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Abstract

Scientific sketches (e.g., models) offer a powerful lens into students’ conceptual
understanding, yet Al-powered automated assessment of such free-form, visually
diverse artifacts remains a critical challenge. Existing solutions often treat sketch
evaluation as either an image classification task or monolithic vision-language
models, which lack interpretability, pedagogical alignment, and adaptability across
cognitive levels. To address these limitations, we present SKETCHMIND, a cog-
nitively grounded, multi-agent framework for evaluating and improving student-
drawn scientific sketches. SKETCHMIND introduces Sketch Reasoning Graphs
(SRGs), semantic graph representations that embed domain concepts and Bloom’s
taxonomy-based cognitive labels. The system comprises modular agents responsi-
ble for rubric parsing, sketch perception, cognitive alignment, and iterative feedback
with sketch modification, enabling personalized and transparent evaluation. We
evaluate SKETCHMIND on a curated dataset of 3,575 student-generated sketches
across six science assessment items with different highest order of Bloom’s level
that require students to draw models to explain phenomena. Compared to baseline
GPT-40 performance without SRG (average accuracy: 55.6%), and with bSRG in-
tegration achieves 77.1% average accuracy (+21.4% average absolute gain). We
also demonstrate that multi-agent orchestration with SRG enhances SKETCHMIND
performance, for example, a SketchMind with GPT-4.1 gains an average 8.9%
increase in sketch prediction accuracy, outperforming single-agent pipelines across
all items. Human evaluators rated the feedback and co-created sketches generated
by SKETCHMIND with GPT-4.1, which achieved an average of 4.1 out of 5, signifi-
cantly higher than those of baseline models (e.g., 2.3 for GPT-40). Experts noted
the system’s potential to meaningfully support conceptual growth through guided
revision. Our code and (pending approval) dataset will be released to support
reproducibility and future research in Al-driven education.

1 Introduction

Sketching such as drawn models is a fundamental tool in science education, allowing students to
externalize their thinking, represent causal mechanisms, and engage in higher-order reasoning [30].
However, assessing the quality and cognitive depth of student-generated sketches remains a long-
standing challenge due to their open-ended nature and semantic variability. Automated systems often
struggle with interpreting free-form, domain-rich visual input, which makes effective feedback and
evaluation particularly difficult. Recent advances in multimodal large language models (MLLMs),
such as GPT-4V, have enabled breakthroughs in vision-language reasoning, leading to promising
applications in educational assessment [16]. Specifically, systems like NeRiF have shown that
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MLLMs can approximate expert grading of student-drawn models by extracting latent structure
from images and comparing them against rubrics [15]. However, such monolithic models still face
limitations regarding their reasoning processes, feedback personalization, and inconsistent across
conceptually diverse tasks [28, 12].

To address these limitations, we propose SKETCHMIND, a cognitively grounded, multi-agent frame-
work for evaluating and enhancing scientific sketches. SKETCHMIND models sketches as SRGs,
which embed both structural semantics and Bloom’s Taxonomy-based cognitive annotations [13, 8, 6].
Each SRG encodes domain concepts, their relationships, and Bloom’s levels, enabling meaningful
alignment with rubrics and scaffolding-targeted feedback. Inspired by the pedagogical principles
behind systems like Betty’s Brain [3, 18, 4], SKETCHMIND framework decomposes the assessment
task across four specialized agents. These agents perform (1) rubric parsing and reference SRG
generation, (2) sketch perception and SRG inference, (3) cognitive alignment and scoring, and (4)
iterative feedback and sketch modification. This modular design is grounded in cognitive science and
agentic learning principles, enabling transparent reasoning and pedagogically informed intervention
[14,9].

Through extensive evaluation on a curated NGSS-aligned dataset of student-drawn science sketches
[30], we show that SKETCHMIND not only improves the baseline monolithic MLLM approaches
but also increases the capabilities of reasoning models in both quantitative metrics (accuracy and
alignment) and qualitative human feedback (clarity, relevance, pedagogical value). Human experts
highlighted that SKETCHMIND with models like GPT-4.1 can iteratively improve students’ conceptual
understanding and sketch quality via visual hints and structured revision cycles. Here are key
contributions of this paper:

* We introduce SKETCHMIND, a multi-agent framework that integrates cognitive theories
with Al to assess student-generated sketches effectively using our proposed SRGs.

* We integrate Bloom’s Taxonomy as cognition theory standard to construct and analyze SRGs
for structured evaluation of visual student work and provides pedagogically sound feedback
along with real-time sketch modification.

* With empirical studies, we found that SKETCHMIND with State-Of-The-Art MLLM such
as GPT-4.1, is able to achieve an average 90.2% sketch prediction accuracy and generate
pedagologically sound feedback with sketch modifications highly rated by human experts
(4.1 out of 5), highlighting its potential for advanced Al-supported learning of scientific
concepts.

To promote transparency and facilitate further research, we have open-sourced our codebase at our
repository? and plan to make the dataset publicly available upon receiving the necessary approvals.
This work represents a step forward in Al for Education, demonstrating how cognitively-aware,
agentic systems can advance the quality, transparency, and effectiveness of automated reasoning over
student-generated visual content.

2 Related Work

Sketch Understanding and Visual Reasoning. Recent years have seen significant progress in sketch
understanding, particularly within the computer vision community. Approaches such as SketchFusion
[2], Sketch2Saliency [2], and SketchXAI [21] have explored the utility of human-drawn sketches for
learning visual concepts and providing interpretable representations. These works primarily focus
on object detection, image retrieval [5], or 3D modeling [19], rather than assessing the conceptual
depth embedded in scientific sketches. Educationally focused sketch models such as SEVA [20]
and DrawEduMath [1] analyze human abstraction or math reasoning but lack cognitive scaffolding
like Bloom’s taxonomy. SKETCHMIND departs from these efforts by representing student-drawn
sketches as cognitively annotated semantic graphs and grounding visual elements in educational
rubrics, allowing for pedagogical interpretation and targeted feedback.

