Learning to Transpile AMR into SPARQL

Anonymous ACL submission

Abstract

We propose a transition-based system to tran-
spile Abstract Meaning Representation (AMR)
into SPARQL for Knowledge Base Question
Answering (KBQA). This allows to delegate
part of the abstraction problem to a strongly
pre-trained semantic parser, while learning tran-
spiling with small amount of paired data. We
departure from recent work relating AMR and
SPARQL constructs, but rather than applying
a set of rules, we teach the BART model to
selectively use these relations. Further, we
avoid explicitly encoding AMR but rather en-
code the parser state in the attention mechanism
of BART, following recent semantic parsing
works. The resulting model is simple, provides
supporting text for its decisions, and outper-
forms recent progress in AMR-based KBQA
on LC-QuAD (F1 53.4), and QALD (F1 31.6),
while exploiting the same inductive biases.

1 Introduction

Question Answering over Knowledge Bases
(KBQA) (Zou et al., 2014; Vakulenko et al., 2019;
Diefenbach et al., 2020) concerns the answering of
natural questions by retrieving the information con-
tained in a Knowledge Graph (KG). Compared to
other automatic QA tasks, such as reading compre-
hension (Rajpurkar et al., 2018; Kwiatkowski et al.,
2019; Clark et al., 2020), or free text generation
(Lewis and Fan, 2019; Yin et al., 2016), KBQA
has the advantage of producing answers backed
against structured repositories of information, of-
fering strong factual accuracy guarantees. Solving
KBQA amounts to transforming a natural language
question into some programming language, usu-
ally a query language such as SQL or SPARQL. It
is thus considered a form of executable semantic
parsing. We illustrate the KBQA task in Figure 1.
While some large KBQA datasets exist (Yu et al.,
2018), the amount of paired examples, i.e. aligned

PREFIX dbr:http://dbpedia.org/resource/
PREFIX dbo:http://dbpedia.org/ontology/
PREFIX dbp:http://dbpedia.org/property/
SELECT DISTINCT ?uri WHERE ({

?x <dbp:state> <dbr:Maharashtra>.

?x <dbo:sport> 2uri.

}

Figure 1: SPARQL graph for the question Name some
sports played in institutions of Maharashtra?. 2uri is
the unknown variable (related to sports) and 2»x is an
intermediate variable (related to institution), needed to
relate the unknown with the KG entity (Maharashtra).

natural language and query language pairs, is gen-
erally scarce (Trivedi et al., 2017; Usbeck et al.,
2017). Furthermore, human language exhibits large
variability, and obtaining enough training pairs for
specific domains or infrequent natural language for-
mulations requires large annotations investments.
Often, real world implementations of KBQA end
up containing a number of domain specific hand-
made rules that are costly to maintain and expand.
The need to manipulate a formal representation in
the target side with only a few examples, makes this
task harder to learn compared to other QA tasks.

In order to mitigate the data availability problem
(Kapanipathi et al., 2021) proposed to delegate part
of the task to an Abstract Meaning Representation
(AMR) parse that incorporates additional semantic
information. This work identifies associations be-
tween certain AMR nodes and SPARQL variables
as well as a associations between AMR sub-graphs
and relations in a KG. Unfortunately, these AMR to
SPARQL mappings are imperfect, suffering from
coverage and granularity mismatch. Another con-
cern with AMR-based approaches is the encoding
of the AMR itself which can be challenging and
implies an additional learning burden.

Taking these limitations into account, in this
work we propose a new approach to leverage AMR
parsing for KBQA that learns to transpile AMR

| Propbank/AMR

SPARQL mapping

a | :e (n/amr-unknown) if e # :polarity then map n to unknown variable

b | have-degree-91 :ARGl amr-unknown :ARG5 n || map n to unknown variable (override a)

¢ | n :mode imperative :ARGl n2 if n is root then map n2 to unknown variable

d | n :wiki c || subgraph below n mapped to KG entity ¢

€ | n2 <ancestor of> n :wiki ¢ map first n2 aligned to noun to (optional) secondary variable
f | have-degree-91 :ARG2 n n is (optional) secondary variable (quantitative)

g | have-quant-91 :ARGl-of n n is (optional) secondary variable (quantitative)

h | :time n is (optional) secondary variable

Table 1: Relations between SPARQL and AMR constructs. This is a subset from (Kapanipathi et al., 2021). Note
that :wiki can be attached above AMR entity subgraphs, unlike conventional AMR. See realignment in Section 4

into the SPARQL query language. The contribu-
tions can be summarized as follows

* In the spirit of transition-based semantic pars-
ing, we develop state machine and an oracle
that transpiles AMR into SPARQL and learn
to imitate it with a BART (Lewis et al., 2019)
based model for KBQA.

