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Abstract

In this work, we study the implications of the implicit bias of gradient flow on
generalization and adversarial robustness in ReLU networks. We focus on a setting
where the data consists of clusters and the correlations between cluster means are
small, and show that in two-layer ReLU networks gradient flow is biased towards
solutions that generalize well, but are vulnerable to adversarial examples. Our
results hold even in cases where the network is highly overparameterized. Despite
the potential for harmful overfitting in such settings, we prove that the implicit bias
of gradient flow prevents it. However, the implicit bias also leads to non-robust
solutions (susceptible to small adversarial ℓ2-perturbations), even though robust
networks that fit the data exist.

1 Introduction

A central question in the theory of deep learning is how neural networks can generalize even when
trained without any explicit regularization, and when there are more learnable parameters than
training examples. In such optimization problems there are many solutions that label the training
data correctly, and gradient descent seems to prefer solutions that generalize well [Zha+17]. Thus, it
is believed that gradient descent induces an implicit bias towards solutions which enjoy favorable
properties [Ney+17]. Characterizing this bias in various settings has been a subject of extensive
research in recent years, but it is still not well understood when the implicit bias provably implies
generalization in non-linear neural networks.

An additional intriguing phenomenon in deep learning is the abundance of adversarial examples in
trained neural networks. In a seminal paper, Szegedy et al. [Sze+14] observed that deep networks
are extremely vulnerable to adversarial examples, namely, very small perturbations to the inputs
can significantly change the predictions. This phenomenon has attracted considerable interest, and
various attacks (e.g., [GSS15; CW17; Pap+17; ACW18; CW18; Wu+20]) and defenses (e.g., [Pap+16;
KGB17; Mad+18; WK18; CH20; WRK20]) were developed. However, the fundamental principles
underlying the existence of adversarial examples are still unclear, and it is believed that for most tasks
where trained neural networks suffer from a vulnerability to adversarial attacks, there should exist
other neural networks which can be robust to such attacks. This is suggestive of the possible role of
the optimization algorithms used to train neural networks in the existence of adversarial examples.

In this work, we study the implications of the implicit bias for generalization and robustness in ReLU
networks, in a setting where the data consists of clusters (i.e., Gaussian mixture model) and the
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correlations between cluster means are small. We show that in two-layer ReLU networks trained
with the logistic loss or the exponential loss, gradient flow is biased towards solutions that generalize
well, albeit they are non-robust. Our results are independent of the network width, and hence they
hold even where the network has significantly more parameters than training examples. In such
an overparameterized setting, one might expect harmful overfitting to occur, but we prove that the
implicit bias of gradient flow prevents it. On the flip side, in our setting the distances between clusters
are large, and thus one might hope that gradient flow will converge to a robust network. However, we
show that the implicit bias leads to non-robust solutions.

Our results rely on known properties of the implicit bias in two-layer ReLU networks trained with the
logistic or the exponential loss, which were shown by Lyu and Li [LL20] and Ji and Telgarsky [JT20].
They proved that if gradient flow in homogeneous models (which include two-layer ReLU networks)
with such losses reaches a small training loss, then it converges (in direction) to a KKT point of
the maximum-margin problem in parameter space. We show that in clustered data distributions,
with high probability over the training dataset, every network that satisfies the KKT conditions of
the maximum-margin problem generalizes well but is non-robust. Thus, instead of analyzing the
trajectory of gradient flow directly in the complex setting of training two-layer ReLU networks, we
demonstrate that investigating the KKT points is a powerful tool for understanding generalization
and robustness. We emphasize that our results hold in the rich (i.e., feature learning) regime, namely,
the neural network training does not lie in the kernel regime, and thus we provide guarantees which
go beyond the analysis achieved using NTK-based results.

In a bit more detail, our main contributions are the following:

• Suppose that the data distribution consists of k clusters, and the training dataset is of size
n ≥ Ω̃(k). We show that with high probability over the size-n dataset, if gradient flow
achieves training loss smaller than 1

n at some time t0, then it converges in direction to
a network that generalizes well (i.e., has a small test error). Thus, gradient-flow-trained
networks cannot harmfully overfit even if the network is highly overparameterized. The
sample complexity Ω̃(k) in this result is optimal (up to log factors), since we cannot expect
to perform well on unseen data using a training dataset that does not include at least one
example from each cluster.

• In the same setting as above, we prove that gradient flow converges in direction to a non-
robust network, even though there exist robust networks that classify the data correctly.
Specifically, we consider data distributions on Rd such that the distance between every
pair of clusters is Ω(

√
d), and we show that there exists a two-layer ReLU network where

flipping the output sign of a test example requires w.h.p. an ℓ2-perturbation of size Ω(
√
d),

but gradient flow converges to a network where we can flip the output sign of a test
example with an ℓ2-perturbation of size much smaller than

√
d. Moreover, the adversarial

perturbation depends only on the data distribution, and not on the specific test example
or trained neural network. Thus, the perturbation is both universal [Moo+17; Zha+21]
and transferable [Liu+17; AM18]. We argue that clustered data distributions are a natural
setting for analyzing the tendency of gradient methods to converge to non-robust solutions.
Indeed, if positive and negative examples are not well-separated (i.e., the distances between
points with opposite labels are small), then robust solutions do not exist. Thus, in order
to understand the role of the optimization algorithm, we need a setting with sufficient
separation between positive and negative examples.