Multimodal and Agentic Reasoning in Education. MLLMs such as GPT-4V have opened new
opportunities in visual question answering and diagrammatic reasoning [16]. While tools like NeRiF
[15] demonstrate GPT-4V’s ability to grade drawn models, these systems often operate as monolithic
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black boxes, limiting transparency and pedagogical adaptability. Similarly, recent work in multimodal
chain-of-thought reasoning [30, 27, 29] and multi-agent systems [7, 9, 25, 14] show promise for
decomposing complex tasks. However, most frameworks either lack cognitive modeling or fail
to integrate sketch modifications explicitly. In contrast, SKETCHMIND brings together modular
reasoning agents with fine-grained cognitive alignment, enabling both transparent evaluation and
actionable feedback.

Educational AI for Scientific Sketch Assessment. Several studies have explored automated grading
and classification of hand-drawn sketches in educational settings. Rakhmanov [23] proposed a
quality-based classification framework for freehand sketches, while Rahaman et al. [22] applied
CNN-based models for accuracy prediction. Lee et al. [17] developed a rubric-driven grading system
focused on particulate matter diagrams. These systems, however, primarily emphasize surface-level
visual features and often lack semantic or cognitive interpretation. More recent work has tried to
integrate learning objectives, such as [28, 12], yet they remain constrained to textual responses or
fixed rubrics. SKETCHMIND bridges this gap by introducing SRGs embedded with Bloom-level
annotations and enabling multi-agent-driven sketch modification.

3 Proposed Approach

We present SKETCHMIND, a cognitively grounded, multi-agent framework for evaluating and
improving scientific sketches through iterative, feedback-driven modification. SKETCHMIND is
anchored in Bloom’s Taxonomy [13], a hierarchical model of cognitive processes ranging from recall
to creative synthesis. By modeling sketches as semantic structures called SRGs, SKETCHMIND align
student-generated content with domain rubrics and provide interpretable, formative feedback across
cognitive levels.

3.1 Cognitive Framework: Bloom’s Taxonomy in Sketch Understanding

Bloom’s Taxonomy structures learning objectives into six ascending levels of cognitive complexity
[6]:
B = {Remember, Understand, Apply, Analyze, Evaluate, Create}. )

These range from basic recall of knowledge (REMEMBER) to the synthesis of novel ideas (CREATE).
This cognitive hierarchy has long served as a foundation in science education for designing assess-
ments and scaffolding learning [13]. Prior work further shows that aligning instructional technologies
with Bloom’s levels supports measurable gains in higher-order thinking [8]. In SKETCHMIND,
scientific sketches are not merely visual representations but are conceptualized as cognitive artifacts
that externalize learners’ mental models. To operationalize this, we annotate each node (concept)
and edge (relation) in the SRG with a Bloom level, a process we call Bloom-Level Annotation. This
provides a fine-grained measure of the depth of conceptual engagement demonstrated by the student.

To implement this systematically, rubric statements are parsed to extract key verbs and criteria, which
are then mapped to Bloom levels using a curated lexicon [24]. The resulting numeric levels (1 for
REMEMBER through 6 for CREATE) are encoded as attributes on SRG nodes and edges. These
attributes directly support semantic similarity scoring, nuanced evaluation, and feedback generation.

Pedagogical Integration. Each gold-standard SRG is labeled at the level of its highest Bloom
demand. Student sketches are then evaluated by comparing the Bloom-level annotations of their
SRGs against this reference. This supports both diagnostics (identifying the highest level achieved)
and adaptive feedback. For example, if a student’s sketch demonstrates UNDERSTAND, the system
can generate targeted textual feedback or visual hints nudging them toward APPLY. Such progression-
oriented scaffolding is consistent with educational research showing that adaptive support aligned
with Bloom’s hierarchy fosters deeper learning in STEM domains [13, 8].

A schematic illustration (see Fig. 1) depicts this process: a rubric statement (e.g., “Develop a model
to explain the transfer of thermal energy”) maps to an SRG nodes of (FASTER_MOTION) and
(WATER_PARTICLE_HOT), which are then assigned a Bloom level (UNDERSTAND). This visual link
between task, rubric, SRG structure, and Bloom’s hierarchy enhances transparency for both learners
and instructors.



3.2 Sketch Reasoning Graphs (SRGs)

We define an SRG as a cognitively annotated semantic graph extracted from a sketch:
fsra(z) =G = (V. E. L, \), @)

where x € T is a sketch image, V' C C are concepts from ontology @ = (Concept, Relation),
E C V x V are directed relations such as causality, and ¢ : V' — 3 maps each node to a Bloom
level. The annotation function A : V U E — & captures visual and textual evidence (£) supporting
the cognitive label.

We treat both the representative gold standard reference sketch for given task r and the student
drawn sketch x as inputs to this mapping, producing a reference graph GG, and a student graph G
respectively. Importantly, the Bloom level annotations are central to how these graphs are constructed
and interpreted throughout the system.

3.3 Agent Roles

SKETCHMIND comprises four agents, each of which contributes to the construction, interpretation,
or refinement of SRGs for a Bloom-aligned assessment prediction:

Agent 1: Rubric Parser. Agent 1 in SKETCHMIND performs a static analysis of the representative
gold standard reference sketch and rubric for given task r to construct G,,, the gold-standard SRG. This
process includes explicit mapping of each rubric concept to a Bloom level using expert annotations.
For example, components that recall facts are labeled REMEMBER, while those requiring functional
understanding or multi-step reasoning are labeled APPLY or ANALYZE. This Bloom-informed rubric
becomes the benchmark for evaluating conceptual depth. Figure 1 delineates the SRG creation from
the given question, textual rubric and gold standard reference sketch. Agent 1 not only generates
gold-standard G, but also provides reverse mappings ¢ to create visuals from cognitive concepts
for the target question. These reverse mappings will be used by subsequent agents to provide visual
support and sketch modification for improved learning.
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reference sketches; Agent 1 processes the information and extracts SRG components and builds Level
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sketch modification.



