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ABSTRACT

Prompt compression is aimed at reducing input prompt lengths to enable cheaper
and faster LLM predictions. However, existing prompt compression methods
are often limited by modest compression gains, a risk of hallucination, and/or
high compression latency. This paper proposes EFFCOMP, an Efficient prompt
Compression framework using a hybrid reinforcement and supervised learning
approach for RAG-based open-domain question answering (QA). EFFCOMP em-
ploys BERT-style document reranker and sentence selector models to allow fast
extractive prompt compression at the sentence level. Its extractive nature prevents
hallucinations in the compressed prompts. Additionally, the training process is de-
signed to optimize the compression ratio while preserving LLM accuracy. Experi-
ments on four open-domain QA datasets demonstrate that EFFCOMP outperforms
state-of-the-art prompt compression methods in terms of prediction accuracy and
achieves competitive compression ratios (up to 78.4x) with minimal latency, mak-
ing it practical for real-world applications.

1 INTRODUCTION

Retrieval-augmented generation (RAG) enhances large language models (LLMs) by grounding their
predictions in retrieved external documents to reduce hallucinations and address domain gaps (Lewis
et al., 2020; Guu et al., 2020; Izacard & Grave, 2021). However, the retrieved documents could often
be long, redundant, and partially irrelevant (Barnett et al., 2024; Lertvittayakumjorn et al., 2025).
The resulting lengthy augmented prompts not only undermine the quality of LLM predictions (Shi
et al., 2023) but also increase computation costs and inference latency (Duman Keles et al., 2023).
Therefore, recent research has proposed prompt compression methods to reduce the input prompt
lengths (e.g., by strategically compressing the retrieved contexts) to address these efficiency and
quality problems (Li et al., 2025b; Wingate et al., 2022; Chevalier et al., 2023).

Despite these advancements, existing methods face several challenges and trade-offs. Abstractive
prompt compressors generate a shorter context from a given long one, but they risk fabricating details
or answering the questions themselves (Xu et al., 2024; Alansari & Luqman, 2025). Extractive
prompt compressors, by contrast, preserve grounding by selecting and keeping the most important
parts of the original context, but they often yield only modest compression ratios, e.g., 2x–7x in
Jiang et al. (2024); Pan et al. (2024); Fei et al. (2025); Zhao et al. (2025a;b). Furthermore, some
compressors rely on large models or iterative algorithms, which can cause substantial latency and
offset the benefits of compression (Yoon et al., 2024).

To overcome these challenges, we propose EFFCOMP, a novel prompt compression framework for
open-domain question answering (QA). The framework aims to boost the efficiency of prompt com-
pression and subsequent LLM inference while maintaining (or even improving) the quality of the
final output. EFFCOMP consists of two main steps. The first step reranks and filters the retrieved
documents using a reranker. Then the second step selects important sentences in the remaining doc-
uments and concatenates them to form a compressed context for LLM inference. The novelty of
EFFCOMP also lies in the training process of its sentence selector. This process first pre-trains the
model on a QA dataset and then fine-tunes it using a hybrid reinforcement and supervised learning
approach that leverages signals from the LLM. We compare our framework against reranker-based
and other state-of-the-art prompt compression methods on four QA datasets. The experiments show
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that EFFCOMP achieves competitive or higher QA accuracy and a strong compression ratio, outper-
forming other compression methods. Overall, our contribution is threefold:

• We introduce EFFCOMP, a sentence-level extractive prompt compression framework for
RAG-based open-domain QA. Our framework’s efficiency stems from its use of compact
document reranker and sentence selector models. Furthermore, the sentence selector is
trained using a hybrid reinforcement and supervised learning approach to optimize the
trade-off between compression ratio and LLM predictive performance. (See Section 3.)

• We evaluate EFFCOMP on four QA datasets (Natural Questions, TriviaQA, HotpotQA, and
2WikiMultiHopQA) with two target models, demonstrating that it achieves substantially
high extractive compression while maintaining strong QA performance. (See Section 4.)

• We conduct additional analyses to understand the latency, generalizability, factual consis-
tency between extractive and abstractive compression methods, the retention improvements
from Phase II GRPO, and potential points of failure of EFFCOMP (see Section 5).

2 PROBLEM FORMULATION

In a RAG-based open-domain QA setting, let q denote a question (so-called an input query) and D =
⟨d1, d2, . . . , dn⟩ denote a list of n retrieved documents ordered by the retrieval scores decreasingly.
The full context before compression D is the concatenation of all di ∈ D and has the length of
|D| tokens. RAG combines q and D to be an input prompt and feeds it to a target LLM M , which
then outputs M(q,D) to answer the question q. Prompt compression aims to find a compressed
context C such that |C| < |D| and M(q,C) is a correct answer of q. In this paper, we focus on two
correctness metrics. First, the accuracy (Acc) for a given context X equals 1 if M(q,X) contains
the reference answer of q (denoted as yq) after text normalization1; otherwise, 0. However, there is
one exception: if the reference answer is “yes”, “no”, or “noanswer”, we follow Yoon et al. (2024)
and Jung et al. (2024) and use an exact match between M(q,X) and yq instead. For the second
metric, F1 of X is the token-level F1 measure of M(q,X) compared to the reference yq . Following
Jiang et al. (2024), we define the compression ratio as |D|/|C| = 1/τ . EFFCOMP aims to optimize
the correctness metrics while achieving a competitively high compression ratio. We decide not to
aggressively optimize 1/τ as it might encourage the lightweight compressor to identify the answer
itself.

3 EFFCOMP: THE EFFICIENT PROMPT COMPRESSION FRAMEWORK

EFFCOMP compresses the retrieved context in two main steps, one at the document level and the
other at the sentence level, as illustrated in Figure 1.

Step 1: Document reranking. Given n retrieved documents ⟨d1, d2, . . . , dn⟩, an off-the-shelf doc-
ument reranker is used to compute a relevancy score for each document di. The reranker takes the
question q and a document di as input and outputs a score indicating the relevance of di to q. Only
top k documents with the highest scores are kept and then sorted by their scores in decreasing order.
This is performed because evidence appearing earlier in an input prompt is more likely to receive
stronger attention from LLMs (Tang et al., 2025). To ensure the efficiency of this step, we experi-
ment with three BERT-style document rerankers, including BGE (Xiao et al., 2023), Jina (Günther
et al., 2023), and GTE (Zhang et al., 2024). All of them are relatively lightweight models and can
compute the relevancy scores in batches.

Step 2. Sentence selection. EFFCOMP concatenates the reranked documents from Step 1 and splits
the entire concatenated text into a list of sentences S = ⟨s1, s2, . . . , sm⟩. After that, a sentence
selector model is applied to identify sentences that should be kept in the final compressed context
(rather than discarded). Our sentence selector also relies on the BERT architecture (Devlin et al.,
2019) for high efficiency. It takes the question q and all the m sentences in S as input and predicts
either 0 or 1 for each sentence si. Specifically, the input representation I(q, S) at the token level is

[CLS]q1q2 . . . ql[SEP][SEN]t11t12 . . . t1h1
[SEN]t21 . . . t2h2

. . .[SEN]tm1 . . . tmhm
[SEP]

1Following the evaluation script for SQuAD version 2.0 (Rajpurkar et al., 2018), we perform text normal-
ization by lowercasing the text, removing punctuation and articles, and collapsing extra whitespace.
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Figure 1: The inference workflow of EFFCOMP. The box with Step 1 and Step 2 at the top illustrates
where EFFCOMP is in the prediction pipeline. In Step 1, retrieved documents are filtered, reordered,
and concatenated. In Step 2, they are decomposed into sentences, from which necessary ones are
selected and concatenated to form the compressed context for LLM prediction.

where tij is the j-th token of si (which has hi tokens in total) and qj is the j-th token of q (which
has l tokens in total). Apart from the standard [CLS] and [SEP] tokens, we prepend a special
[SEN] token to each sentence to support sentence-level classification. The sentence selector model
outputs predictions at every token position, but only the outputs at the [SEN] tokens are used,
indicating whether each corresponding sentence is retained or discarded. The retained sentences are
concatenated without changing their order to be the compressed context C. See Appendix B for
more details.

Overall, the design of EFFCOMP offers several advantages. First, the finest level of selection is at
the sentence level (rather than the token level). This renders a compressed context that remains
understandable even under extreme compression and aligns naturally with how target LLMs were
trained. Furthermore, the sentence selector in Step 2 considers all remaining context sentences
simultaneously, enabling it to discard useful but redundant sentences to maximize the compression
ratio. This simultaneous processing remains efficient thanks to Step 1, which already discards a
significant amount of irrelevant information at the document level.

The remainder of this section explains the training process of the BERT-based sentence selector,
which has two phases. While Phase I (pretraining) prepares the model to recognize sentences that
are likely relevant to the query, Phase II (finetuning) further adapts the model to the target LLM.

