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Abstract

Although existing fMRI-to-image reconstruction methods could predict high-
quality images, they do not explicitly consider the semantic gap between training
and testing data, resulting in reconstruction with unstable and uncertain semantics.
This paper addresses the problem of generalized fMRI-to-image reconstruction
by explicitly alleviates the semantic gap. Specifically, we leverage the pre-trained
CLIP model to map the training data to a compact feature representation, which
essentially extends the sparse semantics of training data to dense ones, thus alle-
viating the semantic gap of the instances nearby known concepts (i.e., inside the
training super-classes). Inspired by the robust low-level representation in fMRI
data, which could help alleviate the semantic gap for instances that far from the
known concepts (i.e., outside the training super-classes), we leverage structural
information as a general cue to guide image reconstruction. Further, we quan-
tify the semantic uncertainty based on probability density estimation and achieve
Generalized fMRI-to-image reconstruction by adaptively integrating Expanded
Semantics and Structural information (GESS) within a diffusion process. Experi-
mental results demonstrate that the proposed GESS model outperforms state-of-
the-art methods, and we propose a generalized scenario split strategy to evaluate
the advantage of GESS in closing the semantic gap. Our codes are available at
https://github.com/duolala1/GESS.

1 Introduction

Functional magnetic resonance imaging (fMRI) is a powerful tool for studying the human brain and
visual system, as it provides a non-invasive way to measure neural activity. Image reconstruction
from fMRI data is important for studying visual representation in the cortex and for developing the
vivid “reading the mind” brain-computer interface (BCI) technology [10, 19, 11].

High-quality fMRI-to-image reconstruction is a typical cross-modality problem [14, 28] and suffers
from severe ill-posedness [2]. Existing state-of-the-art methods leverage the data-driven scheme to
address such ill-posed problem by learning data prior from training data. However, training data are
often collected as a limited number of instances [19], and real-world images are distributed in a wide,
broad semantic space with a long-tail distribution[12]. This brings about the problem of the semantic
gap, the semantics of testing instances may be unknown in training stage.

Addressing the semantic gap between the training data collected from the laboratory and the testing
instances in the real world helps develop reconstructions for generalized fMRI-to-image scenarios and
significantly promote the application of BCI. However, previous methods put too much attention on
improving the image quality while less focus on the semantic accuracy of the reconstructed images,
which brings two problems. Unstable semantics: The limited samples in each super-class fails to

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/duolala1/GESS


form a compact feature space, which may result in incorrect decision boundaries and inability to
estimate robust semantics even located within the known concepts (Fig.1c). This is what we called
the inside-space gap (ISG). Uncertain semantics: The concepts covered by the training set is not
enough, resulting in uncertainty in the prediction of test samples with unknown concepts (more like a
zero-shot problem), which is called the outside-space gap (OSG). Traditional methods assume that
the training set covers all the semantics in the test set (Fig.1b), and ignore the semantic gap caused by
unknown samples in reality.

To this end, this paper addresses the generalized fMRI-to-image reconstruction problem by explicitly
alleviating the semantic gap. To deal with the instances within known semantic space (ISG problem),
we map the fMRI signals to a compact semantic space via a pre-trained Contrastive Language-
Image Pre-Training (CLIP) model[23]. To deal with the instances within unknown semantic space
(OSG problem), we propose to use the structure information as a transferable cue to guide the
reconstruction, which is inspired by the robust and redundant low-level representation in visual
cortex[19]. As it is difficult to find a hard boundary to define ISG and OSG cases for a given instance,
we quantify its semantic confidence by probability density estimation on the training semantics and
adopt the likelihood as the contribution indicator. Finally, we achieve Generalized fMRI-to-image
reconstruction by adaptively integrating Expanded Semantics and Structural information (GESS) in
a diffusion process.

Our contributions in this paper could be summarized as:

• We explicitly address the generalized fMRI-to-image reconstruction problem and formulate
its solution as alleviating the semantic gap within known and unknown semantic subspaces.

