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Abstract

Contrastive Learning (CL), a leading paradigm in Self-Supervised Learning (SSL),
typically relies on pairs of data views generated through augmentation. While
multiple augmentations per instance (more than two) improve generalization in
supervised learning, current CL methods handle additional views suboptimally by
simply aggregating different pairwise objectives. This approach suffers from three
critical limitations: (L1) it utilizes multiple optimization terms per data point result-
ing to conflicting objectives, (L2) it fails to model all interactions across views and
data points, and (L3) it inherits fundamental limitations (e.g. alignment-uniformity
coupling) from pairwise CL losses. We address these limitations through two novel
loss functions: MV-InfoNCE, which extends InfoNCE to incorporate all possi-
ble view interactions simultaneously in one term per data point, and MV-DHEL,
which decouples alignment from uniformity across views while scaling interaction
complexity with view multiplicity. Our empirical results on ImageNet1K and
three other datasets demonstrate that our methods consistently outperform existing
multi-view approaches and effectively scale with increasing view multiplicity. We
also apply our objectives to multimodal data and show that, in contrast to other
contrastive objectives, they can scale beyond just two modalities.

Code: https://github.com/pakoromilas/Multi- View-CL.git

1 Introduction

Self-Supervised Learning (SSL) enables learning representations from unlabeled data by exploiting
inherent data structure and invariances. Among SSL approaches, Contrastive Learning (CL) has
emerged as a leading paradigm by optimizing two complementary objectives: maximizing similarity
(alignment) between different views of the same instance while ensuring varying instances remain
distinguishable (uniformity / energy) [[L8]. In this context, data views refer to variations of the same
data point, such as an image captured from different angles or under different lighting conditions,
which can occur naturally in the data or be systematically created through augmentation techniques
[12].

The benefits of employing multiple views in learning extend beyond mere data augmentation. In
supervised representation learning, multiple views per data point improve learning in three key
ways: (i) enabling higher learning rates through more stable gradient updates [6], (ii) accelerating
convergence by reducing gradient variance [[7]], and (iii) improving out-of-distribution generalization
through implicit regularization [10]. Recognizing these advantages, several SSL methods have
adopted multiple views: SWAV [3] employs multi-resolution crops for clustering-based learning,
DINO [4] combines global and local views for knowledge distillation, and VICRegL [2]] enforces
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multi-scale consistency in representation learning. Each method demonstrates that incorporating
more than two views improves representation quality and downstream performance.

Current multi-view CL methods solely aggregate pairwise losses [17, [15], an approach fundamentally
limited in four critical aspects. Multi-term optimization (L1): In current objectives increasing view
multiplicity also increases the number of loss terms per instance (one for each view), forcing each
representation to satisfy multiple potentially conflicting objectives. Missing concurrent interactions
across all views (L.2): Although similarity measures are employed to guide optimization across
views and instances, current objectives fail to capture all possible interactions among views within a
batch thus not guaranting optimization of the desideratum which requires simultaneously aligning all
n-views, and contrasting each single-view datapoint to all views of the remaining datapoints in the
batch. Alignment-uniformity coupling (L.3): Each pairwise comparison inherits fundamental CL
issues where view interactions contribute to both alignment and uniformity calculations, resulting in
conflicting objectives [8]] that worsen as view multiplicity increases.

To achieve the benefits of multiple views in Contrastive Learning and address the limitations of
current methods, we design objectives based on three fundamental principles. First, given a data point
1 and a view of interest [, (P1) simultaneous alignment requires all other views of the same data point
to be simultaneously aligned, ensuring invariance to all transformations without competing objectives.
Second, (P2) accurate energy term mandates that the uniformity component must capture all pairwise
interactions in the representation configuration. Third, (P3) one term per data instance maintains a
single optimization term per instance for the complete objective, ensuring better optimization. Current
objectives violate all three principles, resulting in the three limitations (L1-3) identified above.

Guided by these principles, we introduce two novel multi-view contrastive objectives that address the
fundamental limitations of existing approaches:

1. MV-InfoNCE: We generalize InfoNCE to capture interactions between all views simultane-
ously, rather than just summing pair-wise losses, in a single term adressing both (L1) and
(L2).

2. MV-DHEL: We extend the DHEL [8§] loss to decouple alignment from uniformity across
views and enable richer interactions that scale with the number of views. This resolves
the alignment-uniformity coupling (L3) that becomes more severe as view multiplicity
increases.