* This oracle leverages known relations (i.e.
similarities) between AMR and SPARQL (Ka-
panipathi et al., 2021), but rather than apply-
ing them deterministically as in prior work,
we teach the model when to use them.

* We show that it is not necessary to encode
AMR directly, but rather encoding the tran-
spiler state through attention masking as in
(Fernandez Astudillo et al., 2020) suffices.

* The resulting transpiler outperforms (Kapani-
pathi et al., 2021) by 9 F1 points on LcQUAD
and matches it on QALD, while being simpler
and exploiting the same inductive biases.

2 AMR to SPARQL Machine and Oracle

Here we propose to apply the transition-based ap-
proach, well known in syntactic and semantic pars-
ing, to learn to transpile AMR to SPARQL.

2.1 A Transition-based Transpiler

The objective is to learn to predict the SPARQL
query s corresponding to the natural language ques-
tion w, by transforming its AMR parse g.

At its core, a transition-based approach learns to
predict a sequence of actions a from w, that applied
to a non-parametric state machine yield s.

s = M(a,g) (D

‘What the actions are, needs to be determined for
each problem. Generally, for transpiling AMR

we can define a non-parametric oracle that given
the original sentence, its AMR and the SPARQL,
yields the actions

a=0(s, g, w).)

The oracle is only needed to generate the tuples
(w, g, a) for training. With these, one can use the
oracle as a teacher to train the sequence to sequence
model p(a | w) and predict the SPARQL as

§=M(a,g) 3)
where g is obtained from an AMR parse of w and
a is obtained with conventional decoding.

a = argmax{p(a [w)} 4)
It is often useful to use the state of the state machine
i.e. the parser state to constrain the output vocabu-
lary at every decoding step, and even at train time.
In this way one can forbid the machine from con-
sidering invalid actions and make mistakes, or put
additional strain in training. It has also been shown
that Transformer models benefit from dedicating
one or more attention heads to reflect the parser
state (Fernandez Astudillo et al., 2020) and this
applies also to pre-trained sequence to sequence
models (Zhou et al., 2021b). In Section 3 we detail
how we apply this strategy, and show that we can
avoid encoding the AMR through this mechanism.

It is important to note that the use of a state
machine generates a strong inductive bias, impos-
ing some specific way in which the sequence to
sequence problem can be solved. In this case we
leverage the bias to make the transpiler aware of
AMR path information, but it comes at the penalty
of not fully being able to recover all SPARQL
queries i.e. for some queries

s # M(O(s,g,w),9) (5)

Name some sports played

Lkl>(''http://dbpedia.Org/resource/Maharashtra”J

y name

I
|

I

I

I

I

I

| name
I

I

I

I

I

I

yopl

in institutions of Maharashtra ?

P
Path Stack: Supporting Text:

i

stipsi[stifips]
v

institutions Maharashtra

sports played institutions

,,,,,,,,,,,,,,,,

sports played institutions Maharashtra

Actions: SPARQL:

SELECT SELECT DISTINCT ?s WHERE {
REDUCE
state ?1 <dbp:state> <dbr:Maharashtra>.
sport ?1i <dbo:sport> ?s.

CLOSE '}

Figure 2: Oracle for the LCQUAD train set sentence: Name some sports played in institutions of Maharashtra?.
Top: Sentence w aligned to its AMR graph g (input) and 3 relevant subgraphs identified by applying Table 1 (c, d,
e): unknown variable (imperative root), (optional) secondary variable (entity-adjacent nominal), linked entity
(wiki). Bottom box: All decoding timesteps including implicit machine state defined by the AMR path stack,
explicit machine state defined by the supporting text, oracle action sequence a and resulting SPARLQ s (output).

Throughout this work, it is also assumed that the
AMR parser provides alignments between sentence
w and AMR graph g. (Zhou et al., 2021a).

2.2 Path-based Oracle and Machine

The work in (Kapanipathi et al., 2021), showed that
certain AMR subgraphs can be deterministically
mapped to SPARQL elements, such as KG entities
or unknown variables. The path algorithm (Kapani-
pathi et al., 2021), identifies relevant paths between
those subgraphs, and applies rules deterministically
to obtain SPARQL variables and relations. These
rules lead however to prediction errors, e.g. spuri-
ous secondary variables, and suffer from granular-
ity mismatch between AMR and KG graph.

Here we propose an alternative approach. We
consider all AMR paths obtained by applying only
the subgraph mappings listed in Table 1 and high-
lighted in Figure 2. The goal is to learn to predict a

KG relation for every path or to ignore it.