• We propose a CLIP based method to expand the fMRI features to a compact semantic space
to alleviate the inside-space gap, and a structural information guided diffusion model to
alleviate the outside-space gap.

• We construct a confidence indicator by quantifying the semantic similarity between a given
instance and the training data, based on which we propose GESS to achieve generalized
fMRI-to-image reconstruction by adaptively weighting the semantic and structural informa-
tion.

• Our experimental results demonstrate that the proposed GESS model outperforms the
classical and state-of-the-art methods. Additionally, we propose a dataset split method to
construct a generalized fMRI-to-image scenario, which allows us to further evaluate the
model’s generalization ability.

2 Related works

2.1 Image reconstruction from fMRI

Decoding visual signals from the visual cortex has been investigated for a long time, ranging from
early manual image feature extraction and linear mapping for prediction[20, 21] to later combining
deep learning models (DNNs, GANs, DMs)[25, 15, 27, 10] and continuously improve the effect of
generating images. Here we roughly divide the existing decoding methods into three categories:

(1) Reconstructing from the low-level features, such as [20] designs contrast patches as image
stimuli and adopts linear mapping to predict from fMRI signals, [21] adopts Gabor features in
reconstruction, and [2] directly establishes a bidirectional mapping between fMRI and images based
on CycleGAN without explicitly modeling the semantics. Directly reconstructing the structural
features is comparatively simple and efficient while suffers from the low quality results.

(2) Explicitly extracting high level conditions like categories for reconstructions. [6] refer to Masked
Autoencoders (MAE)[16] to extract high-level features in a self-supervised manner, and [13] explicitly
predicts category information by a classification task and uses it as conditions for a diffusion model.
Such researches achieve vivid reconstructions due to the well-pretrained image generator, but have
not considered the great semantic gap in reality. Obtaining incorrect semantics result in unrelated
reconstructions that may look natural but meaningless.

(3) Hybrid methods that extract multiple-level features and jointly use them for reconstruction. [10]
extracts high-level semantics and low-level shapes from different visual areas and adopt GAN for
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Figure 1: Illustration of the semantic gap in generalized fMRI-to-image reconstruction: (a) Humans
have excellent generalization ability for long-tail distributed categories in the real world because they
have seen a lot, but for models that have only seen limited fMRI data, it is difficult to generalize to
more complex scenarios. (b) Traditional methods implicitly assume that the training set contains
the semantics present in the test set. (c) We consider that in a generalized scenario, the training set
forms a semantic space called the known space, and there is an intersection between the semantics in
the testing set and the known space. In the inside-space scenario, although there may be unstable
semantics, if mapped correctly, similar semantics (e.g., felines) can still be found in the neighborhood.
However, in the outside-space scenario, the semantic divergence of the testing samples is too large,
leading to uncertain or even irrelevant estimated semantics.

reconstruction. [27] also extracts high-level and low-level features as conditions for a diffusion model.
[15] injects category information within a GAN reconstruction phase. The mentioned hybrid methods
still do not achieve satisfactory results due to incorrect semantics caused by the semantic gap. We
propose a hybrid method that not only explicitly extracts semantic and structural information, but
also adaptively integrate the features with based on the semantic uncertainty, alleviating the semantic
gap and achieving general and vivid reconstructions.

2.2 Large-scale pretrained models

With the development of large-scale models, [24, 8, 23] prove that models with a large enough
number of parameters trained with large-scale datasets show more generality and practicality for
many downstream tasks like zero-shot identification. CLIP[23, 30] is one pretrained model which
predicts a wide range of visual concepts using natural language supervision. It proposes that learning
directly from raw text about images provides a broader source of supervision, and scalably learn state-
of-the-art image representations from scratch on a dataset of 400 million. We obtain an image-text
shared feature space through CLIP, where the point-wise distance indicates the potential semantic
relationship, and implicitly provides an extending manifold for the limited training semantics and a
potential interpolation ability in the prediction phase. Diffusion models[17] are one type of generative
model that decompose the image formation process into a sequential denoising steps. The diffusion
process destroies the image structure by gradually adding gaussian noise, and simulate the image
generation as an inverse process using a UNet model[17]. Latent Diffusion Models (LDMs) [24] better
handle high-resolution images with lower computational complexity in a latent diffusion process. We
select LDM for image reconstruction due to the high-resolution and high-quality generation ability,

