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Abstract

Given an unexpected change in the output metric of a large-scale system, it is
important to answer why the change occurred: which inputs caused the change in
metric? A key component of such an attribution question is estimating the counter-
factual: the (hypothetical) change in the system metric due to a specified change
in a single input. However, due to inherent stochasticity and complex interactions
between parts of the system, it is difficult to model an output metric directly. We
utilize the computational structure of a system to break up the modelling task into
sub-parts, such that each sub-part corresponds to a more stable mechanism that can
be modelled accurately over time. Using the system’s structure also helps to view
the metric as a computation over a structural causal model (SCM), thus providing
a principled way to estimate counterfactuals. Specifically, we propose a method to
estimate counterfactuals using time-series predictive models and construct an attri-
bution score, CF-Shapley, that is consistent with desirable axioms for attributing an
observed change in the output metric. Unlike past work on causal shapley values,
our proposed method can attribute a single observed change in output (rather than
a population-level effect) and thus provides more accurate attribution scores when
evaluated on simulated datasets. As a real-world application, we analyze a query-ad
matching system with the goal of attributing observed change in a metric for ad
matching density. Attribution scores explain how query volume and ad demand
from different query categories affect the ad matching density, uncovering the role
of external events (e.g., "Cheetah Day") in driving the matching density.1

1 Introduction

In large-scale systems, a common problem is to explain the reasons for a change in the output,
especially for unexpected and big changes. Explaining the reasons or attributing the change to
input factors can help isolate the cause and debug it if the change is undesirable, or suggest ways to
amplify the change if desirable. For example, system failure [26] or performance anomaly [17; 1]
are important undesirable outcomes in a distributed system, and revenue is a desirable outcome
in online e-commerce platforms [22; 5]. Technically, the problem can be framed as an attribution
problem [7; 25; 5]. Given a set of candidate factors, which of them can best explain the observed
change in output? Methods include analysis based on conditional probabilities [2; 11; 21] or game-
theoretic attribution scores like Shapley value [15; 22; 5]. However, most past work assumes that the
output can be written as a function of the inputs, ignoring any structure in the output computation.

In this paper, we consider large-scale systems such as search or ad systems where output metrics are
aggregated over different kinds of inputs or composed over multiple pipeline stages, leading to a

1Full paper is available at https://arxiv.org/abs/2208.08399.

NeurIPS 2022Workshop on Causal Machine Learning for Real-World Impact (CML4Impact 2022).

https://arxiv.org/abs/2208.08399


natural computational structure (instead of a single function of the inputs). For example, in an ad
system, the number of ads that are matched per query is a composite measure that is composed of
an analogous metric over each query category (see Figure 1). While the overall matching density
may fluctuate, the matching density per category is expected to be more stably associated with the
input queries and ads. As another example, the output metric may be a result of a series of modules
in a pipeline, e.g., recommendations that are finally shown to a user may be a result of multiple
pipeline stages where each stage filters some items. Our key insight is that utilizing the computational
structure of a real-world system can break up the system into smaller sub-parts that stay stable over
time and thus can be modelled accurately. In other words, the system’s computation can be modelled
as a set of independent, causal mechanisms [19] over a structural causal model (SCM) [18].
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Figure 1: Causal graph for an ad matching system
that reflects computation of the matching density
metric. For each query category, the number of
queries (query volume) and ads (ad demand) de-
termine the categorical density for each day. Dif-
ferent categorical densities combine to yield the
daily density. Goal is to attribute daily density
to ad demand and query volume of different cate-
gories. The category density is directly affected by
category-wise ad demand and query volume and
thus has a relatively more stable relationship with
the inputs than overall daily density.

Modeling the system’s computation as a SCM
also provides a principled way to define a causal
attribution score. Specifically, we show that
attribution can be defined in terms of counter-
factuals on the SCM. Following recent work on
causal shapley values [9; 12], we posit four ax-
ioms that any desirable attribution method for an
output metric should satisfy. We then propose a
counterfactual variant of the Shapley value, CF-
Shapley, that satisfies all these properties. Thus,
given the computational structure, our proposed
CF-Shapley method has the following steps: 1)
utilize machine learning algorithms to fit the
SCM and compute counterfactual values of the
metric under any input, and 2) use the estimated
counterfactuals to construct an attribution score
to rank the contribution of different inputs. On
simulated data, our results show that the pro-
posed method is significantly more accurate for
explaining inputs’ contribution to an observed
change in a system metric, compared to Shapley
value [15] or its recent causal variants [9; 12].

