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Abstract

We propose a transition-based system to tran-001
spile Abstract Meaning Representation (AMR)002
into SPARQL for Knowledge Base Question003
Answering (KBQA). This allows to delegate004
part of the abstraction problem to a strongly005
pre-trained semantic parser, while learning tran-006
spiling with small amount of paired data. We007
departure from recent work relating AMR and008
SPARQL constructs, but rather than applying009
a set of rules, we teach the BART model to010
selectively use these relations. Further, we011
avoid explicitly encoding AMR but rather en-012
code the parser state in the attention mechanism013
of BART, following recent semantic parsing014
works. The resulting model is simple, provides015
supporting text for its decisions, and outper-016
forms recent progress in AMR-based KBQA017
on LC-QuAD (F1 53.4), and QALD (F1 31.6),018
while exploiting the same inductive biases.019

1 Introduction020

Question Answering over Knowledge Bases021

(KBQA) (Zou et al., 2014; Vakulenko et al., 2019;022

Diefenbach et al., 2020) concerns the answering of023

natural questions by retrieving the information con-024

tained in a Knowledge Graph (KG). Compared to025

other automatic QA tasks, such as reading compre-026

hension (Rajpurkar et al., 2018; Kwiatkowski et al.,027

2019; Clark et al., 2020), or free text generation028

(Lewis and Fan, 2019; Yin et al., 2016), KBQA029

has the advantage of producing answers backed030

against structured repositories of information, of-031

fering strong factual accuracy guarantees. Solving032

KBQA amounts to transforming a natural language033

question into some programming language, usu-034

ally a query language such as SQL or SPARQL. It035

is thus considered a form of executable semantic036

parsing. We illustrate the KBQA task in Figure 1.037

While some large KBQA datasets exist (Yu et al.,038

2018), the amount of paired examples, i.e. aligned039

PREFIX dbr:http://dbpedia.org/resource/
PREFIX dbo:http://dbpedia.org/ontology/
PREFIX dbp:http://dbpedia.org/property/
SELECT DISTINCT ?uri WHERE {

?x <dbp:state> <dbr:Maharashtra>.
?x <dbo:sport> ?uri.

}

Figure 1: SPARQL graph for the question Name some
sports played in institutions of Maharashtra?. ?uri is
the unknown variable (related to sports) and ?x is an
intermediate variable (related to institution), needed to
relate the unknown with the KG entity (Maharashtra).

natural language and query language pairs, is gen- 040

erally scarce (Trivedi et al., 2017; Usbeck et al., 041

2017). Furthermore, human language exhibits large 042

variability, and obtaining enough training pairs for 043

specific domains or infrequent natural language for- 044

mulations requires large annotations investments. 045

Often, real world implementations of KBQA end 046

up containing a number of domain specific hand- 047

made rules that are costly to maintain and expand. 048

The need to manipulate a formal representation in 049

the target side with only a few examples, makes this 050

task harder to learn compared to other QA tasks. 051

In order to mitigate the data availability problem 052

(Kapanipathi et al., 2021) proposed to delegate part 053

of the task to an Abstract Meaning Representation 054

(AMR) parse that incorporates additional semantic 055

information. This work identifies associations be- 056

tween certain AMR nodes and SPARQL variables 057

as well as a associations between AMR sub-graphs 058

and relations in a KG. Unfortunately, these AMR to 059

SPARQL mappings are imperfect, suffering from 060

coverage and granularity mismatch. Another con- 061

cern with AMR-based approaches is the encoding 062

of the AMR itself which can be challenging and 063

implies an additional learning burden. 064

Taking these limitations into account, in this 065

work we propose a new approach to leverage AMR 066

parsing for KBQA that learns to transpile AMR 067
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Propbank/AMR SPARQL mapping

a :e (n/amr-unknown) if e ̸= :polarity then map n to unknown variable
b have-degree-91 :ARG1 amr-unknown :ARG5 n map n to unknown variable (override a)
c n :mode imperative :ARG1 n2 if n is root then map n2 to unknown variable

d n :wiki c subgraph below n mapped to KG entity c

e n2 <ancestor of> n :wiki c map first n2 aligned to noun to (optional) secondary variable
f have-degree-91 :ARG2 n n is (optional) secondary variable (quantitative)
g have-quant-91 :ARG1-of n n is (optional) secondary variable (quantitative)
h :time n is (optional) secondary variable

