every 160 steps.

Following Chang et al. (2024), we divide the 130 corpora into two settings: paraphrase and once. In the
paraphrase setting, 70 instances are each paraphrased 10 times. For every 160 steps, one paraphrased version
of an instance is added to the training corpus, repeating this process 10 times13. In the once setting, each
instance is presented only once throughout the entire continual learning process. The 60 instances are divided
into 10 groups, with 6 instances added every 160 steps.

Evaluation Dataset to measure Knowledge Forgetting To measure forgetting rate, we evaluate over 6
downstream datasets.

• SCIQ: multiple-choice question-answering dataset consisting of over 13,000 science exam-style
questions, covering subjects like physics, chemistry, biology, and earth science

• WINOGRANDE: large-scale benchmark designed to test commonsense reasoning in natural language
understanding

• PIQA: commonsense reasoning about everyday physical interactions such as how to perform tasks
involving physical actions

• OBQA: multiple-choice question-answering benchmark designed to assess a model’s ability to
answer elementary-level science questions.

• HELLASWAG: a large-scale benchmark for commonsense reasoning, focusing on selecting the most
plausible continuation of a given narrative or scene.

• ARC EASY: multiple-choice science questions typically answered by students in elementary and
middle school.

12While Chang et al. (2024) utilizes 120 paragraphs, comprised of 40 for paraphrase setup, 40 for duplicate, and 40 for
once, we utilized 130 paragraphs, the whole original data. We scaled up the number of paragraphs with paraphrases to 70,
utilizing GPT-4 following Chang et al. (2024)

13We maintain updates every 160 steps(10 steps when batch size is 2048) because our total training duration is 1,600
steps(100 steps), and we repeat the dataset injection process 10 times.
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Figure 11: Rates of knowledge acquisition A(θ)
and final performance of knowledge probe K(θ)
according to the number of injection. Paraphrase
prompt (solid line) were injected 10 times and
Once (dotted line) prompt only once throughout con-
tinual training.
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Figure 12: End performance of knowledge
probe K(θ) and downstream task P(θ) of Initial
model (dotted line) and model after continual train-
ing (solid line) in baseline setup. The x-axis repre-
sents the initial model state used for continual train-
ing.

B.2 METRIC

In this section, we share a detailed description of how we evaluate knowledge acquisition and knowledge
forgetting.

Knowledge Acquisition Given a language model θ, θPT represents the model extracted from a pretraining
step and serves as the initial point for continual learning and θCL represents the model after it. The acquisition
metric A(θ) for the model θ is defined as Equation 4. When given a corpus set of once setting Conce, each
instance in a corpus ci has a corresponding set of probes Pci , which contains 15 different probes. To calculate
the performance of the once setting, Konce(θ), we compute the average log probability ℓ(pi;θ) of target span
for each probe pi ∈ Pci across all instances in ci ∈ Conce and sum these averages. The same calculation is
performed for the paraphrase setting. The total performance K(θ) is calculated by the weighted average of
Konce(θ) and Kpara(θ). Finally, the acquisition metric A(θ) is defined as the improvement rate in performance
K(θ) from the initial model state θPT to final model state θCL.

Konce(θ) =
1

|Conce|
∑

ci∈Conce

1

|Pci |
∑

pi∈Pci

ℓ(pi; θ); Kpara(θ) =
1

|Cpara|
∑

ci∈Cpara

1

|Pci |
∑

pi∈Pci

ℓ(pi; θ)

K(θ) =
|Conce| × Konce(θ) + |Cpara| × Kpara(θ)

|Conce|+ |Cpara|
; A(θ) =

K(θCL)−K(θPT)

K(θPT)

(4)

Knowledge Forgetting The forgetting metric F(θ) is calculated by the average performance degradation
from the initial model θPT to the final model θCL in six downstream tasks T : SciQ (Welbl et al., 2017), Wino-
grade (Sakaguchi et al., 2021), PIQA (Bisk et al., 2020), OBQA (Mihaylov et al., 2018), HellaSwag (Zellers
et al., 2019), and ARC Easy (Clark et al., 2018).

