

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EFFCOMP: EFFICIENT PROMPT COMPRESSION VIA HYBRID REINFORCEMENT & SUPERVISED LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Prompt compression is aimed at reducing input prompt lengths to enable cheaper and faster LLM predictions. However, existing prompt compression methods are often limited by modest compression gains, a risk of hallucination, and/or high compression latency. This paper proposes EFFCOMP, an **Efficient prompt Compression** framework using a hybrid reinforcement and supervised learning approach for RAG-based open-domain question answering (QA). EFFCOMP employs BERT-style document reranker and sentence selector models to allow fast extractive prompt compression at the sentence level. Its extractive nature prevents hallucinations in the compressed prompts. Additionally, the training process is designed to optimize the compression ratio while preserving LLM accuracy. Experiments on four open-domain QA datasets demonstrate that EFFCOMP outperforms state-of-the-art prompt compression methods in terms of prediction accuracy and achieves competitive compression ratios (up to 78.4x) with minimal latency, making it practical for real-world applications.

1 INTRODUCTION

Retrieval-augmented generation (RAG) enhances large language models (LLMs) by grounding their predictions in retrieved external documents to reduce hallucinations and address domain gaps (Lewis et al., 2020; Guu et al., 2020; Izacard & Grave, 2021). However, the retrieved documents could often be long, redundant, and partially irrelevant (Barnett et al., 2024; Lertvittayakumjorn et al., 2025). The resulting lengthy augmented prompts not only undermine the quality of LLM predictions (Shi et al., 2023) but also increase computation costs and inference latency (Duman Keles et al., 2023). Therefore, recent research has proposed prompt compression methods to reduce the input prompt lengths (e.g., by strategically compressing the retrieved contexts) to address these efficiency and quality problems (Li et al., 2025b; Wingate et al., 2022; Chevalier et al., 2023).

Despite these advancements, existing methods face several challenges and trade-offs. Abstractive prompt compressors generate a shorter context from a given long one, but they risk fabricating details or answering the questions themselves (Xu et al., 2024; Alansari & Luqman, 2025). Extractive prompt compressors, by contrast, preserve grounding by selecting and keeping the most important parts of the original context, but they often yield only modest compression ratios, e.g., 2x–7x in Jiang et al. (2024); Pan et al. (2024); Fei et al. (2025); Zhao et al. (2025a;b). Furthermore, some compressors rely on large models or iterative algorithms, which can cause substantial latency and offset the benefits of compression (Yoon et al., 2024).

To overcome these challenges, we propose EFFCOMP, a novel prompt compression framework for open-domain question answering (QA). The framework aims to boost the efficiency of prompt compression and subsequent LLM inference while maintaining (or even improving) the quality of the final output. EFFCOMP consists of two main steps. The first step reranks and filters the retrieved documents using a reranker. Then the second step selects important sentences in the remaining documents and concatenates them to form a compressed context for LLM inference. The novelty of EFFCOMP also lies in the training process of its sentence selector. This process first pre-trains the model on a QA dataset and then fine-tunes it using a hybrid reinforcement and supervised learning approach that leverages signals from the LLM. We compare our framework against reranker-based and other state-of-the-art prompt compression methods on four QA datasets. The experiments show

054 that EFFCOMP achieves competitive or higher QA accuracy and a strong compression ratio, outper-
 055 forming other compression methods. Overall, our contribution is threefold:
 056

- 057 • We introduce EFFCOMP, a sentence-level extractive prompt compression framework for
 058 RAG-based open-domain QA. Our framework’s efficiency stems from its use of compact
 059 document reranker and sentence selector models. Furthermore, the sentence selector is
 060 trained using a hybrid reinforcement and supervised learning approach to optimize the
 061 trade-off between compression ratio and LLM predictive performance. (See Section 3.)
- 062 • We evaluate EFFCOMP on four QA datasets (Natural Questions, TriviaQA, HotpotQA, and
 063 2WikiMultiHopQA) with two target models, demonstrating that it achieves substantially
 064 high extractive compression while maintaining strong QA performance. (See Section 4.)
- 065 • We conduct additional analyses to understand the latency, generalizability, factual consis-
 066 tency between extractive and abstractive compression methods, the retention improvements
 067 from Phase II GRPO, and potential points of failure of EFFCOMP (see Section 5).

069 2 PROBLEM FORMULATION

070 In a RAG-based open-domain QA setting, let q denote a question (so-called an input query) and $D =$
 071 $\langle d_1, d_2, \dots, d_n \rangle$ denote a list of n retrieved documents ordered by the retrieval scores decreasingly.
 072 The full context before compression \mathbb{D} is the concatenation of all $d_i \in D$ and has the length of
 073 $|\mathbb{D}|$ tokens. RAG combines q and \mathbb{D} to be an input prompt and feeds it to a target LLM M , which
 074 then outputs $M(q, \mathbb{D})$ to answer the question q . Prompt compression aims to find a compressed
 075 context \mathbb{C} such that $|\mathbb{C}| < |\mathbb{D}|$ and $M(q, \mathbb{C})$ is a correct answer of q . In this paper, we focus on two
 076 correctness metrics. First, the accuracy (Acc) for a given context X equals 1 if $M(q, X)$ contains
 077 the reference answer of q (denoted as y_q) after text normalization¹; otherwise, 0. However, there is
 078 one exception: if the reference answer is “yes”, “no”, or “noanswer”, we follow Yoon et al. (2024)
 079 and Jung et al. (2024) and use an exact match between $M(q, X)$ and y_q instead. For the second
 080 metric, F1 of X is the token-level F1 measure of $M(q, X)$ compared to the reference y_q . Following
 081 Jiang et al. (2024), we define the compression ratio as $|\mathbb{D}|/|\mathbb{C}| = 1/\tau$. EFFCOMP aims to optimize
 082 the correctness metrics while achieving a competitively high compression ratio. We decide not to
 083 aggressively optimize $1/\tau$ as it might encourage the lightweight compressor to identify the answer
 084 itself.

086 3 EFFCOMP: THE EFFICIENT PROMPT COMPRESSION FRAMEWORK

087 EFFCOMP compresses the retrieved context in two main steps, one at the document level and the
 088 other at the sentence level, as illustrated in Figure 1.

089 **Step 1: Document reranking.** Given n retrieved documents $\langle d_1, d_2, \dots, d_n \rangle$, an off-the-shelf doc-
 090 ument reranker is used to compute a relevancy score for each document d_i . The reranker takes the
 091 question q and a document d_i as input and outputs a score indicating the relevance of d_i to q . Only
 092 top k documents with the highest scores are kept and then sorted by their scores in decreasing order.
 093 This is performed because evidence appearing earlier in an input prompt is more likely to receive
 094 stronger attention from LLMs (Tang et al., 2025). To ensure the efficiency of this step, we experi-
 095 ment with three BERT-style document rerankers, including BGE (Xiao et al., 2023), Jina (Günther
 096 et al., 2023), and GTE (Zhang et al., 2024). All of them are relatively lightweight models and can
 097 compute the relevancy scores in batches.

098 **Step 2. Sentence selection.** EFFCOMP concatenates the reranked documents from Step 1 and splits
 099 the entire concatenated text into a list of sentences $S = \langle s_1, s_2, \dots, s_m \rangle$. After that, a sentence
 100 selector model is applied to identify sentences that should be kept in the final compressed context
 101 (rather than discarded). Our sentence selector also relies on the BERT architecture (Devlin et al.,
 102 2019) for high efficiency. It takes the question q and all the m sentences in S as input and predicts
 103 either 0 or 1 for each sentence s_i . Specifically, the input representation $I(q, S)$ at the token level is

104 [CLS] $q_1 q_2 \dots q_l$ [SEP] [SEN] $t_{11} t_{12} \dots t_{1h_1}$ [SEN] $t_{21} \dots t_{2h_2}$ [SEN] $t_{m1} \dots t_{mh_m}$ [SEP]

105
 106 ¹Following the evaluation script for SQuAD version 2.0 (Rajpurkar et al., 2018), we perform text normal-
 107 ization by lowercasing the text, removing punctuation and articles, and collapsing extra whitespace.

Figure 1: The inference workflow of EFFCOMP. The box with Step 1 and Step 2 at the top illustrates where EFFCOMP is in the prediction pipeline. In Step 1, retrieved documents are filtered, reordered, and concatenated. In Step 2, they are decomposed into sentences, from which necessary ones are selected and concatenated to form the compressed context for LLM prediction.

where t_{ij} is the j -th token of s_i (which has h_i tokens in total) and q_j is the j -th token of q (which has l tokens in total). Apart from the standard `[CLS]` and `[SEP]` tokens, we prepend a special `[SEN]` token to each sentence to support sentence-level classification. The sentence selector model outputs predictions at every token position, but only the outputs at the `[SEN]` tokens are used, indicating whether each corresponding sentence is retained or discarded. The retained sentences are concatenated without changing their order to be the compressed context \mathbb{C} . See Appendix B for more details.

Overall, the design of EFFCOMP offers several advantages. First, the finest level of selection is at the sentence level (rather than the token level). This renders a compressed context that remains understandable even under extreme compression and aligns naturally with how target LLMs were trained. Furthermore, the sentence selector in Step 2 considers all remaining context sentences simultaneously, enabling it to discard useful but redundant sentences to maximize the compression ratio. This simultaneous processing remains efficient thanks to Step 1, which already discards a significant amount of irrelevant information at the document level.

The remainder of this section explains the training process of the BERT-based sentence selector, which has two phases. While Phase I (pretraining) prepares the model to recognize sentences that are likely relevant to the query, Phase II (finetuning) further adapts the model to the target LLM.

3.1 PHASE I: PRETRAINING

Training set construction. We adapt training examples from an open-domain QA dataset to be our pretraining examples. To explain, each pretraining example consists of a question q from the dataset and a list of retrieved documents D with $|D| = 30$. We concatenate all the documents in D , split the concatenated text into sentences S , and format them (together with q) as input to the sentence selector. Inspired by document-level label assignment in CompAct (Yoon et al., 2024), we assign a pseudo-label to each sentence using the following rule: a sentence is labeled as *retained* if it contains the ground-truth answer string; otherwise, it is labeled *discarded*. In Phase I, we train

162 the sentence selector to predict these labels. Note that we exclude two types of examples from the
 163 pretraining phase: (1) examples with $|S| > 5120$ tokens, as these cases rarely happen because of the
 164 small k in the document reranking step (2) examples with ground-truth answers such as "yes", "no",
 165 or "noanswer", as they do not correspond to concrete evidence in the retrieved text and can therefore
 166 cause misleading supervision.

167 **Training objective.** The training objective is defined at the positions of the [SEN] tokens. For each
 168 sentence $s_i \in S$, the action a_i^* (retained or discarded) is predicted at the position of its preceding
 169 [SEN] token. A masked cross-entropy loss is applied such that only [SEN] positions contribute to
 170 the objective, while all other tokens are ignored. This encourages the model to learn sentence-level
 171 decisions by treating each [SEN] token as the supervision point for its corresponding sentence.

173 3.2 PHASE II: FINETUNING

174
 175 The pretrained model from Phase I is not yet optimal because the pseudo-labels used for pretraining
 176 are based on a simple string matching heuristic. Specifically, some sentences that do not contain
 177 the ground-truth answer may still be useful or even necessary for the target LLM, especially for
 178 questions requiring multi-hop or cross-document reasoning. Conversely, a sentence containing the
 179 ground-truth answer may not be necessary if its content is irrelevant to the question or if it is redundant
 180 with another selected sentence. Therefore, Phase II addresses these issues by using a hybrid
 181 reinforcement learning (RL) and supervised learning (SL) approach to fine-tune the model. As noted
 182 in TACO-RL (Shandilya et al., 2024), RL only fine-tuning is computationally expensive and time-
 183 consuming. To reduce this burden while still benefiting from RL, we adopt a hybrid strategy that
 184 utilizes the trajectories from RL efficiently. In each epoch, we update the model weights using an
 185 RL loss followed by an SL loss, as explained next. We further analyze the training-time implications
 186 of this hybrid approach in Appendix D.9.