Table 1: Relations between SPARQL and AMR constructs. This is a subset from (Kapanipathi et al., 2021). Note
that :wiki can be attached above AMR entity subgraphs, unlike conventional AMR. See realignment in Section 4

into the SPARQL query language. The contribu-068

tions can be summarized as follows069

• In the spirit of transition-based semantic pars-070

ing, we develop state machine and an oracle071

that transpiles AMR into SPARQL and learn072

to imitate it with a BART (Lewis et al., 2019)073

based model for KBQA.074

• This oracle leverages known relations (i.e.075

similarities) between AMR and SPARQL (Ka-076

panipathi et al., 2021), but rather than apply-077

ing them deterministically as in prior work,078

we teach the model when to use them.079

• We show that it is not necessary to encode080

AMR directly, but rather encoding the tran-081

spiler state through attention masking as in082

(Fernandez Astudillo et al., 2020) suffices.083

• The resulting transpiler outperforms (Kapani-084

pathi et al., 2021) by 9 F1 points on LcQUAD085

and matches it on QALD, while being simpler086

and exploiting the same inductive biases.087

2 AMR to SPARQL Machine and Oracle088

Here we propose to apply the transition-based ap-089

proach, well known in syntactic and semantic pars-090

ing, to learn to transpile AMR to SPARQL.091

2.1 A Transition-based Transpiler092

The objective is to learn to predict the SPARQL093

query s corresponding to the natural language ques-094

tion w, by transforming its AMR parse g.095

At its core, a transition-based approach learns to096

predict a sequence of actions a from w, that applied097

to a non-parametric state machine yield s.098

s = M(a, g) (1)099

What the actions are, needs to be determined for100

each problem. Generally, for transpiling AMR101

we can define a non-parametric oracle that given 102

the original sentence, its AMR and the SPARQL, 103

yields the actions 104

a = O(s, g, w). (2) 105

The oracle is only needed to generate the tuples 106

(w, g, a) for training. With these, one can use the 107

oracle as a teacher to train the sequence to sequence 108

model p(a | w) and predict the SPARQL as 109

ŝ = M(â, g) (3) 110

where g is obtained from an AMR parse of w and 111

â is obtained with conventional decoding. 112

â = argmax
a

{p(a | w)} (4) 113

It is often useful to use the state of the state machine 114

i.e. the parser state to constrain the output vocabu- 115

lary at every decoding step, and even at train time. 116

In this way one can forbid the machine from con- 117

sidering invalid actions and make mistakes, or put 118

additional strain in training. It has also been shown 119

that Transformer models benefit from dedicating 120

one or more attention heads to reflect the parser 121

state (Fernandez Astudillo et al., 2020) and this 122

applies also to pre-trained sequence to sequence 123

models (Zhou et al., 2021b). In Section 3 we detail 124

how we apply this strategy, and show that we can 125

avoid encoding the AMR through this mechanism. 126

It is important to note that the use of a state 127

machine generates a strong inductive bias, impos- 128

ing some specific way in which the sequence to 129

sequence problem can be solved. In this case we 130

leverage the bias to make the transpiler aware of 131

AMR path information, but it comes at the penalty 132

of not fully being able to recover all SPARQL 133

queries i.e. for some queries 134

s ̸= M(O(s, g, w), g) (5) 135
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Name some sports played in institutions of Maharashtra ?

n/name-01

imperatives/sport y/you

s2/some p/play-01

i/institution

s1/state "http://dbpedia.org/resource/Maharashtra"

name

"Maharashtra"

ARG0ARG1

ARG1-of

location

poss

name

mod

mode

op1

wiki

Path Stack: Supporting Text: Actions: SPARQL:

s1 i p s s1 i i p s

s1 i p s s1 i i p s

s1 i p s s1 i i p s

s1 i p s s1 i i p s

sports played institutions Maharashtra

institutions Maharashtra

sports played institutions

SELECT

REDUCE

state

sport

CLOSE

SELECT DISTINCT ?s WHERE {

?i <dbp:state> <dbr:Maharashtra>.