Agent 2: Perception. Agent 2 in SKETCHMIND applies a MLLM to infer the student SRG G ; from
the sketch image x. Beyond identifying visual elements, it infers semantic roles and Bloom levels
using MLLM directly. For instance, correctly labeling a diagram element might reflect UNDERSTAND,
whereas indicating a dynamic interaction (e.g., force, flow) might reflect APPLY or higher. Thus,
Agent 2 directly constructs the cognitive structure of the student’s mental model. Figure 2 delineates
the sample student drawn sketch and Agent 2’s perceived SRG, which is then further used for cognitive
alignment by Agent 3.
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Figure 2: Sample sketch drawn by student and Agent 2 to extract perceived SRG. (a) student’s drawn
sketch, (b) Agent 2’s perceived SRG based on the given sketch.

Agent 3: Cognitive Alignment Evaluator. Agent 3 in SKETCHMIND compares G to G, com-
puting structural and semantic similarity while analyzing Bloom-level mismatches. To get the
similarity score, it first computes the ontology-based node alignment in such a way that for each pair
(vs,v0) € Vi X V,, it calculates weight w(vs, v,) as:

w(vs, Vo) = a - SiME (vs, Vo) + (1 — @) - I[l(vs) = £(v,)], 3)

where sime is semantic similarity from ontology O. The summation of these weights is then
normalized by the number of total nodes in both graphs to get the overall semantic similarity:

1
Joa(Ve Vo) = g > w(vs,vo). )

(vs,v,)€align

The similarity score S € [0, 1] is defined as:

Jfeep(Gs, Go)

S(Gs,Go) =1— (71 7

(- fOA<vs,vo>>) , )

where fogp is function to calculate graph-edit distance (node/edge insertions, deletions, substitu-
tions) noramlized by Z (total number of edges and nodes in both graphs), fo 4 measures semantic
alignment via ontology-based node similarity, and weights 7;, - are calibrated on a training set.
Notably, both the edit and alignment components consider Bloom-level mismatches as part of the
error cost, penalizing regressions in cognitive complexity. It then computes the dominant Bloom
level expressed in the sketch as:

g =mode{l(v) |ve VNV, < S(Gs,G,) > 1}, (6)

where 7 is the minimum similarity threshold pre-defined to extract overlapping features. This
highlights any regression in complexity (e.g., if a concept expected at ANALYZE is represented at
only REMEMBER). These mismatches guide the diagnosis of underdeveloped concepts, forming the
basis for targeted, Bloom-aligned feedback.



Similarity Score from Agent 3 and Textual Feedback from Agent 4

Similarity_score: 0.592

Feedback:

Your Proficiency Level: Developing

What You Did Well:

The student demonstrated sound structure despite missing some components.
What Needs Attention:

» Missing Concepts: Dye_Particle_Room, Temperature_Decrease, and Slower_Motion
modification Guidance (Next Sketch Revisions by Visual Hint):

* Water Particle Room (understand): Add markup to highlight water particles/molecules on the
first block.

Reasoning Gaps Detected In:

* Dye_Particle_Room, Temperature_Decrease, and Slower_Motion

Figure 3: Cognitive alignment score and feedback for the perceived SRG (See Figure 2) generated by
Agent 3 after similarity score calculations.

Agent 4: Feedback Generator and Sketch Modification. Agent 4 in SKETCHMIND initiates
a feedback loop when the similarity score S(Gs,G,) falls below a threshold 7 (pre-defined to
determine skecth proficiency). In our case, the curriculum expert defined three levels of proficiencies
(Beginning, Developing, and Proficient) as can be seen in Figure 1b. 7 value is carefully calculated
for each level and used by the agent. The agent identifies missing or misaligned nodes and edges, and
traces each to its expected Bloom level. Using a trained reverse mapping ¢: (v,e) — VisualHint,
Agent 4 generates cognitively aligned suggestions. For instance, if a student omits a causal interaction
labeled ANALYZE, the system may overlay an arrow with a textual prompt like “What causes this
effect?”. Below is the step-wise procedure of the sketch revision loop: Given G, and z:(%):

1. Compute ol — fsra(z®).
2. If S(fo), G,) > 7, exit loop.

3. Identify deficient elements:
A® = {4 € V, | v ¢ aligned nodes} U {e EFEs;|ed E((f)} .

4. Use reverse mapping ¢ : (v,e) — visual hint generated by Agent 1 to provide visual
suggestions H ().

5. Render H(*) on sketch canvas and generate Python code to modify the canvas and run
locally.

6. Modify the canvas with updated overlay and prompting student to revise z(*) — z(*+1),

7. Repeat until S > 7 or maximum iterations Tj,,x reached.

This sketch revision loop directly scaffolds the student toward higher-order cognitive tasks, iterating
until the revised sketch meets conceptual fidelity (Modified SRG with additional node and updated
sketch using the Python toolkit for the sample image given in Fig. 4). SKETCHMIND is designed
to adaptively scaffold students across diverse ability levels. If a sketch yields an incoherent or
low-complexity SRG (e.g., all nodes at REMEMBER), Agent 4 shifts focus to guided reconstruction,
layering in increasingly complex prompts. The evaluator distinguishes perceptual errors from
conceptual ones by analyzing visual evidence A, ensuring the feedback remains diagnostic rather
than punitive. By explicitly modeling Bloom’s cognitive hierarchy at each stage of analysis—from
rubric parsing to feedback generation SKETCHMIND transforms sketch-based assessment into a
learning-oriented, interpretable, and cognitively aligned process. SKETCHMIND positions sketching
not just as a representational task but as an active, assessable pathway for scientific reasoning and
growth.
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Figure 4: Sample modified SRG based on the given score from Agent 3 and feedback from Agent 4
and updated sketch with embedded python toolkit.

4 Experimental Setup

We evaluate SKETCHMIND using two distinct model configurations to comprehensively examine its
performance and versatility across closed-source and open-source MLLM frameworks. In Configu-
ration 1, we utilize GPT-40, GPT-4.1, GPT-4.1-nano, 03, and 04-mini (all latest GPT models with
different reasoning capabilities for comprehensive evaluation) accessed via the OpenAl API. This
setup leverages black-box prompting tailored explicitly to encourage structured JSON output and
support multimodal reasoning. Configuration 2 deploys open-source MLLMs, specifically the INT4-
quantized Llama-4 Maverick and INT8-quantized Scout (400B and 109B parameters respectively,
with 17B active parameters), running locally on four NVIDIA H100 GPUs, facilitated by Hugging
Face Transformers (version 4.39+) and PyTorch (version 2.1+). We keep the same model for each
agent to maintain the model performance consistency, for example, if targeted GPT-40, then each
agent uses GPT-40 and mainatin local chat session.