3 Methods

3.1 Problem Definition and Method Overview

Dividing the brain-image pair data as training Xtr, Y tr and testing set Xte with the Y te are unknown,
we aim to decode accurate and natural visual stimulus Ŷ te from the testing fMRI data Xte and
make Ŷ te ≈ Y te. The visual features can be divided into two components: semantic information
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Figure 2: Framework of GESS. The semantic module Mc maps fMRI data onto a semantic space using
CLIP and then reprojects it onto the dense manifold to obtain faithful semantics cte. Structural module
Ms extracts low-frequency features as structural information ste. Gating function Mg adaptively
assigns πc for cte based on the semantic uncertainty, and assigns πs = 1− πc for ste. LDM Mdm

reconstructs images conditioned on the two types of features weighted by πc, πs.

cn×dc and structural information sn×ds that shared between fMRI and images (where n denotes the
number of samples, dc, ds denotes the feature dimension). Here c is derived by a semantic module
Mc using CLIP (with parameter ϕ), and s is derived by a structural module Ms using VQGAN
(with parameter γ). To describe the generalized fMRI-to-Image scenario, letting Rd be the universal
set of semantic space with d dimension we get ctr ∈ Rtr as the subspace of the training semantic
features (that we call known space) and cte ∈ Rte is the subspace of the testing semantic features and
Rtr ⊂ Rd,Rte ⊂ Rd. As in Fig.1c, in the generalized fMRI-to-Image scenario, there is overlapping
that Rtr ∩Rte ̸= ∅ and Rte ̸⊆ Rtr (different from traditional assumption that Rte ⊆ Rtr). To avoid
confusion, from now on, when referring to space, it will be in the context of the training semantic
space. Due to the different uncertainties of cte ∈ Rtr and cte ̸∈ Rtr across samples caused by the
generalized scenario, we introduce a gating function πc(c

te) and πs(s
te) in mixture of experts (MOE),

to adaptively assign confidence for semantic and structural information. With the aforementioned
components and their estimated weights, we obtain reconstructed images Y te from a conditioned
latent diffusion model, fθ(cte, ste, πc, πs).

In this paper we propose a two-stage decoding model: (1) To alleviate the semantic gap, we implement
a semantic module (Mc in Fig.2) that maps fMRI data onto a dense and continuous manifold
constructed by CLIP and a structural module (Ms) to extract low-frequency features as a transferable
clue. (2) To determine the ISG/OSG situation, we propose Mg to estimate the inside-space likelihood
to implicitly assess the situation and combine the two types of features using a weighted assignment
approach in a diffusion process (Mdm).

3.2 Semantic gap alleviation

The visual concepts are long-tail distributed in the real world so that the semantics that collected in a
limited BCI experiment could not cover enough real world concepts. To achieve reconstruction in the
generalized fMRI-to-image scenario, we further divided the semantic gap into two cases, which have
been addressed by modules Mc,Ms respectively.
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3.2.1 Semantic module Mc: inside-space case

Even in the known space Rtr, there may not be enough samples to continuously represent the space
due to the limited number of fMRI samples. Gaps in this subspace without instance filling may
result in classification failure, even if a sample has similar concepts (super-classes) in the training set.
This is referred to as the inside-space gap (ISG). As ISG is still a problem within the same domain,
we propose that the fundamental reason lies in the discontinuous manifold directly constructed
from the limited number of fMRI samples. As mentioned before, the CLIP feature space shows a
locally continuous and semantically reasonable manifold (i.e., the cosine similarity reveals semantic
relationships). By appropriately projecting the fMRI samples onto this manifold, it becomes possible
to implicitly extend the discontinuous fMRI features into a manifold that covers semantics of both of
the collected and unseen fMRI samples.