?i <dbo:sport> ?s.

}

Figure 2: Oracle for the LCQUAD train set sentence: Name some sports played in institutions of Maharashtra?.
Top: Sentence w aligned to its AMR graph g (input) and 3 relevant subgraphs identified by applying Table 1 (c, d,
e): unknown variable (imperative root), (optional) secondary variable (entity-adjacent nominal), linked entity
(wiki). Bottom box: All decoding timesteps including implicit machine state defined by the AMR path stack,
explicit machine state defined by the supporting text, oracle action sequence a and resulting SPARLQ s (output).

Throughout this work, it is also assumed that the136

AMR parser provides alignments between sentence137

w and AMR graph g. (Zhou et al., 2021a).138

2.2 Path-based Oracle and Machine139

The work in (Kapanipathi et al., 2021), showed that140

certain AMR subgraphs can be deterministically141

mapped to SPARQL elements, such as KG entities142

or unknown variables. The path algorithm (Kapani-143

pathi et al., 2021), identifies relevant paths between144

those subgraphs, and applies rules deterministically145

to obtain SPARQL variables and relations. These146

rules lead however to prediction errors, e.g. spuri-147

ous secondary variables, and suffer from granular-148

ity mismatch between AMR and KG graph.149

Here we propose an alternative approach. We150

consider all AMR paths obtained by applying only151

the subgraph mappings listed in Table 1 and high-152

lighted in Figure 2. The goal is to learn to predict a153

KG relation for every path or to ignore it. 154

We implement a state machine M(a, g) charac- 155

terized by the stack of paths of the AMR graph g. 156

To initialize the machine, we identify subgraphs 157

in g representing the unknown variable to return 158

in the query (red), entities in the KG (green) or 159

optional secondary variables, that may not exist in 160

the SPARQL (blue). We then fill a FIFO stack with 161

the paths between these subgraphs, starting by each 162

path between the unknown and entity, followed by 163

the paths involved their related optional variables 164

in Table 1 (e) and finally other optional variables. 165

The oracle a = O(s, g, w) then produces one of 166

the following actions1 at to be played on the state 167

machine 168

• {SELECT, ASK, COUNT}: Generate the 169

query header from a closed vocabulary 170

1The actions names do not reflect the literal SPARQL code
but are rather keywords indexing a more verbose string.
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• <KG relation>: Produce the KG relation for171