3.1 PHASE I: PRETRAINING

Training set construction. We adapt training examples from an open-domain QA dataset to be
our pretraining examples. To explain, each pretraining example consists of a question q from the
dataset and a list of retrieved documents D with |D| = 30. We concatenate all the documents in
D, split the concatenated text into sentences S, and format them (together with q) as input to the
sentence selector. Inspired by document-level label assignment in CompAct (Yoon et al., 2024), we
assign a pseudo-label to each sentence using the following rule: a sentence is labeled as retained if
it contains the ground-truth answer string; otherwise, it is labeled discarded. In Phase I, we train

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the sentence selector to predict these labels. Note that we exclude two types of examples from the
pretraining phase: (1) examples with |S| > 5120 tokens, as these cases rarely happen because of the
small k in the document reranking step (2) examples with ground-truth answers such as "yes", "no",
or “noanswer”, as they do not correspond to concrete evidence in the retrieved text and can therefore
cause misleading supervision.

Training objective. The training objective is defined at the positions of the [SEN] tokens. For each
sentence si ∈ S, the action a∗i (retained or discarded) is predicted at the position of its preceding
[SEN] token. A masked cross-entropy loss is applied such that only [SEN] positions contribute to
the objective, while all other tokens are ignored. This encourages the model to learn sentence-level
decisions by treating each [SEN] token as the supervision point for its corresponding sentence.

3.2 PHASE II: FINETUNING

The pretrained model from Phase I is not yet optimal because the pseudo-labels used for pretraining
are based on a simple string matching heuristic. Specifically, some sentences that do not contain
the ground-truth answer may still be useful or even necessary for the target LLM, especially for
questions requiring multi-hop or cross-document reasoning. Conversely, a sentence containing the
ground-truth answer may not be necessary if its content is irrelevant to the question or if it is redun-
dant with another selected sentence. Therefore, Phase II addresses these issues by using a hybrid
reinforcement learning (RL) and supervised learning (SL) approach to fine-tune the model. As noted
in TACO-RL (Shandilya et al., 2024), RL only fine-tuning is computationally expensive and time-
consuming. To reduce this burden while still benefiting from RL, we adopt a hybrid strategy that
utilizes the trajectories from RL efficiently. In each epoch, we update the model weights using an
RL loss followed by an SL loss, as explained next. We further analyze the training-time implications
of this hybrid approach in Appendix D.9.

3.2.1 REINFORCEMENT LEARNING

We consider our sentence selector model as a policy model πθ and use reward signals derived from
the target LLM and ground-truth QA answers to optimize it.

Problem formulation. We formulate our task as a contextual multi-armed bandit problem (Jung
& Kim, 2024; Lu et al., 2010), which terminates after a single decision step. A state σ is the
input to the policy model I(q, S) where q is a question and S is the list of context sentences from
the top-k reranked documents. The policy πθ takes σ as input and produces output probability
distributions for all input tokens, but, consistent with the pretraining phase, only the probability
distributions at the [SEN] tokens are used to derive binary actions ai ∈ {0, 1} indicating whether
the corresponding sentences are retained (1) or discarded (0). With m sentences in S, one state
produces multiple actions A = ⟨a1, a2, . . . , am⟩ in parallel, where each action is sampled from the
categorical distribution

ai ∼ Categorical
(
πθ(· | σ, i)

)
, ∀i ∈ {1, . . . ,m}. (1)

The compressed context C is then formed by concatenating all retained sentences. The target LLM
M produces M(q,C), and a reward r for A is then computed. A trajectory, therefore, consists of a
single state σ, the full list of binary actions A, and the resulting reward r.

Reward function. We define the reward r as follows.

r =

{
α+ (1− α) · (1− τ), if Acc(M(q,C), yq) = 1

−(1− α) · (1− τ), otherwise
(2)

where τ = |C|/|D| and yq is the ground-truth answer of q. This reward jointly maximizes QA
accuracy and compression, with their relative importance controlled by the weighting factor α ∈
(0, 1). During validation, we primarily use this reward to select the best model checkpoint for
evaluation. For a detailed analysis of how different values of α influence this checkpoint selection
process, see Appendix D.11. In practice, we prefer a relatively high α to avoid extreme compression
at the expense of accuracy.

Optimization. To train the policy πθ, we draw inspiration from Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024), a policy gradient method that removes the value function used in
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PPO (Schulman et al., 2017) and instead efficiently estimates advantages by normalizing rewards
within a group of sampled trajectories.

Given a group size b, for each state, we sample a group of actions A = {A1, . . . , Ab} from πθ, each
producing a compressed context Ci and reward ri. The reward set R = {r1, . . . , rb} is z-normalized
in group to yield relative advantages Z = {z1, . . . , zb} where zi =

1
std(R) (ri −mean(R)), used for

updating the policy.

To measure the degree of policy change, we define πθ(A | σ) as the geometric mean of the proba-
bilities across all sampled binary actions in A:

πθ(A | σ) =

(
m∏
i=1

πθ(ai | σ)

) 1
m

(3)

Our reinforcement learning objective is then defined as

LRL(θ) = −E
[
min

(
πθ(A | σ)
πθold(A | σ)

z, clip
(

πθ(A | σ)
πθold(A | σ)

, 1− ϵ, 1 + ϵ

)
z

)]
, (4)

where πθ and πθold denote the current and old policy models, respectively, and ϵ is a clipping hyper-
parameter, typically set to 0.2.

Additionally, we compute the Shannon entropy (Shannon, 1948) of the policy πθ at the state σ
(considered only at the [SEN] positions) as

H(πθ(· | σ)) = E

− 1

m

m∑
i=1

∑
ai∈{0,1}

πθ(ai | σ) log πθ(ai | σ)

 (5)

The final training loss is
Ltotal(θ) = LRL(θ) − λH(πθ(· | σ)), (6)

where λ controls the trade-off between exploitation and exploration. In practice, we set λ ≥ 0.1,
which encourages more exploration.

Reward normalization scenarios. It is worth noting that the reward normalization (z-norm) by
GRPO naturally guides our compression. As illustrated in Figure 2, when at least one Ai results in
a correct LLM output, the policy will learn to increase compression. In contrast, when all Ai ∈ A
lead to incorrect LLM outputs, it will reduce compression to preserve more information. This reward
normalization effect both prevents extreme behaviors and enables the framework to learn a stable
trade-off between accuracy and compression.

Training set construction. For each QA training example (q, yq), we perform Step 1 (document
reranking) to obtain context sentences S from the top-k documents to form the input I(q, S). How-
ever, we exclude some training examples. First, we exclude examples that the target LLM cannot
answer correctly even with all sentences in S provided, as further compression is unlikely to help.
Given our reward function, including such examples would bias the policy to always retain all sen-
tences, making the training inefficient. Second, we exclude examples that the target LLM can answer
correctly even without any context. Keeping these examples would bias the policy toward discarding
all sentences, resulting in non-grounded LLM outputs. This example filtering step ensures that the
training set only contains examples where context is necessary and compression choices truly mat-
ter. Hence, appropriate decompression can recover missing evidence, while excessive compression
inevitably removes the information required to answer.

3.2.2 SUPERVISED LEARNING

During GRPO, we sample multiple Ai for each state σ. To enhance training efficiency, we introduce
a memory C to store the best trajectory of each state observed so far. (In other words, it stores the
best list of binary actions discovered so far for each example.) For each state σ, we store a trajectory
(σ,Ai, ri) in C when ri > 0 and update it when we find another trajectory (σ,Aj , rj) where rj ≥ ri.
After the RL update of each epoch, these best trajectories in C are used as silver labels to finetune
the policy (i.e., the sentence selector) in a supervised learning manner. We apply the cross-entropy
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Input (q, S) Compressed context ( ) Reward (r) Advantage (z)

Z-normreward
functionaction(A)

Cross entropy

Best trajectory memory

Best trajectory memory

Step 1 RL training Step 2 Supervised training

All incorrect predictions

Some correct predictions

Sentence selector
(BERT)

Sentence selector
(BERT)

Sentence selector
(BERT)

action(A)
reward
function Z-norm

Q S1 S2 S3 S4

Q S1 S2 S3 S4 S5

S3 S4
S4
-

S2

S4
S2 S3 S4 S5

-
S1 S2

Q S1 S2 S3 S4 S5S1 S2

-0.04
0.96
-0.05
0.98

-0.86
0.85
-0.87
0.88

-0.02
-0.04
-0.05
-0.04

1.39
-0.2
-0.99
-0.2

Figure 2: Overall finetuning pipeline for the sentence selector within a single epoch. Reinforcement
learning is applied first, followed by supervised learning. Reward normalization encourages higher
compression when some predictions are correct and lower compression when all predictions fail.

loss at the [SEN] positions using the stored actions as labels. To avoid overfitting, each example
in C is used to train the policy only once until a new trajectory of the example is updated in the
memory. The detailed algorithm of our approach can be found in Appendix C. We also include an
ablation study comparing SL only, RL only, and our hybrid training setup in Appendix D.8.

4 EXPERIMENTS

We trained and evaluated EFFCOMP on four open-domain QA datasets: HotpotQA (HQA;
Yang et al. (2018)), 2WikiMultiHopQA (2WikiQA; Ho et al. (2020)), Natural Questions (NQ;
Kwiatkowski et al. (2019)), and TriviaQA (TQA; Joshi et al. (2017)), using the training sets for
pretraining and finetuning and the development sets for evaluation.