Concretely we use a linear model (ridge regression [18]) to predict c from x with large regularization
λc to limit the impact of noise on predicting semantics. We get ctr = fϕ(x

tr) and fit the coefficients
βc of ridge regression with ϕ of CLIP fixed. Although linear models and regularization may reduce
the diversity of semantics and make it difficult to capture non-linearity, the simple relation assumption
shrinks the coefficient variance and make the model less prone to over-fitting to the noise.

However, the mean squared error (MSE) and ridge regression cannot guarantee that the estimated
cte

′′ are mapped onto the low-dimensional manifold in the high-dimensional space. Therefore, we
propose two methods to alleviate this problem.

Momentum alignment We propose to align the statistics of the predictions and the image prior
distributions to reduce semantic domain shift from a distributional perspective. To get the statistics of
the manifold, we first sample Ctr from the manifold by feeding the training images into CLIP models.
However, the scarcity of training samples makes it difficult to accurately describe the manifold. Here
we use augmentation Caug = fϕ(X

aug) to help the manifold sampling (let Call = Ctr ∪ Caug) and
to satisfy the local linearity to some extend. Previously we get Cte′′ by ridge regression βc, and here
we adjust its statistics by using a simple domain adaptation method named first-order momentum
alignment like [13], which involves a whitening and an alignment process to get Cte′ which has the
same mean and variance as Call (supplementary materials 6.2).

Linear re-projection Here we directly projects Cte′ onto the manifold. We assume that in a
small local area of the manifold, there are enough feature points such that a manifold point can be
approximated as a linearly weighted sum of its K-nearest neighbor feature points (Fig. 2). The
projection principle is that we re-project the object point cte′ to cte using its K-nearest points cnbk ⊂ K
on the manifold (K ⊂ Call) by a linear combination model: cte =

∑
K wnb

k · cnbk , where wnb
k is the

coefficients of each within-manifold points cnbk . Here we solve a constrained least-squares problem:

argmin
wnb

k

||cte − wnb
k · cnbk ||22, s.t. wnb

k = 1, (1)

to get the cte that located in manifold for latter reconstruction (supplementary materials 6.1). This
approach [5] essentially considers that the information that causes the components to deviate from
the manifold is not important and could be removed.

3.2.2 Structural module Ms: outside-space case

Although previous work has also considered extracting semantics [27], it has not addressed the
extreme scenario where the image semantics are distributed outside the known space, which is hard
to get trustworthy predictions. We call it outside-space gap (OSG). For a generalized scenario, we
propose to use structural information Ste to compensate for the insufficient generalization caused
by solely depending on semantics. That is because structural information is a category-independent
attribute, and is robustly and redundantly represented in multiple cortex areas[19]. We use the low
quality Ste to supplement the uncertain semantics in reconstructions.

To extract the low-frequency components as S, before fitting we conduct Gaussian filtering on visual
stimuli Gaussian(Y tr, r) with a large kernel r = 15 to prevent the model from trying to extract
the high-frequency components from fMRI. Besides this can be seen as to suppress the variance of
the predictions and to some extent, suppress the noise. In this task a simple ridge regression could

5



already achieve acceptable ste, which is fast and easy to implement. Concretely, we use a pretrained
VQGAN to extract the ground truth representation ŝtr = fγ(y

tr) of each image. Then, with a ridge
regression βs, we can establish the relationship between fMRI and the latent variables by minimizing
|fβs(X

tr)− Ŝtr + λβs|, where Ŝtr has been flattened here. Another approach is to use CycleGAN
[2] that trained on Y tr to generate Ste, which shows higher quality. Since a large number of epochs
are needed to fit the model, it is computationally more expensive, so that the above two methods
represent a trade-off between quality and efficiency.