path at the top of the stack and REDUCE172

• REDUCE: Pop path at the top of the stack173

without predicting any KG relation174

• {CLOSE, ASC, DESC}: Close or perform175

query post processing i.e. top/bottom-k search176

The oracle starts by determining the header of177

the query and then proceeds over the stack of paths,178

predicting a KG relation for every path, or ignoring179

it (REDUCE). A KG relation is predicted when the180

path can be aligned to a SPARQL triple. Once the181

stack is empty, the oracle closes the machine or182

applies post-processing and closes. Figure 2 shows183

an example of a complete oracle action sequence.184

One fundamental advantage of the proposed ap-185

proach, is that it aligns by construction sentence186

w, AMR g and SPARQL s. This information can187

be used during decoding to restrict the output vo-188

cabulary of p(a | w). For example, we can en-189

force header and closing operations only on a full190

and empty stack respectively. Further, we can also191

query the KG with nodes involved in the path on192

the top of the stack, to restrict the possible rela-193

tions to predict. For example in Figure 2, bottom,194

to predict the KG relation state we restrict it to195

incoming or outgoing KG relations of the node Ma-196

harashtra. Finally, we also obtain textual cues197

to predict the KG relation, see Supporting Text198

in Figure 2. In Section 3 we describe how textual199

cues are incorporated into the model, allowing to200

avoid encoding AMR explicitly.201

For completeness, Figure. 3 shows the oracle202

for a quantitative question requiring filtering by203

a secondary variable. In this case, the Propbank204

frame have-degree-91 indicates the possibility of a205

secondary variable tall. Due to SPARQL’s lack of206

schema, sometimes KG relations exist that remove207

the need for secondary variables e.g. largestC-208

ity allows already to answer Which is the largest209

city in x?. The transpiler must thus learn when to210

REDUCE these additional variables. It is unlikely211

that the model can determine the KG structure from212

the limited data, but the constrained decoding plus213

some general regularities give the model an oppor-214

tunity to learn when to reduce.215

3 Transition Model with Inductive Bias216

We parametrize p(a | w) using an off-the-shelf217

sequence to sequence model such as the performant218

Transformer model (Vaswani et al., 2017) or its pre- 219

trained versions (Lewis et al., 2019; Raffel et al., 220

2019). The model leans to imitate the oracle: it 221

predicts the header, then proceeds over the path 222

stack of the state machine to predict KG relations 223

and the closing actions. 224

3.1 Constrained Decoding 225

Since the target side is a formal description and it 226

evolves according to a state-machine, it is possible 227

to add inductive bias by masking the output vocab- 228

ulary to prevent the model from selecting forbidden 229

actions: 230

p(at | a<t, w) ∝ exp(f(a<t, w) +m(a<t, w))
(6) 231

where f(a<t, w) is e.g. a BART with the last soft- 232

max layer removed and m(a<t, w) is a mask based 233

on the state of the machine i.e. a deterministic func- 234

tion of the input sentence w and action history a<t, 235

that can be set to −∞ to forbid actions. 236

For the proposed model, masking is used to per- 237

form header actions only at the beginning of the 238

action sequence and closing actions only at the end. 239

In addition, when the AMR path at the top of the 240

stack contains entity nodes, the KG is queried and 241

the mask is set to restrict the actions to the appro- 242

priate KG relations. The relation’s prefix 2 and 243

direction is also obtained in this process. 244

These constrains are applied at decoding time 245

only. As shown in the experimental setup, con- 246

strained decoding has a fundamental effect on per- 247

formance. 248

3.2 Encoding the Transpiler State 249

The mechanism described above allows the se- 250

quence to sequence model to become partially 251

aware of KG topology, but it does not allow for 252

a proper encoding of the machine state. Since the 253

state involves proceeding over a stack of AMR 254

paths, a lot of relevant information is lost. One 255

possible option would be to feed the AMR as ad- 256

ditional input to BART, but this would force the 257

model to learn to interpret its structure, increase 258

the input size by a factor above 2 (likely 3− 5) and 259

thus making the model considerably slower. 260

As shown in (Fernandez Astudillo et al., 2020; 261

Zhou et al., 2021a,b), notable gains can be attained 262

by encoding the parser state in one or more atten- 263

tion heads of the Transformer. In their work, the 264

2PREFIX dbo: http://dbpedia.org/ontology/, PREFIX dbp:
http://dbpedia.org/property/
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Who is the tallest player of the Atlanta Falcons ?

h/have-degree-91

p/person m/mostt/talla/amr-unknown

h1/have-org-role-91

p1/play-01 t1/team
"http://dbpedia.org/resource/
Atlanta_Falcons"

name

"Falcons""Atlanta"

ARG1 ARG2 ARG3ARG5

ARG0-of

ARG1

name

ARG3

op1 op2

wiki

Path Stack: Supporting Text: Actions: SPARQL:

t1 h1 p t h p

t1 h1 p t h p

t1 h1 p t h p

of Atlanta Falcons

tallest of

SELECT

team

height

DESC

SELECT DISTINCT ?p WHERE {

?p <dbo:team> <dbr:Atlanta_Falcons> .