The remainder of this paper is structured as follows: Below we discuss related work. In Section 2 we
provide necessary notations and background, and introduce our setting and assumptions. In Sections 3
and 4 we state our main results on generalization and robustness (respectively), and provide some
proof ideas, with all formal proofs deferred to the appendix. We conclude with a short discussion
(Section 5).

Related work

Implicit bias in neural networks. The literature on implicit bias in neural networks has rapidly
expanded in recent years, and cannot be reasonably surveyed here (see Vardi [Var22] for a survey).
In what follows, we discuss results that apply to two-layer ReLU or leaky-ReLU networks trained
with gradient flow in classification settings.
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By Lyu and Li [LL20] and Ji and Telgarsky [JT20], homogeneous neural networks (and specifically
two-layer ReLU networks, which are the focus of this paper) trained with exponentially-tailed
classification losses converge in direction to a KKT point of the maximum-margin problem. Our
analysis of the implicit bias relies on this result. We note that the aforementioned KKT point may not
be a global optimum of the maximum-margin problem [VSS22]. Recently, Kunin et al. [Kun+22]
extended this result by showing bias towards margin maximization in a broader family of networks
called quasi-homogeneous.

Lyu et al. [Lyu+21], Sarussi, Brutzkus, and Globerson [SBG21], and Frei et al. [Fre+23b] studied
implicit bias in two-layer leaky-ReLU networks with linearly-separable data, and proved that under
some additional assumptions gradient flow converges to a linear classifier. Chizat and Bach [CB20]
studied the dynamics of gradient flow on infinite-width homogeneous two-layer networks with
exponentially-tailed losses, and showed bias towards margin maximization w.r.t. a certain function
norm known as the variation norm. Phuong and Lampert [PL20] studied the implicit bias in two-layer
ReLU networks trained on orthogonally separable data.

Safran, Vardi, and Lee [SVL22] proved implicit bias towards minimizing the number of linear regions
in univariate two-layer ReLU networks, and used this result to obtain generalization bounds. Similarly
to our work, they used the KKT conditions of the maximum-margin problem in parameter space to
prove generalization in overparameterized networks. However, our setting is significantly different.
Implications of the bias towards KKT points of the maximum-margin problem were also studied
in Haim et al. [Hai+22], where they showed that this implicit bias can be used for reconstructing
training data from trained ReLU networks.

Theoretical explanations for non-robustness in neural networks. Despite much research, the
reasons for the abundance of adversarial examples in trained networks are still unclear [GSS15;
FFF18; Sha+19; Sch+18; KH18; Bub+19; AL21; Wan+20; Sha+20; SMB21; Sin+21; Wan+22;
DB22]. Below we discuss several prior theoretical works on this question.

In one line of work, it has been shown that small adversarial perturbations can be found for any
fixed input in certain neural networks with random weights (drawn from the Gaussian distribution)
[DS20; Bub+21; BBC21; MW22]. These works differ in the assumptions about the width and depth
of the networks as well as the activation functions considered. However, since trained networks
are non-random, these works are unable to capture the existence of adversarial examples in trained
networks.

The result closest to ours was shown in Vardi, Yehudai, and Shamir [VYS22]. Similarly to our result,
they used the KKT conditions of the maximum-margin problem in parameter space, in order to prove
that gradient flow converges to non-robust two-layer ReLU networks under certain assumptions.
More precisely, they considered a setting where the training dataset S consists of nearly-orthogonal
points, and proved that every KKT point is non-robust w.r.t. S . Namely, for every two-layer network
that satisfies the KKT conditions of the maximum-margin problem, and every point xi from S, it
is possible to flip the output’s sign with a small perturbation. Their result has two main limitations:
(1) It considers robustness w.r.t. the training data, while the more common setting in the literature
considers robustness w.r.t. test data, as it is often more crucial to avoid adversarial perturbations in test
examples; (2) Since they assume near orthogonality of the training data, the size of the dataset S must
be smaller than the input dimension.2 Thus, they considered a high dimensional setting. We note that
high-dimensional settings often have a different generalization behavior than low-dimensional settings
(e.g., overfitting can be benign in the high-dimensional setting, but harmful in a low-dimensional
setting [KYS23]). Our result does not suffer from these limitations, since we consider robustness w.r.t.
test data, and the size of our training dataset might be very large. In our results, we essentially require
near orthogonality of the cluster means, as opposed to near orthogonality of the training dataset in
their result.

