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ABSTRACT

The remarkable successes of neural networks in a huge variety of inverse prob-
lems have fueled their adoption in disciplines ranging from medical imaging to
seismic analysis over the past decade. However, the high dimensionality of such
inverse problems has simultaneously left current theory, which predicts that net-
works should scale exponentially in the dimension of the problem, unable to ex-
plain why the seemingly small networks used in these settings work as well as
they do in practice. To reduce this gap between theory and practice, a general
method for bounding the complexity required for a neural network to approximate
a Lipschitz function on a high-dimensional set with a low-complexity structure is
provided herein. The approach is based on the observation that the existence of a
linear Johnson-Lindenstrauss embedding A ∈ Rd×D of a given high-dimensional
set S ⊂ RD into a low dimensional cube [−M,M ]d implies that for any Lipschitz
function f : S → Rp, there exists a Lipschitz function g : [−M,M ]d → Rp such
that g(Ax) = f(x) for all x ∈ S. Hence, if one has a neural network which
approximates g : [−M,M ]d → Rp, then a layer can be added which implements
the JL embedding A to obtain a neural network which approximates f : S → Rp.
By pairing JL embedding results along with results on approximation of Lipschitz
functions by neural networks, one then obtains results which bound the complexity
required for a neural network to approximate Lipschitz functions on high dimen-
sional sets. The end result is a general theoretical framework which can then be
used to better explain the observed empirical successes of smaller networks in a
wider variety of inverse problems than current theory allows.

1 INTRODUCTION

At present various network architectures (NN, CNN, ResNet) achieve state-of-the-art performance
in a broad range of inverse problems, including matrix completion (Zheng et al., 2016; Monti et al.,
2017; Dziugaite & Roy, 2015; He et al., 2017) image-deconvolution (Xu et al., 2014; Kupyn et al.,
2018), low-dose CT-reconstitution (Nah et al., 2017), electric and magnetic inverse Problems (Coc-
corese et al., 1994) (seismic analysis, electromagnetic scattering). However, since these problems
are very high dimensional, classical universal approximation theory for such networks provides very
pessimistic estimates of the network sizes required to learn such inverse maps (i.e., as being much
larger than what standard computers can store, much less train). As a result, a gap still exists be-
tween the widely observed successes of networks in practice and the network size bounds provided
by current theory in many inverse problem applications. The purpose of this paper is to provide a
refined bound on the size of networks in a wide range of such applications and to show that the net-
work size is indeed affordable in many inverse problem settings. In particular, the bound developed
herein depends on the model complexity of the domain of the forward map instead of the domain’s
extrinsic input dimension, and therefore is much smaller in a wide variety of model settings.

To be more specific, recall in most inverse problems one aims to recover some signal x from its
measurement y = F (x). Here y and x could both be high dimensional vectors, or even matrices and
tensors, and F , which is called the forward map/operator, could either be linear or nonlinear with
various regularity conditions depending on the application. In all cases, however, recovering x from
y amounts to inverting F . In other words, one aims want to find the operator F−1, that sends every
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measurement y back to the original signal x. Depending on the specific application of interest, there
are various commonly considered forms of the forward map F . For example, F could be a linear
map from high to low dimensions as in compressive sensing applications; F could be a convolution
operator that computes the shifted local blurring of an image as in the image deblurring setting;
F could be a mask that filters out the unobserved entries of the data as in the matrix completion
application; or F could also be the source-to-solution map of a differential equation as in ODE/PDE
based inverse problems.

In most of these applications, the inverse operator F−1 does not possess a closed-form expression.
As a result, in order to approximate the inverse one commonly uses analytical approaches that in-
volve solving, e.g., an optimization problem. Take the sparse recovery as an example. With the
prior knowledge that the true signal x ∈ Rn is sparse, one can recover it from the under-determined
measurements Rm 3 y = Ax with m < n) by solving the optimization problem

x̂ = arg min
z
‖z‖0, Az = y

The inverse of the linear measurement map F (x) = y = Ax when restricted to the low-complexity
domain of sparse vectors has an inverse, F−1(y), that is then the minimizer x̂ above.

