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Abstract

Object detection is a computer vision task with significant utility, with real-world1

applications ranging from autonomous driving to warehousing and medical image2

analysis. Recently, Object Detection Transformers (DETR) have emerged as a3

prominent approach, offering an end-to-end prediction pipeline. The core inno-4

vation of DETR lies in the introduction of object queries, which attend to each5

other throughout the Transformer decoder layers and provide a set of outputs (i.e.,6

bounding boxes and class probabilities) for a given image. Despite these advances,7

the mechanisms behind how these predictions are generated and interact are not8

well understood. For this reason, this paper explores the underlying dynamics of9

DETR’s predictions and presents empirical findings that highlight how different10

predictions within the same image serve distinct roles, leading to varying levels of11

reliability across those predictions. In particular, we investigate the significance12

of differentiating between positive and negative predictions for uncertainty quan-13

tification (UQ) in DETR. Leveraging these insights, we propose novel post hoc14

UQ methods to quantify the image-level reliability of DETR and demonstrate their15

effectiveness through numerical analysis.16

1 Introduction17

Object detection is an essential task in computer vision, with applications that span various domains,18

including autonomous driving, warehousing, and medical image analysis. Traditional approaches19

to object detection have relied on Convolutional Neural Networks (CNNs) [Girshick et al., 2014,20

Ren et al., 2015, Redmon et al., 2016, He et al., 2017] to identify and locate objects within images.21

However, the recent introduction of Object Detection Transformers (DETR) [Carion et al., 2020]22

has revolutionized the field by offering an end-to-end prediction pipeline, where the model directly23

predicts a set of bounding boxes and class probabilities for each object in an image.24

The core innovation of DETR lies in the use of a Transformer encoder-decoder architecture (see25

Section 2 for more detail), enabling the model to generate predictions in an end-to-end manner and26

enhancing scalability. This paradigm shift has led to the exploration of various DETR variants —27

such as Deformable-DETR [Zhu et al., 2020], DINO [Zhang et al., 2022], and Cal-DETR [Munir28

et al., 2024] — positioning them as potential foundation models for object detection tasks. Despite29

these advancements, the inner workings of how set predictions are generated and interact within the30

Transformer decoder layers remain poorly understood.31

This paper examines this issue from the perspective of reliability/uncertainty quantification of32

DETR’s1 predictions. Specifically, we aim to answer two key research questions: (1) Do all33

1In this paper, DETR refers broadly to the original model and its variants.
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predictions behave similarly and exhibit a consistent correlation with the model’s reliability? (2) If34

not, how can we accurately assess DETR’s reliability for a given input image?35

Our preliminary findings indicate that different predictions from DETR in the same image play36

distinct roles resulting in varying levels of reliability. Specifically, as the decoder processes each37

object query through multiple layers, interactions among predictions occur, leading to the refinement38

of one positive query per object while others (i.e., negatives) provide support (Section 4.1).39

To this end, this paper investigates the importance of distinguishing between these positive and40

negative predictions from the perspective of post hoc UQ in DETR, which is one of our key con-41

tributions (Section 4.2). We empirically observe that the confidence of negative queries inversely42

correlates with reliability, in contrast to positive queries, where higher confidence typically indicates43

greater reliability. Based on these insights, we propose novel methods to more accurately quantify the44

image-level reliability of the DETR model and conduct experiments evaluating them (Section 4.3).45

2 Background: Object Detection Transformers (DETR)46

The structure of DETR can be broadly divided into two main components: the Transformer encoder,47

which extracts a collection of features from the given image; and the Transformer decoder, which48

uses these features to make predictions. We refer to Figure 2 in the Appendix for an illustration.49