We apply the proposed method, CF-Shapley at-
tribution, to a large-scale ad matching system that outputs relevant ads for each search query issued
by a user. The key outcome is matching density, the number of ads matched per query, which is
roughly proportional to revenue generated. There are two main causes for a change in matching
density: change in query volume or change in demand from advertisers. Given that queries are
typically organized by categories, the attribution problem is to understand which of these two are
driving an observed change in matching density, and from which categories. To do so, we construct
a causal graph representing the system’s computation pipeline (Figure 1) and learn the structural
equations using six months of system’s log data. Under the learnt SCM, we show how the CF-Shapley
method can be used to estimate the system’s counterfactual outputs and the resultant attribution
scores. Specifically, we use CF-Shapley scores to explain density changes on five outlier days from
November to December 2021, uncovering insights on how changes in query volume or ad demand
for different categories affects the density metric.

2 Related Work

Our work considers a causal interpretation of the attribution problem. While counterfactuals have
been applied in feature attribution for machine learning models [13; 24], less work has been done
for attributing real-world outcomes in systems using formal counterfactuals. Recent work uses
the do-intervention to propose do-shapley values [9; 12] that attribute the interventional quantity
P (Y |do(V )) across different inputs v ∈ V . While do-shapley values are useful for calculating the
average effect of different inputs on the output Y , they are not applicable for attributing an individual
change in the output. For attributing individual changes, [10] analyze root cause identification for
outliers in a structural causal model, and find that attribution conditional on the parents of a node
is more effective than global attribution. They quantify the attribution using information theoretic
scores, but do not provide any axiomatic characterization of the resulting attribution score. In this

2



work, we propose four axioms that characterize desirable properties for an attribution score for
explaining individual change in output and present the CF-Shapley value that satisfies those axioms.

3 Defining the attribution problem

For a system’s outcome metric Y , let Y = yt be a value that needs to be explained (e.g., an extreme
value, see toy example of a system in Suppl. A.1). Our goal is to explain the value by attributing it to
a set of input variables, X . Can we rank the variables by their contribution in causing the outcome?
To do so, we first define the attribution score for explaining an observed value wrt a reference value.
While system inputs can be continuous, we utilize the fact that system metrics are measured and
compared over time. That is, we are often interested in attribution for a metric value compared to an
reference timestamp. Reference values are typically chosen from previous values that are expected to
be comparable (E.g., metric value at last hour or last week). By comparing to a reference timestamp,
we simplify the problem by considering only two values of a continuous variable: its observed value,
and its value on the reference timestamp. Formally, we express the problem of attribution of an
outcome metric, Y = yt as explaining change in the metric wrt. a reference, ∆Y = yt − y′: Why
did the outcome value change from y′ to yt?

Definition 1. Attribution Score. Let Y = yt and Y = y′ be the observed and reference values
respectively of a system metric. Let V be the set of input variables. Then, an attribution score for
X ∈ V provides the contribution of X in causing the change from y′ to yt.

To estimate the causal contribution, we need to model the data-generating process from input variables
to the outcome. This is usually done by a structural causal model (SCM) M , that consists of a causal
graph and structural equations describing the generating functions for each variable.

SCM. A structural causal model [18] is defined by a tuple ⟨V ,U ,F , P (u)⟩ where V is the set of
observed variables, U refer to the unobserved variables, F is a set of functions, and P (U) is a strictly
positive probability measure for U . For each V ∈ V , fV ∈ F determines its data-generating process,
V = fV (PaV , UV ) where PaV ⊆ V \ {V } denotes parents of V and UV ⊆ U . We consider a
non-linear, additive noise SCM such that ∀V ∈ V , fV can be written as a additive combination
of some f∗

V (PaV ) and the unobserved variables (error terms). We assume a Markovian SCM such
that unobserved variables (corresponding to error terms) are mutually independent, thus the SCM
corresponds to a directed acyclic graph (DAG) over V with edges to each node from its parents. A
specific realization of the unobserved variables, U = u determines the values of all other variables.

Counterfactual. Given an SCM, values of unobserved variables U = u, a target variable Y ∈ V
and a subset of inputs X ⊆ V \ {Y }, a counterfactual corresponds to the query, “What would have
been the value of Y (under u), had X been x”. It is written as Yx(u).

Using counterfactuals, we can formally express the attribution question. Suppose the observed values
are Y = yt and Xi = xi for some input Xi, under U = u. At an earlier reference timestamp with a
different value of the unobserved variables, U = u′, the values are Y = y′ and Xi = x′

i. Starting
from the observed value (U = u), the attribution for Xi is characterized by the change in Y after
changing Xi to its reference value, Yxi

(u)− Yx′
i
(u) = yt − Yx′

i
(u). That is, given that Y is yt with

Xi = xi and all other variables at their observed value, how much would Y change if Xi is set to x′
i?

As another target expression, we can ask, Yxi,x′
1
(u)− Yx′

i,x
′
1
(u) (i ̸= 1), denoting the change in Y ’s

value upon setting X = xi when some X1 is set to its reference value. Thus, there can be multiple
expressions for the counterfactual impact of Xi, based on which values are chosen for other variables.

