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ABSTRACT

Medical vision-and-language pre-training (Med-VLP) has shown promising im-
provements on many downstream medical tasks owing to its applicability to extract-
ing generic representations from medical images and texts. Practically, there exist
two typical paradigms, i.e., the fusion-encoder paradigm and the dual-encoder
paradigm, depending on whether a heavy fusion module is used. The former
outperforms on multi-modal tasks owing to the sufficient interaction between
modalities; the latter outperforms on uni-modal and cross-modal tasks due to the
single-modality encoding ability. To take advantage of these two paradigms, we
propose an effective yet straightforward scheme named PTUnifier to unify the two
paradigms thanks to the identical input format by introducing visual and textual
pseudo tokens, which serve as a feature bank that stores the most representative
images/texts. By doing so, a single model could process various tasks adopting dif-
ferent input formats (i.e., image-only, text-only, and image-text-pair). Furthermore,
we construct a pool of pseudo tokens (instead of static ones) to improve diversity
and scalability. Experimental results show that our approach achieves state-of-the-
art results on a broad range of tasks, spanning uni-modal tasks (i.e., image/text
classification and text summarization), cross-modal tasks (i.e., image-to-text gen-
eration and image-text/text-image retrieval), and multi-modal tasks (i.e., visual
question answering), demonstrating the effectiveness of our approach. Note that the
adoption of pseudo tokens is orthogonal to most existing Med-VLP approaches, and
we believe that our approach could be a beneficial and complementary extension to
these approaches.1

1 INTRODUCTION

Medical data is multi-modal in general, among which vision and language are two critical modalities.
It includes visual data (e.g., radiography, magnetic resonance imaging, and computed tomography)
and textual data (e.g., radiology reports and medical texts). More importantly, such images and texts
are pair-collected in routine clinical practice (e.g., X-ray images and their corresponding radiology
reports). Medical vision-and-language pre-training (Med-VLP) aims to learn generic representation
from large-scale medical image-text pairs and then transfer it to various medical tasks. Med-VLP is
beneficial in addressing the data scarcity problem in the medical field.

Recently, substantial progress has been made toward research on Med-VLP (Zhang et al., 2020; Li
et al., 2020b; Huang et al., 2021; Khare et al., 2021; Moon et al., 2021). In general, most existing Med-
VLP models can be classified into two paradigms: the dual-encoder paradigm and the fusion-encoder
paradigm, where the former encodes images and texts separately to learn cross-modal representations
following a shallow interaction layer (i.e., an image-text contrastive layer), and the latter performs
an early fusion of the two modalities through the self-attention/co-attention mechanisms to learn
multi-modal representations.2

For dual-encoders, the purpose of existing studies (Zhang et al., 2020; Huang et al., 2021; Müller et al.,
2021) is to develop label-efficient algorithms to learn effective uni-modal/cross-modal representations

1Our code will be released in the final version of this paper.
2Although the terminologies “cross-modal” and “multi-modal” have been used interchangeably in the

literature, we treat them as terms with different meanings in this paper.
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(a) Existing Paradigms (b) Our Approach (c) T-SNE Visualization

Figure 1: (a) Illustrations of two Med-VLP paradigms and their advantages (pointed by green arrows)
and disadvantages (pointed by red arrows) in downstream tasks; (b) The overall architecture of our
proposed approach, where the backbone models share the same parameters, and we duplicate them
for illustration; (c) T-SNE visualization of the [CLS] representations of pseudo texts, where P and N
denote the cases with and without abnormalities, respectively.

and the learned representations can improve the effectiveness of uni-modal (i.e., vision-only or
language-only) tasks3 and the efficiency of cross-modal (i.e., image-to-text or text-to-image) retrieval
tasks significantly. For fusion-encoders, existing studies (Li et al., 2020b; Khare et al., 2021; Moon
et al., 2021) aim to jointly process these two modalities with an early interaction to learn multi-modal
representations to solve those tasks requiring multi-modal reasoning (e.g., medical visual question
answering and medical image-text classification). However, it seems that “you can’t have your cake
and eat it, too.”: the fusion-encoders can not perform uni-modal tasks effectively and cross-modal
tasks efficiently due to the lack of single modal encoding, while the dual-encoders underperform on
multi-modal tasks owing to the insufficient interaction between modalities as shown in Figure 1(a).

In this paper, we aim to learn a unified medical vision-and-language pre-trained model. Although
there exist some solutions (e.g., mixture-of-modality experts (Wang et al., 2021) and a modified VLP
architecture (Singh et al., 2022)) to achieve a similar goal in the general domain, we propose an
architecture- and task-agnostic approach named PTUnifier (as shown in Figure 1(b)), which is much
simpler and lighter-weight. Technically, we develop the approach from the following perspectives:
(i) Compatibility: we introduce visual and textual pseudo tokens to make the Med-VLP model
compatible with different kinds of inputs (i.e., image-only inputs, text-only inputs, and image-text
pairs); (ii) Scalability: we improve the diversity of the pseudo tokens by constructing pseudo token
pools for different modalities from which different inputs are able to select their corresponding
pseudo tokens, which enhances the capacity and makes it scalable to larger-scale Med-VLP. In
intuition, the introduced pseudo tokens serve as a feature bank that stores the most representative
images/texts, which is qualitatively analyzed by our experiments shown in Figure 1(c), where the
[CLS] representations of pseudo texts are grouped into two clusters according to whether the images
contain abnormalities or not.