187 3.2.1 REINFORCEMENT LEARNING

188
 189 We consider our sentence selector model as a policy model π_θ and use reward signals derived from
 190 the target LLM and ground-truth QA answers to optimize it.

191 **Problem formulation.** We formulate our task as a contextual multi-armed bandit problem (Jung
 192 & Kim, 2024; Lu et al., 2010), which terminates after a single decision step. A state σ is the
 193 input to the policy model $I(q, S)$ where q is a question and S is the list of context sentences from
 194 the top- k reranked documents. The policy π_θ takes σ as input and produces output probability
 195 distributions for all input tokens, but, consistent with the pretraining phase, only the probability
 196 distributions at the [SEN] tokens are used to derive binary actions $a_i \in \{0, 1\}$ indicating whether
 197 the corresponding sentences are retained (1) or discarded (0). With m sentences in S , one state
 198 produces multiple actions $A = \langle a_1, a_2, \dots, a_m \rangle$ in parallel, where each action is sampled from the
 199 categorical distribution

$$200 \quad a_i \sim \text{Categorical}(\pi_\theta(\cdot | \sigma, i)), \quad \forall i \in \{1, \dots, m\}. \quad (1)$$

201 The compressed context \mathbb{C} is then formed by concatenating all retained sentences. The target LLM
 202 M produces $M(q, \mathbb{C})$, and a reward r for A is then computed. A trajectory, therefore, consists of a
 203 single state σ , the full list of binary actions A , and the resulting reward r .

204 **Reward function.** We define the reward r as follows.

$$205 \quad r = \begin{cases} \alpha + (1 - \alpha) \cdot (1 - \tau), & \text{if } \text{Acc}(M(q, \mathbb{C}), y_q) = 1 \\ -(1 - \alpha) \cdot (1 - \tau), & \text{otherwise} \end{cases} \quad (2)$$

206 where $\tau = |\mathbb{C}|/|\mathbb{D}|$ and y_q is the ground-truth answer of q . This reward jointly maximizes QA
 207 accuracy and compression, with their relative importance controlled by the weighting factor $\alpha \in$
 208 $(0, 1)$. During validation, we primarily use this reward to select the best model checkpoint for
 209 evaluation. For a detailed analysis of how different values of α influence this checkpoint selection
 210 process, see Appendix D.11. In practice, we prefer a relatively high α to avoid extreme compression
 211 at the expense of accuracy.

212 **Optimization.** To train the policy π_θ , we draw inspiration from Group Relative Policy Optimiza-
 213 tion (GRPO) (Shao et al., 2024), a policy gradient method that removes the value function used in

216 PPO (Schulman et al., 2017) and instead efficiently estimates advantages by normalizing rewards
 217 within a group of sampled trajectories.
 218

219 Given a group size b , for each state, we sample a group of actions $\mathbf{A} = \{A_1, \dots, A_b\}$ from π_θ , each
 220 producing a compressed context \mathbb{C}_i and reward r_i . The reward set $R = \{r_1, \dots, r_b\}$ is z-normalized
 221 in group to yield relative advantages $Z = \{z_1, \dots, z_b\}$ where $z_i = \frac{1}{\text{std}(R)}(r_i - \text{mean}(R))$, used for
 222 updating the policy.

223 To measure the degree of policy change, we define $\pi_\theta(A \mid \sigma)$ as the geometric mean of the proba-
 224 bilities across all sampled binary actions in A :

$$\pi_\theta(A \mid \sigma) = \left(\prod_{i=1}^m \pi_\theta(a_i \mid \sigma) \right)^{\frac{1}{m}} \quad (3)$$

229 Our reinforcement learning objective is then defined as
 230

$$\mathcal{L}_{\text{RL}}(\theta) = -\mathbb{E} \left[\min \left(\frac{\pi_\theta(A \mid \sigma)}{\pi_{\theta_{\text{old}}}(A \mid \sigma)} z, \text{clip} \left(\frac{\pi_\theta(A \mid \sigma)}{\pi_{\theta_{\text{old}}}(A \mid \sigma)}, 1 - \epsilon, 1 + \epsilon \right) z \right) \right], \quad (4)$$

231 where π_θ and $\pi_{\theta_{\text{old}}}$ denote the current and old policy models, respectively, and ϵ is a clipping hyper-
 232 parameter, typically set to 0.2.
 233

234 Additionally, we compute the Shannon entropy (Shannon, 1948) of the policy π_θ at the state σ
 235 (considered only at the [SEN] positions) as

$$H(\pi_\theta(\cdot \mid \sigma)) = \mathbb{E} \left[-\frac{1}{m} \sum_{i=1}^m \sum_{a_i \in \{0,1\}} \pi_\theta(a_i \mid \sigma) \log \pi_\theta(a_i \mid \sigma) \right] \quad (5)$$

236 The final training loss is
 237

$$\mathcal{L}_{\text{total}}(\theta) = \mathcal{L}_{\text{RL}}(\theta) - \lambda H(\pi_\theta(\cdot \mid \sigma)), \quad (6)$$

238 where λ controls the trade-off between exploitation and exploration. In practice, we set $\lambda \geq 0.1$,
 239 which encourages more exploration.
 240

241 **Reward normalization scenarios.** It is worth noting that the reward normalization (z-norm) by
 242 GRPO naturally guides our compression. As illustrated in Figure 2, when at least one A_i results in
 243 a correct LLM output, the policy will learn to increase compression. In contrast, when all $A_i \in \mathbf{A}$
 244 lead to incorrect LLM outputs, it will reduce compression to preserve more information. This reward
 245 normalization effect both prevents extreme behaviors and enables the framework to learn a stable
 246 trade-off between accuracy and compression.
 247

248 **Training set construction.** For each QA training example (q, y_q) , we perform Step 1 (document
 249 reranking) to obtain context sentences S from the top- k documents to form the input $I(q, S)$. How-
 250 ever, we exclude some training examples. First, we exclude examples that the target LLM cannot
 251 answer correctly even with all sentences in S provided, as further compression is unlikely to help.
 252 Given our reward function, including such examples would bias the policy to always retain all sen-
 253 tences, making the training inefficient. Second, we exclude examples that the target LLM can answer
 254 correctly even without any context. Keeping these examples would bias the policy toward discarding
 255 all sentences, resulting in non-grounded LLM outputs. This example filtering step ensures that the
 256 training set only contains examples where context is necessary and compression choices truly mat-
 257 ter. Hence, appropriate decompression can recover missing evidence, while excessive compression
 258 inevitably removes the information required to answer.
 259

260 3.2.2 SUPERVISED LEARNING

261 During GRPO, we sample multiple A_i for each state σ . To enhance training efficiency, we introduce
 262 a memory C to store the best trajectory of each state observed so far. (In other words, it stores the
 263 best list of binary actions discovered so far for each example.) For each state σ , we store a trajectory
 264 (σ, A_i, r_i) in C when $r_i > 0$ and update it when we find another trajectory (σ, A_j, r_j) where $r_j \geq r_i$.
 265 After the RL update of each epoch, these best trajectories in C are used as silver labels to finetune
 266 the policy (i.e., the sentence selector) in a supervised learning manner. We apply the cross-entropy
 267

Figure 2: Overall finetuning pipeline for the sentence selector within a single epoch. Reinforcement learning is applied first, followed by supervised learning. Reward normalization encourages higher compression when some predictions are correct and lower compression when all predictions fail.

loss at the [SEN] positions using the stored actions as labels. To avoid overfitting, each example in C is used to train the policy only once until a new trajectory of the example is updated in the memory. The detailed algorithm of our approach can be found in Appendix C. We also include an ablation study comparing SL only, RL only, and our hybrid training setup in Appendix D.8.

4 EXPERIMENTS

We trained and evaluated EFFCOMP on four open-domain QA datasets: HotpotQA (HQA; Yang et al. (2018)), 2WikiMultiHopQA (2WikiQA; Ho et al. (2020)), Natural Questions (NQ; Kwiatkowski et al. (2019)), and TriviaQA (TQA; Joshi et al. (2017)), using the training sets for pretraining and finetuning and the development sets for evaluation.

4.1 EXPERIMENTAL SETUP

Implementation details. Following prior work (Yoon et al., 2024; Xu et al., 2024), we implemented the retrieval system using Contriever (Izacard et al., 2021), fine-tuned on MSMARCO (Bajaj et al., 2018). For each question, we retrieved $n = 30$ documents from the 2018 Wikipedia corpus (Karpukhin et al., 2020). Additionally, we used Gemma-2-9B-IT² (Team, 2024) as the target LLM. For EFFCOMP, we tried three document rerankers, including BGE³ (Xiao et al., 2023), Jina⁴ (Günther et al., 2023), and GTE⁵ (Zhang et al., 2024), to rerank and select top- k documents ($k = 10$) in Step 1. For Step 2, we used ModernBERT-base⁶ (Warner et al., 2024) as the sentence selector and used the BGE reranker to prepare input documents for finetuning the sentence selector. We also evaluated EFFCOMP without Step 1, which passed sentences from n documents to Step 2 without reranking. This variant is denoted as “No reranker” in the result tables.

Baselines. We compared EFFCOMP against several types of baselines. The simplest one was “Raw Documents”, which inputs the n retrieved documents to the target LLM without compression. Next, reranker-based filtering baselines used a reranker (BGE, Jina, or GTE) to select top- k documents to feed into the target LLM. This is equivalent to EFFCOMP without Step 2. Furthermore, we compared EFFCOMP with state-of-the-art compression frameworks, including two extractive methods

²<https://huggingface.co/google/Gemma-2-9B-IT>

³<https://huggingface.co/BAAI/bge-reranker-base>

⁴<https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual>

⁵<https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base>

⁶<https://huggingface.co/answerdotal/ModernBERT-base>

Method	HQA			2WikiQA			NQ			TQA		
	$1/\tau$	Acc	F1	$1/\tau$	Acc	F1	$1/\tau$	Acc	F1	$1/\tau$	Acc	F1
Raw Documents	1x	34.6	42.3	1x	29.1	32.9	1x	30.1	38.0	1x	77.4	77.2
<i>Reranker-based methods</i>												
BGE reranker	3x	35.2	42.1	3x	23.8	27.6	3x	29.6	35.4	3x	79.9	77.1
Jina reranker	3x	34.6	41.5	3x	24.4	28.2	3x	30.6	36.7	3x	80.1	77.1
GTE reranker	3x	34.7	41.6	3x	23.9	27.5	3x	30.6	36.4	3x	80.4	77.4
<i>Compression frameworks</i>												
LongLLMLingua (5x)	5.1x	31.8	38.2	5.1x	21.8	25.8	5.1x	25.7	31.7	5.1x	78.4	75.1
LongLLMLingua (19x)	19.1x	28.7	35.7	19.3x	20.5	24.5	18.9x	20.7	26.8	19.1x	73.9	71.7
Recomp-Extractive	29.2x	25.6	31.9	29.3x	17.4	21.4	29.8x	22.8	28.2	32x	73.1	70.4
Recomp-Abstractive	132.1x	27.9	34.0	126.9x	21.0	25.1	48.3x	27.6	33.1	139x	73.0	70.7
CompAct	48.7x	31.2	36.8	54.7x	16.8	20.1	44.2x	27.8	32.8	50.2x	77.6	74.3
<i>Our work: EFFCOMP</i>												
No reranker	26.8x	37.4	44.3	16.1x	29.5	33.4	20.1x	30.9	37.2	48.4x	78.9	76.8
BGE reranker	39.5x	36.3	43.0	30.3x	25.4	29.1	29.1x	29.8	35.4	59.5x	80.1	76.8
Jina reranker	38.5x	35.8	42.5	29.4x	25.5	29.4	34x	29.9	35.7	78.4x	80.1	76.7
GTE reranker	40.4x	35.5	42.4	29.4x	25.4	29.1	33.2x	30.5	36.0	64.3x	80.5	77.1

Table 1: Results on four open-domain QA benchmarks. We report the mean of compression ratio ($1/\tau$), accuracy (Acc), and token-level F1 score for **Gemma-2-9B-IT** as the target model. For all of these metrics, higher values are better. The best results in each column are marked in bold.