P(θ) =
1

|T |
∑
i∈|T |

Ti(θ); F(θ) = −P(θCL)− P(θPT)

P(θPT)
(5)
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Figure 13: (a) Rates of knowledge acquisition A(θ) and forgetting F(θ) (b) End performance of knowledge
probe K(θ) and downstream task P(θ) of Pubmed(solid line) and C4(dotted line) corpus across different
model states. The x-axis represents the initial model state used for continual training.

B.3 FREQUENCY OF KNOWLEDGE INJECTIONS

We divide the experiment into two settings: the once setting, where knowledge is injected a single time, and
the paraphrase setting, where knowledge is injected ten times using ten paraphrased paragraphs. Figure 11
shows knowledge acquisition results based on the frequency of injections. Knowledge acquisition and final
performance generally follow similar trends in both settings, with models in the later stages of pretraining
showing the lowest performance. However, the performance and acquisition rate of once setting lags behind
that of paraphrase setting. Also, notably, for models in the final stage of pretraining, the acquisition rate in
the once setting was negative. This indicates that the log probability of the injected knowledge decreased,
preventing successful incorporation of the new knowledge. In other words, even the knowledge injected
during continual learning is subject to forgetting throughout the continual learning process.

B.4 KNOWLEDGE ACQUISITION & FORGETTING

B.4.1 BASELINE SETUP

Our base experiements are reported with hyperparameter configuration most closely aligned with continual
knowledge learning studies, specifically with batch size 128, learning rate 4e-4, while training single-epoch
of PubMed corpus. We use adamW optimizer (β = 0.9, 0.95, weight decay= 0.1), cosine LR scheduler with
warmup=0.05, and set maximum sequence length as 1024. We randomly selected 204,800 instances from the
PubMed and C4 datasets, and matched the sequence length to 1,024 tokens by concatenating instances. This
resulted in a training dataset consisting of roughly 210 million tokens.

As analyzed in 4.2, final performance generally deteriorates as later-stage models were utilized as initial model.
Figure 12 illustrates the model’s initial performance before continual learning, as well as its performance
afterward. Models in the later stages of pretraining exhibit superior language modeling abilities before
continual learning, as evidenced by the lower log probability for the newly injected knowledge (dotted line).
However, after continual learning, their performance deteriorates compared to models from the earlier stages
of pretraining (solid line). Similarly, the downstream task performance of the later-stage models was better
initially, but after continual learning, their performance declined more than that of the earlier-stage models.
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B.4.2 VARIOUS SETTINGS

We observed consistently, even in settings where hyperparameters were altered, that models in the later stages
of pretraining struggle to learn new knowledge and retain existing knowledge.

Training Dataset for Continual Knowledge Learning To investigate how the type of new knowledge
affects performance, we further conducted experiments using the C4 corpus, which has a distribution more
similar to the pretraining corpus, Dolma, compared to PubMed. Figure 13a indicates that the gap in acquisition
rate between later-stage models and initial-stage models is larger when the new knowledge distribution differs
significantly from the pretraining corpus: models trained with PubMed (-6.4%p) exhibit a more pronounced
gap compared to those trained with C4 (-3.4%p).

All models, regardless of their pretraining stage, tend to perform better when continually pretrained with
PubMed compared to C4. We hypothesize that this is because PubMed’s different distribution from the
pretraining corpus encourages the model to learn more new knowledge, enhancing its ability to acquire new
information. However, the rate of improvement varies by model state. Later-stage models tend to show
similar performance regardless of the type of new knowledge, suggesting a limit in their learning capacity. In
contrast, initial-stage models exhibit a stronger ability to acquire knowledge when trained on a corpus with a
different distribution, such as PubMed, demonstrating their greater adaptability in learning new and diverse
information.