As a result, the proposed approach can be employed in unifying Med-VLP with many existing VLP
model architectures (e.g., classic ones (Li et al., 2019; Dou et al., 2021) or even a single vanilla
Transformer model) and does not require extra modality-dependent architectures, resulting in better
applicability. We perform the pre-training on three large-scale medical image-text datasets, i.e.,
ROCO (Pelka et al., 2018), MedICaT (Subramanian et al., 2020), and MIMIC-CXR (Johnson et al.,
2019). To verify the effectiveness of our approach and facilitate further research, we construct a
medical vision-language benchmark including uni-modal tasks (i.e., image classification (IC) for
vision and text classification (TC) and text summarization (TS) for language), cross-modal tasks (i.e.,
image-to-text retrieval (ITR), text-to-image retrieval (TIR), and image-to-text generation4 (ITG)),
and multi-modal tasks (i.e., visual question answering (VQA)). The proposed PTUnifier achieves
state-of-the-art performance on all datasets, demonstrating its effectiveness.

3It is worth noting that most existing studies only conduct the evaluation on the vision-only tasks and
disregard the language-only tasks although the text representations are simultaneously learned in the image-text
contrastive procedure.

4Medical image-to-text generation refers to medical/radiology report generation in previous studies.
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2 UNIFYING MED-VLP

§ 2.1 details the problem to be addressed. This work proposes to unify inputs using pseudo tokens (in
§ 2.2), and thus one could jointly train various tasks even with different input formats (in § 2.3).

2.1 PROBLEM DEFINITION

When dealing with vision and language modalities, suppose that we have embedded a medical image
I as Xv ∈ RDv×Nv or a medical text T as X l ∈ RDl×Nl . The input could be one of the following
cases: (i) image-only input, (ii) text-only input, and (iii) image-text pair.

X =


(Xv) if image-only
(X l) if text-only
(Xv,X l) if image-text

(1)

We aim to learn a single backbone model (denoted as Mθ, which is parameterized by θ) to process
these three inputs indiscriminately. The challenge is to make the backbone model Mθ deal with
such variable-size and heterogeneous input. To overcome this, one could unify various vision-
language tasks. Assuming there are S pretext tasks with different input formats (i.e., image-only,
text-only input, or image-text pair), the learning process can be formulated as

θ∗, θ∗1 , ..., θ
∗
S = argmin

θ,θ1,...,θS

S∑
s=1

Ls(Ys,Hθs(Mθ(X)), (2)

where Ls are the loss functions of pretext tasks, Ys are the corresponding ground-truth labels, and
Hθs are the prediction heads with their parameters θs.

2.2 UNIFYING INPUTS USING PSEUDO TOKENS

To unify inputs, we design a basic solution for compatibility and an advanced solution for scalability.
In this work, we use the advanced solution in default if not specified.

2.2.1 COMPATIBILITY USING PSEUDO TOKENS

To make the backbone model compatible with variable-size and heterogeneous input, this work
proposes a simple yet effective approach, namely using Pseudo Tokens (PT) as placeholders for
missing modality. Mθ naturally accepts two inputs (visual and textual embeddings Xv,X l), which
is by definition compatible to inputs with image-text pairs. For image-only/text-only inputs, we
propose to introduce visual/textual pseudo tokens to enable the backbone model to perceive the
missing input in a specific modality:

X =


(Xv,PT l) if image-only
(PT v,X l) if text-only
(Xv,X l) if image-text

, (3)

where PT v ∈ RDv×k and PT l ∈ RDl×k.

2.2.2 SCALABILITY OF PSEUDO TOKENS

The above solution adopts a static fashion to introduce pseudo tokens, which might have limited
diversity and therefore harm its capacity. Hence, we construct a pool of visual/textual pseudo tokens
instead of static pseudo tokens. Importantly, the selection of pseudo tokens is conditioned on the
input embeddings.

Pseudo Token Pool Formally, we define a visual pseudo token pool V ∈ RDv×Nv and a textual
pseudo token pool T ∈ RDl×Nl . Nv and Nl are the size of the visual/textual pseudo token pool,
respectively.
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Pseudo Token Selection Given the image-only input with its visual embedding sequence Xv or
language-only input with its textual embedding sequence X l, we conduct a pooling operation (e.g.,
average/max pooling) to obtain a query vector for existing modality (denoted as qv or ql), namely,
qv = pooling(Xv) and ql = pooling(X l), respectively. To get the pseudo tokens of the missing
modality, the selection of pseudo tokens is based on the similarity scores between the query vector
and all pseudo tokens in the pool from the missing modality.

PT l = top-k
w∈V

[
wTqv

]
,

PT v = top-k
w∈T

[
wTql

]
,

(4)

where w is an embedding vector in the pseudo token pool, and we select k closest pseudo tokens as
the input embeddings of the missing modality.

Without loss of any generality, we take a text-only scenario as an example, but it also holds for the
image-only scenario. To select the best visual pseudo tokens for the text-only input, the proposed
method chooses the most similar ones compared to the given textual query vector. As an intuitive
explanation, one could treat the visual pseudo token pool as a feature bank that stores the most
representative images of a given dataset. Eq. 4 aims to choose the visual pseudo tokens that might
convey a similar semantic meaning as the given text by conducting dot products. In other words, it
might, at least to some extent, automatically fill (originally unprovided) semantically-similar images
conditioned on purely the given text.

Linking to Prompts We find that the PTUnifier (especially the static one in § 2.2.1) is quite similar
to the prompt tuning (PT) (Li & Liang, 2021; Liu et al., 2021c). They both introduce special tokens
or vectors as a certain signal for training or inference. One notable difference is that in a special
version of PTUnifier using pseudo token pools (see § 2.2.2), the selection of additional tokens/vectors
is conditioned on the input, while prompts are generally static and constant to input.

2.3 UNIFYING MULTIPLE PRE-TRAINING OBJECTIVES

Owing to the unified image and/or text input formulation, we can adopt pretext tasks of both fusion-
encoders and dual-encoders (see Eq. 2). Following previous studies (Li et al., 2019; Tan & Bansal,
2019; Zhang et al., 2020; Radford et al., 2021), we develop two commonly used pre-text tasks
(i.e., masked language modeling (MLM) and image-text matching (ITM)) for fusion-encoders and
the image-text contrast (ITC) pre-text task for dual-encoders. To produce the prediction for the
aforementioned MLM and ITM tasks, we use two independent prediction heads HMLM and HITM

(i.e., two two-layer multilayer perceptrons (MLPs)).