We implement a state machine M (a, g) charac-
terized by the stack of paths of the AMR graph g.
To initialize the machine, we identify subgraphs
in g representing the unknown variable to return
in the query (red), entities in the KG (green) or
optional secondary variables, that may not exist in
the SPARQL (blue). We then fill a FIFO stack with
the paths between these subgraphs, starting by each
path between the unknown and entity, followed by
the paths involved their related optional variables
in Table 1 (e) and finally other optional variables.

The oracle a = O(s, g, w) then produces one of
the following actions' a; to be played on the state
machine

 {SELECT, ASK, COUNT}: Generate the
query header from a closed vocabulary

!The actions names do not reflect the literal SPARQL code
but are rather keywords indexing a more verbose string.

¢ <KG relation>: Produce the KG relation for
path at the top of the stack and REDUCE

* REDUCE: Pop path at the top of the stack
without predicting any KG relation

* {CLOSE, ASC, DESC}: Close or perform
query post processing i.e. top/bottom-k search

The oracle starts by determining the header of
the query and then proceeds over the stack of paths,
predicting a KG relation for every path, or ignoring
it (REDUCE). A KG relation is predicted when the
path can be aligned to a SPARQL triple. Once the
stack is empty, the oracle closes the machine or
applies post-processing and closes. Figure 2 shows
an example of a complete oracle action sequence.

One fundamental advantage of the proposed ap-
proach, is that it aligns by construction sentence
w, AMR g and SPARQL s. This information can
be used during decoding to restrict the output vo-
cabulary of p(a | w). For example, we can en-
force header and closing operations only on a full
and empty stack respectively. Further, we can also
query the KG with nodes involved in the path on
the top of the stack, to restrict the possible rela-
tions to predict. For example in Figure 2, bottom,
to predict the KG relation state we restrict it to
incoming or outgoing KG relations of the node Ma—
harashtra. Finally, we also obtain textual cues
to predict the KG relation, see Supporting Text
in Figure 2. In Section 3 we describe how textual
cues are incorporated into the model, allowing to
avoid encoding AMR explicitly.

For completeness, Figure. 3 shows the oracle
for a quantitative question requiring filtering by
a secondary variable. In this case, the Propbank
frame have-degree-91 indicates the possibility of a
secondary variable zall. Due to SPARQL’s lack of
schema, sometimes KG relations exist that remove
the need for secondary variables e.g. largestC—
ity allows already to answer Which is the largest
city in x?. The transpiler must thus learn when to
REDUCE these additional variables. It is unlikely
that the model can determine the KG structure from
the limited data, but the constrained decoding plus
some general regularities give the model an oppor-
tunity to learn when to reduce.

3 Transition Model with Inductive Bias

We parametrize p(a | w) using an off-the-shelf
sequence to sequence model such as the performant

Transformer model (Vaswani et al., 2017) or its pre-
trained versions (Lewis et al., 2019; Raffel et al.,
2019). The model leans to imitate the oracle: it
predicts the header, then proceeds over the path
stack of the state machine to predict KG relations
and the closing actions.

3.1 Constrained Decoding

Since the target side is a formal description and it
evolves according to a state-machine, it is possible
to add inductive bias by masking the output vocab-
ulary to prevent the model from selecting forbidden
actions:

plag | acy, w) o< exp(f(a<y, w) +mla<, w))
(6)
where f(a<t, w) is e.g. a BART with the last soft-
max layer removed and m(a<¢, w) is a mask based
on the state of the machine i.e. a deterministic func-
tion of the input sentence w and action history a,
that can be set to —oo to forbid actions.

For the proposed model, masking is used to per-
form header actions only at the beginning of the
action sequence and closing actions only at the end.
In addition, when the AMR path at the top of the
stack contains entity nodes, the KG is queried and
the mask is set to restrict the actions to the appro-
priate KG relations. The relation’s prefix > and
direction is also obtained in this process.

These constrains are applied at decoding time
only. As shown in the experimental setup, con-
strained decoding has a fundamental effect on per-
formance.

3.2 Encoding the Transpiler State

The mechanism described above allows the se-
quence to sequence model to become partially
aware of KG topology, but it does not allow for
a proper encoding of the machine state. Since the
state involves proceeding over a stack of AMR
paths, a lot of relevant information is lost. One
possible option would be to feed the AMR as ad-
ditional input to BART, but this would force the
model to learn to interpret its structure, increase
the input size by a factor above 2 (likely 3 — 5) and
thus making the model considerably slower.