Model Size To test universal deterioration of knowledge acquisition and retention capabilities, we also
experimented with OLMo 7B model Groeneveld et al. (2024). In Figure 4a, the 7B model exhibits a clear
trend of diminishing knowledge acquisition A(θ) capabilities as pre-training progresses. This decline is
accompanied by an increase in forgetting F(θ), indicating that the model struggles to retain previously
learned information as new data is introduced.

A(θ) ↑ F(θ) ↓

Pretraining Step of θ 118k 369k 554k 738k 118k 369k 554k 738k

(a) Baseline 25.2 24.8 21.4 18.8 10.5 12.9 17.0 19.5

(b) BS :128 → 2048 8.9 7.8 1.0 -92.2 2.2 3.5 5.5 44.9

(c) lr : 4e-4 → 1e-3 17.3 15.7 10.7 5.0 16.7 20.3 23.0 23.5

(d) lr : 4e-4 → 1e-4 21.6 23.0 23.7 22.6 2.4 3.2 4.6 7.3

(e) ep : 1 → 3 28.8 28.0 25.9 24.5 14.8 17.4 20.1 23.1

Table 1: Knowledge Acquisition A(θ)[%] and Forgetting F(θ)[%] across different continual learning
hyperparameters.

Batch Size In Table 2 line (b), when the batch size is large, the influence of individual data points on the
model update decreases, resulting in a lower acquisition rate, while forgetting is less pronounced. In the later
stages of training, however, if sufficient learning rate warmup is not provided, the model seems to collapse.

Learning Rate In Table 2 line (c), when the learning rate is increased, not only is the acquisition rate lower,
but forgetting becomes more pronounced. However, when the learning rate is very small (in line (d)), the
models in the late stage shows improved acquisition performance with least gap compared with initial models,
but still remains inferior compared to the mid stage model.
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K(θ) ↑ P(θ) ↑

Pretraining Step of θ 118k 369k 554k 738k 118k 369k 554k 738k

(a) Baseline -0.281 -0.280 -0.293 -0.301 54.0 54.6 52.8 52.0

(b) BS :128 → 2048 -0.342 -0.344 -0.368 -0.714 59.0 60.5 60.1 35.6

(c) lr : 4e-4 → 1e-3 -0.310 -0.314 -0.332 -0.353 50.3 49.9 49.0 49.4

(d) lr : 4e-4 → 1e-4 -0.294 -0.287 -0.284 -0.287 58.9 60.7 60.6 59.9

(e) ep : 1 → 3 -0.267 -0.268 -0.276 -0.280 51.4 51.7 50.8 49.7

Table 2: Probe Performance K(θ) and average performance on six downstream task P(θ) across different
Continual Learning hyperparameters.
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Figure 14: (a) Rates of knowledge acquisition A(θ) and forgetting F(θ) (b) End performance of knowledge
probe K(θ) and downstream task P(θ) after training with varying p (x-axis) while q is fixed as 1.

Epoch In Table 2 line (e), as the number of epochs increases, leading to more repetitions, acquisition
improves with the cost of more forgetting.

B.5 RESUSCITATION EXPERIMENT: VARYING p WHILE FIXING q

Figure 14 shows the overall performance when q was fixed at 1, meaning that the lowest p% of coefficients
were multiplied to converge toward the layer’s mean. It is shown that increasing p to activate a larger portion
of inactive parameters generally led to improved performance. However, interestingly, when p was set too
high, at 90, this resulted in a negative impact on performance, likely due to the unintended effect of reducing
the parameters in already active regions.