(Recomp-Extractive (Xu et al., 2024) and LongLLMLingua (Jiang et al., 2024)) and two abstractive methods (Recomp-Abstractive (Xu et al., 2024) and CompAct (Yoon et al., 2024)). Further implementation details of the baselines are provided in Appendix B.6.

4.2 RESULTS

Table 1 reports the results on three metrics: compression ratio ($1/\tau$), accuracy (Acc), and F1 score. Compared to using the Raw Documents, EFFCOMP with rerankers achieved competitive or sometimes higher Acc and F1 with the compression ratios of 29.1x–78.4x. For example, on HQA, EFFCOMP with BGE reranker achieved 36.3% accuracy with the compression ratio of 39.5x, while the Raw Documents got 34.6% accuracy with no compression (1x). This demonstrates that context compression, if done appropriately, can enhance rather than degrade the quality of LLM predictions. Without the rerankers, EFFCOMP got significantly lower compression ratios but usually slightly higher Acc and F1 (e.g., 26.8x compression and 37.4% Acc on HQA). Compared to reranker-based methods, EFFCOMP with the same reranker achieved significantly higher compression ratios (e.g., from 3x to 59.5x–78.4x on TQA) and competitive, if not higher, Acc and F1 scores. This highlights the immense impact of Step 2 of EFFCOMP on compression ratios and indicates that our sentence selector, trained on BGE reranked data, generalized effectively to other rerankers such as Jina and GTE. Furthermore, EFFCOMP outperformed all other compression frameworks in terms of accuracy and F1. Although the compression ratios of EFFCOMP were lower than those of existing abstractive methods (i.e., Recomp-Abstractive and CompAct), EFFCOMP remained competitive by delivering superior QA quality. We show a successful case of EFFCOMP in Table 2. In this case, Recomp-Abstractive and CompAct generated compressed contexts that are factually incorrect or irrelevant to the question, leading to wrong LLM predictions. By contrast, LongLLMLingua and EFFCOMP remained correctly grounded in the retrieved contexts, but EFFCOMP used 8.6 times fewer tokens than LongLLMLingua (88 vs. 758 tokens). In conclusion, EFFCOMP achieved strong results across all QA benchmarks by keeping the LLM predictions well-grounded, consistently balancing high QA performance with substantial compression.

5 ADDITIONAL ANALYSES

We further analyze EFFCOMP through five research questions.

RQ1: How well does EFFCOMP generalize to a different dataset or target LLM? To test dataset generalization, we trained EFFCOMP on HotpotQA and evaluated it on the other QA datasets. As

Question (from HotpotQA): Stein had a part in the 1994 superhero fantasy film directed by whom				
Ground-truth answer: Charles Russell				
Method	$1/\tau \uparrow$	$ \mathcal{C} \downarrow$	Compressed Context	LLM Prediction
Long-LLMLingua	5.01x	758	The Mask (film) The Mask is a 1994 American fantasy superhero comedy film directed by Charles Russell, produced by Bob Engelman [...] Ben Stein Benjamin Jeremy (born November 25, 1944) is an American writer, [...] He is well- screen econom teacher "Ferris Bueller's Day Off" (1986) and as Dr. Arthur Neuman in "The Mask" (1994)Son [...]	Charles Russell ✓
Recomp-Abstractive	189.75x	20	Ben Stein had a part in the 1994 superhero fantasy film "The Shadow" directed by Russell Mulcahy.	Russell Mulcahy ✗
CompAct	49.93x	76	The Shadow is a 1994 American superhero film [...] directed by Russell Mulcahy, that stars Alec Baldwin. The film co-stars John Lone, Penelope Ann Miller, Ian McKellen, Jonathan Winters, Peter Boyle, and Tim Curry. It was released to theaters on July 1, 1994 and received generally mixed reviews.	Russell Mulcahy ✗
EFFCOMP (BGE)	43.13x	88	He is most well-known on screen as the economics teacher in "Ferris Bueller's Day Off" (1986) and as Dr. Arthur Neuman in "The Mask" (1994) and "Son of The Mask (film) The Mask is a 1994 American fantasy superhero comedy film directed by Charles Russell, produced by Bob Engelman [...]	Charles Russell ✓

Table 2: Examples of compressed contexts and predictions from LongLLMLingua, Recomp-Abstractive, CompAct, and EFFCOMP (with BGE reranker). $|\mathcal{C}|$ denotes the number of tokens of the compressed context. ✓ indicates a correct prediction, while ✗ indicates an incorrect prediction.

Method	2WikiQA			NQ			TQA		
	$1/\tau$	Acc	F1	$1/\tau$	Acc	F1	$1/\tau$	Acc	F1
EFFCOMP (BGE) (in-distribution)	30.3x	25.4	29.1	29.1x	29.8	35.4	59.5x	80.1	76.8
EFFCOMP (BGE) (out-of-distribution)	19.4x	25.0	28.9	14.1x	29.0	34.8	49.6x	79.5	76.2

Table 3: Cross-dataset generalization of EFFCOMP with Gemma-2-9B-IT as the target LLM. The first row reports the results when EFFCOMP was trained on each target dataset (in-distribution testing). The second row reports the results when EFFCOMP was trained on HotpotQA and applied to the target datasets (out-of-distribution testing).

shown in Table 3, although in-distribution testing achieved better QA performance, the gaps between in-distribution and out-of-distribution results were less than 1% absolute for both Acc and F1, indicating that EFFCOMP generalizes relatively well in terms of QA performance. However, compression ratios noticeably decreased under out-of-distribution evaluation. This reflects the reward design of EFFCOMP, which encouraged context decompression when the sentence selector was unsure.

Additionally, to test generalization to another target LLM, we fed the compressed contexts from the methods in Table 1 to Llama-3.1-8B-Instruct (Grattafiori et al., 2024) instead of Gemma-2-9B-IT, which was used to finetune EFFCOMP. The results show that EFFCOMP attained the highest accuracy across all baselines in four datasets and the highest F1 in three out of the four datasets. The generalizability of EFFCOMP is partly due to its operation at no finer than the sentence level, ensuring that the compressed contexts remain readable and not too specific to the target LLM used for finetuning. Full results regarding generalizability can be found in Appendices D.1 and D.2.

RQ2: How does EFFCOMP affect inference latency? Table 4 reports the compression latency, the target LLM reading latency, and the total latency, all averaged from 500 HotpotQA examples with a batch size of 1. Compared to no compression, EFFCOMP introduced only a small overhead during compression while substantially reducing the LLM reading time (up to 55.4% decrease latency), resulting in the lower overall latency (up to 53.3% decrease latency with Jina reranker). EFFCOMP is among the fastest methods, together with Recomp-Extractive, demonstrating their potential for use in user-facing applications.

RQ3: Does our extractive compression method (EFFCOMP) introduce fewer factual inconsistencies than abstractive compression methods? To answer this research question, we quantitatively evaluate hallucination using a natural language inference (NLI) setup on the HotpotQA test set. For each example, the original raw context is treated as the premise and the compressed context as the hypothesis. We then apply the tasksource/ModernBERT-large-nli (0.4B) model (Sileo, 2024) to obtain NLI predictions. We focus specifically on the contradiction label, signaling that the com-

Method	Compression (s)	LLM Read (s)	Total (s)	Avg Prompt Length
Raw documents	–	1.84	1.84	3,706.81
LongLLMLingua	2.31	0.90	3.21	723.69
Recomp-Extractive	0.19	0.74	0.93	141.71
Recomp-Abstractive	2.84	0.71	3.55	106.62
CompAct	16.30	0.72	17.02	89.93
EFFCOMP (BGE)	0.08	0.82	0.90	487.72
EFFCOMP (Jina)	0.04	0.82	0.86	499.14
EFFCOMP (GTE)	0.12	0.82	0.94	482.72

Table 4: Latency per example averaged over 500 HotpotQA examples (with average compressed-prompt length), using Gemma-2-9B-IT as the target LLM. Compression is evaluated with FlashAttention 2 (Dao, 2023) enabled for CompAct, LongLLMLingua, EFFCOMP (sentence selector), the Jina reranker, and the ModernBERT reranker. Evaluations use a batch size of 1 for both compression and LLM prediction, and a batch size of 30 for the rerankers. Latencies are measured by running the full compression pipeline including tokenization, the model forward pass, and detokenization on 500 examples. Bold numbers denote the lowest metric in each column.

Method	Contradiction cases	% Contradiction cases
Recomp-Abstractive	1,728	23.3 %
CompAct	225	3.0 %
EFFCOMP (BGE Reranker)	42	0.5 %

Table 5: NLI-detected contradiction cases on HotpotQA (7,405 examples). Lower values indicate fewer factual inconsistencies introduced during compression.

pressed text contains information inconsistent with the original context. This evaluation provides a direct quantitative measure of how often each compression method introduces factual errors. As shown in Table 5, Recomp-Abstractive yields 1,728 contradiction cases and CompAct yields 225, while EFFCOMP (BGE Reranker) produces only 42. The substantially lower contradiction count for EFFCOMP indicates that its extractive design introduces fewer factual inconsistencies than the abstractive compressors.

RQ4: Can Phase II GRPO effectively correct the biased sentence-selection behavior introduced by Phase I pretraining? Phase I pretraining labels only sentences containing the final answer string, which biases the policy toward selecting answer-bearing sentences while suppressing intermediate reasoning sentences. This bias is problematic for multi-hop QA tasks such as HotpotQA, where supporting facts are essential. To assess whether Phase II can overcome this issue, we compare two models: (1) a pretrained-only model trained solely with the Phase I objective, and (2) a pretrained + finetuned model trained using both Phase I and Phase II. We evaluate how well each model preserves the human annotated supporting facts in the HotpotQA test set. A supporting fact is considered preserved if at least 50% string overlap is detected between the supporting sentence and target text. The retention rate metric is defined as $\frac{\# \text{ supporting sentences preserved in compressed text}}{\# \text{ supporting sentences in original document}}$

Using this metric, the pretrained-only model achieves a retention rate of 75.77%, while the pretrained + finetuned model achieves 91.09%. These results show that Phase II effectively addresses the initial bias from Phase I and substantially improves the retention of intermediate-reasoning sentences in multi-hop QA.

RQ5: When EFFCOMP caused QA performance regression, what were the points of failure? Though EFFCOMP (BGE) improved the accuracy of HQA from 34.6% (Raw Documents) to 36.3%, we observed that 19.6% of the examples answered correctly with the full contexts were answered incorrectly with the compressed ones. To better understand the regression, we sampled 50 of such examples and identified the points of failure in the pipeline. The distribution of failure points was as follows: the retriever (12%), the document reranker (20%), the sentence selector (10%), the target LLM (16%), and the evaluation metric (42%). Concerning the evaluation metric, accuracy naturally misses some correct answers when their format differs from the ground truth (such as “Anabolic steroids” vs. “Anabolic Androgenic Steroids”, “15” vs. “fifteen”, “No” vs. “No, they are not.”). This indicates that semantic-based evaluation metrics like BERTScore (Zhang et al., 2020) and LLM-based auto-raters (Vu et al., 2024) should be more widely adopted in this field. The

486 results also imply that the document reranker and the sentence selector have room for improvement.
 487 Finetuning the reranker and pretraining the sentence selector with more informative pseudo-labels
 488 could potentially enhance their performance and are worth exploring. Interestingly, in 12% of the
 489 cases, the correct answer was not present in the full context, but the LLM still answered correctly.
 490 It then failed when using the compressed context. We hypothesize that some information in the
 491 full context, while not explicit, was still useful to the model and was inadvertently removed during
 492 compression. Research into LLM interpretability (Singh et al., 2024) may be a useful tool for
 493 investigating these cases in detail and shedding light on potential mitigation strategies.