4 Attribution using CF-Shapley value

To choose a suitable expression for the attribution score, we posit desirable axioms that any attribution
score should satisfy, as in [15; 12]. Then we propose the CF-Shapley method that averages over the
different possible counterfactual impacts and satisfies all axioms.

4.1 Desirable axioms for an attribution score

For an aggregate attribution score based on counterfactuals, we posit the following desirable axioms.
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Axioms. Given two values of the metric, observed, Y (u) and reference, Y (u′), corresponding to
unobserved variables, u and u′ respectively, following properties are desirable for an attribution
score ϕ that measures the causal contribution of inputs V ∈ V .

1. CF-Efficiency. The sum of attribution scores for all V ∈ V equals the counterfactual change in
output from reference to observed value, Y (u)− Yv′(u) = Yv(u

′)− Y (u′) =
∑

V ϕV .
2. CF-Irrelevance. If a variable X has no effect on the counterfactual value of output under all

witnesses, Yx′,s′(u) = Ys′(u)∀S ⊆ V \ {X}, then ϕX = 0.
3. CF-Symmetry. If two variables have the same effect on counterfactual value of output Ys′(u)−

Yx′
1,s

′(u) = Ys′(u) − Yx′
2,s

′(u)∀S ⊆ V \ {X1, X2}, then their attribution scores are same,
ϕX1

= ϕX2
.

4. CF-Approximation. For any subset of variables S ⊆ V set to their reference values s′, the
sum of attribution scores approximates the counterfactual change from observed value. I.e.,
there exists a weight ω(S) s.t. the vector ϕS is the solution to the weighted least squares,
argminϕ∗

S

∑
S⊆V ω(S)((Y (u)− Ys′(u))−

∑
S∈S ϕ∗

S)
2.

Similar to shapley value axioms, these axioms convey intuitive properties that a counterfactual
attribution score should satisfy. CF-Efficiency states the sum of attribution scores for inputs should
equal the difference between the observed metric and the counterfactual metric when all inputs are
set to their reference values. CF-Irrelevance states that if changing the value of an input X has no
effect on the output counterfactual under all values of other variables, then the Shapley value of X
should be zero. CF-Symmetry states that if changing the value of two inputs has the same effect on
the counterfactual output under all values of the other variables, then both variables should have an
identical attribution score. And finally, CF-Approximation states the difference between the observed
output and the counterfactual output due to a change in any subset of variables is roughly equal to the
sum of attribution scores for those variables.

Note that CF-Efficiency does not necessarily imply that the sum of attribution scores is equal to
the actual difference between the observed value and reference value. This is because the actual
difference is a combination of the input variables’ contribution and statistical noise (error terms). That
is, yt − y′ = Yv(u)− Yv′(u′) =

∑
V ϕV + (Yv′(u)− Yv′(u′)), where we used the CF-Efficiency

property for a desirable attribution score ϕ. The second term corresponds to the difference in
metric with the same input variables but different noise corresponding to the observed and reference
timestamps. This is the unavoidable noise component since we are explaining the change due to
a single observation. Therefore, for any counterfactual attribution score to meaningfully explain
the observed difference, it is useful to select a reference timestamp to minimize the difference over
exogenous factors (e.g., using a previous value of the metric on the same day of week or same hour).
Given the true structural equations and an attribution score that satisfies the axioms, if the scores do
sum to the observed difference in a metric, then it implies that reference timestamp was well-selected.

4.2 The CF-Shapley value

Definition 2. Given an observed output metric Y = yt and a reference value y′, the CF-Shapley
value for contribution by input X is given by,

ϕX =
∑

S⊆V \{X}

Ys′(u)− Yx′,s′(u)

nC(n− 1, |S|)
(1)

where n is the number of input variables V , S is the subset of variables set to their reference values
s′, and U = u is the value of unobserved variables such that Y (u) = yt.
Proposition 1. CF-Shapley value satisfies all four axioms, CF-Efficiency, CF-Irrelevance, CF-
Symmetry and CF-Approximation. [Proof is in Suppl. A.2]

Comparison to do-shapley. Unlike CF-Shapley, the do-shapley value [12] takes the expectation over
all values of the unobserved u, Eu[Y |do(S)]−Eu[Y ]. Thus, it measures the average causal effect
over values of u, whereas for attributing a single observed value, we want to know the contributions
of inputs under the same u.