4.1 EXPERIMENTAL SETUP

Implementation details. Following prior work (Yoon et al., 2024; Xu et al., 2024), we imple-
mented the retrieval system using Contriever (Izacard et al., 2021), fine-tuned on MSMARCO (Ba-
jaj et al., 2018). For each question, we retrieved n = 30 documents from the 2018 Wikipedia
corpus (Karpukhin et al., 2020). Additionally, we used Gemma-2-9B-IT2 (Team, 2024) as the tar-
get LLM. For EFFCOMP, we tried three document rerankers, including BGE3 (Xiao et al., 2023),
Jina4 (Günther et al., 2023), and GTE5 (Zhang et al., 2024), to rerank and select top-k documents
(k = 10) in Step 1. For Step 2, we used ModernBERT-base6 (Warner et al., 2024) as the sentence
selector and used the BGE reranker to prepare input documents for finetuning the sentence selector.
We also evaluated EFFCOMP without Step 1, which passed sentences from n documents to Step 2
without reranking. This variant is denoted as “No reranker” in the result tables.

Baselines. We compared EFFCOMP against several types of baselines. The simplest one was “Raw
Documents”, which inputs the n retrieved documents to the target LLM without compression. Next,
reranker-based filtering baselines used a reranker (BGE, Jina, or GTE) to select top-k documents to
feed into the target LLM. This is equivalent to EFFCOMP without Step 2. Furthermore, we com-
pared EFFCOMP with state-of-the-art compression frameworks, including two extractive methods

2https://huggingface.co/google/Gemma-2-9B-IT
3https://huggingface.co/BAAI/bge-reranker-base
4https://huggingface.co/jinaai/jina-reranker-v2-base-multilingual
5https://huggingface.co/Alibaba-NLP/gte-reranker-modernbert-base
6https://huggingface.co/answerdotai/ModernBERT-base
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Method
HQA 2WikiQA NQ TQA

1/τ Acc F1 1/τ Acc F1 1/τ Acc F1 1/τ Acc F1

Raw Documents 1x 34.6 42.3 1x 29.1 32.9 1x 30.1 38.0 1x 77.4 77.2

Reranker-based methods

BGE reranker 3x 35.2 42.1 3x 23.8 27.6 3x 29.6 35.4 3x 79.9 77.1
Jina reranker 3x 34.6 41.5 3x 24.4 28.2 3x 30.6 36.7 3x 80.1 77.1
GTE reranker 3x 34.7 41.6 3x 23.9 27.5 3x 30.6 36.4 3x 80.4 77.4
Compression frameworks

LongLLMLingua (5x) 5.1x 31.8 38.2 5.1x 21.8 25.8 5.1x 25.7 31.7 5.1x 78.4 75.1
LongLLMLingua (19x) 19.1x 28.7 35.7 19.3x 20.5 24.5 18.9x 20.7 26.8 19.1x 73.9 71.7
Recomp-Extractive 29.2x 25.6 31.9 29.3x 17.4 21.4 29.8x 22.8 28.2 32x 73.1 70.4
Recomp-Abstractive 132.1x 27.9 34.0 126.9x 21.0 25.1 48.3x 27.6 33.1 139x 73.0 70.7
CompAct 48.7x 31.2 36.8 54.7x 16.8 20.1 44.2x 27.8 32.8 50.2x 77.6 74.3

Our work: EFFCOMP

No reranker 26.8x 37.4 44.3 16.1x 29.5 33.4 20.1x 30.9 37.2 48.4x 78.9 76.8
BGE reranker 39.5x 36.3 43.0 30.3x 25.4 29.1 29.1x 29.8 35.4 59.5x 80.1 76.8
Jina reranker 38.5x 35.8 42.5 29.4x 25.5 29.4 34x 29.9 35.7 78.4x 80.1 76.7
GTE reranker 40.4x 35.5 42.4 29.4x 25.4 29.1 33.2x 30.5 36.0 64.3x 80.5 77.1

Table 1: Results on four open-domain QA benchmarks. We report the mean of compression ratio
(1/τ ), accuracy (Acc), and token-level F1 score for Gemma-2-9B-IT as the target model. For all of
these metrics, higher values are better. The best results in each column are marked in bold.

(Recomp-Extractive (Xu et al., 2024) and LongLLMLingua (Jiang et al., 2024)) and two abstrac-
tive methods (Recomp-Abstractive (Xu et al., 2024) and CompAct (Yoon et al., 2024)). Further
implementation details of the baselines are provided in Appendix B.6.

4.2 RESULTS

Table 1 reports the results on three metrics: compression ratio (1/τ ), accuracy (Acc), and F1 score.
Compared to using the Raw Documents, EFFCOMP with rerankers achieved competitive or some-
times higher Acc and F1 with the compression ratios of 29.1x–78.4x. For example, on HQA, EF-
FCOMP with BGE reranker achieved 36.3% accuracy with the compression ratio of 39.5x, while
the Raw Documents got 34.6% accuracy with no compression (1x). This demonstrates that context
compression, if done appropriately, can enhance rather than degrade the quality of LLM predictions.
Without the rerankers, EFFCOMP got significantly lower compression ratios but usually slightly
higher Acc and F1 (e.g., 26.8x compression and 37.4% Acc on HQA). Compared to reranker-based
methods, EFFCOMP with the same reranker achieved significantly higher compression ratios (e.g.,
from 3x to 59.5x–78.4x on TQA) and competitive, if not higher, Acc and F1 scores. This highlights
the immense impact of Step 2 of EFFCOMP on compression ratios and indicates that our sentence
selector, trained on BGE reranked data, generalized effectively to other rerankers such as Jina and
GTE. Furthermore, EFFCOMP outperformed all other compression frameworks in terms of accuracy
and F1. Although the compression ratios of EFFCOMP were lower than those of existing abstractive
methods (i.e., Recomp-Abstractive and CompAct), EFFCOMP remained competitive by delivering
superior QA quality. We show a successful case of EFFCOMP in Table 2. In this case, Recomp-
Abstractive and CompAct generated compressed contexts that are factually incorrect or irrelevant
to the question, leading to wrong LLM predictions. By contrast, LongLLMLingua and EFFCOMP
remained correctly grounded in the retrieved contexts, but EFFCOMP used 8.6 times fewer tokens
than LongLLMLingua (88 vs. 758 tokens). In conclusion, EFFCOMP achieved strong results across
all QA benchmarks by keeping the LLM predictions well-grounded, consistently balancing high QA
performance with substantial compression.

5 ADDITIONAL ANALYSES

We further analyze EFFCOMP through five research questions.

RQ1: How well does EFFCOMP generalize to a different dataset or target LLM? To test dataset
generalization, we trained EFFCOMP on HotpotQA and evaluated it on the other QA datasets. As
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Question (from HotpotQA): Stein had a part in the 1994 superhero fantasy film directed by whom
Ground-truth answer: Charles Russell

Method 1/τ ↑ |C| ↓ Compressed Context LLM Prediction

Long-
LLMLingua

5.01x 758 The Mask (film) The Mask is a 1994 American fantasy superhero comedy
film directed by Charles Russell, produced by Bob Engelman [...] Ben Stein
Benjamin Jeremy (born November 25, 1944) is an American writer, [...] He
is well- screen econom teacher "Ferris Bueller’s Day Off" (1986) and as Dr.
Arthur Neuman in "The Mask" (1994)Son [...]

Charles Russell ✓

Recomp-
Abstractive

189.75x 20 Ben Stein had a part in the 1994 superhero fantasy film "The Shadow" di-
rected by Russell Mulcahy.

Russell Mulcahy ✗

CompAct 49.93x 76 The Shadow is a 1994 American superhero film [...] directed by Russell
Mulcahy, that stars Alec Baldwin. The film co-stars John Lone, Penelope Ann
Miller, Ian McKellen, Jonathan Winters, Peter Boyle, and Tim Curry. It was
released to theaters on July 1, 1994 and received generally mixed reviews.

Russell Mulcahy ✗

EFFCOMP
(BGE)

43.13x 88 He is most well-known on screen as the economics teacher in "Ferris
Bueller’s Day Off" (1986) and as Dr. Arthur Neuman in "The Mask" (1994)
and "Son of The Mask (film) The Mask is a 1994 American fantasy superhero
comedy film directed by Charles Russell, produced by Bob Engelman [...]

Charles Russell ✓

Table 2: Examples of compressed contexts and predictions from LongLLMLingua, Recomp-
Abstrctive, CompAct, and EFFCOMP (with BGE reranker). |C| denotes the number of tokens of
the compressed context. ✓ indicates a correct prediction, while ✗ indicates an incorrect prediction.