Masked Language Modeling (MLM) Following BERT (Devlin et al., 2019), we randomly mask
15% of the words (denoted as YMLM) of the input text T and recover them according to the remaining
text (TM) and the input I . The MLM objective is given by:

LMLM = −
∑
(I,T )

log pMLM(YMLM|I, TM), (5)

where pMLM is obtained by applying HMLM followed by a softmax operation on the corresponding
representations of [MASK] in Zl.

Image-Text Matching (ITM) This task aims to distinguish whether an image-text pair is a match.
In detail, a positive image-text pair and a randomly sampled negative pair are fed into Mθ and the
concatenation of zv

[CLS] and zl
[CLS] is processed by HMLM followed by a softmax layer to output a

binary probability pITM. Therefore, the ITM objective is given by

LITM = −
∑
(I,T )

log pITM(YITM|I, T ). (6)

Image-Text Contrast (ITC) This task aims to learn better uni-modal/cross-modal representation
from the instance-level contrast. In this work, given an image-text pair, we use two different forward
procedures on the image-only input I and the text-only input T , respectively, to obtain the image-only
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representation (denoted as zv) and text-only representation (denoted as zl). Afterward, we adopt
the similarity function s (I, T ) = zv⊤zl to compute the image-to-text similarity and text-to-image
similarity between zv and zl. Subsequently, the similarities are normalized as follows:

pi2tn =
exp (s (I, Tn) /τ)∑N
n=1 exp (s (I, Tn) /τ)

, (7)

pt2in =
exp (s (In, T ) /τ)∑N
n=1 exp (s (In, T ) /τ)

, (8)

where N is the size of the mini-batch. The ground-truth labels Y i2t and Y t2i are two N ×N one-hot
matrices, where negative pairs have a probability of 0 and the positive pair has a probability of 1.
Therefore, the ITC objective is given by

LITC = −1

2

∑
(I,T )

log pi2t(Y i2t|I, T )− 1

2

∑
(I,T )

log pt2i(Y t2i|I, T ). (9)

3 OVERALL ARCHITECTURE

The previous section documents the unification at the input and task levels. This section will
introduce the overall architecture of our work. As a pipeline, we first map visual and textual tokens
into embeddings space (Xv and X l as specified in §3.1). Such token embeddings with or without
pseudo tokens will be jointly processed by an identical backbone model Mθ (§3.2). An overview of
the proposed approach is shown in Figure 1(b). The training objectives are introduced in (§2.3).

3.1 VISUAL AND TEXTUAL EMBEDDINGS

Visual embedding For an input image I , it is first segmented into patches following Doso-
vitskiy et al. (2021). Then the patches are linearly projected into patch embeddings Xv =
(xv

1,x
v
2, . . . ,x

v
Nv

),xv
i ∈ RDv through a linear transformation and a special learnable token embed-

ding xv
[CLS] is prepended for the aggregation of visual information. Therefore, the image embedding

sequence is obtained by summing up the patch embeddings and learnable 1D position embeddings
Ev

pos ∈ RDv×(Nv+1):
Xv = [xv

[CLS];x
v
1;x

v
2; ...;x

v
Nv

] +Ev
pos, (10)

where [·; ·] represents the column concatenation.5

Textual embedding Similarly, for an input text T , we follow BERT (Devlin et al., 2019) to tokenize
the input text to subword tokens by WordPiece (Wu et al., 2016). Afterwards, the tokens are linearly
projected into embeddings X l = (xl

1,x
l
2, ...,x

l
Nl
),xl

i ∈ RD through a linear transformation with a
start-of-sequence token embedding xl

[CLS], and a special boundary token embedding xl
[SEP] added.

Therefore, the text embedding sequence is obtained by summing up the sub-word token embeddings
and text position embeddings El

pos ∈ RD×(Nl+2):

X l = [xl
[CLS];x

l
1; . . . ;x

l
Nl
;xl

[SEP]] +El
pos. (11)

3.2 BACKBONE MODEL ARCHITECTURE

Since the input image and/or text are represented as a unified image-text sequence, the backbone
model can be any model for sequential modeling. In this work, we adopt an attention-based Med-VLP
model with the multi-modal interaction, which can be an effective model (including uni-modal
encoders and a multi-modal fusion module) or an efficient one (i.e., a single Transformer model).
Formally, for a given input (defined in Eq. 3), the whole representation process can be formulated as

Zv,Zl = Mθ(X), (12)

where Zv = (zv
[CLS], z

v
1 , z

v
2 , ...,z

v
Nv

) and Zl = (zl
[CLS], z

l
1, ...,z

l
Nl
, zl

[SEP]) are the image and text
representations from the backbone model.

5We abuse the notation Xv for simplicity (same for Xl).
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4 EXPERIMENTAL SETTINGS

4.1 PRE-TRAINING DATASETS

In our experiments, we perform the pre-training on three datasets, which are described as follows:

• ROCO (Pelka et al., 2018): a dataset of radiology figure-caption pairs from PubMed Central, an
open-access biomedical literature database.

• MedICaT (Subramanian et al., 2020): a dataset of medical figure-caption pairs also extracted from
PubMed Central. Different from ROCO, 75% of its figures are compound figures, including several
sub-figures.

• MIMIC-CXR (Johnson et al., 2019): the largest radiology dataset to date from the Beth Israel
Deaconess Medical Center.

For all the datasets, we exclude those samples with the length of their texts less than 3. For ROCO
and MedICaT, we filter non-radiology samples, and for MIMIC-CXR, we only keep images in the
frontal view. As for the dataset split, we adopt the official splits of ROCO and MIMIC-CXR. For
MedICaT, we randomly sample 1,000 image-text pairs for validation and 1,000 for testing, and the
remaining image-text pairs are used for training.6 Different from the texts in general-domain VLP,
the medical texts are long narratives consisting of multiple sentences. To deal with this case, we
randomly sample a sentence from the input text in each iteration.