Estimating CF-Shapley values. Eqn. 1 requires estimation of counterfactual output at different
(hypothetical) values of input, and in turn requires both the causal graph and the structural equations
of the SCM. To fit the SCM equations, for each node V , a common way is to use supervised learning
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to build a model f̂V estimating its value using the values of its parent nodes at the same timestamp.
However, for time-series data such as system metrics, such a model will have high variance due
to natural temporal variation in the node’s value over time. Since including variables predictive
of the outcome reduces the variance of an estimate in general [3], we utilize auto-correlation in
time-series data to include the previous values of the node as predictive features. Thus, the final
model is expressed as, ∀V ∈ V , v̂t = f̂(PaV , vt−1, vt−2 · · · , vt−r), where r is the number of
auto-correlated features that we include. The model can be trained using a supervised time-series
prediction algorithm with auxiliary features, such as DeepAR [20].

We then use the fitted SCM equations to estimate the counterfactual with the 3-step algorithm from
Pearl [18], assuming additive error. To compute Ys′(u) for any subset S ⊆ V , the three steps are,

1. Abduction. Infer error of structural equations on all observed variables. For each V ∈ V ,
ϵ̂v,t = vt − f̂V (Pa(V ), vt−1..vt−r) where vt is the observed value at timestamp t.

2. Action. Set the value of S ← s′, ignoring any parents of S.
3. Prediction. Use the inferred error term and new value of s′ to estimate the new outcome, by

proceeding step-wise for each level of the graph [18; 6] (i.e., following a topological sort of the
graph), starting with S’s children and proceeding downstream until Y node’s value is obtained. For
each X ∈ V ordered by the topological sort of the graph (after S), x′ = f̂X(Pa′(X), · · · ) + ϵ̂x,t.
And finally, we will obtain, y′ = f̂Y (Pa′(Y ), · · · ) + ϵ̂y,t.

Thus, the CF-Shapley score for any input is obtained by repeatedly applying the above algorithm and
aggregating the required counterfactuals in Eqn. 1; we use a common Monte Carlo approximation to
sample a fixed number (M = 1000) of values of S [4; 8].

5 Empirical Evaluation

We consider an ad matching system where the goal is to retrieve all the relevant ads for a particular
web search query by a user (these ads are ranked later to show only top ones to the user). The
outcome variable is the average number of ads matched for each query, called the “matching density”
(or simply density). This outcome can be affected by multiple factors, including the availability of
ads by advertisers, the distribution and amount of user queries issued on the system, any algorithm
changes, or any other system bug or unknown factors. For simplicity, we consider a simple, stable
matching algorithm based on matching exact full text between a query and provided keyword phrases
for an ad. Thus, we can safely assume that there are no algorithm changes or code bugs for the
matching algorithm under study. Given an extreme or unexpected value of density, our goal then is to
attribute between change in ads and change in queries. Since there are millions of queries and ads,
we categorize the data by nearly 250 semantic query categories (e.g., "Fashion Apparel", "Internet").

Constructing an SCM for ad density metric. To apply the CF-Shapley method for attributing
an ad density value, we define a causal graph based on how the metric is computed, as shown in
Figure 1. The number of queries for a category is measured by the number of search result page
views (SRPV). The number of ads is measured by the number of listings posted by advertisers. For
simplicity, we call them query volume and ad demand. We assume that given a category, the ad
demand and query volume are independent of each other since they are driven by the advertiser and
user goals respectively. The combination of ad demand and query volume for a category determine
its category-wise density which then is aggregated to yield the daily density. As we are interested
in attribution over days as a time unit, we refer to the aggregate density as daily density, y. Thus,
the variables {adc1, qvc1, adc2, qvc2 · · · adck, qvck} are the 2k inputs to the system where ci is the
category, ad refers to ad demand, qv refers to query volume, and k is the number of categories.

The structural equation from category-wise densities to daily density is known. It is sim-
ply a weighted average of the category-wise densities, weighted by the query volume, yt =

f(denc1
t , qvc1t , · · · denck

t , qvckt ) =
∑

c denc
tqv

c
t∑

c qvc
t

, where denc
t is the density of category c on day t

and qvct is the query volume for the category on day t. However, the equation from category ad
demand and query volume to category density is not available and needs to be estimated.

Evaluating CF-Shapley on simulated data. Since it is impossible to know the ground-truth
attribution on real-world ad data, we first evaluate CF-Shapley on simulated data motivated by the
causal graph of the system. We construct simulated data based on the causal structure of Figure 1.
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(b) Attribution scores of different categories by ad demand and
query volume on December 4.

Figure 2: (a) Simulation results comparing CF-Shapley to baseline methods. (b) CF-Shapley
attribution scores for different query categories in an ad matching system.

We compare CF-Shapley to the standard Shapley value (as implemented in SHAP [15], Shapley)
and the do-shapley value (DoShapley) [12]. Details of dataset and baselines in Suppl. A.3. We also
evaluate on three intuitive baselines based on absolute change in inputs: 1) The category with the
biggest change in ad demand (AdDemandDelta); 2) query volume (QVolumeDelta); or 3) density
multiplied by query volume (ProductDelta) since this product is used in the daily density equation.