In addition to the features extracted by the encoder, the decoder’s input consists of N (typically several50

hundreds) learnable embeddings, also known as object queries. Each decoder layer is composed of a51

self-attention module among object queries and a cross-attention module between each object query52

and the features. After processing the queries through several decoder layers, the model produces53

the N final representation vectors that are converted into bounding boxes and class labels via a54

shared feedforward network, fϕ. Together, these predictions form the final outputs, making DETR’s55

predictions essentially an N -element set.56

The encoder follows the common structure of standard computer vision models and is based on57

pre-trained models, whose reliability has been widely explored [Shelmanov et al., 2021, Sharma58

et al., 2021, Vazhentsev et al., 2022, Park et al., 2023]. This foundation further enables the use of59

prominent post hoc uncertainty quantification (UQ) techniques, such as Monte Carlo dropout [Gal60

and Ghahramani, 2016] and distance-based out-of-distribution (OOD) detection methods [Lee et al.,61

2018, Tack et al., 2020].62

However, despite the decoder being the predominant component for object detection, there is a63

gap in understanding and quantifying its reliability due to its unique structural characteristics: set64

prediction. Therefore, this paper delves into the roles and behavior of these predictions and presents65

a methodology to estimate the reliability of the decoder in DETR for object detection tasks.66

3 Problem Statement: Quantifying the Image-Level Reliability67

We first introduce a formal definition of image-level reliability by examining the model’s overall68

object detection performance on the image.69

Definition 1. Let x∗ be a test image, and Tx∗ denote the set of ground truth objects in the image. The70

outputs of the DETR, parameterized by θ, for the image are represented by T̃θ(x∗). Each object is71

represented by a bounding box and a class label (with probability). We define image-level reliability72

as a measure of how accurately and confidently the predictions match the ground truth objects:73

ImReli(x∗; θ) ≜ Acc
(
T̃θ(x∗), Tx∗

)
. (1)

where we quantify Acc using standard performance metrics such as precision, recall, and negative74

DETR matching cost (i.e., neg. MC). Details on how these metrics are computed can be found in Lin75

et al. [2014] and Carion et al. [2020].76

To the best of our knowledge, existing UQ techniques focus mainly on object-level analysis (e.g.,77

[Du et al., 2022a,b, Wilson et al., 2023, Sbeyti et al., 2024]) which are often conducted on predefined78

ground truth objects. Once the ground truth objects are provided, the bipartite matching algorithm79

(detailed further in Appendix A) can be used to find the best matching prediction for each object80

based on the alignment of the class label and bounding box. In this paper, we refer to these queries as81

positive queries, while the remaining queries are referred to as negative queries.82
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(a) Predictions for a High-Reliability Image: Horse
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(b) Predictions for a High-Reliability Image: Chair
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(c) Predictions for a Low-Reliability Image: Chair

Figure 1: Predictions made by Cal-DETR for high- and low-reliability images. The positive query (0)
and the five negative queries (1-5) with the largest intersection of union (IoU) are presented. The
model refines its predictions through each decoder layer, culminating in a high-confidence positive
query while neighboring negative queries remain less confident.

In real-world scenarios, however, ground truth annotation is unavailable (i.e., the ground truth positive83

queries are unknown). Furthermore, predictions far outnumber ground truth objects, leaving it unclear84

whether reliability should be assessed for all predictions, or a subset (and, if so, which subset?). Thus,85

extending these methods to DETR raises a non-trivial question, which this paper aims to address.86

4 Proposed Methods & Empirical Findings87

4.1 Inside the Black Box: Exploring the Anatomy of DETR’s Predictions88

In developing a suitable UQ method, we begin by examining DETR’s prediction process. Since the89

Transformer decoder outputs only representation vectors, investigating their evolution across layers is90

not straightforward. We address this by reapplying the final feedforward network that operates on the91

last layer, fϕ, to the intermediate layers. This enables the transformation of each representation vector92

into its associated bounding box and class label. This is feasible due to the alignment of intermediate93

representations, facilitated by residual connections between decoder layers [Chuang et al., 2023,94