494 6 RELATED WORK

495 **Prompt compression.** Li et al. (2025a) categorize prompt compression methods into two types. Soft
 496 prompt methods compress inputs into continuous vectors readable only by the target LLM (Wingate
 497 et al., 2022; Chevalier et al., 2023; Mu et al., 2023; Ge et al., 2024; Li et al., 2025c). In contrast,
 498 hard prompt methods use truncation, selection, or summarization to keep the compressed prompts
 499 human-readable (Li et al., 2023; Jiang et al., 2024; Xu et al., 2024; Yoon et al., 2024; Pan et al.,
 500 2024; Zhao et al., 2025b; Fei et al., 2025). EFFCOMP falls into the latter category as we prioritize
 501 interpretability and applicability across different target LLMs. So far, few hard prompt methods
 502 have employed reinforcement learning. Jung & Kim (2024) formulate compression as a token-
 503 level contextual bandits problem, which may lead to overly aggressive compression. Shandilya
 504 et al. (2024) mitigate this by imposing fixed-length limits with penalties. EFFCOMP, by contrast,
 505 operates at the sentence level with a tailored reward design and training set construction. This
 506 naturally regulates compression without fixed limits, allowing higher compression while preserving
 507 QA accuracy.

508 **Combining reinforcement learning (RL) and supervised finetuning (SFT).** Recent studies show
 509 that using SFT to train LLMs followed by RL to align them with desired behaviors effectively en-
 510 hances their capabilities (DeepSeek-AI et al., 2025; Ouyang et al., 2022). Instead of using one after
 511 the other, SuperRL (Liu et al., 2025) enhances the complex reasoning ability of LLMs using RL.
 512 However, when all sampled trajectories of an example yield zero reward, leading to uninformative
 513 RL signals, they switch to SFT with high-quality offline data. In contrast, our framework addresses
 514 a different problem by focusing on improving the efficiency of the training process. Meanwhile,
 515 our framework, EFFCOMP, alleviates the zero-reward issue by using a dense reward and a relatively
 516 high λ in Equation 6 to encourage the exploration of various action choices. It then uses the best-
 517 performing trajectories from RL (instead of offline data) for SFT before alternating between RL and
 518 SFT like this in subsequent epochs.

520 7 CONCLUSION

521 We propose EFFCOMP, a query-aware prompt compression framework for RAG-based open-domain
 522 QA. EFFCOMP performs context selection at the document level and then the sentence level to
 523 ensure the remaining context is minimal yet sufficient for the target LLM and remains human-
 524 readable. Our hybrid training process teaches the model to compress more when the target LLM
 525 can answer correctly and to provide more context when it is needed. Experimental results show that
 526 EFFCOMP yields high compression ratios (up to 78.4x) while maintaining or even improving the QA
 527 accuracy (up to 8.1% relative to the no-compression baseline). It can reduce total latency by about
 528 53.3% and generalizes well with respect to QA metrics. Future work may consider improving the
 529 pretraining of the sentence selector (e.g., by using more sophisticated labels instead of binary ones
 530 or leveraging document-level relevancy annotations from the dataset, if available) and extending
 531 EFFCOMP to other tasks beyond QA.

532 REFERENCES

533
 534 Aisha Alansari and Hamzah Luqman. Large language models hallucination: A comprehensive
 535 survey, 2025. URL <https://arxiv.org/abs/2510.06265>.

536 Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
 537 jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg, Xia Song, Alina Stoica,

540 Saurabh Tiwary, and Tong Wang. Ms marco: A human generated machine reading comprehension
 541 dataset, 2018. URL <https://arxiv.org/abs/1611.09268>.

542

543 Scott Barnett, Stefanus Kurniawan, Srikanth Thudumu, Zach Brannelly, and Mohamed Abdelrazek.
 544 Seven failure points when engineering a retrieval augmented generation system. In *Proceedings*
 545 *of the IEEE/ACM 3rd International Conference on AI Engineering-Software Engineering for AI*,
 546 pp. 194–199, 2024.

547

548 Alexis Chevalier, Alexander Wettig, Anirudh Ajith, and Danqi Chen. Adapting language models
 549 to compress contexts. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of*
 550 *the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 3829–3846,
 551 Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 552 emnlp-main.232. URL <https://aclanthology.org/2023.emnlp-main.232/>.

553

554 Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
 555 Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Un-
 556 supervised cross-lingual representation learning at scale, 2020. URL <https://arxiv.org/abs/1911.02116>.

557

558 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. URL
 559 <https://arxiv.org/abs/2307.08691>.

560

561 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
 562 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
 563 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
 564 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
 565 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
 566 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
 567 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
 568 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
 569 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
 570 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
 571 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
 572 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
 573 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
 574 Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
 575 Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
 576 Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
 577 Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
 578 Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
 579 aasha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
 580 Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
 581 Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
 582 Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
 583 Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
 584 Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
 585 Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
 586 Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
 587 Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
 588 Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
 589 ment learning, 2025. URL <https://arxiv.org/abs/2501.12948>.

590

591 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 592 bidirectional transformers for language understanding, 2019. URL <https://arxiv.org/abs/1810.04805>.

593

594 Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde. On the computational
 595 complexity of self-attention. In *Proceedings of The 34th International Conference on Algorithmic
 596 Learning Theory*, volume 201 of *Proceedings of Machine Learning Research*, pp. 597–619, 2023.

594 Weizhi Fei, Xueyan Niu, XIE GUOQING, Yingqing Liu, Bo Bai, and Wei Han. Efficient
 595 prompt compression with evaluator heads for long-context transformer inference. In *The Thirty-*
 596 *ninth Annual Conference on Neural Information Processing Systems*, 2025. URL <https://openreview.net/forum?id=yOs12gdsal>.

597

598 Tao Ge, Hu Jing, Lei Wang, Xun Wang, Si-Qing Chen, and Furu Wei. In-context autoencoder
 599 for context compression in a large language model. In *The Twelfth International Conference*
 600 *on Learning Representations*, 2024. URL <https://openreview.net/forum?id=uREj4ZuGJE>.

601

602 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 603 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 604 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
 605 rennev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
 606 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
 607 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
 608 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
 609 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
 610 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
 611 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
 612 Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
 613 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
 614 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,
 615 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 616 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 617 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 618 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala,
 619 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 620 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
 621 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 622 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 623 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 624 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 625 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 626 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 627 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 628 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 629 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 630 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 631 Silva, Rui Hou, Rui Wang, Saghaf Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 632 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng
 633 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 634 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 635 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 636 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 637 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei
 638 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 639 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
 640 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 641 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 642 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 643 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 644 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 645 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 646 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 647 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo,
 Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia

648 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 649 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 650 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 651 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
 652 Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 653 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 654 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 655 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison
 656 Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 657 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 658 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 659 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 660 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 661 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 662 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 663 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 664 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 665 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 666 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 667 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 668 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 669 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan
 670 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 671 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 672 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 673 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 674 driguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 675 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 676 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 677 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 678 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 679 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 680 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 681 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 682 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 683 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 684 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 685 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
 686 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 687 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 688 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 689 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 690 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
 691 <https://arxiv.org/abs/2407.21783>.

692 Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
 693 language model pre-training. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th*
 694 *International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning*
 695 *Research*, pp. 3929–3938. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/guu20a.html>.

696 Michael Günther, Jackmin Ong, Isabelle Mohr, Alaeddine Abdessalem, Tanguy Abel, Moham-
 697 mad Kalim Akram, Susana Guzman, Georgios Mastrapas, Saba Sturua, Bo Wang, Maximilian
 698 Werk, Nan Wang, and Han Xiao. Jina embeddings 2: 8192-token general-purpose text embed-
 699 dings for long documents, 2023.

700 Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. Deberta: Decoding-enhanced bert
 701 with disentangled attention. In *International Conference on Learning Representations*, 2021.
 702 URL <https://openreview.net/forum?id=XPZIaotutsD>.

702 Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-
 703 hop QA dataset for comprehensive evaluation of reasoning steps. In *Proceedings of the 28th*
 704 *International Conference on Computational Linguistics*, pp. 6609–6625, Barcelona, Spain (On-
 705 line), December 2020. International Committee on Computational Linguistics. URL <https://www.aclweb.org/anthology/2020.coling-main.580>.

706

707 Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
 708 domain question answering. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty (eds.), *Proceed-
 709 ings of the 16th Conference of the European Chapter of the Association for Computational Lin-
 710 guistics: Main Volume*, pp. 874–880, Online, April 2021. Association for Computational Lin-
 711 guistics. doi: 10.18653/v1/2021.eacl-main.74. URL [https://aclanthology.org/2021.eacl-main.74/](https://aclanthology.org/2021.eacl-main.74).

712

713 Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
 714 Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning,
 715 2021. URL <https://arxiv.org/abs/2112.09118>.

716

717 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
 718 lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
 719 Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
 720 Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL <https://arxiv.org/abs/2310.06825>.

721

722 Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing Yang, and Lili
 723 Qiu. LongLLMLingua: Accelerating and enhancing LLMs in long context scenarios via prompt
 724 compression. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd*
 725 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 726 1658–1677, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
 727 10.18653/v1/2024.acl-long.91. URL [https://aclanthology.org/2024.acl-long.91/](https://aclanthology.org/2024.acl-long.91).

728

729 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. triviaqa: A Large Scale
 730 Distantly Supervised Challenge Dataset for Reading Comprehension. *arXiv e-prints*, art.
 731 arXiv:1705.03551, 2017.

732

733 Dongwon Jung, Qin Liu, Tenghao Huang, Ben Zhou, and Muhamo Chen. Familiarity-aware evidence
 734 compression for retrieval-augmented generation, 2024. URL <https://arxiv.org/abs/2409.12468>.

735

736 Hoyoun Jung and Kyung-Joong Kim. Discrete prompt compression with reinforcement learning.
 737 *IEEE Access*, 12:72578–72587, 2024. doi: 10.1109/ACCESS.2024.3403426.

738

739 Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
 740 Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
 741 *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing*
 742 (*EMNLP*), pp. 6769–6781, Online, November 2020. Association for Computational Linguistics.
 743 doi: 10.18653/v1/2020.emnlp-main.550. URL <https://www.aclweb.org/anthology/2020.emnlp-main.550>.

744

745 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Al-
 746 bert, Danielle Epstein, Illia Polosukhin, Matthew Kelcey, Jacob Devlin, Kenton Lee, Kristina N.
 747 Toutanova, Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob Uszkoreit, Quoc Le, and Slav
 748 Petrov. Natural questions: a benchmark for question answering research. *Transactions of the*
 749 *Association of Computational Linguistics*, 2019.

750

751 Piyawat Lertvittayakumjorn, David Kinney, Vinodkumar Prabhakaran, Donald Martin Jr., and
 752 Sunipa Dev. Towards geo-culturally grounded LLM generations. In Wanxiang Che, Joyce
 753 Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd*
 754 *Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp.
 755 313–330, Vienna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-
 89176-252-7. doi: 10.18653/v1/2025.acl-short.26. URL <https://aclanthology.org/2025.acl-short.26/>.

756 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
 757 Goyal, Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
 758 and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In
 759 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
 760 ral Information Processing Systems*, volume 33, pp. 9459–9474. Curran Associates, Inc.,
 761 2020. URL [https://proceedings.neurips.cc/paper_files/paper/2020/
 762 file/6b493230205f780e1bc26945df7481e5-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf).