Empirically, our methods demonstrate three key advantages. First, they achieve higher downstream
accuracy scores across multiple datasets. Second, they show improved scalability with increasing
number of views. Finally, although designed for single-view unimodal learning, we demonstrate
that, unlike existing contrastive methods [[13], which struggle to generalize beyond two modalities
[14% [11L [16], our approach is effective in multimodal settings that extend beyond the typical two-
modality framework [13]].

2 Multi-View Contrastive Objectives

2.1 Notation

Vectors and matrices are denoted by lowercase and uppercase bold letters respectively, u, U, tensors
are represented by uppercase bold upright letters U and sets with calligraphic letters /. An element
(scalar) within a matrix/tensor U is accessed using subscript notation, such as U; ; ;. Fibers (generali-
sation of rows and columns from matrices to tensors) are represented by fixing all indices except one.
For instance, mode-1 fibers of U are denoted by U. ; ;. Similarly, slices (matrices) of a tensor are
formed by fixing one index, i.e. U; . .. To denote vertical (row-wise) concatenation of matrices X and
Y, we use [X; Y], while for depth stacking, i.e., combining matrices as slices of a tensor along a new
dimension, we use [X, Y]. Further, we denote with [N] the set of indices {1, ..., N } with cardinality
N. In the multi-view learning setup, each data point is represented by a collection of N different
views, X = [x1;...;xy] and X = [Xy,...,X}] denotes a collection (batch) of M input data
points. The corresponding set of M representations is given by U = [Uy, ..., U] € RM*xNxd,
where U equals fo(X) = [fo(x1);.-.; fo(xar)].



Table 1: Comparison of multi-view contrastive objectives for M instances and N views based on
three principles: (P1) simultaneous alignment of all views, (P2) accurate energy term with complete
pairwise interactions, and (P3) one term per instance. Only MV-InfoNCE and MV-DHEL satisfy
all principles. MV-DHEL has the smaller complexity while its the only one that decouples the
optimisation of alignment and uniformity.
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2.2 Aggregating Two-View Losses

The common approach in the literature when extending to more than two views is to perform different
types of aggregation of pair-wise objectives. Typical examples are pwe and PVC in Table[I] Beyond
the inherent limitations of pairwise loss aggregation, which precludes direct interaction among
all views and fails to simultaneously align all views of the same data point, a more fundamental
challenge arises in multi-view contrastive learning: each representation must simultaneously
satisfy multiple, potentially conflicting objectives.

2.3 Principles for Multi-View Contrastive Objectives

To properly extend contrastive losses to multiple views, we define three fundamental principles that
must be satisfied for a theoretically sound multi-view contrastive objective:

P1: Simultaneous Alignment. Given a data point ¢ and a view of interest [, all other views of the
same data point must be simultaneously aligned within a single term of the objective. This ensures
that representations become invariant to all transformations simultaneously, avoiding competing
optimization terms that could lead to suboptimal solutions or training instability.

P2: Accurate Energy Term. Contrastive objectives fundamentally optimize for alignment and
uniformity [18]]. The uniformity term corresponds to minimizing the energy of a point configuration
{ui,...,up}, a set of representations in our case. Specifically, we seek to minimize the total
pairwise energy >, >, K (u;, u;) [8]], where K is typically a gaussian kernel. As shown in [18]), this
energy minimization is equivalent to minimizing }_; log >, K (u;, u;), which forms the uniformity
term. To maintain theoretical consistency with contrastive objectives, the negative set used in
uniformity calculations must represent a complete point configuration that captures all possible
pairwise interactions.

P3: One Term per Data Instance. Current multi-view contrastive losses utilize multiple optimization
terms per instance, introducing competing objectives for the same data point. A principled extension
to multiple views should maintain one term per instance for the complete objective (i.e., alignment +
uniformity), consistent with two-view objectives, to ensure stable and efficient optimization.

Based on these principles we define MV-InfoNCE and MV-DHEL as presented in Table



Table 2: Linear probing based performance comparison with accuracy and improvement (Diff) based
on using one lesser view for each method. Green values indicate the best performance per dataset,
bold values indicate the highest values per view.