Finally, in Bubeck, Li, and Nagaraj [BLN21] and Bubeck and Sellke [BS21], the authors proved
(under certain assumptions) that overparameterization is necessary if one wants to interpolate training
data using a neural network with a small Lipschitz constant. Namely, neural networks with a small
number of parameters are not expressive enough to interpolate the training data while having a small

2They also give a version of their result, where instead of assuming this upper bound on the size of the
dataset, they assume an upper bound on the number of points that attain the margin in the trained network, but it
is not clear a priori when this assumption is likely to hold.
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Lipschitz constant. These results suggest that overparameterization might be necessary for robustness.
In this work, we show that even if the network is highly overparameterized, the implicit bias of the
optimization method can prevent convergence to robust solutions.

2 Preliminaries

We use bold-face letters to denote vectors, e.g., x = (x1, . . . , xd). For x ∈ Rd we denote by ∥x∥ the
Euclidean norm. We denote by 1[·] the indicator function, for example 1[t ≥ 5] equals 1 if t ≥ 5
and 0 otherwise. We denote sign(z) = 1 if z > 0 and −1 otherwise. For an integer d ≥ 1 we denote
[d] = {1, . . . , d}. For a set A we denote by U(A) the uniform distribution over A. We denote by
N(µ, σ2) the normal distribution with mean µ ∈ R and variance σ2, and by N(µ,Σ) the multivariate
normal distribution with mean µ and covariance matrix Σ. The identity matrix of size d is denoted
by Id. We use standard asymptotic notation O(·) and Ω(·) to hide constant factors, and Õ(·), Ω̃(·) to
hide logarithmic factors. We use log for the logarithm with base 2 and ln for the natural logarithm.

In this work, we consider depth-2 ReLU neural networks. The ReLU activation function is defined
by ϕ(z) = max{0, z}. Formally, a depth-2 network Nθ of width m is parameterized by θ =
[w1, . . . ,wm,b,v] where wi ∈ Rd for all i ∈ [m] and b,v ∈ Rm, and for every input x ∈ Rd we
have

Nθ(x) =
∑

j∈[m] vjϕ(w
⊤
j x+ bj) .

We sometimes view θ as the vector obtained by concatenating the vectors w1, . . . ,wm,b,v. Thus,
∥θ∥ denotes the ℓ2 norm of the vector θ. We note that in this work we train both layers of the ReLU
network.

We denote Φ(θ;x) := Nθ(x). We say that a network is homogeneous if there exists L > 0 such
that for every α > 0 and θ,x we have Φ(αθ;x) = αLΦ(θ;x). Note that depth-2 ReLU networks as
defined above are homogeneous (with L = 2).

We next define gradient flow and remind the reader of some recent results on the implicit bias of
gradient flow in two-layer ReLU networks. Let S = {(xi, yi)}ni=1 ⊆ Rd × {−1, 1} be a binary
classification training dataset. Let Φ(θ; ·) : Rd → R be a neural network parameterized by θ. For a
loss function ℓ : R → R the empirical loss of Φ(θ; ·) on the dataset S is

L(θ) := 1
n

∑n
i=1 ℓ(yiΦ(θ;xi)) . (1)

We focus on the exponential loss ℓ(q) = e−q and the logistic loss ℓ(q) = log(1 + e−q).

We consider gradient flow on the objective given in Eq. (1). This setting captures the behavior
of gradient descent with an infinitesimally small step size. Let θ(t) be the trajectory of gradient
flow. Starting from an initial point θ(0), the dynamics of θ(t) is given by the differential equation
dθ(t)
dt ∈ −∂◦L(θ(t)). Here, ∂◦ denotes the Clarke subdifferential [Cla+08], which is a generalization

of the derivative for non-differentiable functions.

We now remind the reader of a recent result concerning the implicit bias of gradient flow over the
exponential and logistic losses for homogeneous neural networks. Note that since homogeneous
networks satisfy sign(Φ(αθ;x)) = sign(Φ(θ;x)) for any α > 0, the sign of the network output of
homogeneous networks depends only on the direction of the parameters θ. The following theorem
provides a characterization of the implicit bias of gradient flow by showing that the trajectory of
the weights θ(t) converge in direction to a first-order stationary point of a particular constrained
optimization problem, where θ converges in direction to θ̃ means limt→∞

θ(t)
∥θ(t)∥ = θ̃

∥θ̃∥ . Note that

since ReLU networks are non-smooth, the first-order stationarity conditions (i.e., the Karush–Kuhn–
Tucker conditions, or KKT conditions for short) are defined using the Clarke subdifferential (see
Lyu and Li [LL20] and Dutta et al. [Dut+13] for more details on the KKT conditions in non-smooth
optimization problems).