For closed-source configurations, inference requests are systematically routed through the OpenAl
API, meticulously logging timestamps, model versions, and full prompt-response interactions to
ensure transparency and reproducibility. Open-source models are executed on-premises, utilizing four
H100 GPUs with CUDA 12.1 and cuDNN 8.9, loading quantized model weights from the Hugging
Face Model Hub, and multimodal data inputs are managed by the L1ama4Processor.

Both configurations operate with a multi-agent pipeline detailed in Section 3, where all the agents
run in sequence. Agents 1, 2, and 4 incorporate specifically designed prompt templates optimized for
effective instruction-following, structured output enforcement, and multimodal reasoning integration.
Agent 3 functions as a deterministic and model-agnostic component, focusing exclusively on graph
comparison tasks. Comprehensive documentation of prompt templates is available in supplementary
materials to enable precise experimental replication.

Dataset and Evaluation. Despite growing interest in applying machine learning to educational
domains, there remains a significant lack of publicly available, high-quality datasets that capture
student-generated visual reasoning, particularly scientific sketches. To our knowledge, no large-scale,
general-purpose benchmark exists that includes both raw student-drawn diagrams and structured
expert annotations for meaningful semantic evaluation.

Given this gap, we base our study on a rigorously developed dataset originally introduced by Zhai
et al. [30], which has since become one of the most widely recognized resources for evaluating
automated reasoning over student-generated scientific models. This dataset, adapted from the NGSA
(Next Generation Science Assessment) initiative [10], aligns closely with the NGSS framework
[26] and has been used by AIED researchers to assess students’ conceptual understanding through
multimodal evidence [16, 15]. Comprehensive details about dataset selection rationale and statistics
are provided in Appendix B. To ensure pedagogical validity, we conducted a structured human
evaluation of model-generated feedback. Four domain-expert educators, each with graduate-level



training in science education, independently assessed the pedagogical quality of system responses.
Each rater evaluated a stratified random sample of 890 student-generated sketches (25% of the
dataset), ensuring balanced representation across models (GPT-40, GPT-4.1, O3), grade levels, and
science task types.

All evaluators participated in a calibration phase: they jointly annotated and discussed 10 represen-
tative examples to align rubric interpretation, and then independently scored the same 10 sketches.
Inter-rater reliability, measured using Quadratic Weighted Kappa, reached x = 0.83, which is con-
sistent with benchmarks for expert judgment in science assessment [11]. For the main study, each
response was rated by at least two experts in a double-blind manner.

Evaluation guidelines were based on an extended rubric adapted from Zhai et al. [30] and tailored
for formative science assessment. Experts rated each response along three dimensions: 1) Clarity:
Whether the textual and visual feedback was understandable and actionable. 2) Conceptual Accuracy:
Whether suggested modifications and explanations correctly reflected the target scientific concepts.
And 3)Instructional Value: The feedback’s potential to promote student learning and progression
along Bloom’s taxonomy. Each dimension was scored on a 5-point ordinal scale (1-5). Consistency
across raters was supported through the initial calibration process, and ratings were conducted under
double-blind conditions to mitigate bias. Framework—human agreement rates, along with detailed
rubric codebooks and annotated examples, are reported in Section 4 and the supplementary material.

Implementation Details. The SRG construction pipeline in SKETCHMIND utilizes a shared
SRGBuilder class, which efficiently constructs, validates, and caches graphs, significantly reduc-
ing computational overhead and cost during repeated evaluations. Sketch adequacy is determined
by a similarity threshold (7 = 0.75), with dynamic generation of visual hints guided by a re-
verse mapping (¢) embedded within Agent 1’s implementation. We calculate the sketch predic-
tion accuracy for each assessment item by comparing with human-expert annotated proficiencies
as (Sum of correctly predicted samples across each proficiency level /Total samples) and average for
all items as (Sum of all item’s accuracies/Total number of items). We have evaluated the perfor-
mance of SKECTHMIND by decomposing it into combination of target model with proposed SRG.
This decomposition can help us understand the impact of target model and proposed SRG to deter-
mination best possible combination for SKETCHMIND. Detailed evaluation scripts and additional
implementation specifics are provided comprehensively in Appendix A.

5 Results

Table 1 presents item-wise and macro-average accuracy across a range of MLLMs, both with and
without SRG integration. The results consistently demonstrate that incorporating SRG supervision
significantly improves performance across all models and items. For instance, GPT-40, shows a
substantial accuracy increase from 47.7% to 76.5% on Item H4-1, a relative gain of nearly 30
percentage points. Averaged across all items, GPT-40 benefits from an improvement of approximately
21.4%. Even state-of-the-art models such as GPT-4.1 show meaningful accuracy gains ranging from
11.0% to 15.4% when SRG guidance is applied, with performance increasing from 74.2% to 89.6% on
Item R1-1 and from 73.1% to 87.2% on Item H4-1. Hence, SKETCHMIND works best with GPT-4.1
integrated with SRG.

Models with lower baseline performance, such as LLaMA 4 Maverick and Scout, experience even
greater relative improvements. LLaMA 4 Maverick, for example, improves by 29.7% on Item J2-1
and achieves up to 26.0% gains on Item H4-1, suggesting that structured supervision via SRGs can
dramatically enhance reasoning capabilities in non-reasoning models for open-source SKETCHMIND.

Why Multi-Agent Framework? All the above-mentioned results are performed with the multi-
agent framework proposed for SKETCHMIND, but here comes the question: why not a single agent?
To answer that and assess the impact of modularization inherent in the multi-agent framework for
reasoning tasks, we conducted an ablation study comparing a unified single-agent framework with
our proposed multi-agent pipeline. Each setting was evaluated with and without SRG supervision
using two strong backbone models: GPT-40 and GPT-4.1.

The results in Table 2 demonstrate that modularizing the reasoning process via a multi-agent frame-
work consistently improves SKETCHMIND’s performance over the single-agent baseline across



Table 1: Item-wise accuracy (%) across models with and without SRG integration for SKETCHMIND.