Dataset # Views pwe avg PVC MV-InfoNCE MV-DHEL

Accuracy Diff | Accuracy Diff | Accuracy Diff || Accuracy Diff | Accuracy Diff

2 86 - 86 - 85.8 - 86 - 87.4 -
CIFAR10 3 87.5 +1.5 87.4 +1.4 87.0 +1.2 87.8 +1.8 89.1 +1.7
4 88.7 +1.2 88.2 +0.8 88.0 +1.0 88.8 +1.0 89.5 +0.4

2 58.1 - 58.1 - 57.3 - 58.1 - 59.4 -
CIFAR100 3 59.9 +1.8 60.4 +2.3 60.3 +3.0 60.6 +2.5 61.8 +2.4
4 60.9 +1.0 60.8 +0.4 61.1 +0.8 61.2 +0.6 62.7 +0.9

2 72.2 - 72.2 - 72.2 - 72.2 - 73.3 -
ImageNet-100 3 75 +2.8 74.8 +2.6 75 +2.8 75.2 +3 77.1 +3.8
4 73.9 -1.1 73.7 -1.1 74.4 -0.6 75.8 +0.6 77.2 +0.1

2 60 - 60 - 59.7 = 60 - 61.2 -
ImageNet-1K 3 61.2 +1.2 61 +1 61.4 +1.7 60.8 +0.8 61.9 +0.7
4 62 +0.8 61.6 +0.6 62.4 +0.7 61.2 +0.4 62.6 +0.7

3 Experimental Evaluation

3.1 Downstream Performance

We empirically validate our proposed objectives (MV-InfoNCE and MV-DHEL) by benchmarking
against three established techniques. These methods are as follows: (i) pwe — aggregation based
on the pairwise loss computed for all pairs of views; (ii) avg — pairwise loss between each view
and the mean vector of the remaining views; and (iii) PVC as proposed in [15]. Experiments are
conducted on four standard image classification datasets: CIFARI0, CIFAR100, ImageNet-100, and
ImageNetIK, following common SSL practices [19} 20, 22| [18| 5]. We use ResNet50 for ImageNet-
100/ImageNet1K and ResNet18 for CIFAR10/CIFAR100. Models are trained for 100 epochs on
ImageNet1K (batch size 512, SGD optimizer) and 200 epochs on other datasets (batch size 256,
SGD).

In Table 2] we compare the performance of linear probing for all five methods across four datasets
under varying view multiplicities (2, 3, and 4). Our results demonstrate the clear advantages of our
proposed approaches. MV-DHEL consistently achieves the highest overall accuracy across all
datasets, while MV-InfoNCE exhibits the greatest performance scaling as views increase. Unlike
baseline methods, both our approaches show significant accuracy gains when advancing from two to
four views, confirming their effectiveness in leveraging multi-view information.

3.2 Application to Multimodal Data

Table 3: Performance comparison on multimodal sentiment analysis datasets. The supervised method
provides an upper bound reference. Values in parentheses indicate absolute improvement over the
best baseline.

Dataset Metric Methods
Supervised | PWE | AVG | PVC || MV-InfoNCE | MV-DHEL
Accuracy(T) 82.9 754 | 7577 | 743 76.8 (+1.1) 79.6 (+3.9)
CMU-MOSEL | vyup)) 0587 | 0707 | 0.713 | 0.755 || 0.708 (-0.001) | 0.668 (-0.039)
CHSIMS Accuracy(]) | 832 761 | 763 | 681 [ 766 (+03) | 79.4 (:3.0)
MAE(]) 0354 | 0.448 | 0.468 | 0.563 || 0.421 (-0.027) | 0.392 (-0.056)

Unlike views that share the same underlying distribution, modalities originate from distinct ones. By
using separate encoders for each modality, their representations can be treated as alternative views of
the same data point, allowing direct application of contrastive learning to multimodal data (e.g., CLIP
[13]]). However, CL methods are mainly designed for bimodal settings and struggle with scaling to
multiple modalities [[14} (11} [16]. Here we empirically evaluate the effectiveness of our method to
multimodal setups. We apply our methods on two datasets ( CMU-MOSETI [1] and CH-SIMS [21]) to
Multimodal Sentiment Analysis (MSA), a well-established multimodal task [9] that integrates three
heterogeneous modalities: audio, vision, and text.



Table [3| demonstrates that, again, MV-DHEL performs significantly higher in the multimodal setup,
greatly outperforming other methods. The simultaneous utilization of all multimodal interactions
places MV-InfoNCE second, while pairwise loss aggregations (pwe and avg) yield slightly lower
performance. An interesting observation is that PVC performs notably worse, suggesting it is not
suited for multimodal learning.

4 Conclusion

We presented a principled approach to multi-view CL through two theoretically grounded objectives:
MV-InfoNCE and MV-DHEL. Unlike current methods that process views through pair-wise loss
aggregations, our framework enables interactions between all views simultaneously. Concretely,
MV-InfoNCE generalises InfoNCE to handle multiple views, while MV-DHEL further addresses
alignment-uniformity coupling. Our extensive experiments demonstrate key advantages: (i) improved
downstream accuracy, (ii) better scalability as the number of views increases, and (iii) multimodal
applicability. Our implementation can be found in https://github.com/pakoromilas/Multi-View-CL.git
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