?p <dbo:height> ?t

} ORDER BY DESC(?t) OFFSET 0 LIMIT 1

Figure 3: Question from the QALD train set: Who is the tallest player of the Atlanta Falcons?. Top: Sentence w
aligned to its AMR graph g (input) and 3 relevant subgraphs identified by by applying Table 1 (a, b, d, f): unknown
variable (amr-unknown+have-degree-91), quantitative (optional) secondary variable (have-degree-91), linked
entity (wiki). Bottom box: All decoding timesteps including implicit machine state defined by the AMR path stack,
explicit machine state defined by the supporting text, oracle action sequence a and resulting SPARLQ s (output).

stack contains input words which are used to mask265

the cross-attention mechanism of one or two heads266

of the Transformer to attend only the stack con-267

tents. In our model, however, the stack contains268

AMR paths, rather than words. To resolve this, we269

propose to attend the words aligned to the nodes270

in the path at the top of the stack. Therefore, we271

are attending to the part of the sentence w aligned272

to the path of g for which we are going to predict273

a relation. As depicted in Figures 2 and 3, our ap-274

proach provides an additional supporting text for275

every transpiler decision. The use of the supporting276

text helps the explainability of the model decisions,277

but also, as show in the experimental setup, plays278

an important role in performance.279

4 Experimental Setup280

4.1 Datasets281

To evaluate our system, we used two standard282

KBQA datasets on DBpedia and followed the par-283

titions in (Kapanipathi et al., 2021).284

LC-QuAD 1.0 (Trivedi et al., 2017) is a dataset285

with 4,000 questions for training and 1,000 ques-286

tions for test, created from templates. More than287

80% of its questions contain two or more relations. 288

Our modules are evaluated against a random sam- 289

ple of 200 questions from the training set. We also 290

held out a second dev set of 200 questions to pre- 291

vent overfit. LC-QuAD 1.0 predominantly focuses 292

on the multi-relational questions, aggregation (e.g. 293

COUNT) and simple questions. 294

QALD-9 (Usbeck et al., 2017) is a dataset with 295

408 training and 150 test questions in natural lan- 296

guage, from DBpedia. Each question has an asso- 297

ciated SPARQL query and gold answer set. We 298

created a randomly chosen development set of 98 299

questions for evaluating individual modules and a 300

secondary dev set of 63 questions to prevent over- 301

fit. QALD-9 contains much complex queries than 302

LC-QuAD 1.0 including more realistic quantita- 303

tive questions requiring secondary unknowns, time 304

constructs and other. 305

4.2 AMR Parsing and State Machine 306

We used the Action Pointer Transformer (APT) 307

transition-based parser (Zhou et al., 2021a) which 308

provides alignments between surface tokens. As 309

in most AMR parsers, entitity linking is delegated 310

to BLINK (Wu et al., 2020) and applied as a post- 311
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LC-QuAD 1.0 QALD-9
Oracle (F1) System (F1) Oracle (F1) System (F1)

All AMR Constructs 68.7 47.4 67.0 53.6
no time construct, Table 1 (h) 69.8 54.7 67.0 50.5
no quant. constructs, Table 1 (f, g) 68.7 54.6 68.2 47.5
no time and no quant. constructs 69.8 56.5 68.2 45.4

Gold EL 78.7 63.1 77.5 58.6

Table 2: Ablation study measuring the effect of oracle constructs and Entity Linking on oracle and trained model
peformances. Measured by F1 KBQA SPARQL on the dev set.