For each attribution method, we measure accuracy compared to the ground-truth as we increase
the noise (σ) in the true data-generating process (SCM) (σ = {0.1, 1, 10}). Attribution accuracy
is defined as the fraction of times a method outputs the highest attribution score for the correct
category (first category), over 20 simulations. Figure 2a shows that CF-Shapley obtains the highest
attribution accuracy for both Configs: change in ad demand and query volume. In general, attribution
for ad demand is easier than query volume because both the category density and daily density are
monotonic functions of the ad demand. Thus, we observe near 100% accuracy for CF-Shapley under
Config 1, even with high noise. The attribution accuracy for Config 2 is 70-80%, decreasing as noise
is increased. In comparison, none of the baselines achieve more than 50% (random-guess) accuracy.

Case study on ad matching system. We apply CF-Shapley attribution on data logs of a real-world ad
matching system from July 6 to Dec 28, 2021. We use a timeseries prediction model, DeepAR [20]
to fit the SCM equations. For dataset and implementation details, see Suppl. A.4. We first check
the CF-Efficiency property. The difference between the sum of CF-Shapley scores and the actual
change is less than 0.10% for all days (Suppl. Fig. 4), indicating that our reference timestamp choice
is appropriate (Sec. 4.1) and shapley value computation by approximation captures relevant signal.

While we can compute attribution scores for any days, we use a time-series prediction model to
discover 5 unusual days for attribution (see Suppl. A.4.3). and use CF-Shapley to attribute the change
in outcome. We discuss one such day below (December 4); others are in Suppl. A.4.4.

Category AdDemandAttrib QueryVolumeAttrib

Sort by AdDemandAttrib
Internet & Telecom 0.0450 0.00850
Apparel -0.00843 0.00151
Arts & Entertainment 0.00663 -0.00928
Hobbies & Leisure 0.00646 -0.0168
Travel & Tourism -0.00584 -0.000287

Sort by QueryVolumeAttrib
Hobbies & Leisure 0.00646 -0.0168
Arts & Entertainment 0.00633 -0.00928
Internet & Telecom 0.0450 0.00850
Law & Government 0.000203 -0.00743
Health 0.000161 -0.00645

Figure 3: Ad demand and query volume attribution
on Dec 4.

Figure 2b shows the attribution by different cat-
egories on Dec 4, aggregated up to obtain 22
high-level categories. The Internet & Telecom
(IT) category has the biggest positive attribution
score while the Hobbies & Leisure (HL) cate-
gory has the biggest negative attribution score.
That is, daily density decreased on the day due to
the HL category. To understand why, we look at
the attribution scores separately for ad demand
and query volume for each category in Table 3.
The attribution score in the table reflects the per-
centage change in daily density compared to last
week, due to ad demand or query volume of a
category. The only categories to have an attribu-
tion score greater than 1% are IT and HL, agreeing with the category-wise analysis. Specifically, the
change in ad demand due to IT leads to a 4.5% increase in daily density. The query volume change in
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HL, on the other hand, leads to a 1.7% decrease in daily density. Considering all categories together,
ad demand change leads to an 6.5% increase in daily density and query volume change leads to a
5.6% decrease. The net result is a 1% improvement over the last week.

Are the attributions meaningful? In the absence of ground-truth, we dive deeper into the query logs to
check for evidence. We do find a significant increase in queries for the HL category. In fact, more than
70% of the increase in query volume for HL is due to cheetah-related queries. On manual inspection,
we find that December 4 is International Cheetah Day. Cheetah-related queries also contribute to
86% of the ad demand increase for HL category. Given that the category density of HL is much lower
than the daily density, this increase in query volume causes a decrease in daily density, leading to the
negative attribution score. Due to ad demand volume increase (perhaps in anticipation of the Cheetah
Day), the HL also leads to an increase of 0.6% in daily density (see Table 3).

6 Conclusion

We presented a counterfactual-based attribution method and applied it to explain changes in system
output metrics. Its focus on individual outcomes leads to more accurate attribution than prior methods.
That said, a key limitation is that estimating counterfactual quantities requires knowledge of both
the graph structure and the structural equations. The method is best suited for analyzing systems for
which computational graphs are known, such as the ad matching system we analyzed; however any
unobserved confounding or inaccuracy in estimating structural equations may impact the correctness
of attribution results.
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A Appendix

A.1 Simple toy example for motivating attribution

For example, consider a system that crashes whenever its load crosses 0.9 units. The system’s
crash metric can be described by the following structural equations, Y = ILoad>=0.9;Load =
0.5X1 + 0.4X2 + 0.9X3;Xi = Bernoulli(0.5)∀i. The corresponding graph for the system has the
following edges: X1, X2, X3 → Load;Load → Y . The value of each input Xi is affected by the
independent error terms through the Bernoulli distribution. Suppose the initial reference value was
(X1 = 0, X2 = 0, X3 = 0, Y = 0) and the next observed value is (X1 = 1, X2 = 1, X3 = 1, Y =
1). Given that the system crashed (Y = 1), how do we attribute it to X1, X2, X3? Intuitively, X3 is a
sufficient cause of the crash since changing X3 = 1 would lead to the crash irrespective of values
of other variables. However, X1 and X2 can be equally a reason for this particular crash since their
coefficients sum to 0.9. However, if either of X1 or X2 are observed to be zero, then the other one
cannot explain the crash. This example indicates that the attribution for any input variable depends
on the equations of the data-generating process and also on the values of other variables.