Theorem 2.1 (Paraphrased from Lyu and Li [LL20] and Ji and Telgarsky [JT20]). Let Φ(θ; ·) be a
homogeneous ReLU neural network parameterized by θ. Consider minimizing either the exponential
or the logistic loss over a binary classification dataset {(xi, yi)}ni=1 using gradient flow. Assume
that there exists time t0 such that L(θ(t0)) < 1

n (and thus yiΦ(θ(t0);xi) > 0 for every xi). Then,
gradient flow converges in direction to a first-order stationary point (KKT point) of the following
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maximum margin problem in parameter space:

minθ
1
2 ∥θ∥

2 s.t. ∀i ∈ [n] yiΦ(θ;xi) ≥ 1 . (2)

Moreover, L(θ(t)) → 0 and ∥θ(t)∥ → ∞ as t → ∞.

Theorem 2.1 gives a characterization of the implicit bias of gradient flow with the exponential and the
logistic loss for homogeneous ReLU networks. Note that the theorem makes no assumption on the
initialization, training data, or number of parameters in the network; the only requirement is that the
network is homogeneous and that at some time point in the gradient flow trajectory, the network is
able to achieve small training loss. The theorem shows that although there are many ways to configure
the network parameters to achieve small training loss (via overparameterization), gradient flow only
converges (in direction) to networks which satisfy the KKT conditions of Problem (2). It is important
to note that satisfaction of the KKT conditions is not sufficient for global optimality of the constrained
optimization problem [VSS22]. We further note that if the training data are sampled i.i.d. from
a distribution with label noise (e.g., a class-conditional Gaussian mixture model, or a distribution
where labels yi are flipped to −yi with some nonzero probability), networks which have parameters
that are feasible w.r.t. the constraints of Problem (2) have overfit to noise, and understanding the
generalization behavior of even globally optimal solutions to Problem (2) in this setting is the subject
of significant research [Mon+19; CL21; Fre+23a].

Finally, we introduce the distributional setting that we consider. We consider a distribution Dclusters on
Rd × {−1, 1} that consists of k clusters with means µ(1), . . . ,µ(k) ∈ Rd and covariance σ2Id (i.e.,
a Gaussian mixture model), such that the examples in the j-th cluster are labeled by y(j) ∈ {−1, 1}.
More formally, (x, y) ∼ Dclusters is generated as follows: we draw j ∼ U([k]) and x ∼ N(µ(j), σ2Id),
and set y = y(j). We assume that there exist i, j ∈ [k] with y(i) ̸= y(j). Moreover, we assume the
following:
Assumption 2.2. We have:

•
∥∥µ(j)

∥∥ =
√
d for all j ∈ [k].

• 0 < σ ≤ 1.

• k
(
maxi̸=j |⟨µ(i),µ(j)⟩|+ 4σ

√
d ln(d) + 1

)
≤ d−4σ

√
d ln(d)+1
10 .

Example 1. Below we provide simple examples of settings that satisfy the assumption:

• Suppose that the cluster means satisfy |⟨µ(i),µ(j)⟩| = Õ(
√
d) for every i ̸= j. This

condition holds, e.g., if we choose each cluster mean i.i.d. from the uniform distribution
on the sphere

√
d · Sd−1 (see, e.g., Vardi, Yehudai, and Shamir [VYS22, Lemma 3.1]). Let

σ = 1, namely, each cluster has a radius of roughly
√
d. Then, the assumption can be

satisfied by choosing k = Õ(
√
d).

• Suppose that the cluster means are exactly orthogonal (i.e., ⟨µ(i),µ(j)⟩ = 0 for all i ̸= j),
and σ = 1/

√
d. Then, the assumption can be satisfied by choosing k = Õ(d).

• If the number of clusters is k = Õ(1), then the assumption may hold even where
maxi ̸=j |⟨µ(i),µ(j)⟩| = Θ̃(d) (for any 0 < σ ≤ 1).

A few remarks are in order. First, the assumption that
∥∥µ(j)

∥∥ is exactly
√
d is for convenience, and

we note that it may be relaxed (to have all cluster means approximately of the same norm) without
affecting our results significantly. Note that in the case where σ = 1, the radius of each cluster
is roughly of the same magnitude as the cluster mean. Second, we assume for convenience that
the noise (i.e., the deviation from the cluster’s mean) is drawn from a Gaussian distribution with
covariance matrix σ2Id. However, we note that this assumption can be generalized to any distribution
Dnoise such that for every unit vector e the noise ξ ∼ Dnoise satisfies w.h.p. that ⟨ξ, e⟩ = Õ(1)

and ∥ξ∥ = Õ(
√
d). This property holds, e.g., for a d-dimensional Gaussian distribution N(0,Σ),

where tr[Σ] = d and ∥Σ∥2 = O(1) (see Frei et al. [Fre+23b, Lemma 3.3]), and more generally
for a class of sub-Gaussian distributions (see Hu et al. [Hu+20, Claim 3.1]). Third, note that the
third part of Assumption 2.2 essentially requires that the number of clusters k cannot be too large
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and the correlations between cluster means cannot be too large. Finally, we remark that when k
is small, our results may be extended to the case where σ > 1. For example, if k = Õ(1) and
maxi̸=j |⟨µ(i),µ(j)⟩| = Õ(

√
d), our generalization result (Theorem 3.1) can be extended to the case

where σ = Õ(d1/8). We preferred to avoid handling σ > 1 in order to simplify the proofs.