Model | R1-1  J2-1 M3-1 H4-1 H51 J6-1 | Average
GPT-40 63.2 58.4 53.5 47.7 52.3 58.6 55.6
+ SRG 78.5 77.4 75.8 76.5 74.7 79.1 771
Gain +15.3 +19.0 +22.3 4288 +224 +20.5| +214
GPT-4.1 74.2 78.5 77.4 73.1 79.6 81.5 77.4
+ SRG 89.6 91.6 88.4 87.2 91.7 92.6 90.2
Gain +154 +13.1 +11.0 +14.1 +12.1 +11.1 +12.8
GPT-4.1-nano 62.5 61.3 59.6 57.3 63.8 67.5 62.0
+ SRG 73.7 72.6 70.4 68.7 78.5 79.3 73.9
Gain +11.2 +11.3 +10.8 +11.4 +14.7 +11.8| +11.9
03 75.2 79.5 76.4 75.3 717.5 79.4 77.2
+ SRG 89.5 91.1 87.3 86.4 89.6 90.3 89.0
Gain +14.3 +11.6 +10.9 +11.1 +12.1 +109 | +11.8
0O4-mini 71.4 75.3 73.3 69.2 74.6 76.1 73.3
+ SRG 79.5 81.5 79.4 77.6 82.8 83.9 80.8
Gain +8.1 +6.2 +6.1 +8.4 +8.2 +7.8 +7.5
LLaMA 4 Scout 48.6 43.2 39.5 38.4 45.6 47.5 43.8
+ SRG 63.8 69.3 59.6 61.7 67.5 66.8 64.8
Gain +15.2 +26.1 +20.1 +233 +21.9 +19.3 +21.0
LLaMA 4 Maverick | 53.4 49.7 44.5 42.7 46.8 49.6 47.8
+ SRG 77.3 79.4 63.6 68.7 71.8 73.5 72.4
Gain +23.9 +29.7 +19.1 +426.0 +25.0 +23.9 | +24.9

all six items. Without SRG integration, GPT-40’s accuracy increases from 50.1% (single-agent) to
55.6% (multi-agent), while GPT-4.1 improves from 62.9% to 77.4%, indicating that decomposing
tasks into specialized agents enables more structured, context-aware reasoning even without explicit
graph guidance. This performance gap widens with SRG supervision: GPT-40’s accuracy rises from
69.5% to 77.1% and GPT-4.1 from 82.8% to 90.2%, with item-wise gains ranging from 5.2% to
13.4%. Notably, Item H4-1 (Hot Shower Effect), which demands the highest Bloom’s taxonomy
level (Create), sees accuracy climb from 63.2% to 76.5% for GPT-40 and from 79.3% to 87.2% for
GPT-4.1 when switching to multi-agent reasoning with SRG, confirming that modular agents are
better equipped to leverage structured semantic guidance. These results highlight that a multi-agent
architecture, where reasoning responsibilities are explicitly segmented and coordinated, facilitates
more robust and interpretable scientific reasoning.

Table 2: Ablation study comparing single-agent and multi-agent frameworks for SKETCHMIND
(accuracy in %)

Model configurations | R1-1  J2-1 M3-1 H4-1 H5-1 J6-1 | Average
GPT-4o (Single Agent w/o SRG) | 56.3 524 493 4311 483 512 50.1
GPT-40 (Multi-Agent w/o SRG) 632 584 535 477 523 58.6 55.6
GPT-40 (Single Agent w/ SRG) 735 696 684 632 68.8 743 69.5
GPT-40 (Multi-Agent w/ SRG) 785 774 758 765 747 79.1 771
GPT-4.1 (Single Agent w/o SRG) | 69.6 613 592 57.1 58.8 71.2 62.9
GPT-4.1 (Multi-Agent w/o SRG) | 742 785 774 73.1 79.6 815 77.4
GPT-4.1 (Single Agent w/ SRG) 844 812 83.6 793 827 853 82.8
GPT-4.1 (Multi-Agent w/ SRG) 89.6 916 884 872 917 926 90.2

Feedback and Sketch Modification Evaluation.

To assess the pedagogical quality and usefulness

of SKETCHMIND’s generated sketches and feedback, we conducted a human evaluation study
focusing on Agent 4, the component responsible for modification of visual representations and



providing formative feedback. Expert evaluators, comprising experienced science educators, rated the
outputs across six science items based on their clarity, conceptual accuracy, and instructional value.

As shown in Table 3, GPT-4.1 achieved the highest average rating (4.1), followed closely by 03 (4.0)
and LLaMA 4 Maverick (3.5). Evaluators consistently noted that sketches generated using GPT-4.1
were pedagogically sound, well-aligned with scientific principles, and accompanied by feedback
that could directly support improved student learning. Lower-performing models, such as GPT-40
and LLaMA 4 Scout, received average ratings of 2.3 and 2.5, respectively, often due to missing or
vague concepts and less actionable feedback. The evaluators emphasized that when integrated with
high-performing language models like GPT-4.1, SKETCHMIND has the potential to significantly
improve the quality of student-generated scientific sketches through guided modification and tailored
feedback.

Table 3: Human Evaluation Ratings of Feedback and Sketch Modification (1 = Poor, 5 = Excellent).

Model | R1-1  J2-1 M3-1 H4-1 HS5-1 J6-1 | Average
GPT-40 2.5 2.0 2.5 2.5 2.5 2.0 2.3
GPT-4.1 4.5 4.0 35 35 4.5 4.5 4.1
GPT-4.1-nano 3.0 3.0 3.5 2.5 3.0 35 3.1
03 4.5 4.0 4.0 4.0 3.5 4.0 4.0
0O4-mini 4.0 3.5 3.0 3.0 3.5 3.0 33
LLaMA 4 Scout 3.0 2.5 2.0 2.5 2.0 3.0 2.5
LLaMA 4 Maverick | 3.5 4.0 35 35 3.0 35 3.5

6 Conclusion

In this work, we introduced SKETCHMIND, a cognitively grounded multi-agent system for assessing
and improving student-generated scientific sketches. By leveraging SRGs annotated with Bloom’s
taxonomy, SKETCHMIND enables interpretable evaluation, pedagogically aligned feedback, and
iterative modification of higher-quality visual explanations. Empirical results across six NGSS-
aligned items show that SKETCHMIND (model + SRG) substantially outperforms both MLLM
baselines without SRG and single-agent pipelines, achieving up to 90.2% average accuracy with
GPT-4.1 and receiving high expert ratings of (4.1) for feedback quality. Overall, each MLLM shows
significant improvement for sketch reasoning and prediction with the proposed SRG integration which
highlights the significance of structural reasoning for scientific sketch evaluations. SKETCHMIND
bridges the gap between visual Al reasoning and education by embedding cognitive theories directly
into the assessment pipeline.