9



A.2 Proof of Proposition 1

Proof. Efficiency. Following [12; 23], the CF-Shapley value for an input Vi can be written as,

ϕVi =
1

n!

∑
π∈Π(n)

Yw′
pre(π)

(u)− Yv′
i,w

′
pre(π)

(u) (2)

where Π is the set of all permutations over the n variables and Wpre(π) is the subset of variables
that precede Vi in the permutation π ∈ Π. The sum is,

n∑
i=1

ϕVi
=

1

n!

∑
π∈Π(n)

n∑
i=0

Yw′
pre(π)

(u)− Yv′
i,w

′
pre(π)

(u)

=
1

n!

∑
π∈Π(n)

Y∅(u)− Yv′(u)

= Y (u)− Yv′(u)

(3)

We can show it analogously under U = u′.
CF-Irrelevance. If Yx′,s′(u) = Ys′(u)∀S ⊆ V \ {X}, then the numerator in Eqn. 1 for ϕX , will be
zero and the result follows.
CF-Symmetry. Assuming same effect on counterfactual value, we write the CF-Shapley value for Vi

and show it is the same for Vj .

ϕVi =
∑

W⊆V \{Vi}

Yw′(u)− Yv′
i,w

′(u)

nC(n− 1, |W |)

=
∑

W⊆V \{Vi,Vj}

Yw′(u)− Yv′
i,w

′(u)

nC(n− 1, |W |)
+

∑
Z⊆V \{Vi,Vj}

Yv′
j ,z

′(u)− Yv′
i,v

′
j ,z

′(u)

nC(n− 1, |Z|+ 1)

=
∑

W⊆V \{Vi,Vj}

Yw′(u)− Yv′
j ,w

′(u)

nC(n− 1, |W |)
+

∑
Z⊆V \{Vi,Vj}

Yv′
i,z

′(u)− Yv′
i,v

′
j ,z

′(u)

nC(n− 1, |Z|+ 1)

=
∑

W⊆V \{Vj}

Yw′(u)− Yv′
j ,w

′(u)

nC(n− 1, |W |)
= ϕVj

where the third equality uses Yv′
i,s

′(u) = Yv′
j ,s

′(u) ∀S ⊆ V \ {Vi, Vj}.
CF-Approximation. Here we use a property [15] on value functions of standard Shapley
values. There exists specific weights ω(S) such that the Shapley value is the solution to
argminϕ∗

S

∑
S⊆V ω(w)(ν(S)−

∑
s∈S ϕ∗

w)
2 where ν(S) is the value function of any subset S ⊆ V .

The result follows by selecting ν(S) = Y (u)− Ys′(u).

A.3 Simulation Details

A.3.1 Dataset generation and setting ground-truth for attribution

For each category, we assume ad demand and query volume as independent Guassian random
variables (we simulate real-world variation in query volume using a Beta prior). The category-wise
density is constructed as a monotonic function of ad demand and has a biweekly periodicity. The
SCM equations are,

γ = B(0.5, 0.5); qvct = N (1000γ, 100); adct = N (10000, 100)

denc
t = g(adct , qv

c
t , den

c
t−1) +N (0, σ2)

= κ ∗ adct/qvct + β ∗ a ∗ denc
t−1 +N (0, σ2) (4)

yt =

∑
c den

c
tqv

c
t∑

c qv
c
t

(5)

where qvct and adct are the query volume and ad demand respectively for category c at time t. They
combine to produce the ad matching density denc

t based on a function g and additive normal noise.
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The variance of the noise, σ2 determines the stochastic variation in the system. For the simulation,
we construct g based on two observations about the category density: 1) it is roughly a ratio of the
relevant ads and the number of queries; and 2) it exhibits auto-correlation with its previous value and
periodicity over a longer time duration. We use κ to denote the fraction of relevant ads and add a
second term with parameter a to simulate a biweekly pattern, a = 1 if floor(t/7) is even else a =
−1. β is the relative importance of the previous value in determining the current category density.
Finally, all the category-wise densities are weighted by their query volume qvct and averaged to
produce the daily density metric, yt.