3.3 Adaptive Integration with LDM

3.3.1 Gating function Mg for Integration

Although in the first part, we have explicitly divided the problem into the ISG and OSG sub-problems,
and construct the faithful manifold combined with structural information to alleviate the semantic
gap, but in reality it is difficult to determine the boundary between the ISG and OSG cases. As the
boundary, probably determined by a threshold, would introduce an extra hyper-parameter which is
inaccessible for the testset. Considering that different features have their own strengths and inspired
by mixture of experts (MOE [3]), we regard Mc(x) and Ms(x) as two experts, and use a gating
function πc(x), πs(x) to indicate each expert’s own regions within Xte. We assume that there exists
an integrated intermediate information hte which could be marginalized as a weighted sum of:

p(hte
i |xte

i ) = πc(x
te
i )p(ctei |xte

i ) + πs(x
te)p(stei |xte

i ), s.t.πs + πc = 1, (2)

where i = {1, ..., n}, πs and πc are gated functions of the semantic and structural modules which
works as adaptive weights for each component, and pc(c

te
i |xte

i ), ps(s
te
i |xte

i ) describes the intermediate
features derived from the two modules respectively.

Here we propose to estimate the gating function in the form of likelihood of inside known space as
πc(x

te
i ) = p(ctei |Ctr) and compute πs(x

te
i ) = 1− πc(x

te
i ). This could be interpreted as samples that

are far away from the manifold that the training semantics covered are more uncertain. Concretely, we
propose a non-parametric density estimation method based on kernel density estimation (KDE[3] with
bandwith=1.5, and then normalized to [0, 1]), which uses training samples to estimate the underlying
probability distribution to approximately estimate p(ctei ) on Ctr (supplementary materials 6.3).

3.3.2 Diffusion model Mdm for generation

Considering the powerful generality of LDM, we propose to implement MOE within the diffusion
process. But directly taking the conditions in the form of cross attention inputs is not appropriate as it
is difficult to realize feature weighting and a structural guidance containing spatial information. For
MOE model, we need a common space to integrate the different modalities of cte and ste. We first
consider weighting in the gradient space and introduce a gradient guided method (GG for short), and
inspired by [8] we get:

pθ,ϕ(zi,t|zi,t+1, hi) = A pθ(zi,t|zi,t+1) pη(hi|zi,t), (3)

where A is the normalization term, θ, η denote the parameters of the UNet and the guidance module
(like a classifier), zi,t means the latent features of sample i at time step t in the LDM. For the sake of
readability, we omit the ‘i’ and ‘te’ tags in the following. As mentioned before we have estimated the
confidence πc and πs from xi and get pη(h|zt) = πcpc(c|zt) + πsps(s|zt) with the confidence fixed
during the diffusion process. By Jensen’s inequality we obtain the lower bound of log likelihood:

log(pθ(zt|zt+1)pϕ(h|zt)) = log(pθ(zt|zt+1)) + log
∑
m

πmpm(m|zt) (4)

≥ log(pθ(zt|zt+1)) +
∑
m

πm log pm(hm|zt),m ∈ {c, s}, (5)

maximizing which across the diffusion process is equivalent to maximizing the log likelihood, in
this way we realize the instance-wise adaptive weighting of different image features in the diffusion
process. Further with Taylor expansion as in [8], we get an approximation of the likelihood:

log pm(hm|zt) ≈ (zt − µt)gm +B,m ∈ {c, s}, (6)
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wherein the gradient information gi comes from a loss term in the guidance module η that measure
accuracy of a certain decoded feature, and B is a constant term. In this case the gi=c comes from
guidance of CLIP features Cte and gi=s comes from St with a Lmse guidance. Known that the latents
z means a perceptual compression[24, 9] of raw image, it still retains certain image properties that
performing image manipulations such as kernel smoothing in the z-space makes sense. Here we
apply low-pass filter F(z) to extract structural information from zt and get Lmse = || F(z′0)− F(s)||22,
where z′0 are estimated from zt[26]. One advantage of gradient guidance lies in its flexibility, like
combination of image variance loss and other optimizations to improve the quality of the generated
images.