Limitations and future directions. Despite promising results, several limitations warrant attention.
First, while the multi-agent system is modular, inter-agent coordination is static and predefined, future
work could explore dynamic planning strategies using large language model (LLM) controllers or
reinforcement learning, as demonstrated in recent advances in task decomposition for multi-agent
collaboration [7, 9]. Second, our findings relies on overal sketch prediction for given proficieicny
level; however, SRG-level evaluation may provide in-depth analysis of predictions. Future work could
involve experts to create manual SRGs for in-depth analysis. Lastly, Incorporating student behavioral
data (e.g., stroke sequence or eye tracking) into the SRG modeling pipeline may also further enhance
alignment with cognitive engagement signals [14].
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A Prompts and Code

Prompts for Cognitive Sketch Assessment Agents This section details the prompt structures
used to interact with the MLLMS for agents 1, 2, and 4 in our cognitive sketch assessment pipeline.
The prompts are designed to elicit structured JSON outputs and guide the MLLMs through their
respective tasks, including SRG generation, sketch analysis, and visual feedback generation. For
clarity and visualization in this document, prompts containing Python class definitions or multi-line
JSON examples are presented within code-like blocks; in our actual implementation, these are passed
as standard text strings to the MLLM. The placeholders like [QUESTION_TEXT], [RUBRIC_TEXT],
etc., are dynamically filled at runtime.

Agent-1: This agent is responsible for interpreting the educational question and rubric, along with
golden standard sketches, to generate a reference SRG and a mapping of concepts to visual drawing
hints.

System Prompt

You are Agent 1: Rubric Parser in a cognitive sketch evaluation system.

Your job is to construct a Bloom-aligned Sketch Reasoning Graph (SRG) based on the rubric,
question, and example sketches.

Use the SRGBuilder class [SRGBuilder_Class_String_Placeholder] to:

1. Extract semantic concepts relevant to the given question and rubric.

2. Label them with Bloom levels (Remember, Understand, Apply, Analyze, Evaluate, Create).
3. Define directed edges that capture causal or logical relationships.

4. Use example sketches to identify additional visual concepts and reinforce what is expected.
5. Validate the graph for connectivity (There should be a path from each node to other nodes)
and Bloom level ordering.

6. Provide a reverse mapping from concepts to drawing hints using Bloom’s taxonomy.
Return JSON in this format:

{
"srg": {"nodes": [{"label":"...", "bloom_level":"..."}], "edges":
SN [{"from":"...", "tO":”..."}]},
"reverse_mapping": {"concept_name": "visual_hint"}

X

Be consistent with node naming across examples. Be thorough but not redundant.

Note: [SRGBuilder_Class_String_Placeholder] is replaced by the full string definition of the
SRGBuilder class as shown below:

class SRGBuilder:
BLOOM_ORDER = ["Remember", "Understand", "Apply", "Analyze", "Evaluate",
— "Create"]

def __init__(self, question: str, rubric: str):
self.question = question
self.rubric = rubric
self.nodes: List[Tuplel[str, str]l]
self.edges: List[Tuplel[str, str]]

[T # (concept, Bloom level)
[1 # (from, to)

def add_node(self, concept: str, bloom_level: str):
assert bloom_level in self.BLOOM_ORDER, f"Invalid Bloom level:
— {bloom_level}"
self .nodes.append((concept, bloom_level))

def add_edge(self, source: str, target: str):
self.edges.append((source, target))

def build_graph(self) -> Dict[str, List[Tuplel[str, str]l]:
return {"nodes": self.nodes, "edges": self.edges}
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def validate_graph(self) -> bool:
node_names = {n[0] for n in self.nodes}
valid_edges = all(u in node_names and v in node_names for u, v in
— self.edges)

# Check for connectivity

G = nx.DiGraph()

G.add_edges_from(self.edges)

connected = nx.is_weakly_connected(G) if G.number_of_nodes() > 0 else
— False

# Ensure Bloom level ordering is respected
bloom_levels = [self.BLOOM_ORDER.index(level) for _, level in self.nodes]
ordered = bloom_levels == sorted(bloom_levels)

return valid_edges and connected and ordered

Initial User Prompt Sequence

The initial interaction with Agent-1 involves a sequence of user messages:
1. Text Input:
Question: [QUESTION_TEXT]
Rubric: [RUBRIC_TEXT]

Please analyze the following golden standard sketches for
guidance.

2. For each of the 3 golden standard images provided:

* Image Input: [GOLDEN_STANDARD_IMAGE_N_BASE64]
* Associated Text: "This is a golden standard sketch."

Agent-2: This agent analyzes the student’s sketch, using a reference SRG (from Agent-1) as a
template, to identify concepts and relationships present in the sketch.

System Prompt

You are Agent 2: Sketch Parser in a cognitive sketch evaluation system.

You receive a student’s sketch and analyze its contents to construct a Sketch Reasoning Graph
(SRG).

Your SRG output must use the same node labels and edge labels as in the reference SRG if
possible.

Only include a node or edge if it is visibly present or clearly inferable.

Instructions:

1. Use the reference SRG node and edge names as a template.

2. Detect which concepts and relationships from the reference are actually present in the
sketch.

3. Label each node with the Bloom level shown by the sketch.

4. Return only valid components and their Bloom levels.

Return JSON in the format:

{
nsrgu: {
"nodes": [{"label": "...", "bloom_level": "..."}],
"edges": [{"from": n_..n’ "tO"Z u_..n}]
}
}




Be strict and do not assume missing content. Match names exactly where applicable.