4.2 MEDICAL VISION-LANGUAGE BENCHMARK

To evaluate the performance, we construct a medical vision-language evaluation benchmark including
three types of tasks, i.e., uni-modal, cross-modal, and multi-modal evaluations.7

Uni-modal Evaluation requires the model to process a single modality with vision-only or language-
only inputs. For vision-only tasks, we conduct the image classification (IC) experiments on CheXpert
(Irvin et al., 2019) and RSNA Pneumonia (Shih et al., 2019). For language-only tasks, we perform both
the understanding task (i.e., text classification (TC)) and the generation task (i.e., text summarization
(TS)) on the RadNLI (Romanov & Shivade, 2018; Miura et al., 2021) and MIMIC-CXR datasets,
respectively.

Cross-modal Evaluation requires the model to align the vision and language modalities. We
conduct experiments on three kinds of tasks (i.e., image-to-text retrieval (ITR), text-to-image retrieval
(TIR), and image-to-text generation (ITG)). For ITR and TIR, we adopt the ROCO dataset. For
ITG, we conduct experiments on the MIMIC-CXR dataset to evaluate its ability for radiology report
generation.

Multi-modal Evaluation requires the model to reason over both the image and text inputs through
the multi-modal interaction. We conduct the experiments on the medical visual question answering
(VQA) task, which requires the model to answer natural language questions about a medical image.
We adopt three publicly available Med-VQA datasets (i.e., VQA-RAD (Lau et al., 2018), SLACK
(Liu et al., 2021b) and MedVQA-2019 (Abacha et al., 2019)).

The fine-tuning strategies can be divided into three categories according to the type of tasks. Specifi-
cally, for the classification tasks (i.e., IC, TC, and VQA), we feed the concatenation of the image/visual
pseudo token and text/textual pseudo token representations to a randomly initialized two-layer MLP
to predict the labels. For the retrieval tasks (i.e., ITR and TIR), we adopt the prediction head for the
image-text contrast pre-text task and test its zero-shot and fine-tuned performance. For the generation
tasks (i.e., TS and ITG), we feed the concatenation of the sequence of image/visual pseudo token
and text/textual pseudo token representations to a Transformer decoder with its parameters (except
for the parameters of cross-attention layers) initialized from the pre-trained language encoder. For
the evaluation metrics, we follow the previous studies to adopt AUROC for IC, accuracy for TC and
VQA, Recall@K (K=1, 5, 10) for ITR and TIR, and natural language generation (NLG) metrics (i.e.,

6More details of the pre-training datasets are reported in Appendix A.
7More details of the downstream evaluations are reported in Appendix B.
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Uni-Modal Cross-Modal
Image Text Image-to-Text Text-to-Image Multi-Modal

CheXpert RSNA RadNLI MIMIC MIMIC ROCO ROCO VQA-RAD SLACK MedVQA-2019Methods

AUROC AUROC Acc RG-L BL-4 R@1 R@1 Acc Acc Acc

SOTA1 87.3 81.3 72.6 43.8 8.0 11.9 9.8 72.7 82.1 -
SOTA2 88.1 88.6 77.8 45.1 8.2 14.5 11.3 72.0 - 77.9

PTUnifier (ours) 90.1 90.6 80.0 46.2 10.7 21.0 20.8 78.3 85.2 79.3

Table 1: Comparisons of our proposed method with previous studies on three types of evaluations
(i.e., uni-modal, cross-modal, and multi-modal evaluations). SOTA1 and SOTA2 denote two state-of-
the-art approaches of each type of tasks, respectively. BL-4 denotes BLEU score using 4-grams and
RG-L denotes ROUGE-L. Dark and light grey colors highlight the top and second best results on
each metric. Note that the results of text summarization and image-to-text generation are replicated
using our pre-processed data (See Appendix B and F).

BLEU (Papineni et al., 2002), METEOR (Denkowski & Lavie, 2011), CIDEr (Vedantam et al., 2015)
and ROUGE (Lin, 2004)) for TS and ITG.8

To demonstrate the effectiveness of the proposed approach, we compare it with previous studies,
including ConVIRT (Zhang et al., 2020), GLoRIA (Huang et al., 2021), ClinicalBERT (Alsentzer
et al., 2019), IFCC (Miura et al., 2021), TransABS (Liu & Lapata, 2019), WGSum (Hu et al., 2021),
R2Gen (Chen et al., 2020c), R2GenCMN (Chen et al., 2021), ViLT (Kim et al., 2021), METER (Dou
et al., 2021), CPRD (Liu et al., 2021a), and MMBERT (Khare et al., 2021).

5 RESULTS AND ANALYSES

5.1 MAIN RESULTS

As observed in Table 1, our approach achieves the best performance on all tasks.9 It outperforms
previous studies on uni-modal image classification (+2.0% AUROC), text classification (+2.2%
Accuracy), text summarization (+1.1% Rouge-L), image-to-text generation (+2.4% BLEU-4), image-
to-text retrieval (+7.5% Recall@1), text-to-image retrieval (+9.5% Recall@1), and multi-modal
VQA (+3.4% Accuracy), which confirms the validity of the proposed approach. Furthermore, the
proposed approach outperforms those complicated methods designed for specific tasks (e.g., WGSum
using extra word graphs and CPRD adopting representation distillation). Note that the existing
studies are only designed for a single task, while our approach generally targets all vision- and/or
language-related tasks, namely, without any tailored adaptations to a specific task.

5.2 EFFECTS OF DIFFERENT OBJECTIVES

To further illustrate the effectiveness of our proposed approach, we perform an ablation study on the
pre-training objectives, including the ones from fusion-encoders (i.e., MLM and ITM) and the one
from dual-encoders (i.e., ITC).