However, GG method requires computing the gradients at each timestep, which greatly increases
computational complexity. Inspired by ILVR [7], which can directly replace different frequency
components in the image-space, we propose an efficient component substitution method (CS for
short). Firstly we propose the component segmentation method:

zt =
∑
m

Fm(zt),m ∈ {c, s}, (7)

where Fm means the filtering functions for different levels of information (e.g., high or low frequency
information). In this work we have two-level features: semantics Fc and structure Fs. Fs(zt) can
be obtained through low-pass filtering function and get Fc(zt) = zt − Fs(zt). We compute each
frequency component of zt as a weighted combination of various experts: Fm(zt) = πsFm(zt,s) +
πcFm(zt,c), where zt,c, zt,s means the latent features derived from the c, s conditions respectively.
However, for the structural guidance Fc(zt,s) does not contain accurate semantics that the πcFc(zt,s)
term does not make sense. Thus we only focus on the low-frequency component here. Referring to
[7] we get zt−1 from zt:

zt−1,c =∼ pθ(zt−1|zt, c), (8)
zt−1 = zt−1,c − πsFs(zt−1,c) + πsFs(zt−1,s), (9)

where we compute zt−1,s by gradually adding noise in s that has been estimated by Ms. Since the
generation process does not require gradient estimation, it is faster and requires less computational
resources compared to the previous method. However, the generated images sometimes become
blurry (possibly due to the discontinuous low-level substitution that may disrupt the image structure).
Therefore, the two methods are a trade-off between efficiency and image quality.

3.4 Training details

In our model only the ridge regression modules of Ms,Mc need to be trained, while the other modules
are pretrained on large-scale data with fixed parameters. The overall process of our method is
described in Algorithm 1.

Semantic information. To extract semantic features, we use the pretrained VIT-L/14 clip model on
1200 training images and about 4000 augmentation images. We use ridge regression trained with
λc = 1000. We slightly smooth the images with a Gaussian kernel (r = 5) before extracting semantic
features.

Structural information. To extract structural features, images are pre-smoothed with a Gaussian
kernel (r = 15). In experiments we use CycleGAN with the same setting as [2]. We do not use
augmentation as [2] because high-quality details are not necessary here.

Generating. We adopt the pretrained LDM in [4](knn2img model). During integration, both of the
two methods mentioned in section 3.3 are implemented and compared in section 4.4, and we finally
select CS method considering its efficiency and acceptable generation. A temporally scaling strategy
is used in diffusion process to reduce the influence of zt,s and results in clearer generated images. We
use DDIM [26] acceleration during sampling with 50 time steps.
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Algorithm 1 The pseudo code of GESS.
Input: Paired fMRI X and Image Y Dataset: Dtr = {(xtr

i , y
tr
i )}ni=1 and Dte = {(xte

i )}ni=1.
Output: Reconstructed stimulus images ŷte from fMRI xte.
Training:
Initialization: Constructing CLIP [23], VQGAN [9] and latent diffusion model [24] by pretrained
parameters ϕ, γ and θ.
Training parameter βc of semantic module Mc:

1. Extracting semantic features ĉitr from yi
tr by CLIP: ĉitr = fϕ(yi

tr).

2. Training ridge regression parameters βc by ĉi
tr and xtr

i : βc = (ĈT Ĉ + λI)−1ĈTXtr,
where Ĉ = [ĉ1

tr, ĉ2
tr, ..., ĉN

tr] and Xtr = [xtr
1 , x

tr
2 , ..., x

tr
N ].

Training parameter βs of structural model Ms:
1. Extracting structural features ŝitr from xi

tr by VQGAN: ŝitr = fγ(y
tr
i ).

2. Flatting ŝtri , and training ridge regression parameters βs by ŝi
tr and xtr

i : βs = (ŜT Ŝ +

λI)−1ŜTXtr, where Ŝ = [ŝtr1 , ŝ
tr
2 , ..., ŝ

tr
N ].