Note that traditional optimization-based approaches could be extremely slow for large-scale prob-
lems (e.g., for n large above). Alternatively, we can approximate the inverse operator by a neural
network instead. Amortizing the initial cost of an expensive training stage, the network can later
achieve unprecedented speed over time at the test stage leading to better total efficiency over its life-
time. To realize this goal, however, we need to first find a neural network architecture fθ, and train
it to approximate F−1, so that the approximation error maxy ‖fθ(y)− F−1(y)‖ = ‖fθ(y)− x‖ is
small. The purpose of this paper is to provide a unified way to give a meaningful estimation of the
size of the network that one can use to set up the network in situations where the domain of F is
low-complexity as is the case in, e.g., compressive sensing, low-rank matrix completion, deblurring
with low-dimensional signal assumptions, etc..

2 RELATED WORK

The expressive power of neural networks is important in applications as a means of both guiding
network architecture design choices, as well as for providing confidence that good network solu-
tions exist in general situations. As a result, numerous results about the approximation power has
been established in recent years (Zhou, 2020; Petersen & Voigtlaender, 2020; Yarotsky, 2022; 2018;
Lin & Jegelka, 2018). Most results concern the approximation of functions on RD, however, and
yield network sizes that increase exponentially with the input dimension D. As a result, the high
dimensionality of many inverse problems leads to bounds from most of the existing literature which
are too large to explain the observed empirical success of neural approaches in such applications.

A similar high-dimensional scaling issue arises in many image classification tasks as well. Motivated
by this setting (Chen et al., 2019) refined previous approximation results for ReLU networks, and
showed that input data that is close to a low-dimensional manifold leads to network sizes that only
grow exponentially with respect to the intrinsic dimension of the manifold. However, this improved
bound relies on the data fitting manifold assumption which is quite strong in the inverse problems
setting. For example, even the “simple” sparse recovery problem does not have a domain/range that
forms a manifold (note that the intersections of s-dimensional subspaces prevent from it being a
manifold). Therefore, to study expressive power of networks on inverse problems needs to remove
such strict manifold assumptions. Another mild issue with such manifolds results is that the number
of neurons also depends on the curvature of the manifold in question which can be difficult to
estimate. Furthermore, such curvature dependence is unavoidable for manifold results and needs to
be incorporated into any valid bounds.1

In this paper, we provide another way to estimate the size of the network, by directly using the
Guassian width of the data as a measure of its inherent complexity. Our result can therefore be

1To see why, e.g., curvature dependence is unavoidable, consider any discrete training dataset in a compact
ball. There always exists a 1-dimensional manifold, namely a curve, that goes through all the data points.
Thus, the mere existence of the 1-dimensional manifold does not mean the data complexity is low. Curvature
information and other manifold properties matter as well!
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considered generalization of the manifold result discussed above in two ways. First, it applies to
more arbitrary data sets with low complexities. And, it also applies to other types of networks
besides just feedforward ReLu networks. Both types of generalization are then shown to be useful
and applicable to various inverse problems.

3 MAIN RESULTS

We begin by stating a few definitions. We say that a neural network ε-approximates a function f if
the function implemented by the neural network f̂ satisfies ‖f̂(x) − f(x)‖∞ ≤ ε for all x in the
domain of f . We say that a neural network architecture ε-approximates any function in a function
class F if for any function f ∈ F , there exists a choice of edge weights such that the function f̂
implemented by the neural network with that choice of edge weights satisfies ‖f̂(x)− f(x)‖∞ ≤ ε
for all x in the domain of f .

Also, for any positive integers d < D, any set S ⊂ RD, and any constant ρ ∈ (0, 1), we say that a
matrix A ∈ Rd×D is a ρ-JL (Johnson-Lindenstrauss) embedding of S if

(1− ρ)‖x− x′‖2 ≤ ‖Ax−Ax′‖2 ≤ (1 + ρ)‖x− x′‖2 for all x,x′ ∈ S.
If we furthermore have A(S) := {Ax : x ∈ S} ⊂ T , we say that A is a ρ-JL embedding of S
into T . Intuitively, a ρ-JL embedding of S into Rd transforms S from a high-dimensional space to
a low-dimensional space without significantly distorting distances between points.