Munir et al., 2024]. Sample visualizations are in Figures 1, 3, and 4.95

In the first decoder layer, the model appears to explore the encoded image features, producing varied96

queries that result in various plausible predictions. In this early stage, the distinction between positive97

and negative queries can be ambiguous (e.g., Figure 1a). However, the self-attentions through the98

subsequent decoder layers progressively refine these predictions. By the final layer, the model selects99

a single query (i.e., positive) and assigns a confidence score based on its understanding on the image100

and the object. In contrast, the confidence scores for neighboring queries (i.e., negatives) do not101

increase to the same extent as the positives and even decrease (e.g., Figure 1b) for reliable images.102

Hence, for a reliable image, we observe a large gap between the positive and negative queries.103

Moreover, having queries with low confidence scores does not necessarily imply low reliability;104

in fact, empirical observations show that high image-level reliability actually correlates with low105

confidence scores in negative queries (Note that the correlation for Conf− is negative, as shown in106

Table 1.). This underscores the importance of accurately distinguishing the positive query within the107

entire set to achieve accurate UQ in DETR.108

Another notable observation is that, for unreliable image (e.g., Figure 1c), the confidence score of109

the positive query does not grow significantly, unlike in reliable cases. In contrast, the confidence of110

negative queries increase, resulting in a small gap between the positive and negatives.111
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Table 1: Comparison of the proposed method (ContrastiveConf) with baseline methods on their
Kendall’s τ correlation coefficient with the image-level reliability in Equation 1, with Cal-DETR.
Note that we use the “negative(-)” Conf− due to the inverse correlation between average confidence
of negative queries and reliability, as discussed in Section 4.1. The GT (oracle), highest, and second-
highest scores are highlighted in light gray, blue and green, respectively.

Method Separation COCO (in-distribution) Cityscapes (near OOD) Foggy Cityscapes (OOD)

Precision Recall neg. MC Precision Recall neg. MC Precision Recall neg. MC

Conf+ Entire -0.412 -0.424 -0.380 -0.221 -0.223 -0.263 -0.127 -0.130 -0.108

Conf+
Thr 0.369 0.305 0.623 0.247 0.214 0.393 0.220 0.181 0.311

Top-k 0.073 -0.011 -0.380 0.064 0.036 -0.263 0.078 0.047 -0.108
NMS -0.401 -0.419 -0.362 -0.210 -0.214 -0.246 -0.118 -0.123 -0.097
GT 0.461 0.361 0.808 0.449 0.447 0.795 0.466 0.456 0.822

−Conf−
Thr 0.422 0.416 0.452 0.273 0.267 0.337 0.194 0.185 0.185

Top-k 0.294 0.273 0.429 0.171 0.185 0.298 0.129 0.131 0.155
NMS 0.409 0.395 0.427 0.224 0.212 0.292 0.140 0.132 0.132
GT 0.417 0.405 0.439 0.214 0.205 0.235 0.146 0.140 0.122

ContrastiveConf
Thr 0.423 0.386 0.610 0.304 0.280 0.449 0.252 0.219 0.303

Top-k 0.368 0.311 -0.110 0.251 0.230 -0.067 0.193 0.173 0.031
NMS 0.052 -0.013 0.174 0.010 -0.014 0.072 0.026 0.008 0.067
GT 0.481 0.385 0.810 0.458 0.451 0.784 0.472 0.459 0.813

4.2 Proposed Method: Quantifying Reliability in DETR112

Based on the aforementioned observations, we propose a novel post hoc UQ approach by contrasting113

the confidence score (i.e., reliability) of positives and negatives:114

ContrastiveConf(x∗) = Conf+(x∗)− λConf−(x∗) (2)

Conf+(x∗) =
1

|T̃ +(x∗)|

∑
t∈T̃ +(x∗)

c(t) and Conf−(x∗) =
1

|T̃ −(x∗)|

∑
t∈T̃ −(x∗)

c(t) (3)

where T̃ +(x∗) and T̃ −(x∗) are positive and negative predictions, respectively, and λ is a scaling115

factor that aligns with the ratio of the average standard deviation of two scores across different images.116

c(·) denotes the confidence estimate for the prediction; in this paper, we use maximum probability 2.117