There are several observations drawn from different aspects. First, the fusion-encoders’ objectives
(i.e., MLM and ITM) guide the models (i.e., ID 3 and 5) to learn the transferrable multi-modal
representations, which achieve the promising performance on the downstream VQA task. Second,
the dual-encoders’ objective (i.e., ITC) assists the models (i.e., ID 4 and 5) in learning the uni-modal
image representations and the cross-modal representations, and the models pre-trained with the ITC
objective outperform those pre-trained without the ITC objective. Third, interestingly, the ITC
objective does not promote the performance of the uni-modal text classification task. The
reason behind this might be that images and texts are abstracted at different levels, where pixels of
images have a lower semantic level than tokens of texts. Therefore, in the ITC process, the texts
can be treated as a kind of “supervision signals” for the learning of image encoding, yet, it is harder
for the images to play such a role in contrast. This can be observed from previous studies, where

8The hyperparameter settings are reported in Appendix C.
9We report the validation results in Appendix D, the statistics of results in Appendix E, and the detailed NLG

metrics in Appendix F.
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Uni-Modal Cross-ModalObjectives Image Text Image-to-Text Multi-Modal

CheXpert VQA-RAD
1% 10% 100% RadNLI MIMIC Open Closed Overall

ID
MLM ITM ITC

AUROC AUROC AUROC Acc BL-4 CDr Acc Acc Acc

1 ✓ 66.1 79.1 81.1 77.2 9.1 15.0 57.5 79.5 70.8
2 ✓ 56.9 83.0 85.8 77.5 10.0 18.2 23.5 82.8 59.3
3 ✓ ✓ 74.5 87.2 88.4 78.3 9.9 17.1 67.0 84.6 77.7

4 ✓ 88.0 88.9 89.3 76.5 10.3 19.0 64.8 81.0 74.6

5 ✓ ✓ ✓ 88.7 89.0 90.1 80.0 10.7 21.0 68.7 84.6 78.3

Table 2: Ablation studies on the different types of objectives, including the fusion-encoders ones (i.e.,
masked language modeling (MLM) and image-text matching (ITM)) and the dual-encoders one (i.e.,
image-text contrastive (ITC)). 1%, 10%, and 100% represent the different portion of training data of
CheXpert.

Pool Size Pool Para. MLM ITM ITC Total

0 0 1.055 0.232 1.901 3.188
512 393K 1.053 0.215 1.787 3.055
1024 784K 1.049 0.211 1.778 3.038
2048 1,573K 1.057 0.229 1.861 3.147

Table 3: Pre-training losses (including MLM, ITM, and ITM) of our approach against differnt pool
size, where the parameters of the pool (Pool Para.) are also shown.

the dual-encoders were only evaluated on the uni-modal vision tasks or cross-modal tasks. Fourth,
the models pre-trained with the ITC objective (i.e., ID 4 and 5) demonstrate their great transfer
ability where the pre-trained models can achieve high performance with very little data (e.g., 1% and
10%). Fifth, performing both types of objectives promotes the model (i.e., ID 5) to achieve the best
performance across all the tasks, which confirms the feasibility of the research direction on unifying
the fusion-encoders and dual-encoders.

5.3 EFFECTS OF PSEUDO TOKEN POOLS

To analyze the impacts of pseudo token pools, we perform the pre-training with different pool sizes
(ranging from 0 to 2048) with the results shown in Table 3.10 We have several observations: (i)
Although enlarging pool size leads to increasing parameter numbers, it is demonstrated that there are
not too many parameters (less than 0.5%) introduced compared with the total parameters (350M); (ii)
All models with pseudo token pools have a better convergence (with a lower convergence loss) than
the one without pseudo token pools (i.e., pool size equal to 0), which demonstrates the effectiveness
of introducing the pseudo token pools; (iii) It is found that setting a proper pool size is important,
where the model achieves the best convergence when the pool size is set to 1024. This might owe
to the fact that the pool size controls how much the modal information is stored during the pre-
training procedure, and a large pool size with a large capacity might “absorb” too much noise in the
pre-training corpus.11

6 RELATED WORK

Vision-and-Language Pre-training (VLP) Motivated by the success of the self-supervised pre-
training recipe in natural language processing (NLP) (e.g., BERT (Devlin et al., 2019)) and computer
vision (CV) (e.g., SimCLR (Chen et al., 2020a) and MoCo (He et al., 2020)), there has been an
increasing interest in developing VLP methods to address a wide range of vision-and-language-related
tasks. In general, VLP methods can be classified into two categories according to the vision-and-
language interaction, i.e., dual-encoders and fusion-encoders. Existing dual-encoder methods can

10We show the pre-training losses since they directly reflect how well the models perform the pre-text tasks.
11We show cases to illustrate the potential functions of the learned pseudo tokens in Appendix G.
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be summarized according to the following aspects: (i) using medium-scale curated image-text data
(Radford et al., 2021), (ii) using large-scale noisy image-text data (Jia et al., 2021), (iii) designing
more fine-grained image-text contrast (Yao et al., 2021), (iv) adopting extra single modal contrastive
learning (Mu et al., 2021). For fusion-encoders, existing studies can be further categorized with
respect to these three perspectives: (i) Uni-modal encoders: different methods adopt different image
features (e.g., region features (Li et al., 2019; Lu et al., 2019), patch embeddings (Kim et al., 2021),
and grid features (Huang et al., 2020)) and distinct text features (e.g., statistic embeddings (Kim et al.,
2021) and dynamic embeddings (Dou et al., 2021)); (ii) Multi-modal fusion modules: existing studies
adopted the single-stream fusion scheme (Su et al., 2020; Li et al., 2020a) or dual-stream fusion
scheme (Tan & Bansal, 2019; Yu et al., 2021); (iii) Pretext tasks: existing studies explore a variety of
pre-training tasks, including masked language modeling (Li et al., 2019), masked imgae modeling
(Lu et al., 2019; Chen et al., 2020b), image-text matching (Zhang et al., 2021). This paper adopts the
model architecture of fusion-encoders and the pre-text tasks from both dual and fusion encoders.