Each dataset generated using these equations has 1000 days and 10 categories; we set κ = 0.85, β =
0.15 for simplicity. We intervene on the ad demand or query volume of the 1000th point to construct
an outlier metric that needs to be attributed. Given the biweekly pattern, reference date is chosen 14
days before the 1000th point.

Setting ground-truth attribution. Even with simulated data, setting ground-truth attribution can
be tricky. For example, if there is an increase in ad demand for one category and increase in query
volume for another, it is not clear which one would cause the biggest impact on the daily density.
That depends on their query volume and ad demand respectively and any changes in other categories.
To evaluate attribution methods, therefore, we consider simple interventions where objective ground-
truth can be obtained. Specifically, for ease of interpretation, we intervene on only two categories at
a time such that the first has a substantially higher chance of affecting the outcome metric than the
second.

We consider two configurations: change in 1) ad demand and 2) query volume. For changing ad
demand (Config 1), we choose two categories such that the first has the highest query volume and
the second has the lowest query volume. We double the ad demand for both categories with a slight
difference (x2 for the first category, x2.1 for the second). Since the category-wise densities are
weighted by query volume to obtain the daily density metric, for the same (or similar) change in
demand, it is natural that first category has higher impact on daily density (even though they may
have similar impact on their category-wise density). For Config 1, thus, the ground-truth attribution is
the first category. For changing query volume (Config 2), we choose two categories such that the first
has the most extreme density and the second has density equal to the reference daily density. Then,
we change query volume as above: x2 for the first category and x2.1 for the second. Following Eqn. 5,
query volume change in a category having the same density as the daily density is expected to have
low impact on daily density (keeping other categories constant, if category density is not impacted by
query volume, an increase in query volume for a category with density equal to daily density causes
zero change in daily density). Thus, the ground-truth attribution (category with the highest impact
on output metric) is again the first category. Note that query volume has higher variation across
categories, so a higher multiplicative factor does not necessarily mean a higher absolute difference.

A.3.2 Baselines

The Shapley method ignores the structure and fits a model directly predicting daily density yt
using (category-wise) ad demand and query volume features. It uses the predictions of this model
for computing the Shapley score. For the DoShapley method, we notice that our causal graph
corresponds to the Direct-Causal graph structure in their paper and use the estimator from Eq. (5) in
[12], that depends on the same daily density predictor as the standard Shapley value.

Implementation details. For the CF-Shapley algorithm, we fit the structural equation for category
density, using the following features: ad demand, query volume, dent−1, dent−7, dent−14. For both
the CF-Shapley category density prediction and the Shapley daily density prediction model, we use
a 3-layer feed forward network. We use all data uptil 999th day for training and validation for all
models.

Discussion on results. Note that the Shapley and DoShapley methods obtain similar attribution
accuracies. While their attribution scores are different, the highest ranked category often turns out to
be the same since they rely on the same daily density model (but use different formulae). Inspecting
the predictive accuracy of the daily density model offers an explanation: error on the daily density
prediction is higher than that for category-wise density prediction (and it increases as the noise is
increased). This indicates the value of computing an individualized counterfactual using the full graph
structure, rather than focusing on the average (causal) effect. Finally, the other intuitive baselines fail
on both tasks since they only look at the change in the input variables.
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Model Mean APE (%) Median APE (%) sMAPE

LastWeek 21.2 11.5 0.20
Avg4Weeks 25.1 10.6 0.17
FeedForward 20.0 10.8 0.20
DeepAR 15.6 7.8 0.13

Table 1: Accuracy of category-wise density prediction models.

Model Mean APE (%) Median APE (%) sMAPE

LastWeek 4.6 3.1 0.047
Last4Weeks 4.5 3.3 0.047
FeedForward 3.0 2.2 0.031
DeepAR 3.4 2.4 0.035

Table 2: Prediction error for daily density models.

A.4 Evaluation details

A.4.1 Data Collection

For each query, we have log data on the number of ads matched by the system. In addition, each
query is marked with its category. The category query volume is measured as the number of queries
issued by users for each category. This allows us to calculate the ground-truth matching density on
each day, category-wise and aggregate. Separately, to compute the category-wise input ad demand
for a day, we fetch each ad listing available on the day and assign it to a category if any query from
that category contains a word that is present in its keywords. This is the total sum of ad listings that
are potentially relevant to the query for the exact matching algorithm (that matches the full query
exactly to the full ad keyword phrase).