Method
2WikiQA NQ TQA

1/τ Acc F1 1/τ Acc F1 1/τ Acc F1

EFFCOMP (BGE) (in-distribution) 30.3x 25.4 29.1 29.1x 29.8 35.4 59.5x 80.1 76.8
EFFCOMP (BGE) (out-of-distribution) 19.4x 25.0 28.9 14.1x 29.0 34.8 49.6x 79.5 76.2

Table 3: Cross-dataset generalization of EFFCOMP with Gemma-2-9B-IT as the target LLM. The
first row reports the results when EFFCOMP was trained on each target dataset (in-distribution test-
ing). The second row reports the results when EFFCOMP was trained on HotpotQA and applied to
the target datasets (out-of-distribution testing).

shown in Table 3, although in-distribution testing achieved better QA performance, the gaps be-
tween in-distribution and out-of-distribution results were less than 1% absolute for both Acc and
F1, indicating that EFFCOMP generalizes relatively well in terms of QA performance. However,
compression ratios noticeably decreased under out-of-distribution evaluation. This reflects the re-
ward design of EFFCOMP, which encouraged context decompression when the sentence selector
was unsure.

Additionally, to test generalization to another target LLM, we fed the compressed contexts from
the methods in Table 1 to Llama-3.1-8B-Instruct (Grattafiori et al., 2024) instead of Gemma-2-9B-
IT, which was used to finetune EFFCOMP. The results show that EFFCOMP attained the highest
accuracy across all baselines in four datasets and the highest F1 in three out of the four datasets.
The generalizability of EFFCOMP is partly due to its operation at no finer than the sentence level,
ensuring that the compressed contexts remain readable and not too specific to the target LLM used
for finetuning. Full results regarding generalizability can be found in Appendices D.1 and D.2.

RQ2: How does EFFCOMP affect inference latency? Table 4 reports the compression latency, the
target LLM reading latency, and the total latency, all averaged from 500 HotpotQA examples with a
batch size of 1. Compared to no compression, EFFCOMP introduced only a small overhead during
compression while substantially reducing the LLM reading time (up to 55.4% decrease latency),
resulting in the lower overall latency (up to 53.3% decrease latency with Jina reranker). EFFCOMP
is among the fastest methods, together with Recomp-Extractive, demonstrating their potential for
use in user-facing applications.

RQ3: Does our extractive compression method (EFFCOMP) introduce fewer factual inconsis-
tencies than abstractive compression methods? To answer this research question, we quantita-
tively evaluate hallucination using a natural language inference (NLI) setup on the HotpotQA test
set. For each example, the original raw context is treated as the premise and the compressed context
as the hypothesis. We then apply the tasksource/ModernBERT-large-nli (0.4B) model (Sileo, 2024)
to obtain NLI predictions. We focus specifically on the contradiction label, signaling that the com-
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Method Compression (s) LLM Read (s) Total (s) Avg Prompt Length
Raw documents – 1.84 1.84 3,706.81
LongLLMLingua 2.31 0.90 3.21 723.69
Recomp-Extractive 0.19 0.74 0.93 141.71
Recomp-Abstractive 2.84 0.71 3.55 106.62
CompAct 16.30 0.72 17.02 89.93
EFFCOMP (BGE) 0.08 0.82 0.90 487.72
EFFCOMP (Jina) 0.04 0.82 0.86 499.14
EFFCOMP (GTE) 0.12 0.82 0.94 482.72

Table 4: Latency per example averaged over 500 HotpotQA examples (with average compressed-
prompt length), using Gemma-2-9B-IT as the target LLM. Compression is evaluated with FlashAt-
tention 2 (Dao, 2023) enabled for CompAct, LongLLMLingua, EFFCOMP (sentence selector), the
Jina reranker, and the ModernBERT reranker. Evaluations use a batch size of 1 for both compression
and LLM prediction, and a batch size of 30 for the rerankers. Latencies are measured by running
the full compression pipeline including tokenization, the model forward pass, and detokenization on
500 examples. Bold numbers denote the lowest metric in each column.

Method Contradiction cases % Contradiction cases
Recomp-Abstractive 1,728 23.3 %
CompAct 225 3.0 %
EFFCOMP (BGE Reranker) 42 0.5 %

Table 5: NLI-detected contradiction cases on HotpotQA (7,405 examples). Lower values indicate
fewer factual inconsistencies introduced during compression.

pressed text contains information inconsistent with the original context. This evaluation provides
a direct quantitative measure of how often each compression method introduces factual errors. As
shown in Table 5, Recomp-Abstractive yields 1,728 contradiction cases and CompAct yields 225,
while EFFCOMP (BGE Reranker) produces only 42. The substantially lower contradiction count
for EFFCOMP indicates that its extractive design introduces fewer factual inconsistencies than the
abstractive compressors.

RQ4: Can Phase II GRPO effectively correct the biased sentence-selection behavior intro-
duced by Phase I pretraining? Phase I pretraining labels only sentences containing the final an-
swer string, which biases the policy toward selecting answer-bearing sentences while suppressing
intermediate reasoning sentences. This bias is problematic for multi-hop QA tasks such as Hot-
potQA, where supporting facts are essential. To assess whether Phase II can overcome this issue, we
compare two models: (1) a pretrained-only model trained solely with the Phase I objective, and (2)
a pretrained + finetuned model trained using both Phase I and Phase II. We evaluate how well each
model preserves the human annotated supporting facts in the HotpotQA test set. A supporting fact
is considered preserved if at least 50% string overlap is detected between the supporting sentence
and target text. The retention rate metric is defined as # supporting sentences preserved in compressed text

# supporting sentences in original document

Using this metric, the pretrained-only model achieves a retention rate of 75.77%, while the pre-
trained + finetuned model achieves 91.09%. These results show that Phase II effectively addresses
the initial bias from Phase I and substantially improves the retention of intermediate-reasoning sen-
tences in multi-hop QA.

RQ5: When EFFCOMP caused QA performance regression, what were the points of failure?
Though EFFCOMP (BGE) improved the accuracy of HQA from 34.6% (Raw Documents) to 36.3%,
we observed that 19.6% of the examples answered correctly with the full contexts were answered
incorrectly with the compressed ones. To better understand the regression, we sampled 50 of such
examples and identified the points of failure in the pipeline. The distribution of failure points was
as follows: the retriever (12%), the document reranker (20%), the sentence selector (10%), the
target LLM (16%), and the evaluation metric (42%). Concerning the evaluation metric, accuracy
naturally misses some correct answers when their format differs from the ground truth (such as
“Anabolic steroids” vs. “Anabolic Androgenic Steroids”, “15” vs. “fifteen”, “No” vs. “No, they
are not.”). This indicates that semantic-based evaluation metrics like BERTScore (Zhang et al.,
2020) and LLM-based auto-raters (Vu et al., 2024) should be more widely adopted in this field. The
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results also imply that the document reranker and the sentence selector have room for improvement.
Finetuning the reranker and pretraining the sentence selector with more informative pseudo-labels
could potentially enhance their performance and are worth exploring. Interestingly, in 12% of the
cases, the correct answer was not present in the full context, but the LLM still answered correctly.
It then failed when using the compressed context. We hypothesize that some information in the
full context, while not explicit, was still useful to the model and was inadvertently removed during
compression. Research into LLM interpretability (Singh et al., 2024) may be a useful tool for
investigating these cases in detail and shedding light on potential mitigation strategies.

6 RELATED WORK

Prompt compression. Li et al. (2025a) categorize prompt compression methods into two types. Soft
prompt methods compress inputs into continuous vectors readable only by the target LLM (Wingate
et al., 2022; Chevalier et al., 2023; Mu et al., 2023; Ge et al., 2024; Li et al., 2025c). In contrast,
hard prompt methods use truncation, selection, or summarization to keep the compressed prompts
human-readable (Li et al., 2023; Jiang et al., 2024; Xu et al., 2024; Yoon et al., 2024; Pan et al.,
2024; Zhao et al., 2025b; Fei et al., 2025). EFFCOMP falls into the latter category as we prioritize
interpretability and applicability across different target LLMs. So far, few hard prompt methods
have employed reinforcement learning. Jung & Kim (2024) formulate compression as a token-
level contextual bandits problem, which may lead to overly aggressive compression. Shandilya
et al. (2024) mitigate this by imposing fixed-length limits with penalties. EFFCOMP, by contrast,
operates at the sentence level with a tailored reward design and training set construction. This
naturally regulates compression without fixed limits, allowing higher compression while preserving
QA accuracy.

Combining reinforcement learning (RL) and supervised finetuning (SFT). Recent studies show
that using SFT to train LLMs followed by RL to align them with desired behaviors effectively en-
hances their capabilities (DeepSeek-AI et al., 2025; Ouyang et al., 2022). Instead of using one after
the other, SuperRL (Liu et al., 2025) enhances the complex reasoning ability of LLMs using RL.
However, when all sampled trajectories of an example yield zero reward, leading to uninformative
RL signals, they switch to SFT with high-quality offline data. In contrast, our framework addresses
a different problem by focusing on improving the efficiency of the training process. Meanwhile,
our framework, EFFCOMP, alleviates the zero-reward issue by using a dense reward and a relatively
high λ in Equation 6 to encourage the exploration of various action choices. It then uses the best-
performing trajectories from RL (instead of offline data) for SFT before alternating between RL and
SFT like this in subsequent epochs.