763 Yucheng Li, Bo Dong, Frank Guerin, and Chenghua Lin. Compressing context to enhance in-
 764 ference efficiency of large language models. In Houda Bouamor, Juan Pino, and Kalika Bali
 765 (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
 766 cessing*, pp. 6342–6353, Singapore, December 2023. Association for Computational Linguis-
 767 tics. doi: 10.18653/v1/2023.emnlp-main.391. URL [https://aclanthology.org/2023.
 768 emnlp-main.391/](https://aclanthology.org/2023.emnlp-main.391/).

769 Zongqian Li, Yinhong Liu, Yixuan Su, and Nigel Collier. Prompt compression for large language
 770 models: A survey. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025
 771 Conference of the Nations of the Americas Chapter of the Association for Computational Linguis-
 772 tics: Human Language Technologies (Volume 1: Long Papers)*, pp. 7182–7195, Albuquerque,
 773 New Mexico, April 2025a. Association for Computational Linguistics. ISBN 979-8-89176-189-
 774 6. doi: 10.18653/v1/2025.naacl-long.368. URL [https://aclanthology.org/2025.
 775 naacl-long.368/](https://aclanthology.org/2025.naacl-long.368/).

776 Zongqian Li, Yinhong Liu, Yixuan Su, and Nigel Collier. Prompt compression for large language
 777 models: A survey. In *Proceedings of the 2025 Conference of the Nations of the Americas Chapter
 778 of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
 779 Long Papers)*, pp. 7182–7195, 2025b.

780 Zongqian Li, Yixuan Su, and Nigel Collier. 500xCompressor: Generalized prompt compression
 781 for large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Moham-
 782 mad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Com-
 783 putational Linguistics (Volume 1: Long Papers)*, pp. 25081–25091, Vienna, Austria, July 2025c.
 784 Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.
 785 acl-long.1219. URL <https://aclanthology.org/2025.acl-long.1219/>.

786 Barys Liskavets, Maxim Ushakov, Shuvendu Roy, Mark Klibanov, Ali Etemad, and Shane K.
 787 Luke. Prompt compression with context-aware sentence encoding for fast and improved llm
 788 inference. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(23):24595–24604,
 789 Apr. 2025. doi: 10.1609/aaai.v39i23.34639. URL [https://ojs.aaai.org/index.php/
 790 AAAI/article/view/34639](https://ojs.aaai.org/index.php/AAAI/article/view/34639).

791 Yihao Liu, Shuocheng Li, Lang Cao, Yuhang Xie, Mengyu Zhou, Haoyu Dong, Xiaojun Ma, Shi
 792 Han, and Dongmei Zhang. Superrl: Reinforcement learning with supervision to boost language
 793 model reasoning, 2025. URL <https://arxiv.org/abs/2506.01096>.

794 Tyler Lu, David Pal, and Martin Pal. Contextual multi-armed bandits. In Yee Whye Teh and Mike
 795 Titterington (eds.), *Proceedings of the Thirteenth International Conference on Artificial Intelli-
 796 gence and Statistics*, volume 9 of *Proceedings of Machine Learning Research*, pp. 485–492, Chia
 797 Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL <https://proceedings.mlr.press/v9/lu10a.html>.

798 Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning to compress prompts with gist tokens.
 799 In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://openreview.net/forum?id=2DtPCL3T5>.

800 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 801 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 802 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike,
 803 and Ryan Lowe. Training language models to follow instructions with human feedback, 2022.
 804 URL <https://arxiv.org/abs/2203.02155>.

810 Zhuoshi Pan, Qianhui Wu, Huiqiang Jiang, Menglin Xia, Xufang Luo, Jue Zhang, Qingwei Lin,
 811 Victor Rühle, Yuqing Yang, Chin-Yew Lin, H. Vicky Zhao, Lili Qiu, and Dongmei Zhang.
 812 LLMLingua-2: Data distillation for efficient and faithful task-agnostic prompt compression.
 813 In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for*
 814 *Computational Linguistics: ACL 2024*, pp. 963–981, Bangkok, Thailand, August 2024. Association
 815 for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.57. URL <https://aclanthology.org/2024.findings-acl.57/>.

816

817 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
 818 for machine comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras (eds.), *Pro-
 ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*, pp.
 819 2383–2392, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
 820 10.18653/v1/D16-1264. URL <https://aclanthology.org/D16-1264/>.

821

822 Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don't know: Unanswerable ques-
 823 tions for SQuAD. In Iryna Gurevych and Yusuke Miyao (eds.), *Proceedings of the 56th An-
 824 nual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)*, pp.
 825 784–789, Melbourne, Australia, July 2018. Association for Computational Linguistics. doi:
 826 10.18653/v1/P18-2124. URL <https://aclanthology.org/P18-2124/>.

827

828 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 829 optimization algorithms, 2017. URL <https://arxiv.org/abs/1707.06347>.

830

831 Shivam Shandilya, Menglin Xia, Supriyo Ghosh, Huiqiang Jiang, Jue Zhang, Qianhui Wu, and
 832 Victor Rühle. Taco-rl: Task aware prompt compression optimization with reinforcement learning,
 2024. URL <https://arxiv.org/abs/2409.13035>.

833

834 Claude Elwood Shannon. A mathematical theory of communication. *The Bell System Technical
 Journal*, 27(3):379–423, 1948.

835

836 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 837 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 838 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

839

840 Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael
 841 Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context.
 842 In *International Conference on Machine Learning*, pp. 31210–31227. PMLR, 2023.

843

844 Damien Sileo. tasksource: A large collection of NLP tasks with a structured dataset preprocessing
 845 framework. In Nicoletta Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani
 846 Sakti, and Nianwen Xue (eds.), *Proceedings of the 2024 Joint International Conference on Com-
 847 putational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)*, pp. 15655–
 848 15684, Torino, Italia, May 2024. ELRA and ICCL. URL <https://aclanthology.org/2024.lrec-main.1361/>.

849

850 Chandan Singh, Jeevana Priya Inala, Michel Galley, Rich Caruana, and Jianfeng Gao. Rethinking
 851 interpretability in the era of large language models. *arXiv preprint arXiv:2402.01761*, 2024.

852

853 Jiwei Tang, Jin Xu, Tingwei Lu, Zhicheng Zhang, YimingZhao YimingZhao, LinHai LinHai, and
 854 Hai-Tao Zheng. Perception compressor: A training-free prompt compression framework in
 855 long context scenarios. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the*
 856 *Association for Computational Linguistics: NAACL 2025*, pp. 4093–4108, Albuquerque, New
 857 Mexico, April 2025. Association for Computational Linguistics. ISBN 979-8-89176-195-7.
 858 doi: 10.18653/v1/2025.findings-naacl.229. URL <https://aclanthology.org/2025.findings-naacl.229/>.

859

860 Gemma Team. Gemma. 2024. doi: 10.34740/KAGGLE/M/3301. URL <https://www.kaggle.com/m/3301>.

861

862 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue:
 863 Multihop questions via single-hop question composition. *Transactions of the Association for
 864 Computational Linguistics*, 10:539–554, 2022. doi: 10.1162/tacl_a_00475. URL <https://aclanthology.org/2022.tacl-1.31/>.

864 Tu Vu, Kalpesh Krishna, Salaheddin Alzubi, Chris Tar, Manaal Faruqui, and Yun-Hsuan Sung.
 865 Foundational autoraters: Taming large language models for better automatic evaluation. In Yaser
 866 Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on*
 867 *Empirical Methods in Natural Language Processing*, pp. 17086–17105, Miami, Florida, USA,
 868 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.
 869 949. URL [https://aclanthology.org/2024.emnlp-main.949/](https://aclanthology.org/2024.emnlp-main.949).

870 Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallström, Said
 871 Taghadouini, Alexis Gallagher, Raja Biswas, Faisal Ladakh, Tom Aarsen, Nathan Cooper, Griffin
 872 Adams, Jeremy Howard, and Iacopo Poli. Smarter, better, faster, longer: A modern bidirec-
 873 tional encoder for fast, memory efficient, and long context finetuning and inference, 2024. URL
 874 <https://arxiv.org/abs/2412.13663>.

875 David Wingate, Mohammad Shoeybi, and Taylor Sorensen. Prompt compression and contrastive
 876 conditioning for controllability and toxicity reduction in language models. In Yoav Goldberg,
 877 Zornitsa Kozareva, and Yue Zhang (eds.), *Findings of the Association for Computational Lin-
 878 guistics: EMNLP 2022*, pp. 5621–5634, Abu Dhabi, United Arab Emirates, December 2022.
 879 Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-emnlp.412. URL
 880 <https://aclanthology.org/2022.findings-emnlp.412/>.

881 Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. C-pack: Packaged resources to
 882 advance general chinese embedding, 2023.

883 Fangyuan Xu, Weijia Shi, and Eunsol Choi. RECOMP: Improving retrieval-augmented LMs
 884 with context compression and selective augmentation. In *The Twelfth International Confer-
 885 ence on Learning Representations*, 2024. URL <https://openreview.net/forum?id=m1JLVigNHp>.

886 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
 887 and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
 888 answering. In *Conference on Empirical Methods in Natural Language Processing (EMNLP)*,
 889 2018.

890 Chanwoong Yoon, Taewho Lee, Hyeon Hwang, Minbyul Jeong, and Jaewoo Kang. CompAct:
 891 Compressing retrieved documents actively for question answering. In Yaser Al-Onaizan, Mohit
 892 Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Meth-
 893 ods in Natural Language Processing*, pp. 21424–21439, Miami, Florida, USA, November 2024.
 894 Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.1194. URL
 895 <https://aclanthology.org/2024.emnlp-main.1194/>.

896 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evalu-
 897 ating text generation with bert. In *International Conference on Learning Representations*, 2020.
 898 URL <https://openreview.net/forum?id=SkeHuCVFDr>.

900 Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen Xie, Ziqi Dai, Jialong Tang, Huan Lin, Baosong
 901 Yang, Pengjun Xie, Fei Huang, et al. mgte: Generalized long-context text representation and
 902 reranking models for multilingual text retrieval. In *Proceedings of the 2024 Conference on Em-
 903 pirical Methods in Natural Language Processing: Industry Track*, pp. 1393–1412, 2024.

904 Yi Zhao, Zuchao Li, Hai Zhao, Baoyuan Qi, and Liu Guoming. DAC: A dynamic attention-aware
 905 approach for task-agnostic prompt compression. In Wanxiang Che, Joyce Nabende, Ekate-
 906 rina Shutova, and Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting*
 907 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 19395–19407,
 908 Vienna, Austria, July 2025a. Association for Computational Linguistics. ISBN 979-8-89176-
 909 251-0. doi: 10.18653/v1/2025.acl-long.952. URL [https://aclanthology.org/2025.acl-long.952/](https://aclanthology.org/2025.acl-long.952).

910 Yunlong Zhao, Haoran Wu, and Bo Xu. Leveraging attention to effectively compress prompts
 911 for long-context llms. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(24):
 912 26048–26056, Apr. 2025b. doi: 10.1609/aaai.v39i24.34800. URL <https://ojs.aaai.org/index.php/AAAI/article/view/34800>.

A THE USE OF LARGE LANGUAGE MODELS

We leveraged ChatGPT-5 and Gemini 2.5 Flash to enhance grammar, refine phrasing, and optimize word choice across the paper. We also used them to help format tables and figures in LaTeX. The typical prompts we used with the LLMs were concise instructions such as “Proofread:” or “polish this text”, which direct the models to refine grammar and phrasing without altering the technical content.

B ADDITIONAL IMPLEMENTATION DETAILS

B.1 INPUT REPRESENTATION OF THE SENTENCE SELECTOR

The input representation of EFFCOMP's sentence selector is illustrated in Figure 3.

Figure 3: Input and output of the sentence selector. The input begins with the [CLS] token and the query q , then followed by the candidate sentences. Each sentence is prepended with a special [SEN] token. The [SEP] tokens were inserted after the query q and after the last token of the last candidate sentence. The sentence selector produces token-level outputs, but only predictions at the [SEN] positions are used to determine whether each corresponding sentence is retained or discarded.