Contributions: Existing universal approximation theorems for various types of neural networks are
mainly stated for functions defined on an d-dimensional cube. Our main contribution is to generalize
these results to functions defined on arbitrary JL-embedable sets, which possibly reside in very high
dimensions. We then demonstrate how our result can be applied to inverse problems to obtain a
reasonable estimate of the network size.

Since our theory is to be applied to general inverse problems, for which we cannot assume anything
more than Lipschitz continuous. Hence in this paper, we focus on the class of Lipschitz functions.

More explicitly, we show that if there exists a ρ-JL embedding of a high-dimensional set S ⊂ RD
into a low-dimensional cube [−M,M ]d, then we can use any neural network architecture which
can ε-approximate L

1−ρ -Lipschitz functions on [−M,M ]d to construct a neural network architecture
which can ε-approximate L-Lipschitz functions on S. To establish this, we show that if there exists
ρ-JL embedding A ∈ Rd×D of S ⊂ RD into d-dimensions, then for any L-Lipschitz function f :
S → Rp, there exists a L

1−ρ -Lipschitz function g : [−M,M ]d → Rp (whereM = supx∈S ‖Ax‖∞)
such that g(Ax) = f(x) for all x ∈ S. Hence, if we have a neural network which can approximate
g : [−M,M ]d → Rp, then we can compose it with a neural network which implements the JL
embedding A to obtain a neural network which approximates f : S → Rp. By pairing JL embedding
existence results along with results on approximation of Lipschitz functions by neural networks, we
obtain results which bound the complexity required for a neural network to approximate Lipschitz
functions on high dimensional sets.

We now state our main theorem.
Theorem 1. Let d < D be positive integers, and let L,M > 0 and ρ ∈ (0, 1) be constants.
Let S ⊂ RD be a bounded subset for which there exists a ρ-JL embedding A ∈ Rd×D of S into
[−M,M ]d.

a) Suppose that any L
1−ρ -Lipschitz function g : [−M,M ]d → Rp can be ε-approximated by a

feedforward neural network with at most N nodes, E edges, and L layers. Then, any L-Lipschitz
function f : S → Rp can be ε-approximated by a feedforward neural network with at most N +D
nodes, E +Dd edges, and L+ 1 layers.

b) Furthermore, if there exists a single feedforward neural network architecture with at most N
nodes, E edges, and L layers that can ε-approximate any L

1−ρ -Lipschitz function g : [−M,M ]d →
Rp, then there also exists another feedforward neural network architecture with at most N + D
nodes, E+Dd edges, and L+1 layers that can ε-approximate any L-Lipschitz function f : S → Rp.

c) Suppose that the ρ-JL embedding is of the form A = MD, where M is a partial circulant
matrix, and D is a diagonal matrix with ±1 on its diagonal. Also, suppose that any L

1−ρ -Lipschitz
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Figure 1: If there exists a ρ-JL embedding of S ⊂ RD into [−M,M ]d, then we can write the target
function f : S → Rp as f = g ◦JL where g : [−M,M ]d → Rp. So, we can then construct a neural
network approximation of f by using a neural network approximation of g and adding a layer to
implement the JL embedding.

function g : [−M,M ]d → Rp can be ε-approximated by a convolutional neural network with at
most N nodes, P parameters, and L layers. Then, any L-Lipschitz function f : S → Rp can be ε-
approximated by a feedforward neural network with at mostN+3D nodes, P+2D+d parameters,
and L+ 4 layers.

d) Furthermore, if there exists a single convolutional neural network architecture with at most
N nodes, P parameters, and L layers that can ε-approximate any L

1−ρ -Lipschitz function g :

[−M,M ]d → Rp, then there also exists another convolutional neural network architecture with
at most N + 2D nodes, P + 2Dd parameters, and L + 3 layers that can ε-approximate any L-
Lipschitz function f : S → Rp.
Remark 1. The theorem ensures that the network size for approximating f grows exponentially with
the compressed dimension d instead of growing exponentially with the input dimensionD. The task
now reduces to making the compressed dimension d as small as possible while still ensuring that a
ρ-JL embedding of S into [−M,M ]d exists.
Remark 2. The theorem is quite general as parts a and b are not restricted to any particular type
of network or activation function. In Section 3.3, we provide two corollaries of Theorem 1 that
establish the expressive power of the feedforward and convolutional neural networks.
Remark 3. If an inverse operator is Lipschitz continuous and there exists a ρ-JL embedding of the set
of possible observations S into d dimensions, then the theorem gives us a bound on the complexity
of a neural network architecture required to approximate the inverse operator.