7 CONCLUSION

We propose EFFCOMP, a query-aware prompt compression framework for RAG-based open-domain
QA. EFFCOMP performs context selection at the document level and then the sentence level to
ensure the remaining context is minimal yet sufficient for the target LLM and remains human-
readable. Our hybrid training process teaches the model to compress more when the target LLM
can answer correctly and to provide more context when it is needed. Experimental results show that
EFFCOMP yields high compression ratios (up to 78.4x) while maintaining or even improving the QA
accuracy (up to 8.1% relative to the no-compression baseline). It can reduce total latency by about
53.3% and generalizes well with respect to QA metrics. Future work may consider improving the
pretraining of the sentence selector (e.g., by using more sophisticated labels instead of binary ones
or leveraging document-level relevancy annotations from the dataset, if available) and extending
EFFCOMP to other tasks beyond QA.
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A THE USE OF LARGE LANGUAGE MODELS

We leveraged ChatGPT-5 and Gemini 2.5 Flash to enhance grammar, refine phrasing, and optimize
word choice across the paper. We also used them to help format tables and figures in LaTeX. The
typical prompts we used with the LLMs were concise instructions such as “Proofread:” or “polish
this text”, which direct the models to refine grammar and phrasing without altering the technical
content.

B ADDITIONAL IMPLEMENTATION DETAILS

B.1 INPUT REPRESENTATION OF THE SENTENCE SELECTOR

The input representation of EFFCOMP’s sentence selector is illustrated in Figure 3.

Sentence selector (BERT)

q1 t12t11

Query token Sentence tokens

q2 q3 q4

CLS Classification token SEN Sentence classification tokenqi tij SEP Separate token

CLS SEP SEN SEN t21 t22 SEP

1 0

Eq1 Et12Et11Eq2 Eq3 Eq4ECLS ESEP ESEN ESEN
Et21 Et22 ESEP

Hq1 Ht12Ht11Hq2 Hq3 Hq4HCLS HSEP HSEN HSEN
Ht21 Ht22 HSEP

SEN

ESEN

HSEN

. . .

. . .

. . .

tm1 tm2 tm3

Etm1 Etm2 Etm3

Htm1 Htm2 Htm3

1

Figure 3: Input and output of the sentence selector. The input begins with the [CLS] token and
the query q, then followed by the candidate sentences. Each sentence is prepended with a special
[SEN] token. The [SEP] tokens were inserted after the query q and after the last token of the
last candidate sentence. The sentence selector produces token-level outputs, but only predictions
at the [SEN] positions are used to determine whether each corresponding sentence is retained or
discarded.

B.2 TRAINING CONFIGURATION

Pretraining of the sentence selector was conducted using a GeForce RTX 3090 GPU, while finetun-
ing and inference were conducted using an NVIDIA A100-SXM4-40GB GPU.

Pretraining.

• Learning rate: 2× 10−5

• Number of epochs: 2

• Weight decay: 0.01

• Batch size: 4

• Precision: bfloat16

• Optimizer: AdamW

• Loss: cross-entropy with balanced class weights
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Finetuning.

• Model Setup
– Target model: Gemma-2-9B-IT
– Quantization: BitsAndBytes 4-bit (nf4), compute dtype: fp16
– Sampling: disabled (do_sample = False)
– Model maximum length: 2048

• Learning rate: 1× 10−6

• Number of epochs: 3

• Optimizer: AdamW

• Precision: bfloat16

• Rollout size: 128

• Group size: 8

• Backward batch size: 8

• Updates per iteration: 4

• Entropy coefficient: 0.1

• Max gradient norm: 0.5

• Clip value ϵ : 0.2

• Target KL: 0.02

• Reward weight (α): 0.95

• Supervised loss: cross-entropy with balanced class weights

Note that we selected the best pretrained model checkpoint and the best finetuned model checkpoint
based on the validation loss and the validation reward observed, respectively.

B.3 DATA PREPROCESSING

For the pretraining data, We applied filtering by removing samples with sequence length greater than
5120 tokens and discarding samples whose answers are in the set {“yes”, “no”, “noanswer”}. For
Natural Questions dataset, we additionally removed all instances that lack an answer. See Table 6
for dataset statistics.

Moreover, we employed the nltk sentence tokenizer to split documents into sentences.

Dataset Train Validation Test
Base datasets

TriviaQA 138,384 – 17,944
Natural Questions 152,148 – 5,499
HotpotQA 90,447 – 7,405
2WikiQA 167,454 – 12,576

Pretraining
TriviaQA 123,670 13,742 –
Natural Questions 133,060 14,785 –
HotpotQA 75,059 8,340 –
2WikiQA 92,595 10,289 –

Finetuning
TriviaQA 21,136 1,000 –
Natural Questions 18,687 1,000 –
HotpotQA 19,207 1,000 –
2WikiQA 15,522 1,000 –

Table 6: Number of examples in each dataset before and after filtering. The base dataset refers to the
raw data, while the pretraining and finetuning stages indicate the dataset sizes used in each phase.
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B.4 LLM PROMPT TEMPLATE

For both Gemma-2-9B-IT and Llama-3.1-8B-Instruct, we adopted the prompt template by Jung et al.
(2024) to query the LLMs:

You are an expert in Question Answering. Your job is to answer questions in 1 to 5 words
based on the given context.
Question: {question}
Context: {context}
Answer:

B.5 INFERENCE CONFIGURATION FOR TARGET LLMS

Gemma-2-9B-IT.

• Sampling: disabled (do sample = False)
• Quantization: BitsAndBytes 4-bit (nf4), dtype: float16
• Max new tokens: 10
• Model maximum length: 6144

Llama-3.1-8B-Instruct.

• Sampling: disabled (do sample = False)
• Quantization: BitsAndBytes 4-bit (fp4), dtype: float32
• Max new tokens: 10
• Model maximum length: 5120

B.6 BASELINE DETAILS

This section provides additional details about the baselines in our experiments.

• Raw Documents: The top-30 retrieved documents are used directly without any compres-
sion.

• Reranker-based methods: The top-30 retrieved documents are reordered, and the top-10
documents after reordering are selected as the compressed context.

• LongLLMLingua (Jiang et al., 2024): A task-aware method built on Llama-2-7B7 that
ranks documents and selects tokens using contrastive perplexity scoring. We set the dy-
namic compression rate fixed at 0.3, with the rate set to 0.45 for the ∼5× compression and
0.04 for the ∼19× compression.

• Recomp-Extractive (Xu et al., 2024): An extractive approach that assigns scores at the
sentence level using a dual-encoder model, functioning similarly to a reranker. We adopt
the Contriever models released by the authors for each dataset. For 2WikiQA, where no
finetuned models are available, we use the Contriever finetuned on HotpotQA. Following
the previous research (Yoon et al., 2024) and similar compression ratio with our method,
the top four sentences are selected as context.

• Recomp-Abstractive (Xu et al., 2024): An abstractive approach based on T5-large (770M)
trained with summarization distillation over Natural Questions, TriviaQA, and HotpotQA.
The model compresses the retrieved evidence into shorter summaries. For 2WikiQA and
HotpotQA, we use the HotpotQA-trained version, while for TriviaQA and Natural Ques-
tions, dataset-specific models are applied.

• CompAct (Yoon et al., 2024): An iterative abstractive compression method implemented
with Mistral-7B-Instruct (Jiang et al., 2023). The model repeatedly summarizes the input
until the target model signals completion. The number of documents per segment is set to
5, following the original implementation.

7https://huggingface.co/NousResearch/Llama-2-7b-hf
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C DETAILED ALGORITHM

C.1 FINETUNING THE SENTENCE SELECTOR

Algorithm 1: EFFCOMP Hybrid Reinforcement & Supervised Learning
Input: Training data ∆, TargetLLM, Pretrained policy πθ

Hyperparameters: Adam optimizer (lr = 1×10−6), group size g=8, α=0.95, epochs = 3,
entropy coefficient λ=0.1, clip value ϵ=0.2, rollout size = 128

Output: Optimized policy π⋆
θ

Initialize the rollout buffer B ← ∅ and the best trajectory memory C ← ∅;
for example (q, yq, Sq) ∈ ∆ do

σ ← I(q, Sq);
Get actions A⋆ ← argmaxA∈{0,1}m πθ(· | σ);
Build compressed context c← Select(Sq, A

⋆);
Obtain output y ← TargetLLM(q, c);
Compute reward r ← Reward(yq, y, Sq, c);
UpdateMemory(C, σ, ⟨A⋆⟩, ⟨r⟩) using Algorithm 2;

reference model πref ← πθ;
for epoch = 1 to epochs do

reference model πref ← πθ;
for example (q, yq, Sq) ∈ ∆ do

σ ← I(q, Sq);
Sample actions A← {Ai}gi=1 ∼ πθ(· | σ) (Eq. 1);
for i = 1 to g do

ci ← Select(Sq, Ai);
yi ← TargetLLM(q, ci);
ri ← Reward(yq, yi, Sq, ci);

Let R← {ri}gi=1;
UpdateMemory(C, σ,A, R) using Algorithm 2;
Compute relative advantages Z from R;
Append (σ,A, Z) to the rollout collection B;
if |B| ≥ rollout size then

Update πθ with final training loss (Eq. 6);
reference model πref ← πθ;
Reset B ← ∅;

for each (Sb, Ab) ∈ C do
Update πθ with supervised cross-entropy on (Sb, Ab);

return π⋆
θ ;

C.2 BEST TRAJECTORY MEMORY

Algorithm 2: EFFCOMP Update the best trajectory memory
Input: Buffer C (a dictionary mapping each state σ to its best trajectory), state σ, group

actions A, group rewards R
Output: Updated buffer C
for (Ai, ri) ∈ (A, R) do

if ri > 0 and (σ /∈ C or ri ≥ C[σ].reward) then
C[σ]← (Ai, ri)

return C
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D ADDITIONAL RESULTS AND ANALYSES

D.1 GENERALIZATION TO ANOTHER TARGET MODEL

We evaluated our method against baseline approaches under the setting where compressed contexts
were provided to another target model which is Llama-3.1-8B-Instruct. Table 7 reports the results
on HotpotQA, 2WikiMultiHopQA, Natural Questions, and TriviaQA.