B.6 RESUSCITATION EXPERIMENT ACROSS PRETRAINING STEPS

Figure 15a illustrates the overall performance when q was fixed to 2 and p to 50, across different pretraining
stages of the original model. The effect of resuscitation method becomes more pronounced as the original
model progresses to later stages of pretraining, as indicated by the transition from the dotted line to the
solid line. We hypothesize that this is because late-stage models tend to rely on a smaller subset of memory
sources and thus benefit from a broader scope of activation enabled by the resuscitation method. As shown in
Figure 15b, end performance deteriorates when the beginning model is initial (118k) and mid (369k) stage
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Figure 15: (a) Rates of knowledge acquisition A(θ) and forgetting F(θ) (b) End performance of knowledge
probe K(θ) and downstream task P(θ) of original continual learning (dotted line) and resuscitation (solid
line) method where p is fixed as 50 and q as 2, across different model states. The x-axis represents the initial
model state used for continual training.
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Figure 16: (a) Rates of knowledge acquisition A(θ) and forgetting F(θ) (b) End performance of knowledge
probe K(θ) and downstream task P(θ) of model from 369k steps (solid line) in pretraining schedule and
554k (dotted line) when varying the amplifying factor q (x-axis) while p is fixed as 50.

model, indicating that resuscitation may impair performance when the model’s knowledge entropy is not low
enough. This trend of the resuscitation showing a more positive effect for models in later stage of pretraining
can also be seen in Figure 16, which shows the result when varying q while fixing p as 50: performance
deteriorates when running continual learning on model from 369k, while improvement of performance with
larger q is observed when model is from 554k.

B.7 RESUSCITATION EXPERIMENT ACROSS ATTENTION LAYERS

In Figure 3, we observe that as pertaining progresses, not only knowledge entropy but also attention entropy
decreases. We explore whether extending the resuscitation method to the attention layers can also improve
knowledge acquisition and retention. For the feed-forward layer, we can adjust knowledge entropy by tuning
the parameters at positions with low activation values. However, since attention entropy reflects the probability
distribution over token positions, the same resuscitation method cannot be directly applied to the attention
layers. To artificially increase attention entropy, we employed temperature scaling on the softmax of the
attention calculation, which reduces the sparsity of the probability distribution.
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Figure 17: (a) Rates of knowledge acquisition A(θ) and forgetting F(θ) (b) End performance of knowledge
probe K(θ) and downstream task P(θ) when resuscitation is applied at attention layers, with the x-axis
representing temperature. The dotted line indicates performance when resuscitation is applied to the feed-
forward layer with p=50, q=2. The dashed line represents the original performance without any resuscitation.

We experimented with temperature values ranging from 1.5 to 3.0. Figure 17 shows that resuscitation in the
feed-forward layer consistently results in the highest knowledge acquisition rate and generally leads to the best
knowledge retention. This trend is observed in both knowledge probe results and downstream performance.
These findings suggest that knowledge entropy plays a critical role in influencing both knowledge acquisition
and forgetting, thereby driving the observed differences in performance.

B.8 TRAINING DYNAMICS OF PYTHIA
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Figure 18: Knowledge Entropy and Rates of knowl-
edge acquisition A(θ) of OLMo 1B and Pythia 1.4B
model across different pretraining stages

Figure 18 shows the training dynamics of Pythia
1.4B and OLMo 1B. We observe that overall training
dynamics of Pythia and OLMo are similar. However,
Pythia tends to conclude early in training, using only
10% of training tokens compared to OLMo. As a
result, Pythia struggles the capture the full dynamics
of the language model during pretraining. This is
because models in the early stage of training are still
influenced by a large portion of randomly initialized
parameters, which leads to different behavior com-
pared to models that have undergone more training
steps and reached a stable state. For OLMo, based
on our analysis, we assume the model reaches a sta-
ble point around 118k steps (15% of the training
dataset). However, Pythia’s final step occurs before
this stable point, causing its trend to resemble that
of OLMo but differ from the trend observed in Sec-
tion 4, where knowledge acquisition improves until
the stable point and then decreases. We hypothe-
size that previous works using intermediate check-
points during pretraining (Chang et al., 2024; Sun
& Dredze, 2024) also only measured with OLMo
without Pythia for the same reason.
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