Inference:
1. Semantic module Predicting semantics from fMRI: ctei

′′
= βcx

te
i . Using momentum

alignment to get cte′ (section 3.2.1). Using linear re-projection to get ctei (section 3.2.1).
2. Predicting structure from fMRI: stei = βsx

te
i .

3. MOE Estimating weighting parameters πc by KDE and πs = 1− πc (section 3.3.1).
4. Latent diffusion process by CS strategy (section 3.3.2):

(a) Initializing z0 by Gaussian.
(b) For t = 1, 2, ..., T :

i. Conditioned by cross attention: zt−1,c ∼ pθ(zt−1|zt, cte)
ii. Conditioned by CS strategy: zt−1 = zt−1,c − πsFs(zt−1,c) + πsFs(zt−1,s)

(c) ytei = fγ(zT ).

4 Results

4.1 Dataset

We evaluated the performance of our model using two datasets: the General Object Decoding (GOD)
dataset [19] and the Natural Scenes Dataset (NSD)[1]. The GOD dataset contains 1200 images from
150 categories for training and 50 images from 50 categories for testing. NSD uses images from the
COCO dataset and roughly 10,000 fMRI-image pairs for one subject. During a visual experiment,
researchers recorded subjects’ brain activities by fMRI scanners while they are watching images on a
screen. In GOD, there was no overlapping between the training and testing classes which matches
the generalized scenario (supplementary materials 7.1).

However, the random split method used in [27] for NSD causes too much overlap between the training
and testing semantics (Fig.4a left), so that a simple baseline model (Fig.4a left) by nearest searching
can achieve comparable performance. To address this issue, we proposed a generalized split strategy
for NSD in Section 4.4. We showed that while the simple baseline model perform worse under this
strategy, our model is still able to achieve stable reconstruction in this situation.

4.2 Evaluation of image similarity

Comparing and estimating image similarity is a challenging task in computer vision as several factors
like object dislocation, different viewpoints greatly increases pixel-wise distance like L2. To measure
the similarity between the reconstructed and ground truth visual stimulus, we propose a combined
comparison criteria that builds upon previous works with slight modifications. Specifically, we
use: (1) a 2-way comparison task as in [19] with three different metrics, including RMSE, Spectral
Angle Mapper(SAM[29], a physically-based metric), and a perceptual similarity metric based on a
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pretrained CLIP (VIT-L/14), to make an overall assessment of reconstruction accuracy, and (2) visual
comparison of the reconstructed images from different methods. Besides to remove the randomness
caused by pairwise comparison, we repeat and averaged 10 trials for each sample.

We compare our method with several existing methods on GOD: GAN-based methods include
[2], which use CycleGAN to directly decode images from fMRI data with augmentation and [22]
use ICGAN as backbones. Diffusion-based methods include [27] use MAE to extract features
unsupervisedly as conditions and inputs into a latent diffusion model, and [13] predict image labels
from fMRI and use a diffusion model to reconstruct the image conditioned on the category information.
Most previous methods approach LDM as a purely generative model without exercising tight control
over the diffusion process.

4.3 Performance comparison

Figure 3: Performance comparison. Left: visual comparison of reconstructed images from different
methods (more examples could be found in supplementary materials). Right: quantitative comparison
of different methods by perceptual similarity.

We performed a quantitative and visual comparison between our model and several candidate models
using the GOD dataset on three subjects (1 ∼ 3). We used 1200 and 50 samples as the training
and testing samples, respectively. Each sample has been averaged between 5 and 24 samples to
improve signal-to-noise ratio. We also randomly sampled around 4000 images from ImageNet for
augmentation. The final results are shown visually and quantitatively in Fig.3. We outperform the
recent published methods [22, 27] by a large margin (3.8%, 13.8% by perceptual similarity, 7.2%,
5.3% by SAM, 1.1%, 16.3% by RMSE). As can be seen in Fig.3 left we generate high-quality and
high-resolution (768× 768) images that are more realistic in terms of their content than others. By
explicitly taking the generalized scenario into account, our method outperforms the other methods
visually and quantitatively.