Moreover, it is worth noting that Assumption 2.2 implies that the data is w.h.p. linearly separable
(see Lemma 2.1 below, and a proof in Appendix B). However, in this work we consider learning
using overparameterized ReLU networks, and it is not obvious a priori that gradient methods
do not harmfully overfit in this case. Indeed, it has been shown that ReLU networks trained by
gradient descent can interpolate training data and fail to generalize well in some distributional
settings [Kou+23].

Lemma 2.1. Let u =
∑

q∈[k] y
(q)µ(q). Then, with probability at least 1− 2d1−ln(d)/2 = 1− od(1)

over (x, y) ∼ Dclusters, we have y = sign(u⊤x).

3 Generalization

In this section, we show that under our assumptions on the distribution Dclusters, gradient flow does not
harmfully overfit. Namely, even if the learned network is highly overparameterized, the implicit bias
of gradient flow guarantees convergence to a solution that generalizes well. Moreover, we show that
the sample complexity is optimal. The main result of this section is stated in the following theorem:

Theorem 3.1. Let ϵ, δ ∈ (0, 1). Let S = {(xi, yi)}ni=1 ⊆ Rd × {−1, 1} be a training set drawn
i.i.d. from the distribution Dclusters, where n ≥ k ln2(d). Let Nθ be a depth-2 ReLU network such
that θ = [w1, . . . ,wm,b,v] is a KKT point of Problem (2). Provided d is sufficiently large such

that δ−1 ≤ 1
3d

ln(d)−1 and n ≤ min
{√

δ
3 · ed/32,

√
δ
3 · dln(d)/4, ϵ

4 · dln(d)/2
}
, then with probability

at least 1− δ over S, we have

Pr(x,y)∼Dclusters [yNθ(x) ≤ 0] ≤ ϵ .

The sample complexity requirement in Theorem 3.1 is n = Ω̃(k). Essentially, it requires that the
dataset S will include at least one example from each cluster. Clearly, any learning algorithm cannot
perform well on unseen clusters. Hence the sample complexity requirement in the theorem is tight
(up to log factors).

The assumptions in Theorem 3.1 include upper bounds on δ−1 and n. Note that the expressions
in these upper bounds are super-polynomial in d, and in particular if n, δ−1, ϵ−1 = poly(d), then
these assumptions hold for a sufficiently large d. Admittedly, enforcing an upper bound on the
training dataset’s size is uncommon in generalization results. However, if n is exponential in d, it
is not hard to see that there will be clusters which have both positive and negative examples within
radius σ of the cluster center, essentially introducing a form of label noise to the problem. Since
KKT points of Problem (2) interpolate the training data, this would imply that the network has
interpolated training data with label noise—in other words, it has ‘overfit’ to noise. Understanding
the generalization behavior of interpolating neural networks in the presence of label noise is a very
technically challenging problem for which much is unknown, especially if one seeks to understand
this by only relying upon the properties of KKT conditions for margin maximization. It is noteworthy
that all existing non-vacuous generalization bounds for interpolating nonlinear neural networks in the
presence of label noise require n < d [FCB22; Cao+22; XG23; Fre+23a; Kou+23].

Combining Theorem 3.1 with Theorem 2.1, we conclude that w.h.p. over a training dataset of size
n ≥ k ln2(d) (and under some additional mild requirements), if gradient flow reaches empirical
loss smaller than 1

n , then it converges in direction to a neural network that generalizes well. This
result is width-independent, thus, it holds irrespective of the network width. Specifically, even if the
network is highly overparameterized, the implicit bias of gradient flow prevents harmful overfitting.
Moreover, the result does not depend directly on the initialization of gradient flow. That is, it holds
whenever gradient flow reaches small empirical loss after some finite time. Thus, by relying on the
KKT conditions of the max-margin problem instead of analyzing the full gradient flow trajectory, we
can prove generalization without the need to prove convergence.
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3.1 Proof idea

The proof of Theorem 3.1 is given in Appendix A. Here we discuss the high-level approach. Let θ =
[w1, . . . ,wm,b,v] be a KKT point of Problem (2). Thus, we have Nθ(x) =

∑
j∈[m] vjϕ(w

⊤
j x+bj).

Since θ satisfies the KKT conditions of Problem (2), then there are λ1, . . . , λn such that for every
j ∈ [m] we have

wj =
∑

i∈[n] λi∇wj
(yiNθ(xi)) =

∑
i∈[n] λiyivjϕ

′
i,jxi , (3)

where ϕ′
i,j is a subgradient of ϕ at w⊤

j xi+ bj , i.e., if w⊤
j xi+ bj ̸= 0 then ϕ′

i,j = 1[w⊤
j xi+ bj ≥ 0],

and otherwise ϕ′
i,j is some value in [0, 1]. Also we have λi ≥ 0 for all i, and λi = 0 if yiNθ(xi) ̸= 1.