As shown in (Fernandez Astudillo et al., 2020;
Zhou et al., 2021a,b), notable gains can be attained
by encoding the parser state in one or more atten-
tion heads of the Transformer. In their work, the

*PREFIX dbo: http://dbpedia.org/ontology/, PREFIX dbp:
http://dbpedia.org/property/

h/have-degree-91

ARG5S

A
p/person
ARGO-of

ARG1
[l

[h 1/have-org-role-9 1]

ARG3
pl/play-01 ||

|
the tallest player of

Gl

- wiki "http://dbpedia.org/resource/
cam Atlanta_Falcons"

name

op p2

|
the Atlanta

(”Atlanta”) ("Falcons”)
| |

Who is Falcons ?
(Path Stack: Supporting Text: Actions: SPARQL:
SELECT SELECT DISTINCT ?p WHERE {
of Atlanta Falcons team ?p <dbo:team> <dbr:Atlanta_Falcons>
lfdfllﬁﬁj tallest of height ?p <dbo:height> 2t
;:JETEJ;}B}{; DESC } ORDER BY DESC (?t) OFFSET 0 LIMIT 1

Figure 3: Question from the QALD train set: Who is the tallest player of the Atlanta Falcons?. Top: Sentence w
aligned to its AMR graph g (input) and 3 relevant subgraphs identified by by applying Table 1 (a, b, d, f): unknown
variable (amr-unknown+have-degree-91), quantitative (optional) secondary variable (have-degree-91), linked
entity (wiki). Bottom box: All decoding timesteps including implicit machine state defined by the AMR path stack,
explicit machine state defined by the supporting text, oracle action sequence a and resulting SPARLQ s (output).

stack contains input words which are used to mask
the cross-attention mechanism of one or two heads
of the Transformer to attend only the stack con-
tents. In our model, however, the stack contains
AMR paths, rather than words. To resolve this, we
propose to attend the words aligned to the nodes
in the path at the top of the stack. Therefore, we
are attending to the part of the sentence w aligned
to the path of g for which we are going to predict
arelation. As depicted in Figures 2 and 3, our ap-
proach provides an additional supporting text for
every transpiler decision. The use of the supporting
text helps the explainability of the model decisions,
but also, as show in the experimental setup, plays
an important role in performance.

4 Experimental Setup

4.1 Datasets

To evaluate our system, we used two standard
KBQA datasets on DBpedia and followed the par-
titions in (Kapanipathi et al., 2021).

LC-QuAD 1.0 (Trivedi et al., 2017) is a dataset
with 4,000 questions for training and 1,000 ques-
tions for test, created from templates. More than

80% of its questions contain two or more relations.
Our modules are evaluated against a random sam-
ple of 200 questions from the training set. We also
held out a second dev set of 200 questions to pre-
vent overfit. LC-QuAD 1.0 predominantly focuses
on the multi-relational questions, aggregation (e.g.
COUNT) and simple questions.

QALD-9 (Usbeck et al., 2017) is a dataset with
408 training and 150 test questions in natural lan-
guage, from DBpedia. Each question has an asso-
ciated SPARQL query and gold answer set. We
created a randomly chosen development set of 98
questions for evaluating individual modules and a
secondary dev set of 63 questions to prevent over-
fit. QALD-9 contains much complex queries than
LC-QuAD 1.0 including more realistic quantita-
tive questions requiring secondary unknowns, time
constructs and other.

4.2 AMR Parsing and State Machine

We used the Action Pointer Transformer (APT)
transition-based parser (Zhou et al., 2021a) which
provides alignments between surface tokens. As
in most AMR parsers, entitity linking is delegated
to BLINK (Wu et al., 2020) and applied as a post-

LC-QuAD 1.0 QALD-9
Oracle (F1) System (F1) || Oracle (F1) System (F1)
All AMR Constructs 68.7 47.4 67.0 53.6
no time construct, Table 1 (h) 69.8 54.7 67.0 50.5
no quant. constructs, Table 1 (f, g) 68.7 54.6 68.2 47.5
no time and no quant. constructs 69.8 56.5 68.2 454
Gold EL | 787 631 | 7715 58.6

Table 2: Ablation study measuring the effect of oracle constructs and Entity Linking on oracle and trained model
peformances. Measured by F1 KBQA SPARQL on the dev set.