To separate the positives and negatives from the complete set of predictions, T̃ (x∗), we explore three118

different methods: by (0) considering the entire set as positives, (1) applying a threshold on the119

maximum probability, (2) selecting the top-k predictions, and (3) utilizing non-maximum suppression120

(NMS). For comparison, we also evaluate with the ground truth (GT) separation based on DETR’s121

bipartite matching loss with ground truth object annotations. For further details, including how k and122

the threshold are determined, please refer to Appendices C and D.123

4.3 Numerical Evaluation124

To demonstrate the effectiveness of the proposed method, we compare it extensively with an approach125

that uses only Conf+ or −Conf−. We evaluate using two different DETR models — Deformable-126

DETR and Cal-DETR — across three datasets — COCO (in-distribution), Cityscapes (near out-127

of-distribution), and Foggy Cityscapes (out-of-distribution). Empirical results are illustrated in128

Table 1 above and Table 2 in Appendix D. The key takeaways are as follows.129

First, distinguishing between positive and negative queries appears to be crucial for UQ in DETR.130

Specifically, when confidence scores are averaged without distinguishing positive queries (i.e., Conf+131

w/ entire), the correlation becomes negative. This is because the majority of DETR’s outputs are132

actually negative (i.e., Tx∗ ≪ N ), and that confidence scores for negative queries are inversely133

correlated with ImReli, which is why we report the correlation of “negative(-)” Conf−.134

Second, ContrastiveConf consistently ranks the best or second-best correlation. Although the135

baselines, Conf+ and −Conf−, sometimes surpass ContrastiveConf, their performance fluctuates136

across settings, highlighting the robustness of the proposed contrastive approach.137

Lastly, the performance largely depends on which separation method is applied. For instance, the138

top-k approach even presents a negative correlation. While the thresholding approach empirically139

yields better performance, a non-negligible gap remains compared to using ground truth matching.140

We plan to address this research question, which is discussed further in Appendix E, in a future paper.141

2We empirically observed that the maximum probability, despite its simplicity, often outperforms other
estimates, such as negative cross-entropy or layer-across variance [Munir et al., 2024].

4



References142

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey143

Zagoruyko. End-to-end object detection with transformers. In European conference on computer144

vision, pages 213–229. Springer, 2020.145

Yung-Sung Chuang, Yujia Xie, Hongyin Luo, Yoon Kim, James Glass, and Pengcheng He. Dola:146

Decoding by contrasting layers improves factuality in large language models. arXiv preprint147

arXiv:2309.03883, 2023.148

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo149

Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban150

scene understanding. In Proceedings of the IEEE conference on computer vision and pattern151

recognition, pages 3213–3223, 2016.152

Xuefeng Du, Gabriel Gozum, Yifei Ming, and Yixuan Li. Siren: Shaping representations for detecting153

out-of-distribution objects. Advances in Neural Information Processing Systems, 35:20434–20449,154

2022a.155

Xuefeng Du, Zhaoning Wang, Mu Cai, and Yixuan Li. Vos: Learning what you don’t know by virtual156

outlier synthesis. arXiv preprint arXiv:2202.01197, 2022b.157

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model158

uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.159

PMLR, 2016.160

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate161

object detection and semantic segmentation. In Proceedings of the IEEE conference on computer162

vision and pattern recognition, pages 580–587, 2014.163

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the164

IEEE international conference on computer vision, pages 2961–2969, 2017.165

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting166

out-of-distribution samples and adversarial attacks. Advances in neural information processing167

systems, 31, 2018.168

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr169

Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–170

ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,171

Part V 13, pages 740–755. Springer, 2014.172

Muhammad Akhtar Munir, Salman H Khan, Muhammad Haris Khan, Mohsen Ali, and Fahad173