LC-QuAD 1.0 QALD-9
P R F1 P R F1

TransQA mask 8 heads 61.0 55.1 56.5 58.2 53.1 53.6

TransQA no mask 56.6 51.0 52.1 53.1 49.0 49.5
TransQA mask 5 heads 60.0 55.1 56.0 54.1 50.0 50.5
TransQA mask 12 heads 59.7 54.5 55.8 58.2 52.2 52.8

TransQA no constrained decoding using KG 49.9 45.1 46.3 42.9 41.5 41.8

Table 3: Ablation study measuring the effect of constrained decoding and parser state encoding on BART. Measured
by F1 KBQA SPARQL on the dev set.

processing stage for each AMR named entity sub-312

graph. However, arround 30% of DBPedia entities313

are long spans of text, containing dates and loca-314

tions and parsers often fail to produce the expected315

named entity subgraphs. To provide accurate linked316

entity subgraph detection, we run BLINK sepa-317

rately and then attach the :wiki edge to the most318

suitable node in the AMR, even if this is not a319

named entity subgraph head. Linking the AMR320

nodes to KG entities is attained by matching the321

span of text aligned to a subgraph with the mention322

via a greedy set of checks. Attachment to conven-323

tional named entities is attempted first. For the324

remaining 30% of the cases edit distance and fuzzy325

match search are used to find a suitable alignment.326

The path stack defining the state of the state ma-327

chine is determined from the aligned AMR graph,328

see Section 2.2. The same mechanism is used to329

produce the oracle action sequences for training3.330

4.3 Sequence to Sequence Model331

We use BART (Lewis et al., 2020) implemented332

in (Wolf et al., 2020) to parametrize p(a | w) and333

learn to imitate the oracle. We implement both334

constrained decoding at test time and parser state335

3We use spacy https://spacy.io/ part-of-speech
for Table 1, e

encoding by masking 8/16 cross-attention heads 336

both at train and test time, see Section 3. 337

For LC-QuAD 1.0 we used the train set compris- 338

ing of 3,600 questions. The LC-QuAD 1.0 model 339

was trained for 13 epochs with a learning rate of 340

5e−5. For development we built a QALD-9 model 341

with the 3,600 LC-QuAD 1.0 and 247 QALD-9 ex- 342

amples from the designated train set. We trained for 343

14 epochs and used a learning rate of 4e−5. The fi- 344

nal QALD-9 model is trained with all available data 345

(4,000 LcQuAD 1.0 and 408 QALD-9 examples) 346

including the dev set. We upsample the QALD-9 5 347

times to balance between the two datasets and we 348

trained the model for 16 epochs. The upsampling 349

ratio and the number of epochs are determined on 350

the QALD-9 dev. For both models we set the max 351

input sequence length to 64 tokens, max target se- 352

quence length to 32 tokens and beam size to 4. We 353

used the Adam optimizer with standard parameters 354

and trained on a V100 Nvidia GPU. 355

5 Results 356

In all experiments we refer to our system com- 357

posed of the Oracle, the KBQA BART model, and 358

the State Machine as TransQA. We analyze the 359

impact of different components and we compare 360

with prior work. We report the Macro Precision (P), 361

6
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LC-QuAD 1.0 QALD-9
P R F1 P R F1

NSQA (Kapanipathi et al., 2021) 44.8 45.8 44.5 31.4 32.2 30.9
EDGQA (Hu et al., 2021) 50.5 56.0 53.1 31.3 40.3 32.0
STaG-QA (Ravishankar et al., 2021) 76.5 52.8 51.4 - - -
TransQA (our system) 57.2 52.9 53.3 36.1 30.8 31.6

Table 4: KBQA SPARQL Test Result. Training data from Lc-QuAD 1.0 (4K examples) and QALD (408 example).