LC-QuAD 1.0 QALD-9

P R Fl| P R FI
TransQA mask 8 heads | 61.0 551 56.5 | 582 531 53.6
TransQA no mask 56.6 51.0 52.1 || 53.1 49.0 495
TransQA mask 5 heads 60.0 551 56.0 | 541 500 50.5
TransQA mask 12 heads 59.7 545 558 | 58.2 522 528
TransQA no constrained decoding using KG | 49.9 45.1 463 | 429 415 418

Table 3: Ablation study measuring the effect of constrained decoding and parser state encoding on BART. Measured

by F1 KBQA SPARQL on the dev set.

processing stage for each AMR named entity sub-
graph. However, arround 30% of DBPedia entities
are long spans of text, containing dates and loca-
tions and parsers often fail to produce the expected
named entity subgraphs. To provide accurate linked
entity subgraph detection, we run BLINK sepa-
rately and then attach the : wiki edge to the most
suitable node in the AMR, even if this is not a
named entity subgraph head. Linking the AMR
nodes to KG entities is attained by matching the
span of text aligned to a subgraph with the mention
via a greedy set of checks. Attachment to conven-
tional named entities is attempted first. For the
remaining 30% of the cases edit distance and fuzzy
match search are used to find a suitable alignment.
The path stack defining the state of the state ma-
chine is determined from the aligned AMR graph,
see Section 2.2. The same mechanism is used to
produce the oracle action sequences for training>.

4.3 Sequence to Sequence Model

We use BART (Lewis et al., 2020) implemented
in (Wolf et al., 2020) to parametrize p(a | w) and
learn to imitate the oracle. We implement both
constrained decoding at test time and parser state

*We use spacy https://spacy.io/ part-of-speech
for Table 1, e

encoding by masking 8/16 cross-attention heads
both at train and test time, see Section 3.

For LC-QuAD 1.0 we used the train set compris-
ing of 3,600 questions. The LC-QuAD 1.0 model
was trained for 13 epochs with a learning rate of
5¢~5. For development we built a QALD-9 model
with the 3,600 LC-QuAD 1.0 and 247 QALD-9 ex-
amples from the designated train set. We trained for
14 epochs and used a learning rate of 4e~°. The fi-
nal QALD-9 model is trained with all available data
(4,000 LcQuAD 1.0 and 408 QALD-9 examples)
including the dev set. We upsample the QALD-9 5
times to balance between the two datasets and we
trained the model for 16 epochs. The upsampling
ratio and the number of epochs are determined on
the QALD-9 dev. For both models we set the max
input sequence length to 64 tokens, max target se-
quence length to 32 tokens and beam size to 4. We
used the Adam optimizer with standard parameters
and trained on a V100 Nvidia GPU.

5 Results

In all experiments we refer to our system com-
posed of the Oracle, the KBQA BART model, and
the State Machine as TransQA. We analyze the
impact of different components and we compare
with prior work. We report the Macro Precision (P),

https://spacy.io/

LC-QuAD 1.0 QALD-9

P R F1 P R F1
NSQA (Kapanipathi et al., 2021) 448 458 445 | 314 322 309
EDGQA (Hu et al., 2021) 50.5 56.0 53.1 | 31.3 403 32.0
STaG-QA (Ravishankar et al., 2021) | 76.5 52.8 514 - - -
TransQA (our system) 572 529 533 36.1 308 31.6

Table 4: KBQA SPARQL Test Result. Training data from Lc-QuAD 1.0 (4K examples) and QALD (408 example).

Macro Recall (R), and Macro F1 scores by compar-
ing the gold answers to the answers that TransQA
generates when executing its predicted SPARQL.
QALD-9 provides the gold answer directly. LC-
QuAD 1.0 provides the gold SPARQL which we
execute to obtain the gold result.

5.1 System and Oracle Performance

Table 2 shows the ablation of AMR components
and its effect on the SPARQL performance for both
the oracle and our system. As expected, the whole
approach is dependent on the Entity Linking per-
formance of BLINK. The used model had a F1
score of 86.0 in both LC-QuAD 1.0 dev and test,
84.0 on QALD-9 dev and 72.3 on QALD-9 test,
as measured against entities present in the queries.
If we assume the EL performance is perfect, we
get a large improvement both in oracle and trained
model, gaining 9 points on both corpora. We also
examine the performance gap between the oracle
action sequence and the system sequence predicted
with BART. There is a difference of 13 points be-
tween the oracle and the BART system on both
datasets. This difference between the oracle and
BART is more that 15 points when using the gold
entities.

We ablate the time and quantitative constructs
of the oracle detailed in Section 2.2 and Table 1.
Results show that these constructs have a much
larger effect on the trained model than on the oracle,
indicating their importance for learning regularities.
The LC-QuAD 1.0 dataset is template based and
the SPARQL queries require simple conjunction of
the matching KG triples. For superlative relations
in LC-QuAD 1.0 the appropriate relation exists in
the KG and there is no need for additional actions.
For this reason, it does not benefit form the use
of the corresponding AMR constructs. QALD-9,
on the contrary, benefits equally both from time
and quantitative subgraph handling, with a positive
effect both in oracle and on the trained system.