Method
HQA 2WikiQA NQ TQA

1/τ Acc F1 1/τ Acc F1 1/τ Acc F1 1/τ Acc F1

Raw Documents 1x 24.9 29.3 1x 16.7 19.1 1x 25.3 31.2 1x 69.7 66.2

Reranker-based methods

BGE 3x 29.6 33.1 3x 19.2 21.6 3x 26.6 31.9 3x 75.3 69.8
Jina 3x 29.2 33.3 3x 19.3 22.0 3x 28.1 33.2 3x 75.6 70.2
GTE 3x 29.0 32.9 3x 19.2 21.8 3x 28.4 33.5 3x 75.9 70.3

Compression frameworks

LongLLMLingua (5x) 5.1x 27.7 32.4 5.1x 18.8 21.6 5.1x 24.4 30.3 5.1x 73.6 69.6
LongLLMLingua (19x) 19.1x 25.6 30.6 19.3x 18.9 22.0 18.9x 19.7 25.0 19.1x 69.3 64.6
Recomp-Extractive 29.2x 24.0 27.8 29.3x 16.6 19.4 29.8x 22.3 26.4 32x 69.7 63.7
Recomp-Abstractive 132.1x 27.8 32.1 126.9x 21.3 24.5 48.3x 26.3 30.4 139x 74.3 68.4
CompAct 48.7x 30.5 33.1 54.7x 18.8 20.9 44.2x 27.9 31.1 50.2x 75.9 67.9

Our work: EFFCOMP

No reranker 26.8x 29.6 33.9 16.1x 21.3 23.6 20.1x 27.6 33.1 48.4x 73.5 69.0
BGE reranker 39.5x 31.3 35.0 30.3x 21.5 23.8 29.1x 28.5 33.1 59.5x 76.6 70.3
Jina reranker 38.5x 31.0 34.9 29.4x 21.8 24.1 34x 29.0 33.5 78.4x 77.1 70.8
GTE reranker 40.4x 31.0 34.8 29.4x 21.6 23.9 33.2x 29.4 34.0 64.3x 77.3 70.8

Table 7: Results on four open-domain QA benchmarks. We report the mean of compression ratio
(1/τ ), accuracy (Acc), and token-level F1 score for Llama-3.1-8B-Instruct as the target model. For
all of these metrics, higher values are better. The best results in each column are marked in bold.

D.2 GENERALIZATION TO OUT-OF-DISTRIBUTION DATASETS

Extending Table 3, we report the results of in-distribution and out-of-distribution testings for the
other rerankers and the other target LLM (Llama-3.1-8B-Instruct) in Table 8. Training on the target
dataset yielded both higher compression ratios and stronger QA metrics, while applying the model
out of distribution resulted in certain reductions in compression ratios but only minor reductions in
the QA metrics (i.e., accuracy and F1).

D.3 RESULTS USING TOP-10 RETRIEVED DOCUMENTS

We also evaluated the compression methods under the setting where the retrieval step provided the
top-10 documents as context, and EFFCOMP processed the top-10 documents directly without run-
ning Step 1. Table 9 reports the results on HotpotQA, 2WikiMultiHopQA, Natural Questions, and
TriviaQA. The strongest performance is observed with Gemma-2-9B-IT as the target model, likely
because our sentence selector was aligned with it during finetuning. Performance with Llama-3.1-
8B-Instruct is comparatively lower, yet still surpasses the raw document baseline. This demonstrates
that our approach remains beneficial even when the sentence selector is not directly finetuned using
signals from the target LLM.

D.4 SEMANTIC-BASED EVALUATION USING BERTSCORE

Our analysis reveals that traditional metrics based on string matching often mistreat semantically
correct predictions as errors. We find that a substantial portion of these “errors” arise from limi-
tations of the string matching metrics rather than true model failures. In contrast, semantic-based
metrics such as BERTScore (Zhang et al., 2020) provide a more faithful measure of answer quality.
Following this insight, we include BERTScore in our evaluation to provide a more comprehensive
assessment of semantic correctness. Specifically, we compute BERT-F1 using contextualized em-
beddings the microsoft/deberta-xlarge-mnli model (He et al., 2021) at layer 40. Tables 10 and 11
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Method
2WikiQA NQ TQA

1/τ Acc F1 1/τ Acc F1 1/τ Acc F1

Gemma-2-9B-IT
No reranker (in-distribution) 16.1x 29.5 33.4 20.1x 30.9 37.2 48.4x 78.9 76.8
No reranker (out-of-distribution) 11.7x 28.9 32.5 9.8x 31.1 37.3 32.8x 78.9 76.7

Jina reranker (in-distribution) 29.4x 25.5 29.4 34x 29.9 35.7 78.4x 80.1 76.7
Jina reranker (out-of-distribution) 19.3x 25.8 29.6 18.8x 29.7 35.4 50x 79.6 76.3

GTE reranker (in-distribution) 29.4x 25.4 29.1 33.2x 30.5 36.0 64.3x 80.5 77.1
GTE reranker (out-of-distribution) 20.4x 25.0 28.8 19.2x 29.7 35.2 54.1x 79.8 76.5

Llama-3.1-8B-Instruct
No reranker (in-distribution) 16.1x 21.3 23.6 20.1x 27.6 33.1 48.4x 73.5 69.0
No reranker (out-of-distribution) 11.7x 20.8 23.2 9.8x 26.8 32.4 32.8x 74.3 69.2
BGE reranker (in-distribution) 30.3x 21.5 23.8 29.1x 28.5 33.1 59.5x 76.6 70.3
BGE reranker (out-of-distribution) 19.4x 20.3 23.0 14.1x 27.5 32.5 49.6x 76.1 70.2

Jina reranker (in-distribution) 29.4x 21.8 24.1 34x 29.0 33.5 78.4x 77.1 70.8
Jina reranker (out-of-distribution) 19.3x 21.3 23.9 18.8x 28.2 33.1 50x 76.2 70.1

GTE reranker (in-distribution) 29.4x 21.6 23.9 33.2x 29.4 34.0 64.3x 77.3 70.8
GTE reranker (out-of-distribution) 20.4x 20.8 23.4 19.2x 28.3 33.3 54.1x 77.2 70.9

Table 8: Cross-dataset generalization of EFFCOMP using Gemma-2-9B-IT and Llama-3.1-8B-
Instruct as target models, evaluated both with and without the document reranker. We report the
mean compression ratio (1/τ ), accuracy (Acc), and F1 score. The in-distribution rows correspond
to training on each dataset individually, while the out-of-distribution rows correspond to training
only on HotpotQA and directly applying the model to other datasets. For all of these metrics, higher
values are better. Bold numbers indicate the best performance in each setting.