Shahbaz Khan. Cal-detr: calibrated detection transformer. Advances in neural information174

processing systems, 36, 2024.175

Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, and Philipp Krähenbühl. Nms strikes back.176

arXiv preprint arXiv:2212.06137, 2022.177

Young-Jin Park, Hao Wang, Shervin Ardeshir, and Navid Azizan. Quantifying representation178

reliability in self-supervised learning models. arXiv preprint arXiv:2306.00206, 2023.179

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,180

real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern181

recognition, pages 779–788, 2016.182

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object183

detection with region proposal networks. Advances in neural information processing systems, 28,184

2015.185

Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Semantic foggy scene understanding with186

synthetic data. International Journal of Computer Vision, 126:973–992, 2018.187

Moussa Kassem Sbeyti, Michelle Karg, Christian Wirth, Nadja Klein, and Sahin Albayrak.188

Cost-sensitive uncertainty-based failure recognition for object detection. arXiv preprint189

arXiv:2404.17427, 2024.190

5



Apoorva Sharma, Navid Azizan, and Marco Pavone. Sketching curvature for efficient out-of-191

distribution detection for deep neural networks. In Uncertainty in artificial intelligence, pages192

1958–1967. PMLR, 2021.193

Artem Shelmanov, Evgenii Tsymbalov, Dmitri Puzyrev, Kirill Fedyanin, Alexander Panchenko,194

and Maxim Panov. How certain is your transformer? In Proceedings of the 16th Conference of195

the European Chapter of the Association for Computational Linguistics: Main Volume, pages196

1833–1840, 2021.197

Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin. CSI: Novelty detection via contrastive198

learning on distributionally shifted instances. Advances in neural information processing systems,199

33:11839–11852, 2020.200

Artem Vazhentsev, Gleb Kuzmin, Artem Shelmanov, Akim Tsvigun, Evgenii Tsymbalov, Kirill201

Fedyanin, Maxim Panov, Alexander Panchenko, Gleb Gusev, Mikhail Burtsev, et al. Uncertainty202

estimation of transformer predictions for misclassification detection. In Proceedings of the 60th203

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages204

8237–8252, 2022.205

Samuel Wilson, Tobias Fischer, Feras Dayoub, Dimity Miller, and Niko Sünderhauf. Safe: Sensitivity-206

aware features for out-of-distribution object detection. In Proceedings of the IEEE/CVF Interna-207

tional Conference on Computer Vision, pages 23565–23576, 2023.208

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung209

Shum. Dino: Detr with improved denoising anchor boxes for end-to-end object detection. arXiv210

preprint arXiv:2203.03605, 2022.211

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:212

Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.213

6



Transformer

Encoder

Transformer

Decoder

𝑁 = 300 
Object Queries

Cat

Cat

.

.

Person

𝑁 = 300 
Predictions

Ground Truth 
Objects

.

.

Person: 0.93

Cat: 0.24

Cat: 0.81

Person

Cat

. . .

Feature 
Vectors

Figure 2: A diagram of the DETR architecture. An input image is first processed through a CNN
backbone to generate a 2D feature representation. This representation is then passed to the Trans-
former encoder, which extracts feature vectors. These feature vectors are sent to the decoder, which
receives N learned object queries together. The decoder outputs N prediction sets, each containing a
bounding box and corresponding class probabilities. Please refer to the original papers for details.