It is worth noting that the trained system showed,
on the dev set*, the ability to handle complex regu-
larities, despite the limited training data. For exam-
ple it showed the ability to differentiate superlative
questions that can be solved directly with a rela-
tion, such as largestCity, from situations that
require an additional secondary variable.

5.2 Parser State Encoding

In Table 3 we show the importance of incorporat-
ing the state machine into the BART model on the
LC-QuAD 1.0 and QALD-9 dev sets. Regarding
encoding of the parser state through cross-attention
masking, see 3.2, its use provides clear gains of
4 points on both corpora. Variations of the opti-
mal number of heads (8/16) yield also sub-optimal
results although by a smaller margin.

We also explore the effect of the constrained
decoding using the KG grammar to restrict the
action of every decoding step, described in Section
3.1. The use of constrained decoding has a very
large effect of 10 points on LC-QuAD 1.0 and 12
points on QALD-9. This is likely because of the
large reduction on possible decoding options, but
also because it provides some knowledge about the
KG structure.

5.3 Comparison with other Approaches

Table 4 compares the proposed approach with re-
cent related works. Against the most directly re-
lated, NSQA (Kapanipathi et al., 2021) we obtain
an increase of 9 F1 points on the LC-QuAD 1.0
dataset, and 0.7 F1 points for QALD-9. It should be
noted that our approach exploits the same inductive
biases, but eliminates deterministic transformations
and the need for additional modules such as rela-
tion linkers, making it much simpler.

EDGQA is a recent approach making use of mul-
tiple rules to attain KBQA. Against it, we obtain

*We avoided result analysis on the test set to prevent corpus
overfitting.

a modest increase on LC-QuAD and are 0.4 be-
low on QALD. This slight gap is likely caused by
differences in the entity linking approach, as dis-
cussed in the previous section. EDGQA uses an
ensemble three entity linking tools: Dexter (Cecca-
relli et al., 2014), EARL (Dubey et al., 2018) and
Falcon (Sakor et al., 2019) as one entity retriever.

Finally we also compare our approach with the
contemporaneous STaG-QA (Ravishankar et al.,
2021), that uses a sketch approach and learns end-
to-end. This work does not provide QALD-9 re-
sults, but provides LC-QuAD 1.0 which we outper-
form by almost 2 points. The authors also present
LC-QuAD 1.0 results with a model pretrained with
additional out-of-domain gold data (30,000 sen-
tences) from LC-QuAD 2.0 and they obtain an F1
score of 53.6. This results is provided for com-
pleteness but is not directly comparable with our
approach.

6 Related work

The work (Kapanipathi et al., 2021) introduces the
Neuro-Symbolic Question Answering (NSQA) and
is the most directly related to ours. NSQA also
leverages AMR parses and a super-set of the map-
pings in Table 1. It however applies this mappings
deterministically and proposes additional rules to
deal with structural and granularity mismatch be-
tween the AMR graph and the KG. It also trains sep-
arate modules for relation linking and handling of
logic and integrates all approaches into one single
SPARQL hypothesis. By contrast this work makes
uses of a small set of mappings between AMR and
SPARQL and proposes a transition-based approach
that learns to use them, resulting on a simpler sys-
tem that is more performant on average while ex-
ploiting the same inductive biases.

EDGQA (Hu et al., 2021) is a rule based system
for KBQA over DBpedia. They propose a custom
Entity Description Graph (EDG) to represent the
structure of complex questions, rather than relying
on established formalists such as AMR. This for-
malism is also constructed using a rule-based ques-
tion decomposition technique, which is likely to
generalize worse than state-of-the-art AMR parsers.
EDGQA also uses an ensemble of several entity
linking models that is likely to provide an addi-
tional advantage, easily portable to our approach.

Another system making abundant use of rules is
(Yih et al., 2015), which proposes a semantic pars-
ing approach for KBQA specialized for Freebase.

They describe a rule based system called STAGG
(Staged Query Graph Generation) that iteratively
expands the graph from entities by following KG
relations using a similarity function.

More recently (Saparina and Osokin, 2021)
proposes a system for KBQA and intermediate
representation based on Question Decomposition
Meaning Representation (QDMR) (Wolfson et al.,
2020), a lightweight semantic parsing scheme,
based on breaking down sentences. This is com-
pleted with a non-trainable transpiler component
that transforms the intermediate representation into
SPARQL queries.