Macro Recall (R), and Macro F1 scores by compar-362

ing the gold answers to the answers that TransQA363

generates when executing its predicted SPARQL.364

QALD-9 provides the gold answer directly. LC-365

QuAD 1.0 provides the gold SPARQL which we366

execute to obtain the gold result.367

5.1 System and Oracle Performance368

Table 2 shows the ablation of AMR components369

and its effect on the SPARQL performance for both370

the oracle and our system. As expected, the whole371

approach is dependent on the Entity Linking per-372

formance of BLINK. The used model had a F1373

score of 86.0 in both LC-QuAD 1.0 dev and test,374

84.0 on QALD-9 dev and 72.3 on QALD-9 test,375

as measured against entities present in the queries.376

If we assume the EL performance is perfect, we377

get a large improvement both in oracle and trained378

model, gaining 9 points on both corpora. We also379

examine the performance gap between the oracle380

action sequence and the system sequence predicted381

with BART. There is a difference of 13 points be-382

tween the oracle and the BART system on both383

datasets. This difference between the oracle and384

BART is more that 15 points when using the gold385

entities.386

We ablate the time and quantitative constructs387

of the oracle detailed in Section 2.2 and Table 1.388

Results show that these constructs have a much389

larger effect on the trained model than on the oracle,390

indicating their importance for learning regularities.391

The LC-QuAD 1.0 dataset is template based and392

the SPARQL queries require simple conjunction of393

the matching KG triples. For superlative relations394

in LC-QuAD 1.0 the appropriate relation exists in395

the KG and there is no need for additional actions.396

For this reason, it does not benefit form the use397

of the corresponding AMR constructs. QALD-9,398

on the contrary, benefits equally both from time399

and quantitative subgraph handling, with a positive400

effect both in oracle and on the trained system.401

It is worth noting that the trained system showed, 402

on the dev set4, the ability to handle complex regu- 403

larities, despite the limited training data. For exam- 404

ple it showed the ability to differentiate superlative 405

questions that can be solved directly with a rela- 406

tion, such as largestCity, from situations that 407

require an additional secondary variable. 408

5.2 Parser State Encoding 409

In Table 3 we show the importance of incorporat- 410

ing the state machine into the BART model on the 411

LC-QuAD 1.0 and QALD-9 dev sets. Regarding 412

encoding of the parser state through cross-attention 413

masking, see 3.2, its use provides clear gains of 414

4 points on both corpora. Variations of the opti- 415

mal number of heads (8/16) yield also sub-optimal 416

results although by a smaller margin. 417

We also explore the effect of the constrained 418

decoding using the KG grammar to restrict the 419

action of every decoding step, described in Section 420

3.1. The use of constrained decoding has a very 421

large effect of 10 points on LC-QuAD 1.0 and 12 422

points on QALD-9. This is likely because of the 423

large reduction on possible decoding options, but 424

also because it provides some knowledge about the 425

KG structure. 426

5.3 Comparison with other Approaches 427

Table 4 compares the proposed approach with re- 428

cent related works. Against the most directly re- 429

lated, NSQA (Kapanipathi et al., 2021) we obtain 430

an increase of 9 F1 points on the LC-QuAD 1.0 431

dataset, and 0.7 F1 points for QALD-9. It should be 432

noted that our approach exploits the same inductive 433

biases, but eliminates deterministic transformations 434

and the need for additional modules such as rela- 435

tion linkers, making it much simpler. 436

EDGQA is a recent approach making use of mul- 437

tiple rules to attain KBQA. Against it, we obtain 438

4We avoided result analysis on the test set to prevent corpus
overfitting.