Likewise, we have

bj =
∑

i∈[n] λi∇bj (yiNθ(xi)) =
∑

i∈[n] λiyivjϕ
′
i,j . (4)

In the proof, using a careful analysis of Eq. (3) and (4) we show that w.h.p. Nθ classifies correctly a
fresh example. More precisely, the main argument can be described as follows. We denote J := [m],
J+ := {j ∈ J : vj > 0}, and J− := {j ∈ J : vj < 0}. Moreover, we denote I := [n] and Q := [k].
For q ∈ Q we denote I(q) = {i ∈ I : xi is in cluster q}. Consider the network’s output for an input x
from cluster r ∈ Q with y(r) = 1. Since Nθ(x) =

∑
j∈J+

vjϕ(w
⊤
j x+bj)+

∑
j∈J−

vjϕ(w
⊤
j x+bj)

and ϕ(z) ≥ z, we have

Nθ(x) ≥
∑

j∈J+
vj(w

⊤
j x+ bj) +

∑
j∈J−

vjϕ(w
⊤
j x+ bj). (5)

This suggests the following possibility: if we can ensure that
∑

j∈J+
vj(w

⊤
j x + bj) is large and

positive while
∑

j∈J−
vjϕ(w

⊤
j x+ bj) is not too negative, then the network will accurately classify

the example x. Using Eq. (3) and (4) and that y(r) = 1 (so yi = 1 for i ∈ I(r)), the first term in the
above decomposition is equal to∑

j∈J+
vj(w

⊤
j x+ bj) =

∑
j∈J+

vj
[∑

i∈I λiyivjϕ
′
i,j(x

⊤
i x+ 1)

]
=
∑

j∈J+

[(∑
i∈I(r) λiv

2
jϕ

′
i,j(x

⊤
i x+ 1)

)
+
∑

q∈Q\{r}
∑

i∈I(q) λiyiv
2
jϕ

′
i,j(x

⊤
i x+ 1)

]
≥
(∑

i∈I(r)

∑
j∈J+

λiv
2
jϕ

′
i,j(x

⊤
i x+ 1)

)
−
∑

q∈Q\{r}
∑

i∈I(q)

∑
j∈J+

λiv
2
jϕ

′
i,j |x⊤

i x+ 1| .

Since x comes from cluster r and the clusters are nearly orthogonal, the pairwise correla-
tions x⊤

i x will be large and positive when i ∈ I(r) but will be small in magnitude when
i ∈ I(q) for q ̸= r. Thus, we can hope that this term will be large and positive if we
can show that the quantity

∑
i∈I(r)

∑
j∈J+ λiv

2
jϕ

′
i,j is not too small relative to the quantity∑

q∈Q\{r}
∑

i∈I(q)

∑
j∈J+

λiv
2
jϕ

′
i,j . By similar arguments, in order to show the second term

in Eq. (5) is not too negative, we need to understand how the quantity
∑

i∈I(q)

∑
j∈J−

λiv
2
jϕ

′
i,j

varies across different clusters q ∈ Q. Hence, in the proof we analyze how the quantities∑
i∈I(q)

∑
j∈J+

λiv
2
jϕ

′
i,j ,

∑
i∈I(q)

∑
j∈J−

λiv
2
jϕ

′
i,j relate to each other for different clusters

q ∈ Q, and show that these quantities are all of the same order. Then, we conclude that w.h.p.
x is classified correctly.

4 Robustness

We begin by introducing the definition of R(·)-robustness.
Definition 4.1. Given some function R(·), we say that a neural network Nθ is R(d)-robust w.r.t. a
distribution Dx over Rd if for every r = o(R(d)), with probability 1− od(1) over x ∼ Dx, for every
x′ ∈ Rd with ∥x− x′∥ ≤ r we have sign(Nθ(x

′)) = sign(Nθ(x)).

Thus, a neural net Nθ is R(d)-robust if changing the label of an example cannot be done with a
perturbation of size o(R(d)). Note that we consider here ℓ2 perturbations.

For the distribution Dclusters under consideration, it is straightforward to show that classifiers cannot
be R(d)-robust if R(d) = ω(

√
d): since the distance between examples in different clusters is w.h.p.
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O(
√
d), it is clearly possible to flip the sign of an example with a perturbation of size O(

√
d). In

particular, the best we can hope for is
√
d-robustness. In the following theorem, we show that there

exist two-layer ReLU networks which can both achieve small test error and the optimal level of√
d-robustness.

Theorem 4.1. For every r ≥ k, there exists a depth-2 ReLU network N : Rd → R of width r such
that for (x, y) ∼ Dclusters, with probability at least 1− d−ωd(1) we have yN (x) ≥ 1, and flipping the
sign of the output requires a perturbation of size larger than

√
d
8 (for a sufficiently large d). Thus, N

classifies the data correctly w.h.p., and it is
√
d-robust w.r.t. Dx.