3.1 JL EMBEDDINGS, AND COVERING NUMBERS AND GAUSSIAN WIDTH

As the existence of the JL map is a critical assumption of our theorem, in this section, we discuss
the sufficient conditions for this assumption to hold. In addition, we also care about the structures
of the JL maps, as they will end up being the first layer of the final neural network. For example, if
the neural network is of convolution type, we need to make sure that a circulant JL matrix exists.

Existence of ρ-JL maps: It is well-known that for finite sets S, the existence of a ρ-JL embedding
can be guaranteed by the Johnson-Lindenstrauss Lemma. For sets S with infinite cardinally, the
Johnson-Lindenstrauss lemma cannot be directly used. In the following proposition, we extend the
Johnson-Lindenstrauss lemma from a finite set of n points to a general set S.
Proposition 1. Let ρ ∈ (0, 1). For S ⊆ RD, define

US :=

{
x− x′

‖x− x′‖2
: x,x′ ∈ S s.t. x 6= x′

}
to be the closure of the set of unit secants of S, and N (US , ‖ · ‖2, δ) to be the covering number of
US with δ-balls. Then, there exists a set S1 with |S1| = 2N (US , ‖·‖2, δ) points such that if a matrix
A ∈ Rd×D is a ρ-JL embedding of S1, then A is also a (ρ+ 2‖A‖δ)-JL embedding of S.
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The proposition guarantees that whenever we have a JL-map for finite sets, we can extend it to a
JL-map for infinite sets with similar level of complexity measured in terms of the covering numbers.
There are many known JL-maps for finite sets that we can extend from, including sub-Gaussian
matrix (Matoušek, 2008), Gaussian circulant matrices with random sign flip (Cheng & Zhang, 2014),
etc. We present some of the related results here.

Proposition 2 ((Matoušek, 2008)). Let x1, . . . ,xn ∈ RD. Let ρ ∈ (0, 1
2 ) and β ∈ (0, 1). Let

A ∈ Rd×D be a random matrix whose entries are i.i.d. from a subgaussian distribution with
mean 0 and variance 1. Then, there exists a constant C > 0 depending only on the subgaussian
distribution such that if d ≥ Cρ−2 log n

β , then 1√
d
A will be a ρ-JL embedding of {x1, . . . ,xn} with

probability at least 1− β.

Proposition 3 (Corollary 1.3 in (Cheng & Zhang, 2014)). Let x1, . . . ,xn ∈ RD. Let ρ ∈ (0, 1
2 ),

and let d = O(ρ−2 log1+α n) for some α > 0. Let A = 1√
d
MD where M ∈ Rd×D is a random

Gaussian circulant matrix and D ∈ RD×D is a random Rademacher diagonal matrix. Then, with
probability at least 2

3

(
1− (D + d)e− logα n

)
, A is a ρ-JL embedding of {x1, . . . ,xn}.

Note that the α in the proposition can be set to be any positive number making the probability of
failure less than 1.

Combining the results of Propositions 2 and 3 with Proposition 1, we have the following existence
result for the JL map of an arbitrary set S,

Proposition 4. Let ρ ∈ (0, 1) be a constant. For S ⊆ RD, let N (US , ‖ · ‖2, δ) to be the covering
number with δ-balls of the unit secant US of S defined in Proposition 1. Then

a) If D ≥ d & ρ−2 logN (US , ‖ · ‖2, ρ

4
√

3D
), then there exists a matrix A ∈ Rd×D which is a ρ-JL

embedding of S.

b) If D ≥ d & ρ−2 log(4D+ 4d) logN (US , ‖ · ‖2, ρ

4
√

3D
), then there exists a matrix A ∈ Rd×D in

the form of MD and of size d ×D that works as ρ-JL map for S, where M is a partial circulant
matrix and D is a diagonal matrix with ±1 on its diagonal.