Initial User Prompt Sequence

The initial interaction with Agent 2 involves:

1. Text Input (Reference SRG Information):

Reference SRG Node Labels:
- [Labeli]
- [Label?2]

Reference SRG Edges:
- [Sourcel] -> [Targetl]
- [Source2] -> [Target2]

2. Image Input (Student’s Sketch): [STUDENT _SKETCH_IMAGE_BASE64]

Prompt Variations for LLaMA-4 (Maverick & Scout) While the core structure of all prompts
remained identical, for the LLaMA-4 variants we applied only these minimal changes to get the same
structured JSON replies as our GPT-based agents :

Agent-1 (LLaMA-4 Variant): Only the bold content in the following lines differ from the GPT-
based prompts above:

System Prompt

Use the SRGBuilder class [SRGBuilder_Class_String_Placeholder] to:

Follow these steps:

1. Extract concise semantic concepts relevant to the question and rubric.

2. Label each concept with its corresponding Bloom’s taxonomy level: Remember, Under-
stand, Apply, Analyze, Evaluate, or Create.

3. Define directed edges that capture causal or logical relationships between these concepts.
4. Incorporate insights from example sketches to identify additional visual concepts and
reinforce expectations.

5. ..

6. ...

Your output must strictly adhere to the following JSON format:

{
"srg": {"nodes": [{"label":"...", "bloom_level":"..."}], "edges":
o [{"from":"...", "tO"I"..."}]},
"reverse_mapping": {"concept_name": "visual_hint"}

}

Use double quotes for all keys and string values. Do not include any explanations or
additional text outside the JSON structure.

Initial User Prompt Sequence

Please analyze the above information and generate the Sketch Reasoning
Graph (SRG) and reverse mapping as per the system instructions and
Please analyze the following golden standard sketches for guidance
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Agent-2 (LLaMA-4 Variant): Only the bold content in the following lines differ from the GPT-
based prompts above:

System Prompt

Return JSON in the format (double quotes only):

Use double quotes for all keys and string values. Do not include any explanations or
additional text outside the JSON structure.

Agent-4: While Agent 4 performs several functions, its primary MLLM interaction for generating
new content involves creating Python code for visual overlays on the student’s sketch. Agent-3 is
deterministic and does not use an MLLM.

System Prompt

You are Agent-4: That returns Python code to overlay visual sketch hints on images. Before
generating the code, understand the given image on which this overlay will apply, and carefully
position objects appropriately. Do not just randomly place the overlay on the image in the
code.

Initial User Prompt Sequence

This prompt is sent along with the student’s sketch image.

1. Text Input:

Generate a Python function using PIL to visually overlay a hint
onto a student sketch.

The original image is [IMAGE_WIDTH]px wide and [IMAGE_HEIGHT]px
tall.

Concept: [CONCEPT_NAME_FOR_HINT]

Hint: [GENERATED_VISUAL_HINT_TEXT]

Return only the function named

“overlay_hint(image: Image.Image) -> Image.Image”.

2. Image Input (Student’s Sketch): [STUDENT_SKETCH_IMAGE_BASE64]

Agent-3 Core Evaluation Logic. The following code implements the similarity computation,
classification, and feedback signal extraction used by Agent 3.

class Agent3:
def run(self, reference_srg, student_srg):
ref = SRGBuilder("", "")
stu = SRGBuilder("", "")
ref .nodes, ref.edges = reference_srg['nodes'], reference_srg['edges']
stu.nodes, stu.edges = student_srg['nodes'], student_srg['edges']

score = stu.compute_similarity(reference_srg)

missing nodes = [n for n in reference_srg['nodes'] if n not in
<« student_srg['nodes']]
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missing_edges = [e for e in reference_srg['edges'] if e not in
< student_srg['edges']]

irrelevant_nodes = [n for n in student_srg['nodes'] if n not in
— reference_srg['nodes']]

irrelevant_edges = [e for e in student_srg['edges'] if e not in
— reference_srg['edges']]

# Compare Bloom level exzpectations
bloom_discrepancies = []
ref_node_dict = dict(reference_srg['nodes'])
for concept, level in student_srg['nodes']:
if concept in ref_node_dict and level != ref_node_dict[concept]:
bloom_discrepancies.append ({
"concept": concept,
"expected": ref_node_dict[concept],
"observed": level

b

# Classify sketch based on similarity score
if score >= SCORE_THRESHOLD:
label = "Proficient"
elif score >= 0.5:
label = "Developing"
else:
label = "Beginning"

# Rank missing nodes by Bloom level
priority_fix = sorted(missing_nodes, key=lambda x:
<+ SRGBuilder.BLOOM_ORDER.index (x[1]))

# Detect gaps in rTeasoning flow

expected_sources = {src for src, _ in reference_srg['edges']}
actual_sources = {src for src, _ in student_srg['edges']l}
conceptual_gaps = list(expected_sources - actual_sources)

return {
"similarity_score": round(score, 3),
"classification": label,
"missing_nodes": missing_nodes,
"missing_edges": missing_edges,
"irrelevant_nodes": irrelevant_nodes,
"irrelevant_edges": irrelevant_edges,
"bloom_discrepancies": bloom_discrepancies,
"priority_fix": priority_fix,
"conceptual _gaps": conceptual_gaps

B Dataset Statistics

We selected this dataset for three primary reasons: 1) Relevance and Authenticity: It contains real,
open-ended student responses in the form of scientific sketches, reflecting a range of cognitive
and conceptual models that go beyond synthetic or constrained data sources. This authenticity is
essential for evaluating models that aim to interpret or provide feedback on student thinking. 2)
Expert Annotation and Interpretability: Each assessment item is supported by a rubric and three gold-
standard (SRGs), representing Beginning, Developing, and Proficient levels. These gold standards
were constructed by domain experts, enabling supervised learning and interpretability in model
predictions. 3) Domain Breadth and Volume: comprises six items across physical sciences spaning
from physical chemistry, heat transfer, and thermodynamics, the dataset contains over 3,500 curated
student sketches. Each assessment item is associated with a specific highest order of Bloom’s level as
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each assessment is designed for comprehensive sketch evaluation. Each response has been cleaned to
remove noise and non-sensical content, making it suitable for reliable evaluation. Further, each item
is supported by an expert-authored rubric and three corresponding gold-standard (SRGs), representing
Beginning, Developing, and Proficient levels of performance.