7



a modest increase on LC-QuAD and are 0.4 be-439

low on QALD. This slight gap is likely caused by440

differences in the entity linking approach, as dis-441

cussed in the previous section. EDGQA uses an442

ensemble three entity linking tools: Dexter (Cecca-443

relli et al., 2014), EARL (Dubey et al., 2018) and444

Falcon (Sakor et al., 2019) as one entity retriever.445

Finally we also compare our approach with the446

contemporaneous STaG-QA (Ravishankar et al.,447

2021), that uses a sketch approach and learns end-448

to-end. This work does not provide QALD-9 re-449

sults, but provides LC-QuAD 1.0 which we outper-450

form by almost 2 points. The authors also present451

LC-QuAD 1.0 results with a model pretrained with452

additional out-of-domain gold data (30,000 sen-453

tences) from LC-QuAD 2.0 and they obtain an F1454

score of 53.6. This results is provided for com-455

pleteness but is not directly comparable with our456

approach.457

6 Related work458

The work (Kapanipathi et al., 2021) introduces the459

Neuro-Symbolic Question Answering (NSQA) and460

is the most directly related to ours. NSQA also461

leverages AMR parses and a super-set of the map-462

pings in Table 1. It however applies this mappings463

deterministically and proposes additional rules to464

deal with structural and granularity mismatch be-465

tween the AMR graph and the KG. It also trains sep-466

arate modules for relation linking and handling of467

logic and integrates all approaches into one single468

SPARQL hypothesis. By contrast this work makes469

uses of a small set of mappings between AMR and470

SPARQL and proposes a transition-based approach471

that learns to use them, resulting on a simpler sys-472

tem that is more performant on average while ex-473

ploiting the same inductive biases.474

EDGQA (Hu et al., 2021) is a rule based system475

for KBQA over DBpedia. They propose a custom476

Entity Description Graph (EDG) to represent the477

structure of complex questions, rather than relying478

on established formalists such as AMR. This for-479

malism is also constructed using a rule-based ques-480

tion decomposition technique, which is likely to481

generalize worse than state-of-the-art AMR parsers.482

EDGQA also uses an ensemble of several entity483

linking models that is likely to provide an addi-484

tional advantage, easily portable to our approach.485

Another system making abundant use of rules is486

(Yih et al., 2015), which proposes a semantic pars-487

ing approach for KBQA specialized for Freebase.488

They describe a rule based system called STAGG 489

(Staged Query Graph Generation) that iteratively 490

expands the graph from entities by following KG 491

relations using a similarity function. 492

More recently (Saparina and Osokin, 2021) 493

proposes a system for KBQA and intermediate 494

representation based on Question Decomposition 495

Meaning Representation (QDMR) (Wolfson et al., 496

2020), a lightweight semantic parsing scheme, 497

based on breaking down sentences. This is com- 498

pleted with a non-trainable transpiler component 499

that transforms the intermediate representation into 500

SPARQL queries. 501

All of the described systems can be seen as non 502

learnable transpilers of custom or relatively unfre- 503

quent semantic formalisms. Compared to these 504

we provide an approach that automatically learns 505

transpilation, on top of the well established AMR. 506

The contemporaneous work (Ravishankar et al., 507

2021) proposes a two stage text to SPARQL system 508

that first generates a query skeleton learned end-to- 509

end with a sequence to sequence model, and then 510

performs beam search to find optimal grounding 511

of the skeleton into a target KG. In contrast, our 512

approach introduces structure into the sequence 513

to sequence modeling, allowing to easily relate 514

SPARQL, AMR and input text while having a bet- 515

ter performance on equal conditions. 516

Regarding the modeling of the parser state on 517

Transformers, (Fernandez Astudillo et al., 2020) 518

showed the benefit of masking cross attention heads 519

to reflect the content of buffer and stack, while 520

(Zhou et al., 2021b) demostrated that this still 521

works for pre-trained sequence to sequence mod- 522

els. Here we take this technique one step further 523

and show that it is possible avoid encoding AMR 524

by using an extension of this approach and that it 525

has a stronger impact in performance compared to 526

Structured-BART (Zhou et al., 2021b). 527

7 Conclusions 528

We have introduced an approach for KBQA that 529

transpiles a well established semantic representa- 530

tion, AMR, obtained from an off-the-shelf parser, 531

into SPARQL. This transpiling operation is learned 532

through a transition-based approach, rather than 533

being rule-based as in previous approaches. AMR 534

encoding is also avoided by encoding the parser 535

state resulting in a simpler model that outperforms 536

recent state-of-the art approaches on LC-QuAD. 537
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