A.4.2 Implementing CF-Shapley: Fitting the SCM

We follow the method outlined in Section 4.2. The main task is to estimate the structural equations
for category-wise ad density. There are over 250 categories; fitting a separate model for each is not
efficient. Besides, it may be beneficial to exploit the common patterns in the different time-series. We
therefore consider a deep learning-based model, DeepAR [20] that fits a single recurrent network for
multiple timeseries (we also tried a transformer-based model, temporal fusion transformer (TFT) [14]
but found it hard to tune to obtain comparable accuracy). As specified in Section 4.2, the estimating
equation for category density is, where parents PaV are the ad demand and query volume for the
category.

v̂t = f̂(PaV , vt−1, vt−2 · · · , vt−r) (6)

Thus, for each category, the DeepAR model is given ad demand, query volume and the autoregressive
values of density for the past 14 days. Note that rather than predicting over a range of days (which
can be innacurate), we fit the timeseries model separately for each day using data up to its t− 1th
day, to utilize the additional information available from the previous day. To implement DeepAR, we
used the open-source GluonTS library.

We compare the DeepAR model to three baselines. As simple baselines that capture the weekly
pattern, we consider, 1) category density on the same day a week before; and 2) the average density
over the last four weeks. We also consider a 3-layer feed-forward network that uses the same features
as DeepAR. Table 1 shows the prediction error. DeepAR model obtains the lowest error on the
validation set according to all three metrics: mean absolute percentage error (MAPE), median APE,
and the symmetric MAPE [16]. For our results, we choose DeepAR as the estimated SCM equation
and apply CF-Shapley on data from Nov 15 to Dec 28. We chose Nov 15 to allow sufficient days of
training data.

Choosing reference timestamp. The CF-Shapley method requires specifying a reference day that
provides the the “expected/usual” density value. Common ways to choose it are the last day’s value
or the value last week on the same day. We choose the latter due to known weekly patterns in the
density metric.
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Figure 4: Comparison of actual percentage change in daily density with sum of estimated CF-Shapley
attribution scores.
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Figure 5: Outliers through FeedForward model’s prediction. Shaded region represents the 95%
prediction interval.

A.4.3 Identifying outlier days

To discover unusual days for attribution, we fit a standard time-series model to the aggregate daily
density data. We use four candidate models: 1) daily density on the same day last week; 2) mean
density of the last 4 weeks; 3) a feed forward network; and 4) DeepAR model. As for the category-
wise prediction, all neural network models are provided the last 14 days of daily density. Table2 shows
the mean APE, median APE, and SMAPE. The feed forward model obtains the lowest error. While
DeepAR is a more expressive model than FeedForward, a potential reason for its lower accuracy is
the number of training samples (only as many data points as the number of days for dailydensity
prediction unlike category-wise prediction). For its simplicity, we use the FeedForward network
for detecting outlier days. Its prediction for different days and the outliers detected can be seen in
Figure 5. Like DeepAR, the feedforward model is implemented as a Bayesian probabilistic model, so
it outputs prediction samples rather than a point prediction.

Days where the daily density goes beyond the 95% prediction interval are chosen for attribution. A
visual inspection shows two clusters, Thanksgiving/Black Friday and Christmas, which are expected
due to their significance in the US. We also find an extreme value on Dec. 4. In all three cases, the
daily density increases. Intuitively, one may have expected the opposite for holidays: density would
decrease since people are expected to spend less time online.

A.4.4 Individual days’ analysis

Nov 25 and 26 (Thanksgiving). On Thanksgiving holiday (Nov 25), we may have expected density
to drop since many people in the US are expected to spend more time with their family and less time
online. At the same time, online shopping on Black Friday (Nov 26) may increase density. Instead,
we find that the density increases significantly on both days (see Figure 5. Specifically, compared to
last week, daily density on Nov 26 increased by 18.3%, out of which 13.5% is contributed by query
volume change and 4.8% by ad demand. How to explain this result? Using the CF-Shapley method,
for query volume change, we find that the categories Health, Law and Government and Business
& Industrial are the top-ranked categories. Each contribute more than 2% of the density increase,
leading to a cumulative 7% increase. From the logs, we see that query volume for these categories
decreased as people spent less time on work or health related queries. Since these categories tend to
have low density, the daily density increased as a result. On the ad demand side, Online Media &
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Ecommerce contributed nearly 3% increase in daily density, perhaps due to increased demand for
Black Friday shopping. Nov 25 exhibits similar patterns for query volume.

Dec 24 and Dec 25 (Christmas). On Christmas days too, there is an significant increase in density.
Like the Thanksgiving days, health and work-related queries are issued fewer times, leading to an
overall increase in daily density (all three categories have attribution scores >1%). However, we find
that the top categories by query volume change are Hobbies & Leisure and Arts & Entertainment.
Both these categories experience a surge in their query volume and being high-density categories,
cause a 2.1% and 1.8% increase in daily density respectively. To explain this, we look at the query
logs and find that the rise in Hobbies & Leisure queries is fueled by the toys & games subcategory,
which is aligned with the expectation of the holiday days. On Dec 25, Hobbies & Leisure is also
the category which has the highest attribution score by ad demand (2.7%). Overall, the category
contributes 4.8% increase, nearly one-third of the total density increase on Christmas day, signifying
the importance of toys & games subcategory for Christmas.
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