Method
HQA 2WikiQA NQ TQA

1/τ Acc F1 1/τ Acc F1 1/τ Acc F1 1/τ Acc F1

Gemma-2-9B-IT
Raw Documents 1x 32.4 39.0 1x 22.7 26.7 1x 29.5 35.3 1x 78.5 75.9
LongLLMLingua 4.8x 28.5 35.5 4.7x 20.7 24.5 4.8x 23.3 29.2 4.9x 74.9 72.7
Recomp-Extractive 9.7x 27.3 33.4 9.7x 18.3 22.7 9.8x 24.3 29.4 10.3x 74.6 71.6
Recomp-Abstractive 43.9x 27.9 34.1 42.2x 21.0 25.1 16.1x 27.6 33.0 46.3x 73.0 70.7
CompAct 17.3x 30.7 36.6 19.5x 16.9 20.4 15.5x 27.6 32.7 17.2x 76.4 73.3
Ours: EFFCOMP 10.3x 33.2 39.7 9x 24.1 28.2 9x 29.3 34.8 16.6x 78.2 75.0

Llama-3.1-8B-Instruct
Raw Documents 1x 26.4 30.5 1x 18.4 21.1 1x 25.9 31.4 1x 73.2 68.0
LongLLMLingua 4.8x 25.6 30.7 4.7x 19.1 22.0 4.8x 21.9 27.4 4.9x 71.3 66.8
Recomp-Extractive 9.7x 24.8 28.7 9.7x 17.7 20.7 9.8x 23.5 27.7 10.3x 71.2 65.2
Recomp-Abstractive 43.9x 27.8 32.2 42.2x 21.2 24.5 16.1x 26.3 30.4 46.3x 74.2 68.4
CompAct 17.3x 29.7 32.7 19.5x 18.3 20.5 15.5x 27.5 30.7 17.2x 75.1 67.2
Ours: EFFCOMP 10.3x 28.6 32.6 9x 20.6 23.3 9x 27.1 31.7 16.6x 74.8 68.8

Table 9: Results on open-domain QA benchmarks with top-10 retrieved documents. We report the
mean of compression ratio (1/τ ), accuracy (Acc), and F1 score for Gemma-2-9B-IT and Llama-
3.1-8B-Instruct as target models. For all of these metrics, higher values are better. Bold numbers
indicate the best results in each column.

report BERTScore results for both Gemma-2-9B-IT and Llama-3.1-8B-Instruct under the top-30-
document and top-10-document settings, respectively. On Gemma-2-9B-IT, EFFCOMP achieves
the highest BERTScore on HotpotQA in the top-30 setting and outperforms all other compres-
sion methods across datasets. In the top-10 setting, it attains the best BERTScore on HotpotQA
and 2WikiMultihopQA and again surpasses all competing compression frameworks across datasets.
For Llama-3.1-8B-Instruct, EFFCOMP achieves the highest BERTScore on HotpotQA and Natural
Questions in the top-30-document setting and surpasses the raw-document baseline on all datasets.
In the top-10-document setting, it obtains the best BERTScore on Natural Questions and exceeds
the raw-document baseline on HotpotQA and 2WikiMultihopQA. Overall, the target LLM’s predic-
tions under EFFCOMP compression preserve the intended semantics, even though EFFCOMP is not
explicitly trained to optimize BERTScore.
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Method
HQA 2WikiQA NQ TQA

1/τ BERT(F1) 1/τ BERT(F1) 1/τ BERT(F1) 1/τ BERT(F1)

Gemma-2-9B-IT
Raw Documents 1x 73.5 1x 69.7 1x 72.7 1x 89.8
BGE 3x 72.3 3x 65.3 3x 70.7 3x 88.8
Jina 3x 72.1 3x 65.6 3x 71.1 3x 88.8
GTE 3x 72.2 3x 65.5 3x 71.0 3x 88.9

LongLLMLingua 5.1x 70.6 5.1x 64.4 5.1x 68.3 5.1x 87.8
Recomp-Extractive 29.2x 69.1 29.3x 63.6 29.8x 66.8 32x 86.1
Recomp-Abstractive 132.1x 68.8 126.9x 66.0 48.3x 69.5 139x 85.5
CompAct 48.7x 67.2 54.7x 58.4 44.2x 67.6 50.2x 86.8

EFFCOMP (No reranker) 26.8x 74.0 16.1x 69.5 20.1x 71.7 48.4x 89.0
EFFCOMP (BGE reranker) 39.5x 72.6 30.3x 66.7 29.1x 70.4 59.5x 88.6
EFFCOMP (Jina reranker) 38.5x 72.3 29.4x 66.8 34x 70.6 78.4x 88.4
EFFCOMP (GTE reranker) 40.4x 72.4 29.4x 66.8 33.2x 70.7 64.3x 88.6

Llama-3.1-8B-Instruct
Raw Documents 1x 64.7 1x 59.6 1x 67.1 1x 82.8

BGE 3x 67.2 3x 61.9 3x 68.2 3x 84.1
Jina 3x 67.0 3x 62.2 3x 68.5 3x 84.5
GTE 3x 66.9 3x 62.3 3x 68.8 3x 84.2

LongLLMLingua 5.1x 66.8 5.1x 62.4 5.1x 67.4 5.1x 84.2
Recomp-Extractive 29.2x 65.2 29.3x 62.1 29.8x 65.5 32x 80.0
Recomp-Abstractive 132.1x 66.4 126.9x 65.4 48.3x 67.0 139x 81.5
CompAct 48.7x 64.5 54.7x 58.7 44.2x 66.3 50.2x 80.6

EFFCOMP (No reranker) 26.8x 67.5 16.1x 63.2 20.1x 68.8 48.4x 83.8
EFFCOMP (BGE reranker) 39.5x 67.9 30.3x 63.6 29.1x 68.7 59.5x 83.6
EFFCOMP (Jina reranker) 38.5x 67.8 29.4x 63.8 34x 68.8 78.4x 83.5
EFFCOMP (GTE reranker) 40.4x 67.8 29.4x 63.8 33.2x 69.1 64.3x 83.3

Table 10: Results on top-30 retrieved documents for four open-domain QA benchmarks. We report
compression ratio (1/τ ) and BERTScore (F1) for Gemma-2-9B-IT and Llama-3.1-8B-Instruct as
the target models. For all of these metrics, higher values are better. The best results in each column
are marked in bold.

Method
HQA 2WikiQA NQ TQA

1/τ BERT(F1) 1/τ BERT(F1) 1/τ BERT(F1) 1/τ BERT(F1)

Gemma-2-9B-IT
Raw Documents 1x 71.0 1x 64.8 1x 70.4 1x 88.3
LongLLMLingua 4.8x 69.3 4.7x 63.8 4.8x 67.1 4.9x 87.0
Recomp-Extractive 9.7x 69.3 9.7x 63.6 9.8x 67.2 10.3x 86.4
Recomp-Abstractive 43.9x 68.8 42.2x 66.1 16.1x 69.5 46.3x 85.5
CompAct 17.3x 67.5 19.5x 59.0 15.5x 67.7 17.2x 86.4
Ours: EFFCOMP 10.3x 71.1 9x 66.1 9x 70.0 16.6x 87.9

Llama-3.1-8B-Instruct
Raw Documents 1x 65.8 1x 61.9 1x 67.8 1x 83.6
LongLLMLingua 4.8x 66.2 4.7x 62.4 4.8x 66.2 4.9x 82.3
Recomp-Extractive 9.7x 65.6 9.7x 62.5 9.8x 66.1 10.3x 80.6
Recomp-Abstractive 43.9x 66.9 42.2x 65.5 16.1x 67.2 46.3x 81.5
CompAct 17.3x 64.7 19.5x 58.9 15.5x 66.2 17.2x 80.4
Ours: EFFCOMP 10.3x 66.7 10x 63.3 9x 68.0 16.6x 83.0

Table 11: Results on top-10 retrieved documents for four open-domain QA benchmarks. We report
compression ratio (1/τ ) and BERTScore (F1) for Gemma-2-9B-IT and Llama-3.1-8B-Instruct as
the target models. For all of these metrics, higher values are better. The best results in each column
are marked in bold.

D.5 ADDITIONAL COMPARISON WITH OTHER COMPRESSION METHODS

To broaden the evaluation, we conduct supplementary experiments comparing our method with
three additional compression approaches: CPC (Liskavets et al., 2025), LLMLingua2 (Pan et al.,
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Method HotpotQA MuSiQue SQuAD
Comp Acc F1 BERT Comp Acc F1 BERT Comp Acc F1 BERT

Raw documents 1x 34.6 42.3 73.5 1x 8.8 14.8 63.8 1x 40.3 45.3 74.2
CPC 5.6x 30.5 36.9 70.4 5.3x 9.2 16.0 62.8 5.1x 42.4 45.5 72.7
LongLLMLingua 5.1x 31.8 38.2 70.6 5.1x 9.4 15.4 61.8 5x 40.1 44.3 72.3
DAC 5.1x 24.7 32.3 68.1 5.1x 6.4 12.9 60.2 5.3x 25.4 32.4 67.2
LLMLingua2 5.4x 25.0 32.6 68.9 5.4x 7.4 14.0 63.1 5.3x 26.5 31.7 67.8
EFFCOMP (No reranker) 26.8x 37.3 44.2 74.0 6x 7.6 13.8 62.3 36.2x 43.3 47.1 74.0
EFFCOMP (BGE) 39.5x 36.4 43.1 72.6 9.9x 8.7 15.4 63.1 42.2x 41.3 44.6 72.4
EFFCOMP (BGE+OOD) – – – – 16.8x 10.8 17.6 64.1 32.1x 40.3 43.5 72.1

Table 12: Comparison with CPC, LLMLingua2, and DAC across HotpotQA, MuSiQue, and SQuAD
using the top 30 retrieved documents and Gemma-2-9B-IT as the target model. Metrics include
compression ratio, accuracy, F1 score, and BERTScore.