B.2 TRAINING CONFIGURATION

Pretraining of the sentence selector was conducted using a GeForce RTX 3090 GPU, while finetuning and inference were conducted using an NVIDIA A100-SXM4-40GB GPU.

Pretraining,

- Learning rate: 2×10^{-5}
- Number of epochs: 2
- Weight decay: 0.01
- Batch size: 4
- Precision: bfloat16
- Optimizer: AdamW
- Loss: cross-entropy with balanced class weights

972 **Finetuning.**
 973
 974 • **Model Setup**
 975 – Target model: Gemma-2-9B-IT
 976 – Quantization: BitsAndBytes 4-bit (nf4), compute dtype: fp16
 977 – Sampling: disabled (*do_sample* = False)
 978 – Model maximum length: 2048
 979
 980 • Learning rate: 1×10^{-6}
 981 • Number of epochs: 3
 982 • Optimizer: AdamW
 983 • Precision: bfloat16
 984 • Rollout size: 128
 985 • Group size: 8
 986 • Backward batch size: 8
 987 • Updates per iteration: 4
 988 • Entropy coefficient: 0.1
 989 • Max gradient norm: 0.5
 990 • Clip value ϵ : 0.2
 991 • Target KL: 0.02
 992 • Reward weight (α): 0.95
 993 • Supervised loss: cross-entropy with balanced class weights
 994
 995
 996
 997
 998

999 Note that we selected the best pretrained model checkpoint and the best finetuned model checkpoint
 1000 based on the validation loss and the validation reward observed, respectively.

1001
 1002 **B.3 DATA PREPROCESSING**
 1003

1004 For the pretraining data, We applied filtering by removing samples with sequence length greater than
 1005 5120 tokens and discarding samples whose answers are in the set {"yes", "no", "noanswer"}. For
 1006 Natural Questions dataset, we additionally removed all instances that lack an answer. See Table 6
 1007 for dataset statistics.

1008 Moreover, we employed the nltk sentence tokenizer to split documents into sentences.
 1009

Dataset	Train	Validation	Test
<i>Base datasets</i>			
TriviaQA	138,384	–	17,944
Natural Questions	152,148	–	5,499
HotpotQA	90,447	–	7,405
2WikiQA	167,454	–	12,576
<i>Pretraining</i>			
TriviaQA	123,670	13,742	–
Natural Questions	133,060	14,785	–
HotpotQA	75,059	8,340	–
2WikiQA	92,595	10,289	–
<i>Finetuning</i>			
TriviaQA	21,136	1,000	–
Natural Questions	18,687	1,000	–
HotpotQA	19,207	1,000	–
2WikiQA	15,522	1,000	–

1024 Table 6: Number of examples in each dataset before and after filtering. The base dataset refers to the
 1025 raw data, while the pretraining and finetuning stages indicate the dataset sizes used in each phase.

1026
1027

B.4 LLM PROMPT TEMPLATE

1028
1029

For both Gemma-2-9B-IT and Llama-3.1-8B-Instruct, we adopted the prompt template by Jung et al. (2024) to query the LLMs:

1030
1031
1032
1033
1034
1035

```
You are an expert in Question Answering. Your job is to answer questions in 1 to 5 words
based on the given context.
Question: {question}
Context: {context}
Answer:
```

1036
1037

B.5 INFERENCE CONFIGURATION FOR TARGET LLMs

1038

Gemma-2-9B-IT.1039
1040
1041
1042
1043
1044

- Sampling: disabled (do sample = False)
- Quantization: BitsAndBytes 4-bit (nf4), dtype: float16
- Max new tokens: 10
- Model maximum length: 6144

1045
1046**Llama-3.1-8B-Instruct.**1047
1048
1049
1050
1051
1052

- Sampling: disabled (do sample = False)
- Quantization: BitsAndBytes 4-bit (fp4), dtype: float32
- Max new tokens: 10
- Model maximum length: 5120

1053
1054
1055

B.6 BASELINE DETAILS

This section provides additional details about the baselines in our experiments.

1056
1057
1058
1059
1060
1061
1062
1063
1064

- **Raw Documents:** The top-30 retrieved documents are used directly without any compression.
- **Reranker-based methods:** The top-30 retrieved documents are reordered, and the top-10 documents after reordering are selected as the compressed context.
- **LongLLMLingua** (Jiang et al., 2024): A task-aware method built on Llama-2-7B⁷ that ranks documents and selects tokens using contrastive perplexity scoring. We set the dynamic compression rate fixed at 0.3, with the rate set to 0.45 for the $\sim 5\times$ compression and 0.04 for the $\sim 19\times$ compression.
- **Recomp-Extractive** (Xu et al., 2024): An extractive approach that assigns scores at the sentence level using a dual-encoder model, functioning similarly to a reranker. We adopt the Contriever models released by the authors for each dataset. For 2WikiQA, where no finetuned models are available, we use the Contriever finetuned on HotpotQA. Following the previous research (Yoon et al., 2024) and similar compression ratio with our method, the top four sentences are selected as context.
- **Recomp-Abstractive** (Xu et al., 2024): An abstractive approach based on T5-large (770M) trained with summarization distillation over Natural Questions, TriviaQA, and HotpotQA. The model compresses the retrieved evidence into shorter summaries. For 2WikiQA and HotpotQA, we use the HotpotQA-trained version, while for TriviaQA and Natural Questions, dataset-specific models are applied.
- **CompAct** (Yoon et al., 2024): An iterative abstractive compression method implemented with Mistral-7B-Instruct (Jiang et al., 2023). The model repeatedly summarizes the input until the target model signals completion. The number of documents per segment is set to 5, following the original implementation.

1075
1076
1077
1078
1079

⁷<https://huggingface.co/NousResearch/Llama-2-7b-hf>

1080 C DETAILED ALGORITHM

1081

1082 C.1 FINETUNING THE SENTENCE SELECTOR

1083

Algorithm 1: EFFCOMP Hybrid Reinforcement & Supervised Learning

1084

Input: Training data Δ , TargetLLM, Pretrained policy π_θ

1085

Hyperparameters: Adam optimizer ($\text{lr} = 1 \times 10^{-6}$), group size $g=8$, $\alpha=0.95$, epochs = 3, entropy coefficient $\lambda=0.1$, clip value $\epsilon=0.2$, rollout size = 128

1086

Output: Optimized policy π_θ^* 1087 Initialize the rollout buffer $\mathcal{B} \leftarrow \emptyset$ and the best trajectory memory $C \leftarrow \emptyset$;

1088

for example $(q, y_q, S_q) \in \Delta$ **do**

1089

 $\sigma \leftarrow I(q, S_q);$
 Get actions $A^* \leftarrow \arg \max_{A \in \{0,1\}^m} \pi_\theta(\cdot | \sigma);$
 Build compressed context $c \leftarrow \text{Select}(S_q, A^*);$
 Obtain output $y \leftarrow \text{TargetLLM}(q, c);$
 Compute reward $r \leftarrow \text{Reward}(y_q, y, S_q, c);$
 UpdateMemory($C, \sigma, \langle A^* \rangle, \langle r \rangle$) using Algorithm 2;

1090

reference model $\pi_{ref} \leftarrow \pi_\theta$;

1091

for epoch = 1 **to** epochs **do**

1092

 $\pi_{ref} \leftarrow \pi_\theta;$
for example $(q, y_q, S_q) \in \Delta$ **do**
 $\sigma \leftarrow I(q, S_q);$
 Sample actions $\mathbf{A} \leftarrow \{A_i\}_{i=1}^g \sim \pi_\theta(\cdot | \sigma)$ (Eq. 1);
for $i = 1$ **to** g **do**
 $c_i \leftarrow \text{Select}(S_q, A_i);$
 $y_i \leftarrow \text{TargetLLM}(q, c_i);$
 $r_i \leftarrow \text{Reward}(y_q, y_i, S_q, c_i);$
 Let $R \leftarrow \{r_i\}_{i=1}^g$;
 UpdateMemory(C, σ, \mathbf{A}, R) using Algorithm 2;
 Compute relative advantages Z from R ;
 Append (σ, \mathbf{A}, Z) to the rollout collection \mathcal{B} ;
if $|\mathcal{B}| \geq \text{rollout size}$ **then**
 π_θ with final training loss (Eq. 6);
 $\pi_{ref} \leftarrow \pi_\theta$;
 Reset $\mathcal{B} \leftarrow \emptyset$;
for each $(S_b, A_b) \in C$ **do**
 π_θ with supervised cross-entropy on (S_b, A_b) ;

1093

return π_θ^* ;

1094

1095

C.2 BEST TRAJECTORY MEMORY

1096

Algorithm 2: EFFCOMP Update the best trajectory memory

1097

Input: Buffer C (a dictionary mapping each state σ to its best trajectory), state σ , group actions \mathbf{A} , group rewards R

1098

Output: Updated buffer C

1099

for $(A_i, r_i) \in (\mathbf{A}, R)$ **do**

1100

if $r_i > 0$ *and* $(\sigma \notin C \text{ or } r_i \geq C[\sigma].\text{reward})$ **then**
 $C[\sigma] \leftarrow (A_i, r_i)$

1101

return C

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1134 **D ADDITIONAL RESULTS AND ANALYSES**
11351136 **D.1 GENERALIZATION TO ANOTHER TARGET MODEL**
11371138 We evaluated our method against baseline approaches under the setting where compressed contexts
1139 were provided to another target model which is Llama-3.1-8B-Instruct. Table 7 reports the results
1140 on HotpotQA, 2WikiMultiHopQA, Natural Questions, and TriviaQA.

Method	HQA			2WikiQA			NQ			TQA		
	1/τ	Acc	F1	1/τ	Acc	F1	1/τ	Acc	F1	1/τ	Acc	F1
Raw Documents	1x	24.9	29.3	1x	16.7	19.1	1x	25.3	31.2	1x	69.7	66.2
<i>Reranker-based methods</i>												
BGE	3x	29.6	33.1	3x	19.2	21.6	3x	26.6	31.9	3x	75.3	69.8
Jina	3x	29.2	33.3	3x	19.3	22.0	3x	28.1	33.2	3x	75.6	70.2
GTE	3x	29.0	32.9	3x	19.2	21.8	3x	28.4	33.5	3x	75.9	70.3
<i>Compression frameworks</i>												
LongLLMLingua (5x)	5.1x	27.7	32.4	5.1x	18.8	21.6	5.1x	24.4	30.3	5.1x	73.6	69.6
LongLLMLingua (19x)	19.1x	25.6	30.6	19.3x	18.9	22.0	18.9x	19.7	25.0	19.1x	69.3	64.6
Recomp-Extractive	29.2x	24.0	27.8	29.3x	16.6	19.4	29.8x	22.3	26.4	32x	69.7	63.7
Recomp-Abstractive	132.1x	27.8	32.1	126.9x	21.3	24.5	48.3x	26.3	30.4	139x	74.3	68.4
CompAct	48.7x	30.5	33.1	54.7x	18.8	20.9	44.2x	27.9	31.1	50.2x	75.9	67.9
<i>Our work: EFFCOMP</i>												
No reranker	26.8x	29.6	33.9	16.1x	21.3	23.6	20.1x	27.6	33.1	48.4x	73.5	69.0
BGE reranker	39.5x	31.3	35.0	30.3x	21.5	23.8	29.1x	28.5	33.1	59.5x	76.6	70.3
Jina reranker	38.5x	31.0	34.9	29.4x	21.8	24.1	34x	29.0	33.5	78.4x	77.1	70.8
GTE reranker	40.4x	31.0	34.8	29.4x	21.6	23.9	33.2x	29.4	34.0	64.3x	77.3	70.8