All of the described systems can be seen as non
learnable transpilers of custom or relatively unfre-
quent semantic formalisms. Compared to these
we provide an approach that automatically learns
transpilation, on top of the well established AMR.

The contemporaneous work (Ravishankar et al.,
2021) proposes a two stage text to SPARQL system
that first generates a query skeleton learned end-to-
end with a sequence to sequence model, and then
performs beam search to find optimal grounding
of the skeleton into a target KG. In contrast, our
approach introduces structure into the sequence
to sequence modeling, allowing to easily relate
SPARQL, AMR and input text while having a bet-
ter performance on equal conditions.

Regarding the modeling of the parser state on
Transformers, (Fernandez Astudillo et al., 2020)
showed the benefit of masking cross attention heads
to reflect the content of buffer and stack, while
(Zhou et al., 2021b) demostrated that this still
works for pre-trained sequence to sequence mod-
els. Here we take this technique one step further
and show that it is possible avoid encoding AMR
by using an extension of this approach and that it
has a stronger impact in performance compared to
Structured-BART (Zhou et al., 2021Db).

7 Conclusions

We have introduced an approach for KBQA that
transpiles a well established semantic representa-
tion, AMR, obtained from an off-the-shelf parser,
into SPARQL. This transpiling operation is learned
through a transition-based approach, rather than
being rule-based as in previous approaches. AMR
encoding is also avoided by encoding the parser
state resulting in a simpler model that outperforms
recent state-of-the art approaches on LC-QuAD.

References

Diego Ceccarelli, Claudio Lucchese, Salvatore Orlando,
R. Perego, and Salvatore Trani. 2014. Dexter 2.0 -
an open source tool for semantically enriching data.
In SEMWERB.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. TyDi QA: A benchmark
for information-seeking question answering in typo-
logically diverse languages. Transactions of the As-
sociation for Computational Linguistics, 8:454—470.

Dennis Diefenbach, Andreas Both, Kamal Deep Singh,
and Pierre Maret. 2020. Towards a question answer-

ing system over the semantic web. Semantic Web,
11:421-439.

Mohnish Dubey, Debayan Banerjee, Debanjan Chaud-
huri, and Jens Lehmann. 2018. Earl: Joint entity and
relation linking for question answering over knowl-
edge graphs.

Ramoén Fernandez Astudillo, Miguel Ballesteros, Tahira
Naseem, Austin Blodgett, and Radu Florian. 2020.
Transition-based parsing with stack-transformers. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 1001-1007, Online.
Association for Computational Linguistics.

Xixin Hu, Yiheng Shu, Xiang Huang, and Yuzhong
Qu. 2021. Edg-based question decomposition for
complex question answering over knowledge bases.
In The Semantic Web — ISWC 2021, pages 128-145,
Cham. Springer International Publishing.

Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravis-
hankar, Salim Roukos, Alexander Gray, Ramoén Fer-
nandez Astudillo, Maria Chang, Cristina Cornelio,
Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio
Gliozzo, Sairam Gurajada, Hima Karanam, Naweed
Khan, Dinesh Khandelwal, Young-Suk Lee, Yunyao
Li, Francois Luus, Ndivhuwo Makondo, Nandana
Mihindukulasooriya, Tahira Naseem, Sumit Neelam,
Lucian Popa, Revanth Gangi Reddy, Ryan Riegel,
Gaetano Rossiello, Udit Sharma, G P Shrivatsa Bhar-
gav, and Mo Yu. 2021. Leveraging Abstract Mean-
ing Representation for knowledge base question an-
swering. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3884-3894, Online. Association for Computational
Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Matthew Kelcey,
Jacob Devlin, Kenton Lee, Kristina N. Toutanova,
Llion Jones, Ming-Wei Chang, Andrew Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Transactions of the Association of Compu-
tational Linguistics.

Mike Lewis and Angela Fan. 2019. Generative question
answering: Learning to answer the whole question.

In International Conference on Learning Representa-
tions.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.
arXiv preprint arXiv:1910.13461.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics.
Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. In ACL.

Srinivas Ravishankar, June Thai, Ibrahim Abdelaziz,
Nandana Mihindukulasooriya, Tahira Naseem, Pavan
Kapanipathi, Gaetano Rossiello, and Achille Fokoue.
2021. A two-stage approach towards generalization
in knowledge base question answering.

Ahmad Sakor, Isaiah Onando Mulang’, Kuldeep Singh,
Saeedeh Shekarpour, Maria Esther Vidal, Jens
Lehmann, and Séren Auer. 2019. Old is gold: Lin-
guistic driven approach for entity and relation linking
of short text. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2336-2346, Minneapolis, Minnesota. Association for
Computational Linguistics.