The above proposition characterizes the compressibility of a set S by a JL-mapping terms of the
covering number. Alternatively, one can also characterize it using the Gaussian width. For example,
in (Iwen et al., accepted. (See Arxiv 2110.04193)) it is shown using methods from (Vershynin, 2018)
that if the set of unit secants of S has a low Gaussian width, then with high probability a subgaussian
random matrix with provide a low-distortion linear embedding, and the dimension d required scales
quadratically with the Gaussian width of the set of unit secants of S.

Proposition 5 (Corollary 2.1 in (Iwen et al., accepted. (See Arxiv 2110.04193))). Let ρ, β ∈ (0, 1)
be constants. Let A ∈ Rd×D be a matrix whose rows aT1 , . . . ,a

T
d are independent, isotropic

(E[aia
T
i ] = I), and subgaussian random vectors. Let S ⊂ RD, and Let

ω(US) := E sup
u∈US

〈u, z〉 , z ∼ Normal(0, I)

to be the Gaussian width of US . Then, there exists a constant C > 0 depending only on the distri-
bution of the rows of A such that if

d ≥ C

ρ2

(
ω(US) +

√
log 2

β

)2

,

then 1√
d
A is a ρ-JL embedding of S with probability at least 1− β.

In practice, one can use either the Gaussian width (Proposition 5) or the covering number (Proposi-
tion 4) to compute the lower bound of d, whichever is more convenient for a specific application.

3.2 UNIVERSAL APPROXIMATOR NEURAL NETWORKS FOR LIPSCHITZ FUNCTIONS ON
d-DIMENSIONAL CUBES

In Theorem 1, we showed that with the help of JL, approximation rate of neural networks for
functions defined on an arbitrary set S can be derived from their approximation rates for functions
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defined on the cube [−M,M ]d. In this section, we review known results for the later, so that they
can be used in combination of Theorem 1 to provide useful approximation results for network appli-
cations to various inverse problems. Specifically, we review two types of universal approximators
for functions defined on the cube [−M,M ]d. One is the Feedforward ReLU network and the other
is the Resnet type convolution neural network.

Feedforward ReLU network: The fully connected feedforward neural network with ReLU acti-
vation is known to be a universal approximator of any Lipschitz function on the box [−M,M ]d.
Moreover, for such networks, the non-asymptotic approximation error has also been established,
allowing us to get an estimate of the network size. The proposition below is a variant of Proposition
1 in (Yarotsky, 2018), and the proof uses an approximating function that uses the same ideas as in
(Yarotsky, 2018).
Proposition 6. Given constants L,M, ε > 0 and positive integers d and p, there exists a ReLU NN
architecture with at most

(p+C1)
(

2
⌈
LM
√
d

ε

⌉
+ 1
)d

edges, C2

(
2
⌈
LM
√
d

ε

⌉
+ 1
)d

+p nodes, and dlog2(d+ 1)e+2 layers

that can ε-approximate any L-Lipschitz function g : [−M,M ]d → Rp. Here, C1, C2 > 0 are uni-
versal constants. Also for each edge of the ReLU NN, the corresponding weight is either independent
of g, or is of the form gi(x) for some fixed x ∈ [−M,M ]d and coordinate i = 1, . . . , p.

Convolutional Neural Network: As many successful network applications on inverse problems
results from the use of filters in the CNN architectures (Jin et al., 2017), we are particularly inter-
ested in the expressive power of CNN in approximating the Lipschitz functions. Currently known
non-asymptotic results for CNN includes (Zhou, 2020; Petersen & Voigtlaender, 2020; Yarotsky,
2022), but they are established under stricter assumptions than merely Lipschitz continuous. On the
other hand, the ResNet-based CNN with the following architecture has been shown to possess good
convergence rate.

CNNσ
θ := FCW,b ◦ (ConvσωM,bM

+ id) ◦ · · · ◦ (Convσω1,b1
+ id) ◦ P (1)

where σ is the activation function, each Convωm,bm is an convolution layer with Lm filters
ω1
m,...,ωLmm stored in ωM and Lm bias b1m, ..., b

Lm
m stored in bm. The addition by the identity map,

ConvσωM,bM
+ id, makes it a residual block. FCW,b represents a fully connected layer appended to

the final layer of the network. We see that the ResNet-based CNN is essentially a normal CNN with
skip connections.