Thus, we see that
√
d-robust networks exist. In the following theorem, we show that the implicit

bias of gradient flow constrains the level of robustness of trained networks whenever the number of
clusters k is large.
Theorem 4.2. Let ϵ, δ ∈ (0, 1). Let S = {(xi, yi)}ni=1 ⊆ Rd × {−1, 1} be a training set drawn i.i.d.
from the distribution Dclusters, where n ≥ k ln2(d). We denote Q+ = {q ∈ [k] : y(q) = 1} and Q− =

{q ∈ [k] : y(q) = −1}, and assume that min
{

|Q+|
k , |Q−|

k

}
≥ c for some c > 0. Let Nθ be a depth-2

ReLU network such that θ = [w1, . . . ,wm,b,v] is a KKT point of Problem (2). Provided d is suf-

ficiently large such that δ−1 ≤ 1
3d

ln(d)−1 and n ≤ min

{√
δ
3 · ed/32,

√
δ
3 · dln(d)/4, ϵ

4 · dln(d)/2
}

,

with probability at least 1 − δ over S, there is a vector z = η ·
∑

j∈[k] y
(j)µ(j) with η > 0 and

∥z∥ ≤ O
(√

d/c2k
)
, such that

Pr(x,y)∼Dclusters [sign(Nθ(x)) ̸= sign(Nθ(x− yz))] ≥ 1− ϵ .

Note that the expressions in the upper bounds on n and δ−1 are super-polynomial in d, and hence
these requirements are mild (e.g., they hold for a sufficiently large d when n, δ−1, ϵ−1 = poly(d)).
As we mentioned in the discussion following Theorem 3.1, we believe removing the requirement for
an upper bound on n would be highly nontrivial.

Theorem 4.2 implies that if c2k = ωd(1), then w.h.p. over the training dataset, every KKT point
of Problem (2) is not

√
d-robust. Specifically, if c is constant, namely, at least a constant fraction

of the clusters have positive labels and a constant fraction of the clusters have negative labels, then
the network is not

√
d-robust if k = ωd(1). Recall that by Theorem 3.1, we also have w.h.p. that

every KKT point generalizes well. Overall, combining Theorems 2.1, 3.1, 4.1, and 4.2, we conclude
that for c2k = ωd(1), w.h.p. over a training dataset of size n ≥ k ln2(d), if gradient flow reaches
empirical loss smaller than 1

n , then it converges in direction to a neural network that generalizes well
but is not

√
d-robust, even though there exist

√
d-robust networks that generalize well. Thus, in our

setting, there is bias towards solutions that generalize well but are non-robust.
Example 2. Consider the setting from the first item of Example 1. Thus, the cluster means satisfy
|⟨µ(i),µ(j)⟩| = Õ(

√
d) for every i ̸= j, and we have σ = 1 and k = Θ̃(

√
d). Suppose that c = Θ(1),

namely, there is at least a constant fraction of clusters with each label {−1, 1}. Then, the adversarial

perturbation z from Theorem 4.2 satisfies ∥z∥ = O
(√

d/k
)
= Õ

(
d1/4

)
= o(

√
d).

Similarly to our discussion after Theorem 3.1, we note that Theorem 4.2 is width-independent, i.e., it
holds irrespective of the network width. It implies that we cannot hope to obtain a robust solution by
choosing an appropriate width for the trained network. As we discussed in the related work section,
Bubeck, Li, and Nagaraj [BLN21] and Bubeck and Sellke [BS21] considered the expressive power
of neural networks, and showed that overparameterization might be necessary for robustness. By
Theorem 4.2, even when the network is overparameterized, the implicit bias of the optimization
method can prevent convergence to robust solutions. Moreover, our result does not depend directly on
the initialization of gradient flow. Recall that by Theorem 2.1 if gradient flow reaches small empirical
loss then it converges in direction to a KKT point of Problem (2). Hence our result holds whenever
gradient flow reaches a small empirical loss.

Note that in Theorem 4.2, the adversarial perturbation does not depend on the input (up to sign). It
corresponds to the well-known empirical phenomenon of universal adversarial perturbations, where
one can find a single perturbation that simultaneously flips the label of many inputs (cf. [Moo+17;
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Zha+21]). Moreover, the same perturbation applies to all depth-2 networks to which gradient flow
might converge (i.e., all KKT points). It corresponds to the well-known empirical phenomenon of
transferability in adversarial examples, where one can find perturbations that simultaneously flip the
labels of many different trained networks (cf. [Liu+17; AM18]).

It is worth noting that Theorems 3.1 and 4.2 demonstrate that trained neural networks exhibit different
properties than the 1-nearest-neighbour learning rule, irrespective of the number of parameters in
the network. For example, consider the case where σ = 1√

d
, namely, the examples of each cluster

are concentrated within a ball of radius O(1) around its mean. Then, the distance between every
pair of points from the same cluster is O(1), and the distance between points from different clusters
is Ω(

√
d). In this setting, both the 1-nearest-neighbour classifier and the trained neural network

will classify a fresh example correctly w.h.p., but in the 1-nearest-neighbour classifier flipping the
output’s sign will require a perturbation of size Ω(

√
d), while in the neural network a much smaller

perturbation will suffice.