1158 Table 7: Results on four open-domain QA benchmarks. We report the mean of compression ratio
1159 (1/τ), accuracy (Acc), and token-level F1 score for **Llama-3.1-8B-Instruct** as the target model. For
1160 all of these metrics, higher values are better. The best results in each column are marked in bold.
11611162 **D.2 GENERALIZATION TO OUT-OF-DISTRIBUTION DATASETS**
11631164 Extending Table 3, we report the results of in-distribution and out-of-distribution testings for the
1165 other rerankers and the other target LLM (Llama-3.1-8B-Instruct) in Table 8. Training on the target
1166 dataset yielded both higher compression ratios and stronger QA metrics, while applying the model
1167 out of distribution resulted in certain reductions in compression ratios but only minor reductions in
1168 the QA metrics (i.e., accuracy and F1).
11691170 **D.3 RESULTS USING TOP-10 RETRIEVED DOCUMENTS**
11711172 We also evaluated the compression methods under the setting where the retrieval step provided the
1173 top-10 documents as context, and EFFCOMP processed the top-10 documents directly without running
1174 Step 1. Table 9 reports the results on HotpotQA, 2WikiMultiHopQA, Natural Questions, and
1175 TriviaQA. The strongest performance is observed with Gemma-2-9B-IT as the target model, likely
1176 because our sentence selector was aligned with it during finetuning. Performance with Llama-3.1-
1177 8B-Instruct is comparatively lower, yet still surpasses the raw document baseline. This demonstrates
1178 that our approach remains beneficial even when the sentence selector is not directly finetuned using
1179 signals from the target LLM.
11801181 **D.4 SEMANTIC-BASED EVALUATION USING BERTSCORE**
11821183 Our analysis reveals that traditional metrics based on string matching often mistreat semantically
1184 correct predictions as errors. We find that a substantial portion of these “errors” arise from limita-
1185 tions of the string matching metrics rather than true model failures. In contrast, semantic-based
1186 metrics such as BERTScore (Zhang et al., 2020) provide a more faithful measure of answer quality.
1187 Following this insight, we include BERTScore in our evaluation to provide a more comprehensive
1188 assessment of semantic correctness. Specifically, we compute BERT-F1 using contextualized em-
1189 beddings the microsoft/deberta-xlarge-mnli model (He et al., 2021) at layer 40. Tables 10 and 11

Method	2WikiQA			NQ			TQA		
	1/τ	Acc	F1	1/τ	Acc	F1	1/τ	Acc	F1
Gemma-2-9B-IT									
No reranker (in-distribution)	16.1x	29.5	33.4	20.1x	30.9	37.2	48.4x	78.9	76.8
No reranker (out-of-distribution)	11.7x	28.9	32.5	9.8x	31.1	37.3	32.8x	78.9	76.7
Jina reranker (in-distribution)	29.4x	25.5	29.4	34x	29.9	35.7	78.4x	80.1	76.7
Jina reranker (out-of-distribution)	19.3x	25.8	29.6	18.8x	29.7	35.4	50x	79.6	76.3
GTE reranker (in-distribution)	29.4x	25.4	29.1	33.2x	30.5	36.0	64.3x	80.5	77.1
GTE reranker (out-of-distribution)	20.4x	25.0	28.8	19.2x	29.7	35.2	54.1x	79.8	76.5
Llama-3.1-8B-Instruct									
No reranker (in-distribution)	16.1x	21.3	23.6	20.1x	27.6	33.1	48.4x	73.5	69.0
No reranker (out-of-distribution)	11.7x	20.8	23.2	9.8x	26.8	32.4	32.8x	74.3	69.2
BGE reranker (in-distribution)	30.3x	21.5	23.8	29.1x	28.5	33.1	59.5x	76.6	70.3
BGE reranker (out-of-distribution)	19.4x	20.3	23.0	14.1x	27.5	32.5	49.6x	76.1	70.2
Jina reranker (in-distribution)	29.4x	21.8	24.1	34x	29.0	33.5	78.4x	77.1	70.8
Jina reranker (out-of-distribution)	19.3x	21.3	23.9	18.8x	28.2	33.1	50x	76.2	70.1
GTE reranker (in-distribution)	29.4x	21.6	23.9	33.2x	29.4	34.0	64.3x	77.3	70.8
GTE reranker (out-of-distribution)	20.4x	20.8	23.4	19.2x	28.3	33.3	54.1x	77.2	70.9

Table 8: Cross-dataset generalization of EFFCOMP using **Gemma-2-9B-IT** and **Llama-3.1-8B-Instruct** as target models, evaluated both with and without the document reranker. We report the mean compression ratio ($1/\tau$), accuracy (Acc), and F1 score. The in-distribution rows correspond to training on each dataset individually, while the out-of-distribution rows correspond to training only on HotpotQA and directly applying the model to other datasets. For all of these metrics, higher values are better. Bold numbers indicate the best performance in each setting.

Method	HQA			2WikiQA			NQ			TQA		
	1/τ	Acc	F1									
Gemma-2-9B-IT												
Raw Documents	1x	32.4	39.0	1x	22.7	26.7	1x	29.5	35.3	1x	78.5	75.9
LongLLMLingua	4.8x	28.5	35.5	4.7x	20.7	24.5	4.8x	23.3	29.2	4.9x	74.9	72.7
Recomp-Extractive	9.7x	27.3	33.4	9.7x	18.3	22.7	9.8x	24.3	29.4	10.3x	74.6	71.6
Recomp-Abstractive	43.9x	27.9	34.1	42.2x	21.0	25.1	16.1x	27.6	33.0	46.3x	73.0	70.7
CompAct	17.3x	30.7	36.6	19.5x	16.9	20.4	15.5x	27.6	32.7	17.2x	76.4	73.3
Ours: EFFCOMP	10.3x	33.2	39.7	9x	24.1	28.2	9x	29.3	34.8	16.6x	78.2	75.0
Llama-3.1-8B-Instruct												
Raw Documents	1x	26.4	30.5	1x	18.4	21.1	1x	25.9	31.4	1x	73.2	68.0
LongLLMLingua	4.8x	25.6	30.7	4.7x	19.1	22.0	4.8x	21.9	27.4	4.9x	71.3	66.8
Recomp-Extractive	9.7x	24.8	28.7	9.7x	17.7	20.7	9.8x	23.5	27.7	10.3x	71.2	65.2
Recomp-Abstractive	43.9x	27.8	32.2	42.2x	21.2	24.5	16.1x	26.3	30.4	46.3x	74.2	68.4
CompAct	17.3x	29.7	32.7	19.5x	18.3	20.5	15.5x	27.5	30.7	17.2x	75.1	67.2
Ours: EFFCOMP	10.3x	28.6	32.6	9x	20.6	23.3	9x	27.1	31.7	16.6x	74.8	68.8

Table 9: Results on open-domain QA benchmarks with top-10 retrieved documents. We report the mean of compression ratio ($1/\tau$), accuracy (Acc), and F1 score for **Gemma-2-9B-IT** and **Llama-3.1-8B-Instruct** as target models. For all of these metrics, higher values are better. Bold numbers indicate the best results in each column.

report BERTScore results for both Gemma-2-9B-IT and Llama-3.1-8B-Instruct under the top-30-document and top-10-document settings, respectively. On Gemma-2-9B-IT, EFFCOMP achieves the highest BERTScore on HotpotQA in the top-30 setting and outperforms all other compression methods across datasets. In the top-10 setting, it attains the best BERTScore on HotpotQA and 2WikiMultihopQA and again surpasses all competing compression frameworks across datasets. For Llama-3.1-8B-Instruct, EFFCOMP achieves the highest BERTScore on HotpotQA and Natural Questions in the top-30-document setting and surpasses the raw-document baseline on all datasets. In the top-10-document setting, it obtains the best BERTScore on Natural Questions and exceeds the raw-document baseline on HotpotQA and 2WikiMultihopQA. Overall, the target LLM’s predictions under EFFCOMP compression preserve the intended semantics, even though EFFCOMP is not explicitly trained to optimize BERTScore.

Method	HQQA		2WikiQA		NQ		TQA	
	1/τ	BERT(F1)	1/τ	BERT(F1)	1/τ	BERT(F1)	1/τ	BERT(F1)
Gemma-2-9B-IT								
Raw Documents	1x	73.5	1x	69.7	1x	72.7	1x	89.8
BGE	3x	72.3	3x	65.3	3x	70.7	3x	88.8
Jina	3x	72.1	3x	65.6	3x	71.1	3x	88.8
GTE	3x	72.2	3x	65.5	3x	71.0	3x	88.9
LongLLMLingua	5.1x	70.6	5.1x	64.4	5.1x	68.3	5.1x	87.8
Recomp-Extractive	29.2x	69.1	29.3x	63.6	29.8x	66.8	32x	86.1
Recomp-Abstractive	132.1x	68.8	126.9x	66.0	48.3x	69.5	139x	85.5
CompAct	48.7x	67.2	54.7x	58.4	44.2x	67.6	50.2x	86.8
EFFCOMP (No reranker)	26.8x	74.0	16.1x	69.5	20.1x	71.7	48.4x	89.0
EFFCOMP (BGE reranker)	39.5x	72.6	30.3x	66.7	29.1x	70.4	59.5x	88.6
EFFCOMP (Jina reranker)	38.5x	72.3	29.4x	66.8	34x	70.6	78.4x	88.4
EFFCOMP (GTE reranker)	40.4x	72.4	29.4x	66.8	33.2x	70.7	64.3x	88.6
Llama-3.1-8B-Instruct								
Raw Documents	1x	64.7	1x	59.6	1x	67.1	1x	82.8
BGE	3x	67.2	3x	61.9	3x	68.2	3x	84.1
Jina	3x	67.0	3x	62.2	3x	68.5	3x	84.5
GTE	3x	66.9	3x	62.3	3x	68.8	3x	84.2
LongLLMLingua	5.1x	66.8	5.1x	62.4	5.1x	67.4	5.1x	84.2
Recomp-Extractive	29.2x	65.2	29.3x	62.1	29.8x	65.5	32x	80.0
Recomp-Abstractive	132.1x	66.4	126.9x	65.4	48.3x	67.0	139x	81.5
CompAct	48.7x	64.5	54.7x	58.7	44.2x	66.3	50.2x	80.6
EFFCOMP (No reranker)	26.8x	67.5	16.1x	63.2	20.1x	68.8	48.4x	83.8
EFFCOMP (BGE reranker)	39.5x	67.9	30.3x	63.6	29.1x	68.7	59.5x	83.6
EFFCOMP (Jina reranker)	38.5x	67.8	29.4x	63.8	34x	68.8	78.4x	83.5
EFFCOMP (GTE reranker)	40.4x	67.8	29.4x	63.8	33.2x	69.1	64.3x	83.3

Table 10: Results on **top-30 retrieved documents** for four open-domain QA benchmarks. We report compression ratio ($1/\tau$) and BERTScore (F1) for **Gemma-2-9B-IT** and **Llama-3.1-8B-Instruct** as the target models. For all of these metrics, higher values are better. The best results in each column are marked in bold.

Method	HQQA		2WikiQA		NQ		TQA	
	1/τ	BERT(F1)	1/τ	BERT(F1)	1/τ	BERT(F1)	1/τ	BERT(F1)
Gemma-2-9B-IT								
Raw Documents	1x	71.0	1x	64.8	1x	70.4	1x	88.3
LongLLMLingua	4.8x	69.3	4.7x	63.8	4.8x	67.1	4.9x	87.0
Recomp-Extractive	9.7x	69.3	9.7x	63.6	9.8x	67.2	10.3x	86.4
Recomp-Abstractive	43.9x	68.8	42.2x	66.1	16.1x	69.5	46.3x	85.5
CompAct	17.3x	67.5	19.5x	59.0	15.5x	67.7	17.2x	86.4
Ours: EFFCOMP	10.3x	71.1	9x	66.1	9x	70.0	16.6x	87.9
Llama-3.1-8B-Instruct								
Raw Documents	1x	65.8	1x	61.9	1x	67.8	1x	83.6
LongLLMLingua	4.8x	66.2	4.7x	62.4	4.8x	66.2	4.9x	82.3
Recomp-Extractive	9.7x	65.6	9.7x	62.5	9.8x	66.1	10.3x	80.6
Recomp-Abstractive	43.9x	66.9	42.2x	65.5	16.1x	67.2	46.3x	81.5
CompAct	17.3x	64.7	19.5x	58.9	15.5x	66.2	17.2x	80.4
Ours: EFFCOMP	10.3x	66.7	10x	63.3	9x	68.0	16.6x	83.0

Table 11: Results on **top-10 retrieved documents** for four open-domain QA benchmarks. We report compression ratio ($1/\tau$) and BERTScore (F1) for **Gemma-2-9B-IT** and **Llama-3.1-8B-Instruct** as the target models. For all of these metrics, higher values are better. The best results in each column are marked in bold.