The following asymptotic result is proved in (Oono & Suzuki, 2019). We note that the authors of
(Oono & Suzuki, 2019) proved a more general result for β-Hölder functions, but we state it for
Lipschitz functions, i.e., β = 1.
Proposition 7 (Corollary 4 from (Oono & Suzuki, 2019)). Let f : [−1, 1]d → R be a Lipschitz
function. Then, for any K ∈ {2, ..., d}, there exists a CNN f (CNN) with O(N) residual blocks, each
of which has depth O(logN) and O(1) channels, and whose filter size is at most K, such that
‖f − f (CNN)‖∞ ≤ Õ(N−1/d).

3.3 MAIN RESULTS

We can now combine Propositions 4 , 5, 6 and 7 with our Theorem 1 to obtain theorems bounding
the required complexity of a feed-forward/convolutional neural network that can ε-approximate any
L-Lipschitz function on arbitrary sets S ⊂ RD for which a ρ-JL embedding into [−M,M ]d exists.
Theorem 2. Let d < D be positive integers, and let L > 0 and ρ ∈ (0, 1) be constants. Let S ⊂ RD
be a bounded set and US be its set of unit secants. Suppose that

d & min
{
ρ−2 logN (US , ‖ · ‖2, ρ

4
√

3D
), ρ−2 (ω(US))

2
}
,

where N (US , ‖ · ‖2, ρ

4
√

3D
) is the covering number and ω(US) is the Gaussian width of US . Then,

there exists a ReLU neural network architecture with at most

(p+ C1)
(

2
⌈
LM
√
d

(1−ρ)ε

⌉
+ 1
)d

+Dd edges,
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C2

(
2
⌈
LM
√
d

(1−ρ)ε

⌉
+ 1
)d

+ p+D nodes,

and dlog2(d+ 1)e+ 3 layers

that can ε-approximate any L-Lipschitz function f : S → Rp, where M = supx∈S ‖Ax‖∞.

Our Theorem 3 is a variant on our Theorem 2, but for convolutional neural networks.

Theorem 3. Let d < D be positive integers, and let L > 0 and ρ ∈ (0, 1) be constants. Let S ⊂ RD
be a bounded set and US be its set of unit secants. Suppose that

d & ρ−2 log(4D + 4d) logN (US , ‖ · ‖2, ρ

4
√

3D
).

Then, for any L-Lipschitz function f : S → Rp, there exists a ResNet type CNN f (CNN) in the form of
(1) with O(N) residual blocks, each of which has a depth O(logN) and O(1) channels, and whose
filter size is at most K such that ‖f − f (CNN)‖∞ ≤ Õ(N−1/d).

4 APPLICATIONS TO INVERSE PROBLEMS

Now we focus on inverse problems and demonstrate how the main theorems can be used to provide
a reasonable estimate of the size of the neural networks needed to solve some classical inverse prob-
lems in signal processing. The problems we consider here are sparse recovery, blind deconvolution,
and matrix completion.

In all the inverse problems, we want to recover some signal x ∈ S from its forward measurement
y = F (x), where the forward map F is assumed to be known. The minimal assumption we have to
impose on F is the invertibility.

Assumption 1 (invertibility of the forward map): Let S be the domain of the forward map F , and
Y = F (S) be the range. Assume that the inverse operator F−1 : Y → S exists and is Lipschitz
continuous with constant L,

‖F−1(y1)− F−1(y2)‖ ≤ L‖y1 − y2‖, for all y1, y2 ∈ Y.

For any inverse problems satisfying Assumption 1, Theorem 1, 2 and 3 provide ways to estimate the
size of the universal approximator networks for the inverse map. When applying the theorems to
each problem, we need to estimate the covering number of UY first.

Depending on the problem, one may estimate the covering number either numerically or theoreti-
cally. If the domain Y of the inverse map is irregular and discrete, then it may be easier to compute
the covering number numerically. If the domain has a nice mathematical structure, then we may be
able to estimate it theoretically. Below are three examples of the theoretical estimation. From them,
we see that it is quite common for inverse problems to have a small intrinsic complexity, with which
Theorems 2 and 3 can significantly reduce the required size of the network from the previously
known results.

We emphasize that the covering number that the theorems use is the one of the unit secant of Y ,
which can be much larger than the covering number of Y itself.