Medical Vision-and-Language Pre-Training (Med-VLP) Being one of the applications and
extensions of VLP to the medical domain, Med-VLP aims to understand the content of medical
images and texts, which can be traced back to Zhang et al. (2020) for dual-encoders and Li et al.
(2020b) for fusion-encoders. For dual-encoders, the follow-up studies (Huang et al., 2021; Müller
et al., 2021) explored the global-local image-text contrastive learning to capture more fine-grained
information among medical images and texts and have achieved state-of-the-art results in the medical
image classification task. For fusion-encoders, Khare et al. (2021); Moon et al. (2021) performed
pre-training to improve the multi-modal reasoning ability of the vision-and-language models for the
downstream task (i.e., Medical VQA). Compared with these studies, we design a more comprehensive
scheme for Med-VLP from four aspects (i.e., pre-training datasets, model designs, pre-training tasks,
and evaluation benchmarks).

Unified Vision-and-Language Pre-training To unify the dual and fusion encoders, existing studies
mainly adopted/designed specific model architectures to accommodate different pre-text tasks. The
most common scheme is to add an extra multi-modal fusion module to the dual-encoders and perform
the cross-modal pre-text task (i.e., image-text contrast) before the fusion and multi-modal pre-text
tasks (e.g., MLM and ITM) after the fusion (Li et al., 2021; Singh et al., 2022). Besides, Wang et al.
(2021) proposed a mixture-of-modality experts (MoME) Transformer to unify vision-and-language
models by employing a set of modality experts to replace the feed-forward networks (FFN) in the
standard Transformer. However, the aforementioned studies are architecture-dependent, and they
perform the unifying through training different parts of the models when applying different types of
VLP objectives. Therefore, it is expected to unify the existing Med-VLP paradigms in an architecture-
and task-agnostic fashion to improve the generalization and extensionality ability of Med-VLP
methods, as done in this paper.

7 CONCLUSION

In this paper, we proposed a simple yet effective Med-VLP scheme to take the advantages of both
fusion-encoders and dual-encoders, where visual and textual pseudo token pools are used to make our
model compatible with different kinds of inputs (i.e., image-only, text-only, and image-text-pair), and
thus different types of objectives (e.g., MLM and ITM for fusion-encoders and ITC for dual-encoders)
can be adopted for pre-training. It is worth noting that our proposed approach is complementary
to most of the existing Med-VLP models. To perform a comprehensive evaluation, we construct
a medical vision-language evaluation benchmark including three types of tasks. Experimental
results confirm the validity of our approach, which achieves state-of-the-art performance on all the
downstream tasks. Furthermore, the analyses investigate the effects of different types of objectives
and different pool sizes, and such empirical studies might provide a valuable reference for future
research, even for VLP in the general domain.

Limitation The proposed vision-and-language approach is orthogonal to the domains (e.g., the
general domain, and the medical domain). However, limited by GPU resources, we do not perform
the pre-training in the general domain. Instead, we simulate a similar experimental environment in
the medical domain, which allows us pre-training the models with an academic budget. Nonetheless,
we admit that it would be better to evaluate domain-agnostic approaches in the general domain to
verify their generalization.
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REPRODUCIBILITY STATEMENT

For the data, all the pre-training and downstream datasets are publicly available. We report the details
of the pre-training datasets in Appendix A and the details of the downstream evaluations in Appendix
B. For the approach, we describe the model architecture and pre-training objectives in Section 2 and
3. For the hyperparameters, the details are reported in Appendix C. For experimental results, we
report the validation results in Appendix D, the statistics of results in Appendix E, and the detailed
NLG metrics in Appendix F. Besides, our code will be released in the final version of this paper.
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(eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pp. 13–23, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
c74d97b01eae257e44aa9d5bade97baf-Abstract.html.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory F. Diamos, Erich Elsen, David Garcı́a,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=r1gs9JgRZ.

Yasuhide Miura, Yuhao Zhang, Emily Tsai, Curtis Langlotz, and Dan Jurafsky. Improving factual
completeness and consistency of image-to-text radiology report generation. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 5288–5304, Online, 2021. Association for Computational

12

https://arxiv.org/abs/1908.03557
https://aclanthology.org/W04-1013
https://aclanthology.org/D19-1387
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://openreview.net/forum?id=r1gs9JgRZ


Under review as a conference paper at ICLR 2023

Linguistics. doi: 10.18653/v1/2021.naacl-main.416. URL https://aclanthology.org/2021.
naacl-main.416.

Jong Hak Moon, Hyungyung Lee, Woncheol Shin, and Edward Choi. Multi-modal understanding
and generation for medical images and text via vision-language pre-training. ArXiv preprint,
abs/2105.11333, 2021. URL https://arxiv.org/abs/2105.11333.

Norman Mu, Alexander Kirillov, David Wagner, and Saining Xie. Slip: Self-supervision meets
language-image pre-training. ArXiv preprint, abs/2112.12750, 2021. URL https://arxiv.org/
abs/2112.12750.

Philip Müller, Georgios Kaissis, Congyu Zou, and Daniel Rückert. Joint learning of localized
representations from medical images and reports. ArXiv preprint, abs/2112.02889, 2021. URL
https://arxiv.org/abs/2112.02889.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA, 2002. Association
for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https://aclanthology.
org/P02-1040.

Obioma Pelka, Sven Koitka, Johannes Rückert, Felix Nensa, and Christoph M Friedrich. Radiology
objects in context (roco): a multimodal image dataset. In Intravascular Imaging and Computer
Assisted Stenting and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, pp.
180–189. Springer, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision. In Marina Meila and Tong
Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp.
8748–8763. PMLR, 2021. URL http://proceedings.mlr.press/v139/radford21a.html.