D.5 ADDITIONAL COMPARISON WITH OTHER COMPRESSION METHODS

To broaden the evaluation, we conduct supplementary experiments comparing our method with three additional compression approaches: CPC (Liskavets et al., 2025), LLMLingua2 (Pan et al.,

Method	HotpotQA				MuSiQue				SQuAD			
	Comp	Acc	F1	BERT	Comp	Acc	F1	BERT	Comp	Acc	F1	BERT
Raw documents	1x	34.6	42.3	73.5	1x	8.8	14.8	63.8	1x	40.3	45.3	74.2
CPC	5.6x	30.5	36.9	70.4	5.3x	9.2	16.0	62.8	5.1x	42.4	45.5	72.7
LongLLMLingua	5.1x	31.8	38.2	70.6	5.1x	9.4	15.4	61.8	5x	40.1	44.3	72.3
DAC	5.1x	24.7	32.3	68.1	5.1x	6.4	12.9	60.2	5.3x	25.4	32.4	67.2
LLMLingua2	5.4x	25.0	32.6	68.9	5.4x	7.4	14.0	63.1	5.3x	26.5	31.7	67.8
EFFCOMP (No reranker)	26.8x	37.3	44.2	74.0	6x	7.6	13.8	62.3	36.2x	43.3	47.1	74.0
EFFCOMP (BGE)	39.5x	36.4	43.1	72.6	9.9x	8.7	15.4	63.1	42.2x	41.3	44.6	72.4
EFFCOMP (BGE+OOD)	—	—	—	—	16.8x	10.8	17.6	64.1	32.1x	40.3	43.5	72.1

Table 12: Comparison with CPC, LLMLingua2, and DAC across HotpotQA, MuSiQue, and SQuAD using the top 30 retrieved documents and **Gemma-2-9B-IT** as the target model. Metrics include compression ratio, accuracy, F1 score, and BERTScore.

Method	Compressor Memory (MB)	LLM Inference Memory (MB)
Raw documents	—	11,874.37
LongLLMLingua	16,129.06	6,935.18
Recomp-Extractive	945.46	6,619.45
Recomp-Abstractive	5,934.80	8,208.77
Compact	14,090.37	6,580.15
EFFCOMP (BGE)	1,252.01	7,202.59
EFFCOMP (Jina)	1,242.26	7,141.47
EFFCOMP (GTE)	1,323.48	7,178.40

Table 13: Peak GPU memory usage (in MB) for each compressor and the downstream LLM (Gemma-2-9B-IT). Memory is measured during the model forward pass. For Recomp-Abstractive, the peak across 500 examples is reported due to the lack of per-sample measurement. FlashAttention 2 is enabled for models that support it.

2024), and DAC (Zhao et al., 2025a). For CPC, we use the Mistral-7B-Instruct-v0.2 model as in their original paper and set the compression target tokens at 900 to match an approximate 5x compression ratio. For LLMLingua2, we use the microsoft/llmllingua-2-xlm-roberta-large-meetingbank model as the compression model which follows the LLMLingua2 training recipe based on xlm-roberta-large (Conneau et al., 2020), and we set the compression rate at 0.2. For DAC, we use the qwen2-0.5B-instruct model as the compression model with the default configuration, corresponding to a compression ratio of 0.825. All evaluations take the top 30 retrieved documents as input and employ Gemma-2-9B-IT as the target LLM. We report compression ratio, accuracy, F1 score, and BERTScore on HotpotQA, MuSiQue (Trivedi et al., 2022), and SQuAD (Rajpurkar et al., 2016). The results are reported in Table 12. Interestingly, for MuSiQue, our method performs better under the OOD setting (trained on HotpotQA and tested on MuSiQue). This is likely because the fine-tuning set of MuSiQue is very limited (657 samples, compared to over 10,000 samples for the other datasets). Nevertheless, our method remains the top performer across all the compression framework baselines.

D.6 MEMORY USAGE ANALYSIS

We evaluate the memory footprint of the compressor and the downstream LLM during inference. Memory usage is reported as the average peak GPU memory during the forward pass. For Recomp-Abstractive, per-example measurement is not supported, so we report the peak memory across 500 examples. Table 13 reports the memory consumption of all methods. FlashAttention 2 is enabled for compression models that support it, including LongLLMLingua, Compact, the EFFCOMP (sentence selector), the Jina reranker, and the ModernBERT reranker. Across all methods, EFFCOMP shows competitive memory consumption for both the compression stage and the LLM inference stage.

D.7 INFORMATION EFFICIENCY ANALYSIS

To analyze how effectively our method removes context-irrelevant information while retaining the essential evidence for answering the question, we evaluate compression performance on the HotpotQA test set. We focus on examples for which the target model predicts the correct answer and

Method	Compression ratio	Compression ratio (EFFCOMP BGE)
Recomp-Extractive	29.11x	61.41x
LongLLMLingua	5.14x	61.96x

Table 14: Compression ratios on correctly answered HotpotQA examples (7,405 total examples). extractive correctly answers 1,657 cases, while LongLLMLingua correctly answers 2,037. Higher values indicate more efficient preservation of information relevant to the QA task.

measure how much each method compresses the context in these successful cases. A higher compression ratio under the same correctness condition indicates that the method preserves the essential information more efficiently.

We compare EFFCOMP with two extractive baselines: Recomp-Extractive and LongLLMLingua. For each method, we compute the average compression ratio on correctly answered examples, as shown in Table 14. Across the dataset, EFFCOMP achieves substantially higher compression ratios than both baselines while answering correctly, indicating that it provides more efficient context-aware selection.

D.8 ABLATION STUDY ON DIFFERENT FINETUNING STRATEGIES

We conducted an ablation study on the HotpotQA, 2WikiMultiHopQA, Natural Questions, and TriviaQA, evaluating three training strategies: reinforcement learning (RL) only, supervised learning (SL) only with the best trajectory memory, and the hybrid approach of EFFCOMP that combines both. The results are displayed in Figure 4. We observed similar patterns in HotpotQA, Natural Questions, and TriviaQA. Specifically, the hybrid strategy often achieved higher validation accuracy in early epochs, while having a relatively lower compression rate. In contrast, the RL only strategy prioritized the compression rate while sacrificing the accuracy. Meanwhile, the SL only strategy usually achieved higher validation accuracy than the RL one but with a lower and stable compression rate across epochs. For 2WikiMultiHopQA, the trend of the hybrid approach is similar to the other three datasets, whereas the trends of the RL only and SL only strategies are the opposite of those in the other three datasets.

1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Figure 4: Ablation study of different training strategies for EFFCOMP on the four QA datasets. The plots compare (left) validation accuracy and (right) compression rate $1 - \tau = 1 - |\mathbb{D}|/\mathbb{C}|$ during validation across 10 epochs. For both metrics, the higher values are better.

D.9 TRAINING TIME PER EPOCH

Pure RL training is slow because it must repeatedly query the LLM, and relying on RL alone leads to slow convergence in accuracy. In contrast, the SL stage adds only a small overhead while leveraging high-quality trajectories from RL to accelerate learning. As shown in our ablation results in Appendix D.8, the hybrid approach improves accuracy much faster than RL only training.

Epoch	RL time (sec)	SL time (sec)
0	58,569.33	825.83
1	57,938.17	807.11
2	57,715.01	840.33

Table 15: Per-epoch computation time for the RL and SL components of our training pipeline. The RL time reports the full per-epoch computation cost of the complete RL pipeline, while the SL time reports the additional supervised-learning overhead trained on the trajectories produced by the RL pipeline.

To make this cost difference explicit, Table 15 reports the per-epoch computation times for the full RL stage and the SL overhead. According to the table SL adds only ~ 800 seconds per epoch, yet substantially boosts performance when combined with RL. In contrast, RL alone requires $\sim 58,000$ seconds per epoch and converges much more slowly. This makes the hybrid approach both more efficient and more effective.

D.10 THE EFFECT OF THE PRETRAINING PHASE

This section compares the performance of the sentence selector of EFFCOMP when being finetuned with and without the pretraining phase. We used HotpotQA as the training set and observed the validation accuracy and the compression rate across five epochs. It can be noticed from Figure 5 that the sentence selector without pretraining had lower initial validation accuracy and lower compression rate compared to the pretrained one. Although the compression rates came closer after a few epochs, the validation accuracy of the pretrained sentence selector remained significantly higher than that of the non-pretrained one across the five epochs.

Figure 5: The performance of the sentence selector of EFFCOMP when being finetuned with and without the pretraining phase. The plots show (left) validation accuracy and (right) compression rate $1 - \tau = 1 - |\mathbb{D}|/|\mathbb{C}|$ during validation across five epochs. For both metrics, the higher values are better.

D.11 IMPACT OF THE WEIGHTING FACTOR α

Selecting the best model along the compression–accuracy trade-off requires understanding how different values of α influence the reward signal during validation. We conduct experiments using four values of $\alpha \in \{0.65, 0.75, 0.85, 0.95\}$ for 3 epochs, and evaluate validation rewards on 1,000 samples. Figure 6 illustrates the validation reward, accuracy, and compression rate for each α across the three epochs, where the circled point denotes the checkpoint with the highest reward.

In the validation phase, we observe that for $\alpha = 0.95$, the checkpoint with the highest reward also corresponds to the highest accuracy. For smaller α values, in contrast, the highest reward is primarily achieved by obtaining higher compression rates. This indicates that as α increases, the reward becomes more aligned with accuracy, whereas lower α values encourage more aggressive compression.

Method	α	Comp.	Acc	F1
EFFCOMP (BGE)	0.65	47.2x	35.7	42.6
EFFCOMP (BGE)	0.75	33.1x	36.0	42.6
EFFCOMP (BGE)	0.85	46.4x	36.2	42.9
EFFCOMP (BGE)	0.95	39.5x	36.4	43.1

Table 16: Test-set HotpotQA (30 retrieved documents) performance using Gemma-2-9B-IT as the target model. We report the performance of the checkpoints selected by the highest validation reward for each α . The compression–accuracy behavior on the test set is consistent with that observed during validation.

These results show that α provides a controllable trade-off: larger values prioritize accuracy, while smaller values emphasize compression. This allows users to select checkpoints that best match their desired balance between compression and accuracy within the validation set.

After selecting the highest-reward checkpoints for each α based on validation performance, we evaluate these checkpoints on the HotpotQA test set. The results are shown in Table 16.

Importantly, we observe that the relationship between accuracy and compression on the test set is consistent with the behavior seen during validation. Although our hybrid RL+SL training framework already emphasizes accuracy, using a larger α remains necessary to ensure that model selection follows our context-aware compression objective, where accuracy is the primary criterion.

1614 Figure 6: Ablation study of the weighting factor $\alpha \in \{0.65, 0.75, 0.85, 0.95\}$ for EFFCOMP on the
 1615 HotpotQA validation set. For each value of α , we report the Reward, Accuracy, and Compression
 1616 rate $1 - \tau = 1 - |\mathbb{D}|/|\mathbb{C}|$ across 3 training epochs. The circled point in each plot indicates the
 1617 checkpoint (epoch) with the highest validation reward. Higher values are better for all metrics.
 1618
 1619