The dataset consists of student drawn scientific sketches and golden-standard sketches drawn by
teacher. A “‘scientific sketch" is a visual representation intended to illustrate a scientific concept,
process, or phenomenon. For example, for thermodynamics concept, the scientific sketch shows heat
source, its transition phases, arrows may represent the flow of heat, and object/medium transferring the
heat. Teacher-drawn sketches serve as gold-standard reference sketches, explicitly containing essential
visual components necessary to fully represent the target scientific concept (e.g., arrows clearly
indicating heat transfer direction in thermodynamics). In contrast, student-drawn sketches often
reflect incomplete, varied, or erroneous understanding, exhibiting substantial diversity and ambiguity.
We explicitly distinguish these categories in our data annotation by using teacher sketches as gold-
standard “reference SRGs" and grounding student sketches pedagogically to Bloom’s cognitive levels
(See Fig. 1. We also have included the representative examples, illustrating these differences in Fig. 5.

Cold Water Room Temperature Water
0 AN A RE e ! 30 seconds
0 seconds | 30 k.eﬁ(\]ﬂdb O SEeands . N
|
' S \ 0/7
—— P
B e SO0 Water @ Cancy ROOM Temperature water . 4 ’ ‘ 7 \
@ waer ' L' _J
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Hot Water
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Hot Water 0 seconds r: /\
p |CO])
~
P
)\
~/
(a) Teacher Drawn golden-standard

sketch for the repsentative example (b) A student drawn scientific sketch (Barely reaching the

shown in Fig. 1 reaching Level 6 Understanding Level of Bloom’s Teaxonomy)

Figure 5: Sample sketches drawn by teacher and student(a) Teacher’s drawn sketch (Level 6, (b)
Student drawn sketch at Level 1

Table 4: Summary of Assessment Items and Student Response Distribution based on the Proficiency
Level.

Item# | Name Bloom’s Level | Total Samples | Beginning | Developing | Proficient
R1-1 Red dye diffusion 4 (Analyze) 476 194 205 77
J2-1 Jane’s inflated ball 5 (Evaluate) 538 177 288 73
M3-1 | Melting Butter 5 (Evaluate) 520 155 266 99
H4-1 Hot Shower Effect 6 (Create) 772 494 107 171
H5-1 Heated Cup of Water 5 (Evaluate) 453 61 262 130
J6-1 Jennifer’s Teapot 4 (Analyze) 816 390 271 155

The Table. 4 summarizes each item, its domain, the distribution of student responses across the
three proficiency levels, and highest order of Bloom’s level. Evaluation criteria for model quality
include: structural validity and semantic alignment via accurate node and edge labeling consistent
with Bloom’s taxonomy in term of accuracy for final predictions based on SRGs, and feedback quality
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as rated by domain experts on a 5-point Likert scale (1 = poor, 5 = excellent), assessing the clarity
and instructional value of generated visual hints and textual explanations.

C Costs

Table 5: Cost and Token Usage Per Sample across all Agents for each Model.

Item# | Model Input Tokens/sample | Output Tokens/sample | Cost per sample | E2E Latency
RI-1 | GPT-4o ~5,105 ~1491 $0.0479 9.48s
RI-1 | GPT4.1 ~5,105 ~1491 $0.0221 20.35s
R1-1 | GPT-4.1 nano ~5,105 ~1491 $0.0011 17.16s
RI1-1 | O3 ~5,105 ~1491 $0.1107 51.62s
RI-1 | O4-mini ~5,105 ~1491 $0.0122 169.79s
RI1-1 Llama-4 Scout ~5,170 ~1351 Local Inference 13.30s
RI1-1 Llama-4 Maverick ~5,170 ~1351 Local Inference 13.82s

D Additional Evaluation

E Impact Statement

SKETCHMIND advances Al in Education by introducing a cognitively grounded, multi-agent system
for evaluating student-drawn scientific sketches. By combining semantic reasoning with Bloom’s
Taxonomy, it enables interpretable, standards-aligned feedback that supports formative assessment.
This approach benefits science educators by automating consistent, high-quality evaluation and
guiding students through conceptually meaningful revisions. For researchers, SKETCHMIND provides
a reproducible framework and dataset for studying multimodal reasoning, cognitive alignment, and
agentic learning systems—paving the way for more transparent and pedagogically sound Al tools in
STEM education.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction reflect the paper’s contributions and scope.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation, as long as it is clear that these
goals are not attainable by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses limitations in Section 6.
Guidelines:

* The answer NA means that the paper has no limitations, while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed not to penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not present new theorems or formal proofs or make any
theoretical claims.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

e All theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in the appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide implementation details in Section 4 and A.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in the supplemental
material?
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Answer:
Justification: Dataset access is pending approval. Code will be open-sourced.
Guidelines:

* The answer NA means that the paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Test Details are specified in Sections 4, 5 and B.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in the appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined, or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Since our work does not involve any pre-training or fine-tuning, and only
involves MLLM inference. Therefore, the results shows the evaluation scores on test set.
Which is expained in detail in 4.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., normally distributed errors).
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8.

10.

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar rather than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

* If error bars are reported in tables or plots, the authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Detailed computational resources, including hardware specifications for locally
executed open-source models and costs for closed-source models are proivded in 4 and C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers, CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more computing
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms fully with ethical guidelines and best practices as
outlined by NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes, we discuss broader impact in Appendix E.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for the responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No high-risk assets are being released, as the paper mainly involves MLLM
inference and students’ scientific sketch dataset (pending approval); therefore, the paper
does not describe any safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example, by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and make a
best-faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we have properly credited and cited the dataset and models in 4
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented, and is the documentation
provided alongside the assets?

Answer:
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing or human-subject studies.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We have used fully anonymized dataset from Zhai et al.[30] study, hence
doen’t require IRBs to conduct our research.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigor, or originality of the research, the declaration is not required.

Answer: [Yes]
Justification: Section 4 details the use of MLLMs in our multi-agent pipeline.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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