Alexey Romanov and Chaitanya Shivade. Lessons from natural language inference in the clinical
domain. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing, pp. 1586–1596, Brussels, Belgium, 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1187. URL https://aclanthology.org/D18-1187.

George Shih, Carol C Wu, Safwan S Halabi, Marc D Kohli, Luciano M Prevedello, Tessa S Cook,
Arjun Sharma, Judith K Amorosa, Veronica Arteaga, Maya Galperin-Aizenberg, et al. Augmenting
the national institutes of health chest radiograph dataset with expert annotations of possible
pneumonia. Radiology. Artificial intelligence, 1(1), 2019.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15638–15650, 2022.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai. VL-BERT: pre-
training of generic visual-linguistic representations. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=SygXPaEYvH.

Sanjay Subramanian, Lucy Lu Wang, Ben Bogin, Sachin Mehta, Madeleine van Zuylen, Sravanthi
Parasa, Sameer Singh, Matt Gardner, and Hannaneh Hajishirzi. MedICaT: A dataset of medi-
cal images, captions, and textual references. In Findings of the Association for Computational
Linguistics: EMNLP 2020, pp. 2112–2120, Online, 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.findings-emnlp.191. URL https://aclanthology.org/2020.
findings-emnlp.191.

Hao Tan and Mohit Bansal. LXMERT: Learning cross-modality encoder representations from
transformers. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language

13

https://aclanthology.org/2021.naacl-main.416
https://aclanthology.org/2021.naacl-main.416
https://arxiv.org/abs/2105.11333
https://arxiv.org/abs/2112.12750
https://arxiv.org/abs/2112.12750
https://arxiv.org/abs/2112.02889
https://aclanthology.org/P02-1040
https://aclanthology.org/P02-1040
http://proceedings.mlr.press/v139/radford21a.html
https://aclanthology.org/D18-1187
https://openreview.net/forum?id=SygXPaEYvH
https://aclanthology.org/2020.findings-emnlp.191
https://aclanthology.org/2020.findings-emnlp.191


Under review as a conference paper at ICLR 2023

Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP), pp. 5100–5111, Hong Kong, China, 2019. Association for Computational Linguistics.
doi: 10.18653/v1/D19-1514. URL https://aclanthology.org/D19-1514.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi Parikh. Cider: Consensus-based image
description evaluation. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, pp. 4566–4575. IEEE Computer Society, 2015. doi:
10.1109/CVPR.2015.7299087. URL https://doi.org/10.1109/CVPR.2015.7299087.

Wenhui Wang, Hangbo Bao, Li Dong, and Furu Wei. Vlmo: Unified vision-language pre-training
with mixture-of-modality-experts. ArXiv preprint, abs/2111.02358, 2021. URL https://arxiv.
org/abs/2111.02358.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation
system: Bridging the gap between human and machine translation. ArXiv preprint, abs/1609.08144,
2016. URL https://arxiv.org/abs/1609.08144.

Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo
Li, Xin Jiang, and Chunjing Xu. Filip: Fine-grained interactive language-image pre-training. ArXiv
preprint, abs/2111.07783, 2021. URL https://arxiv.org/abs/2111.07783.

Fei Yu, Jiji Tang, Weichong Yin, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. Ernie-vil:
Knowledge enhanced vision-language representations through scene graphs. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pp. 3208–3216, 2021.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and
Jianfeng Gao. Vinvl: Revisiting visual representations in vision-language models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5579–5588, 2021.

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D Manning, and Curtis P Langlotz. Con-
trastive learning of medical visual representations from paired images and text. ArXiv preprint,
abs/2010.00747, 2020. URL https://arxiv.org/abs/2010.00747.

14

https://aclanthology.org/D19-1514
https://doi.org/10.1109/CVPR.2015.7299087
https://arxiv.org/abs/2111.02358
https://arxiv.org/abs/2111.02358
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/2111.07783
https://arxiv.org/abs/2010.00747


Under review as a conference paper at ICLR 2023

A MORE DETAILS OF PRE-TRAINING DATASETS

Table 4 shows the statistics of the pre-training datasets.

Datasets Image # Text # Avg. Len. Avg. Sent. #

ROCO 81k 81k 20.42 1.46
MedICaT 124k 321k 40.88 2.82
MIMIC-CXR 232k 367k 36.49 5.07

Table 4: The statistics of the three pre-training datasets including the numbers of images, texts, the
average word-based length (Avg. Len.) of texts, and the average number of sentences (Avg. Sent. #)
of texts.

B MORE DETAILS OF DOWNSTREAM EVALUATION

In this appendix, we detail the descriptions for each downstream evaluation dataset.

CheXpert This dataset contains 224,316 chest radiographs labeled for 14 medical observations.
Following the previous studies (GLoRIA), we only keep those front-view radiographs, hold out the
expert-labeled validation set as the test set, and randomly sample 5,000 images from the training data
for validation.

RNAS Pneumonia This dataset consists of 30,000 front-view chest radiographs labeled by “pneu-
mothorax negative” or “pneumothorax positive”. Following the previous studies (GLoRIA), the
train/validation/test split constitutes 70%/15%/15% of the dataset, respectively.

RadNLI This dataset contains 19k sentence pairs labeled by “Entailment”, “Neutral”, or “Contradic-
tion”. We follow IFCC to produce and pre-process the dataset, which contains the training data from
an extra NLI dataset (i.e., MedNLI).

ROCO This dataset contains 81k image-text pairs. For the training and validation set, we adopt the
official ones. For the test procedure, we sample 2,000 pairs from the test set and evaluate the models
on the 2,000 pairs to obtain the Recall@K scores.