A Bipartite Matching: Positive & Negative Queries214

Since the number of queries in DETR, N , is much higher than the number of ground truth objects,215

DETR matches each ground truth object with the corresponding best model prediction during its216

training. To compute this optimal (i.e., ground truth) matching for the predictions in a given image, a217

bipartite matching algorithm is applied. More specifically, a matching cost between each pair of a218

given prediction and a ground truth object is defined as follows:219

Lmatching = Lclass + Lbox (4)

where Lclass is the negative prediction confidence of the ground truth class and Lbox is the linear220

combination of the ℓ1 loss between the corners of the bounding boxes and Liou. Liou is the221

generalized intersection over union (GIoU) loss between bounding boxes. After computing this222

matching cost for every combination of prediction set and ground truth objects, DETR then efficiently223

calculates the permutation that minimizes the total matching cost using the Hungarian matching224

algorithm.225

In this paper, we then refer to those matched queries as positive predictions and the remaining226

unmatched queries as negative predictions. More details on the bipartite matching process and227

Hungarian algorithm can be found in [Carion et al., 2020].228

B Further Visualizations229

The predictions across all six decoder layers for each of the images presented in the main paper are230

provided in Figure 3. Generally, the intermediate layers (1, 3, and 4) follow the same trends as those231

shown previously.232

Another noticeable example is provided in Figure 4, where predictions for two different objects, a233

dog and a laptop, are shown for the same low-reliability image. In Figure 4a, for the laptop object,234

all of the queries start off with low confidence and remain that way over the course of the layers.235

However, the class predictions gradually shift from dining table and person to laptop, and result in an236

overall low confidence score despite a correct final prediction (laptop).237

However, Figure 4b indicates that even in a low-reliability image there can still be reliable predictions.238

For the dog object, the model is very confident in its predictions from the start, with many overlapping239

prediction sets in the same area and with matching classes. While there are two dominant predictions240

in the first layer, DETR focuses on a single prediction (query 0) while the confidence for query 1 is241

gradually reduced; this aligns with the trend observed in the reliable examples shown earlier.242

What is demonstrated in Figure 4 not only reveals the limitations of image-level uncertainty quan-243

tification but also highlights the need for research on object-level uncertainty. Accordingly, we will244
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Table 2: Comparison of the proposed method (ContrastiveConf) and baseline methods on their
Kendall’s τ correlation coefficient with the image-level reliability in Equation 1, with Deformable-
DETR. The GT (oracle), highest, and second-highest scores are highlighted in light gray, blue and
green, respectively.

Method Separation CoCo (in-distribution) Cityscapes (near OOD) Foggy Cityscapes (OOD)

Precision Recall neg. MC Precision Recall neg. MC Precision Recall neg. MC

Conf+ Entire -0.417 -0.429 -0.397 -0.203 -0.219 -0.257 -0.131 -0.138 -0.092

Conf+
Thr 0.346 0.293 0.581 0.240 0.209 0.362 0.224 0.178 0.276

Top-k 0.067 -0.008 -0.397 0.065 0.034 -0.257 0.065 0.028 -0.092
NMS -0.402 -0.417 -0.382 -0.192 -0.212 -0.244 -0.122 -0.131 -0.083
GT 0.447 0.351 0.799 0.472 0.450 0.776 0.487 0.471 0.790

−Conf−
Thr 0.423 0.426 0.459 0.246 0.254 0.316 0.187 0.188 0.164

Top-k 0.296 0.275 0.442 0.179 0.207 0.289 0.132 0.138 0.145
NMS 0.421 0.412 0.435 0.207 0.210 0.258 0.139 0.133 0.109
GT 0.417 0.410 0.448 0.193 0.201 0.234 0.144 0.148 0.118

ContrastiveConf

Thr 0.413 0.386 0.585 0.277 0.267 0.392 0.248 0.227 0.262
Top-k 0.342 0.294 -0.091 0.233 0.224 -0.028 0.167 0.144 0.082
NMS 0.054 0.002 0.123 -0.012 -0.049 -0.019 0.007 -0.030 0.011
GT 0.471 0.379 0.806 0.481 0.460 0.770 0.494 0.477 0.782

present a systematic approach for object-level uncertainty quantification and its integration into the245

image-level problem in our forthcoming work.246

C Experimental Details247

For the Cityscapes [Cordts et al., 2016] and Foggy Cityscapes [Sakaridis et al., 2018]248

dataset shown in Table 1 and 2, the classes were mapped to those of the COCO [Lin et al., 2014]249

dataset on which Deformable-DETR and Cal-DETR were trained. Several classes that exist in250