4.4 Ablation study

Table 1: Abalation study on GOD dataset (Perceptual similarity).

Subjects cte+LDM cte+ste+CS cte+ste+MOE+CS cte+ste+MOE+GG
Sub1 74.2% 69.2% 78.0% 76.2%
Sub2 77.6% 75.2% 84.8% 76.6%
Sub3 79.6% 77.2% 80.4% 82.6%
AVG 77.1% 73.9% 81.1% 78.4%

To evaluate the usefulness of the components in our approach, we conducted an ablation study on the
GOD dataset. We compared the performance of different combinations of our components, mainly to
evaluate the influence of semantic and structural information on reconstruction, and the importance
of MOE. As shown in Table 1, equal-weighted feature integration without considering the semantic
uncertainty may even lead to negative optimization. When the structural information is weighted as
in columns 4 and 5, it can improve reconstruction accuracy by 4% and 1.3% on average compared
to using only semantics, respectively. It can also be observed that the CS method achieves higher
accuracy than the GG method, even though the latter produces more natural-looking images. In the
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supplementary materials we provide detailed evaluations of both the individual effectiveness of each
component and the associated computational costs (in Table 4 and Table 5).

4.5 A generalized split strategy

Method SAM RMSE Perceptual

base+RS 60.8% 62.3% 81.0%

base+GS 50.8% 48.5% 52.0%

ours+RS 66.8% 63.5% 88.8%

ours+GS 60.5% 64.5% 63.3%

Figure 4: Left: visualize the difference of scenario in semantic space. Our model achieves stable
reconstructions across scenarios visually. Right: quantitative results of baseline model and our model
on different scenarios. RS:random scenario;GS:generalized scenario.

We emphasize that the generalized fMRI-to-Image setting is crucial in forcing the model to learn the
visual mechanism of the brain, instead of relying on a pattern matching strategy that simply retrieves
from the database. Here we propose a simple generalized scenario split strategy on NSD. We first
encode the images into a semantic space and then cluster the images into several clusters (in our
case 20 clusters) by K-means to obtain pseudo labels. Then we construct a graph with the cluster
centers as nodes and their cosine similarity as edges, and apply a minimum cut algorithm to split the
graph into two parts with the minimum number of disconnected edges. As visualized in TSNE in
Fig.4 middle, a comparatively larger concept gap exists between the training and testing sets in the
semantic space.

As in Fig.4, we propose a simple retrieval model based on k-nearest-neighbor (KNN) on NSD as a
baseline model (supplementary materials 7.2), which can generate relatively accurate reconstructions
based on 1st neighbor on the dataset that has been randomly split as [27] (Fig.4 left). Its perfor-
mance deteriorates in a generalized experimental setting (Fig.4 right). Here we demonstrate that in
such generalized scenario, our method still perform more stable reconstructions, even though the
reconstruction accuracy has decreased by 28.4% compared to the baseline model (37.0%).

4.6 Disscussion

In this paper, we explicitly define the generalized fMRI-to-image scenarios and the great semantic
gaps that they bring. To explicitly address the semantic gap, we decompose it into inside-space and
outside-space cases and propose a model called GESS (Generalized fMRI-to-image reconstruction
by adaptively integrating Expanded Semantics and Structural information) that adaptively integrates
semantic and structural information within a diffusion process. Our experimental results demonstrate
that GESS achieves state-of-the-art performance.

Limitations. Our model still suffers from several limitations including: (1) The significant noise
exists in fMRI signals, which may cause variability in the quality of generated images. This is a
common challenge in fMRI-based visual reconstruction and requires further research to improve
robustness. (2) Sampling one image over multiple time steps in LDM still has greater computational
cost compared to GANs. (3) The current model needs retraining for each specific subject and cannot
handle cross-subject data. As collecting experimental recordings is expensive, designing a model
capable of cross-subject prediction could reduce the difficulty of applying it on new subjects.
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