MIMIC-CXR This dataset contains 377,110 chest x-rays. Different from the pre-training, for
downstream evaluations (i.e., text summarization and image-to-text generation), we only keep those
front-view x-rays with both the findings and impression section.

VQA-RAD This dataset consists of 315 images and 3,515 questions. We adopt the commonly used
version pre-processed by MEVF.

SLACK This dataset contains 642 images and 14,028 questions. We follow the original SLACK
paper to prepare and pre-process the dataset and adopt the official dataset split.

MedVQA-2019 This dataset contains 4,200 images and 15,292 questions. We follow previous
studies to prepare and pre-process the dataset by keeping the main three categories of questions:
Modality, Plane, and Organ system.

C MORE DETAILS OF HYPER-PARAMETER SETTINGS

Table 5 reports the hyper-parameters adopted for pre-training and fine-tuning.

Pre-training We adopt the classical VLP model as the backbone model, including a vision encoder,
a language encoder, and a multi-modal fusion module. For the vision and language encoders, we
adopt base-size Transformer encoders with 12 layers initialized from CLIP-ViT-B (Radford et al.,
2021) RoBERTa-base (Liu et al., 2019) and their hidden dimension is set to 768. For the multi-modal
fusion module, we set the number of Transformer layers to 6, the dimension of the hidden states to
768, and the number of heads to 12. For the visual/textual pseudo token pools, the dimension and the
pool size are set to 768 and 1,024, respectively, by default. For optimization, the pre-training takes
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100,000 steps with AdamW optimizer (Loshchilov & Hutter, 2019) with a weight decay of 0.01. The
learning rates for the vision and language encoders and the remaining parameters are set to 1e-5 and
5e-5, respectively. We use the warm-up strategy during the first 10% of the total number of steps, and
the learning rate is linearly decayed to 0 after warm-up. For data augmentation, we use center-crop to
resize each image to the size of 288×288.

Fine-tuning For all downstream tasks, we use the AdamW optimizer with the learning rate set to
5e-6 and 2.5e-4 for the backbone model and task-specific layers, respectively.

All pre-training and fine-tuning experiments are conducted on 80GB NVIDIA A100 GPUs with
mixed-precision (Micikevicius et al., 2018) to accelerate training and save memory.

Hyper-Parameters Pre-training Fine-tuning

Optimizer AdamW AdamW
Learning rate (backbone model) 1e-5 5e-5
Learning rate (prediction heads) 5e-6 2.5e-4
Weight decay 0.01 0.01
Optimizer momentum (0.9, 0.98) (0.9, 0.98)
Batch size 256 {16, 32}
Learning rate schedule cosine cosine
warmup ratio 0.01 0.01
Training steps 100,000 -
Training epochs - {15, 20, 30, 50}

Table 5: The hyper-parameters used for pre-training and fine-tuning.

D RESULTS ON THE VALIDATION SET

Table 6 reports the scores on the validation set of different evaluation datasets.

Uni-Modal Cross-Modal Multi-ModalImage Text Image-to-Text

CheXpert PNAS RadNLI MIMIC MIMIC VQA-RAD SLACK MedVQA-2019
AUROC AUROC Acc RG-L BL-4 Acc Acc Acc

Validation 81.8 90.0 74.2 58.3 12.1 78.3 86.8 83.5

Table 6: Supplementary results of the proposed approach, where the scores on the validation set are
shown.

E MEAN AND STANDARD DEVIATION

We run each experiment three times with different random seeds and report the summarized statistics
with the mean and standard deviation in Table 7.

Uni-Modal Cross-Modal Multi-ModalImage Text Image-to-Text

CheXpert PNAS RadNLI MIMIC MIMIC VQA-RAD SLACK MedVQA-2019
AUROC AUROC Acc RG-L BL-4 Acc Acc Acc

Mean (Test) 89.8 90.6 79.9 46.0 10.6 78.1 85.0 78.9
Std (Test) 0.35 0.02 0.24 0.19 0.13 0.22 0.25 0.41

Table 7: Supplementary results of the proposed approach, where the score statistics on the test set are
shown.
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F DETAILED NLG METRICS FOR THE GENERATION TASKS

We report the detailed NLG Scores for the text summarization and image-text generation tasks in
Table 8 and 9, respectively.

Methods RG-1 RG-2 RG-L

TransABS 46.2 29.1 43.9
WGSum 47.0 30.6 45.1

Ours 50.1 34.7 46.2

Table 8: Detailed NLG scores of the existing studies and the proposed approach on the text summa-
rization task.

Methods BL-1 BL-2 BL-3 BL-4 MTR RG-L CDr

R2Gen 28.6 17.1 11.4 8.0 12.8 23.7 13.6
R2GenCMN 29.9 17.8 11.7 8.2 13.0 23.1 14.3

Ours 35.8 22.1 14.9 10.7 15.3 25.8 21.0

Table 9: Detailed NLG scores of the existing studies and the proposed approach on the image-text
generation task.

G MORE ILLUSTRATIONS OF PSEUDO TOKENS

To illustrate the inherent mechanism of the proposed approach more clearly, we show those images
that share the same pseudo token in Figure 2. It can be observed that after the pre-training, the pseudo
tokens represent some topics of the images/texts implicitly. For example, those images sharing the
1947th pseudo textual token are in the potential topics “Atelectasis” and “Cardiomegaly”; those
images sharing the 816th pseudo textual token are in the potential topic “Edema”; those images
sharing the 601st pseudo textual token are in the potential topic “Support Devices”. This demonstrates
that the semantically-similar information is preserved in the pseudo tokens during the pre-training
procedure.
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“Support Devices”601

“Atelectasis”,
“Cardiomegaly”

“Edema”816

1947

Pseudo
Token ids Potential Topics Selected Images that Share the Same Pseudo Token

Figure 2: Illustrations of pseudo tokens, where images shared the same pseudo token are shown with
their potential topics.
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