Irina Saparina and Anton Osokin. 2021. Sparqgling
database queries from intermediate question decom-
positions. In EMNLP.

Priyansh Trivedi, Gaurav Maheshwari, Mohnish Dubey,
and Jens Lehmann. 2017. Lc-quad: A corpus for
complex question answering over knowledge graphs.

Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Bastian
Haarmann, Anastasia Krithara, Michael Roder, and
Giulio Napolitano. 2017. 7th open challenge on ques-
tion answering over linked data (qald-7). In Semantic
Web Challenges, pages 59-69, Cham. Springer Inter-
national Publishing.

Svitlana Vakulenko, Javier David Fernandez Garcia,
Axel Polleres, M. de Rijke, and Michael Cochez.
2019. Message passing for complex question answer-
ing over knowledge graphs. Proceedings of the 28th
ACM International Conference on Information and
Knowledge Management.

https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.1162/tacl_a_00317
https://doi.org/10.18653/v1/2020.findings-emnlp.89
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://openreview.net/forum?id=Bkx0RjA9tX
https://openreview.net/forum?id=Bkx0RjA9tX
https://openreview.net/forum?id=Bkx0RjA9tX
http://arxiv.org/abs/2111.05825
http://arxiv.org/abs/2111.05825
http://arxiv.org/abs/2111.05825
https://doi.org/10.18653/v1/N19-1243
https://doi.org/10.18653/v1/N19-1243
https://doi.org/10.18653/v1/N19-1243
https://doi.org/10.18653/v1/N19-1243
https://doi.org/10.18653/v1/N19-1243
https://doi.org/10.1007/978-3-319-68204-4_22
https://doi.org/10.1007/978-3-319-68204-4_22
https://doi.org/10.1007/978-3-319-68204-4_22

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Tomer Wolfson, Mor Geva, Ankit Gupta, Matt Gard-
ner, Yoav Goldberg, Daniel Deutch, and Jonathan
Berant. 2020. Break it down: A question understand-
ing benchmark. Transactions of the Association for
Computational Linguistics, 8:183—198.

Ledell Yu Wu, Fabio Petroni, Martin Josifoski, Sebas-
tian Riedel, and Luke Zettlemoyer. 2020. Scalable
zero-shot entity linking with dense entity retrieval.
In EMNLP.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jian-
feng Gao. 2015. Semantic parsing via staged query
graph generation: Question answering with knowl-
edge base. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1321-1331, Beijing, China. Association for
Computational Linguistics.

Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang, Hang
Li, and Xiaoming Li. 2016. Neural generative ques-
tion answering. ArXiv, abs/1512.01337.

Tao Yu, Rui Zhang, Kai-Chou Yang, Michihiro Ya-
sunaga, Dongxu Wang, Zifan Li, James Ma, Irene Z
Li, Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir R. Radev. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. In EMNLP.

Jiawei Zhou, Tahira Naseem, Ramoén Fernandez As-
tudillo, and Radu Florian. 2021a. AMR parsing with
action-pointer transformer. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 5585-5598, On-
line. Association for Computational Linguistics.

Jiawei Zhou, Tahira Naseem, Ramoén Fernandez As-
tudillo, Young-Suk Lee, Radu Florian, and Salim
Roukos. 2021b. Structure-aware fine-tuning of
sequence-to-sequence transformers for transition-
based AMR parsing. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 6279-6290, Online and

10

Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Lei Zou, Ruizhe Huang, Haixun Wang, Jeffrey Yu, Wen-

giang He, and Dongyan Zhao. 2014. Natural lan-
guage question answering over rdf - a graph data
driven approach. Proceedings of the ACM SIGMOD
International Conference on Management of Data.

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1162/tacl_a_00309
https://doi.org/10.1162/tacl_a_00309
https://doi.org/10.1162/tacl_a_00309
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.3115/v1/P15-1128
https://doi.org/10.18653/v1/2021.naacl-main.443
https://doi.org/10.18653/v1/2021.naacl-main.443
https://doi.org/10.18653/v1/2021.naacl-main.443
https://aclanthology.org/2021.emnlp-main.507
https://aclanthology.org/2021.emnlp-main.507
https://aclanthology.org/2021.emnlp-main.507
https://aclanthology.org/2021.emnlp-main.507
https://aclanthology.org/2021.emnlp-main.507
https://doi.org/10.1145/2588555.2610525
https://doi.org/10.1145/2588555.2610525
https://doi.org/10.1145/2588555.2610525
https://doi.org/10.1145/2588555.2610525
https://doi.org/10.1145/2588555.2610525