Finally, we remark that in the limit σ → 0, we get a distribution supported on µ(1), . . . ,µ(k). Then,
a training dataset of size n ≥ k ln2(d) will contain w.h.p. all examples in the support, and hence
robustness w.r.t. test data is equivalent to robustness w.r.t. the training data. In this case, we recover
the results of Vardi, Yehudai, and Shamir [VYS22] which characterized the non-robustness of KKT
points of ReLU networks trained on nearly orthogonal training data. In particular, our Theorem 4.2 is
a strict generalization of their Theorem 4.1.

4.1 Proof ideas

Here we discuss the main ideas in the proofs of Theorem 4.1 and 4.2 (see Appendices C and D for
the formal proofs).

The proof of Theorem 4.1 follows by the following simple construction. The robust network includes
k neurons, each corresponding to a single cluster. That is, we have N (x) =

∑k
j=1 vjσ(w

⊤x+ bj),

where vj = y(j), wj =
4µ(j)

d , and bj = −2. Note that the j-th neuron points at the direction of the
j-th cluster and has a negative bias term, such that the neuron is active on points from the j-th cluster,
and inactive on points from the other clusters. Then, given a fresh example (x, y) ∼ Dclusters, we
show that the network classifies it correctly w.h.p. with margin at least 1. Also, there is w.h.p exactly
one neuron that is active on x, and hence the gradient of the network w.r.t. the input is affected only
by this neuron and is of size O(1/

√
d). Therefore, we need a perturbation of size Ω(

√
d) in order to

flip the output’s sign.

The intuition for Theorem 4.2 can be described as follows. Recall that in our construction of a robust
network above, an example (x, y) ∼ Dclusters is w.h.p. in an active region of exactly one neuron, and
hence in the neighborhood of x the output of the network is sensitive only to perturbations in the
direction of that neuron. Now, consider the linear model x 7→ w⊤x, where w =

∑k
q=1

1
dy

(q)µ(q). It
is not hard to verify that for (x, y) ∼ Dclusters we have w.h.p. that 0 < yw⊤x ≤ O(1). Moreover, the
gradient of this linear predictor is of size ∥w∥ = Ω(

√
k/d). Hence, we can flip the output’s sign with

a perturbation of size O(
√
d/k). Thus, the linear classifier is non-robust if k = ωd(1). Intuitively,

the difference between our robust ReLU network and the non-robust linear classifier is the fact that in
the neighborhood of x the robust network is sensitive only to perturbations in the direction of one
cluster, while the linear classifier is sensitive to perturbations in the directions of all k clusters. In the
proof, we analyze ReLU networks which are KKT points of Problem (2), and show that although
these ReLU networks are non-linear, they are still sensitive to perturbations in the directions of all k
clusters, similarly to the above linear classifier. The formal proof follows by a careful analysis of the
KKT conditions of Problem (2), given in Eq. (3) and (4).

We remark that in the proof of Theorem 4.2 we use some technical ideas from Vardi, Yehudai, and
Shamir [VYS22]. However, there are significant differences between the two settings. For example,
they assume that the training data are nearly orthogonal, which only holds when the dimension is
large relative to the number of samples; thus, it is unclear whether the existence of small adversarial
perturbations in their setting is due to the high-dimensionality of the data or if a similar phenomenon
exists in the more common n > d setting. At a more technical level, their proof relies on showing that
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in a KKT point all inputs must lie exactly on the margin, while in our setting they are not guaranteed
to lie exactly on the margin.

5 Discussion

In this paper, we considered clustered data, and showed that gradient flow in two-layer ReLU networks
does not harmfully overfit, but also hinders robustness. Our results follow by analyzing the KKT
points of the max-margin problem in parameter space. In our distributional setting, the clusters are
well-separated, and hence there exist robust classifiers, which allows us to consider the effect of the
implicit bias of gradient flow on both generalization and robustness. Understanding generalization
and robustness in additional data distributions and neural network architectures is a challenging but
important question. As a possible next step, it would be interesting to study whether the approach
used in this paper can be extended to the following data distributions:

First, our assumption on the data distribution (Assumption 2.2) implies that the number of clusters
cannot be too large, and as a result the data is linearly separable (Lemma 2.1). We conjecture that
our results hold even for a significantly larger number of clusters, such that the data is not linearly
separable.

Second, it would be interesting to understand whether our generalization result holds for linearly
separable data distributions that are not clustered. That is, given a distribution that is linearly
separable with some margin γ > 0 and a training dataset that is large enough to allow learning
with a max-margin linear classifier, are there KKT points of the max-margin problem for two-layer
ReLU networks that do not generalize well? In other words, do ReLU networks that satisfy the KKT
conditions generalize at least as well as max-margin linear classifiers?
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