Method Compressor Memory (MB) LLM Inference Memory (MB)
Raw documents – 11,874.37
LongLLMLingua 16,129.06 6,935.18
Recomp-Extractive 945.46 6,619.45
Recomp-Abstractive 5,934.80 8,208.77
Compact 14,090.37 6,580.15
EFFCOMP (BGE) 1,252.01 7,202.59
EFFCOMP (Jina) 1,242.26 7,141.47
EFFCOMP (GTE) 1,323.48 7,178.40

Table 13: Peak GPU memory usage (in MB) for each compressor and the downstream LLM
(Gemma-2-9B-IT). Memory is measured during the model forward pass. For Recomp-Abstractive,
the peak across 500 examples is reported due to the lack of per-sample measurement. FlashAttention
2 is enabled for models that support it.

2024), and DAC (Zhao et al., 2025a). For CPC, we use the Mistral-7B-Instruct-v0.2 model as in
their original paper and set the compression target tokens at 900 to match an approximate 5x com-
pression ratio. For LLMLingua2, we use the microsoft/llmlingua-2-xlm-roberta-large-meetingbank
model as the compression model which follows the LLMLingua2 training recipe based on xlm-
roberta-large (Conneau et al., 2020), and we set the compression rate at 0.2. For DAC, we use the
qwen2-0.5B-instruct model as the compression model with the default configuration, corresponding
to a compression ratio of 0.825. All evaluations take the top 30 retrieved documents as input and
employ Gemma-2-9B-IT as the target LLM. We report compression ratio, accuracy, F1 score, and
BERTScore on HotpotQA, MuSiQue (Trivedi et al., 2022), and SQuAD (Rajpurkar et al., 2016).
The results are reported in Table 12. Interestingly, for MuSiQue, our method performs better under
the OOD setting (trained on HotpotQA and tested on MuSiQue). This is likely because the fine-
tuning set of MuSiQue is very limited (657 samples, compared to over 10,000 samples for the other
datasets). Nevertheless, our method remains the top performer across all the compression framework
baselines.

D.6 MEMORY USAGE ANALYSIS

We evaluate the memory footprint of the compressor and the downstream LLM during inference.
Memory usage is reported as the average peak GPU memory during the forward pass. For Recomp-
Abstractive, per-example measurement is not supported, so we report the peak memory across 500
examples. Table 13 reports the memory consumption of all methods. FlashAttention 2 is enabled for
compression models that support it, including LongLLMLingua, Compact, the EFFCOMP (sentence
selector), the Jina reranker, and the ModernBERT reranker. Across all methods, EFFCOMP shows
competitive memory consumption for both the compression stage and the LLM inference stage.

D.7 INFORMATION EFFICIENCY ANALYSIS

To analyze how effectively our method removes context-irrelevant information while retaining the
essential evidence for answering the question, we evaluate compression performance on the Hot-
potQA test set. We focus on examples for which the target model predicts the correct answer and
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Method Compression ratio Compression ratio (EFFCOMP BGE)
Recomp-Extractive 29.11x 61.41x
LongLLMLingua 5.14x 61.96x

Table 14: Compression ratios on correctly answered HotpotQA examples (7,405 total examples).
extractive correctly answers 1,657 cases, while LongLLMLingua correctly answers 2,037. Higher
values indicate more efficient preservation of information relevant to the QA task.

measure how much each method compresses the context in these successful cases. A higher com-
pression ratio under the same correctness condition indicates that the method preserves the essential
information more efficiently.

We compare EFFCOMP with two extractive baselines: Recomp-Extractive and LongLLMLingua.
For each method, we compute the average compression ratio on correctly answered examples, as
shown in Table 14. Across the dataset, EFFCOMP achieves substantially higher compression ratios
than both baselines while answering correctly, indicating that it provides more efficient context-
aware selection.

D.8 ABLATION STUDY ON DIFFERENT FINETUNING STRATEGIES

We conducted an ablation study on the HotpotQA, 2WikiMultiHopQA, Natural Questions, and Triv-
iaQA, evaluating three training strategies: reinforcement learning (RL) only, supervised learning
(SL) only with the best trajectory memory, and the hybrid approach of EFFCOMP that combines
both. The results are displayed in Figure 4. We observed similar patterns in HotpotQA, Natural
Questions, and TriviaQA. Specifically, the hybrid strategy often achieved higher validation accuracy
in early epochs, while having a relatively lower compression rate. In contrast, the RL only strategy
prioritized the compression rate while sacrificing the accuracy. Meanwhile, the SL only strategy
usually achieved higher validation accuracy than the RL one but with a lower and stable compres-
sion rate across epochs. For 2WikiMultiHopQA, the trend of the hybrid approach is similar to the
other three datasets, whereas the trends of the RL only and SL only strategies are the opposite of
those in the other three datasets.
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(A) HotpotQA

(B) 2WikiMultiHopQA

(C) Natural Questions

(D) TriviaQA

Figure 4: Ablation study of different training strategies for EFFCOMP on the four QA datasets. The
plots compare (left) validation accuracy and (right) compression rate 1 − τ = 1 − |D|/|C| during
validation across 10 epochs. For both metrics, the higher values are better.

D.9 TRAINING TIME PER EPOCH

Pure RL training is slow because it must repeatedly query the LLM, and relying on RL alone leads
to slow convergence in accuracy. In contrast, the SL stage adds only a small overhead while lever-
aging high-quality trajectories from RL to accelerate learning. As shown in our ablation results in
Appendix D.8, the hybrid approach improves accuracy much faster than RL only training.
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Epoch RL time (sec) SL time (sec)
0 58,569.33 825.83
1 57,938.17 807.11
2 57,715.01 840.33

Table 15: Per-epoch computation time for the RL and SL components of our training pipeline. The
RL time reports the full per-epoch computation cost of the complete RL pipeline, while the SL time
reports the additional supervised-learning overhead trained on the trajectories produced by the RL
pipeline.

To make this cost difference explicit, Table 15 reports the per-epoch computation times for the full
RL stage and the SL overhead. According to the table SL adds only ∼800 seconds per epoch, yet
substantially boosts performance when combined with RL. In contrast, RL alone requires ∼58,000
seconds per epoch and converges much more slowly. This makes the hybrid approach both more
efficient and more effective.

D.10 THE EFFECT OF THE PRETRAINING PHASE

This section compares the performance of the sentence selector of EFFCOMP when being finetuned
with and without the pretraining phase. We used HotpotQA as the training set and observed the vali-
dation accuracy and the compression rate across five epochs. It can be noticed from Figure 5 that the
sentence selector without pretraining had lower initial validation accuracy and lower compression
rate compared to the pretrained one. Although the compression rates came closer after a few epochs,
the validation accuracy of the pretrained sentence selector remained significantly higher than that of
the non-pretrained one across the five epochs.

Figure 5: The performance of the sentence selector of EFFCOMP when being finetuned with and
without the pretraining phase. The plots show (left) validation accuracy and (right) compression
rate 1 − τ = 1 − |D|/|C| during validation across five epochs. For both metrics, the higher values
are better.

D.11 IMPACT OF THE WEIGHTING FACTOR α

Selecting the best model along the compression–accuracy trade-off requires understanding how dif-
ferent values of α influence the reward signal during validation. We conduct experiments using four
values of α ∈ {0.65, 0.75, 0.85, 0.95} for 3 epochs, and evaluate validation rewards on 1,000 sam-
ples. Figure 6 illustrates the validation reward, accuracy, and compression rate for each α across the
three epochs, where the circled point denotes the checkpoint with the highest reward.

In the validation phase, we observe that for α = 0.95, the checkpoint with the highest reward
also corresponds to the highest accuracy. For smaller α values, in contrast, the highest reward is
primarily achieved by obtaining higher compression rates. This indicates that as α increases, the
reward becomes more aligned with accuracy, whereas lower α values encourage more aggressive
compression.
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Method α Comp. Acc F1
EFFCOMP (BGE) 0.65 47.2x 35.7 42.6
EFFCOMP (BGE) 0.75 33.1x 36.0 42.6
EFFCOMP (BGE) 0.85 46.4x 36.2 42.9
EFFCOMP (BGE) 0.95 39.5x 36.4 43.1

Table 16: Test-set HotpotQA (30 retrieved documents) performance using Gemma-2-9B-IT as the
target model. We report the performance of the checkpoints selected by the highest validation reward
for each α. The compression–accuracy behavior on the test set is consistent with that observed
during validation.

These results show that α provides a controllable trade-off: larger values prioritize accuracy, while
smaller values emphasize compression. This allows users to select checkpoints that best match their
desired balance between compression and accuracy within the validation set.

After selecting the highest-reward checkpoints for each α based on validation performance, we
evaluate these checkpoints on the HotpotQA test set. The results are shown in Table 16.

Importantly, we observe that the relationship between accuracy and compression on the test set is
consistent with the behavior seen during validation. Although our hybrid RL+SL training framework
already emphasizes accuracy, using a larger α remains necessary to ensure that model selection
follows our context-aware compression objective, where accuracy is the primary criterion.
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Figure 6: Ablation study of the weighting factor α ∈ {0.65, 0.75, 0.85, 0.95} for EFFCOMP on the
HotpotQA validation set. For each value of α, we report the Reward, Accuracy, and Compression
rate 1 − τ = 1 − |D|/|C| across 3 training epochs. The circled point in each plot indicates the
checkpoint (epoch) with the highest validation reward. Higher values are better for all metrics.
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