Cityscapes and Foggy Cityscapes were left out of this mapping because they are intended251

for image segmentation and do not translate well to an object detection setting (such as the sky, road,252

and building classes). Out of the thirty classes in Cityscapes, the following eight were used:253

person, bicycle, car, motorcycle, rider, bus, train, and truck. All of these were directly mapped to254

their corresponding class in the COCO dataset, except for rider which was mapped to person.255

For the non-maximum suppression (NMS) results, we use a threshold of 0.65 on intersection over256

union (IoU) to determine whether two predictions have sufficient overlap. This is a common choice257

among related works [Ouyang-Zhang et al., 2022].258

For the threshold and top-k methods, we conduct a grid search over {0.1, 0.2, · · · , 0.9} and259

{1, 2, 5, 10, 50, 100, 200}, respectively, and reported the best correlation for each configuration.260

The ablation study on the effect of these parameters is presented in Appendix D.261

D Further Results262

In addition to examining the correlation between different methods and image-level reliability with263

Cal-DETR, we also present the results using Deformable-DETR in Table 2. Overall, a similar trend264

can be observed.265

Additionally, we perform ablation studies to evaluate the impact of hyperparameters on the cor-266

relation, with results illustrated in Figure 5 (threshold) and Figure 6 (top-k). As shown, Conf+267

achieves high performance when hyperparameters are properly tuned, while Conf− maintains robust268

performance. We observe that ContrastiveConf effectively leverages strengths from both Conf+ and269

Conf−, robustly demonstrating a strong correlation with image-level reliability.270

E Remaining Future Works: Query-Level UQ271

As discussed in previous sections, high-reliability predictions for specific objects can still occur272

within low-reliability images, highlighting the limitations of image-level UQ. However, the main273

challenge with query-level (i.e., object-level) UQ in DETR is that it remains unclear which object in274

the image each query is attempting to predict.275

8



Reiterating, previous object-level analysis relies on predefined ground truth objects, which are absent276

in real-world scenarios. While CNN models benefit from well-established post-processing techniques277

like NMS, making it easier to obtain positive predictions, DETR and its variants are shown to function278

differently. DETRs are trained with set loss, resulting in a set of predictions that evolve dynamically279

through the self-attention mechanism during the decoding process.280

This issue is closely tied to the challenge of effectively distinguishing between positive and negative281

queries within the entire set of predictions in DETR. By effectively separating them, we can not only282

apply existing object-level UQ methods but also extend them to image-level UQ problems. Currently,283

we only have preliminary results on this, which are not yet included in this paper, but we are aiming284

to publish our findings with more comprehensive studies in an upcoming publication.285
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(a) Predictions for a High-Reliability Image: Horse
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(b) Predictions for a High-Reliability Image: Chair
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(c) Predictions for a Low-Reliability Image: Chair

Figure 3: Predictions made by Cal-DETR for high- and low-reliability images across all six layers.
The positive query and the five negative queries with the largest IoU are presented.
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(a) Predictions for a Low-Reliability Object: Laptop
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(b) Predictions for a High-Reliability Object: Dog

Figure 4: Predictions made by Cal-DETR for two different objects (one reliable and one unreliable)
in a low-reliability image. The positive query and the five negative queries with the largest IoU are
presented.
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(e) Cal-DETR on Foggy Cityscapes
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(f) Deformable-DETR on Foggy Cityscapes

Figure 5: Ablation over the threshold used to separate the positive and negative queries.
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(c) Cal-DETR on Cityscapes
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(d) Deformable-DETR on Cityscapes
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(e) Cal-DETR on Foggy Cityscapes
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(f) Deformable-DETR on Foggy Cityscapes

Figure 6: Ablation over the k-value for the top-k method used to separate the positive and negative
queries.
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