Sparse recovery: Sparsity is now one of the most commonly used priors in inverse problems as
signals in many real applications possess certain level sparsity in some appropriate domain. For
simplicity, we consider the strictly sparse signals. Let ΣNs be the set of s−sparse vectors of length
N . Assume a sparse vector is measured linearly y = Ax ≡ F (x), the inverse problem amounts
to recovering x from y. Now that we want to use a network to approximate the inverse map F−1 :
AΣNs ≡ Y ∈ y → x ∈ ΣNs , and estimate the size of the network through the theorems, we need to
estimate the covering number of the unit secant UAΣNs

.

Proposition 8. Let UAΣNs
denote the set of unit secants of AΣNs . Then, we have

logN (UAΣNs
, ‖ · ‖, δ) . s log

N

δ
.
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Proof. By definition, the unit secant of Y = AΣNs is defined as

UY =

{
y1 − y2

‖y1 − y2‖
, y1, y2 ∈ AΣNs

}
which contains all unit vectors that are linear combinations of 2s columns ofA. Let T with |T | = 2s
be a fixed support set, the covering number of span(AT ) ∩ Sm−1 is ( 3

δ )2s, so the covering number
of UY is at most Ns( 3

δ )2s.

If the inverse of F exists, such as in the case when A is a Restricted-Isometry-Property matrix,
then by Theorem 2 and 3, there exist neural networks of fully connected type or of CNN type with
O(ε−s logN ) number of weights, that can do the sparse recovery up to an error of ε.

Blind deconvolution: Blind deconvolution concerns the recovery of a signal x from its blurry mea-
surements

y = k ⊗ x (2)
when the kernel k is also unknown. Here ⊗ denotes the convolution operation.

Blind-deconvolution is an ill-posed problem due to the existence of a scaling ambiguity between
x and k, namely, if (k, x) is a solution, then (αk, 1

αx) with α 6= 0 is also a solution. To resolve
this issue, we focus on recovering the outer product xkT , where x and k here are both columns
vectors. The recovery of the outer product xkT from the convolution y = k ⊗ x can be well-posed
in various settings (Lee et al., 2015; Ahmed et al., 2013). For example, (Ahmed et al., 2013) showed
that if we assume x = Φu and k = Ψv, where Φ ∈ RN,n(n < N) is i.i.d. Gaussian matrix and
Ψ ∈ RN,m(m < N) is a matrix of small coherence, then for large enough N , the outer-product
xkT can be stably recovered from y in the following sense. For any two signal-kernel pairs (x, k),
(x̃, k̃) and their corresponding convolutions y, ỹ, we have

‖xkT − x̃k̃T ‖ ≤ L‖y − ỹ‖ (3)
with some L. When using a neural network to approximate the inverse map by F−1 : y → xkT , we
need to estimate the covering number of the unit secant cone of Y = {y = x ⊗ k, x ∈ ΦΣNs , k ∈
spanΨ}, which is done in the following proposition.
Proposition 9. Suppose the inverse map F−1 : y → xkT is Lipschitz continuous with Lipschitz
constant L, then for Y = {y = x ⊗ k, x ∈ span(Φ), k ∈ spanΨ}, the logarithm of the covering
number of the set of unit secants of Y is bounded by

logN (UY , ‖ · ‖2, δ) . max{m,n} log
3L

δ
.

Combining this proposition with Theorem 2 and 3, we obtain that there exist neural networks of full
connected type or of CNN type having about O(ε−max{m,n} log(L(n+m))) number of weights, that
can solve the blind-deconvolution problem up to an error of ε.

Matrix completion: Matrix Completion is a central task in machine learning where we want to re-
cover a matrix from its partially observed entries. It arises from a number of applications including
image super resolution (Shi et al., 2013; Cao et al., 2014), image/video denoising (Ji et al., 2010),
recommender systems (Zheng et al., 2016; Monti et al., 2017), and gene-expression prediction (Ka-
pur et al., 2016), etc.. Recently neural network models have achieved state-of-the-art performance
(Zheng et al., 2016; Monti et al., 2017; Dziugaite & Roy, 2015; He et al., 2017), but a general
existence result in the non-asymptotic regime is still missing.

In this setting, the measurements Y = PΩX consists of a set of observed entries of the unknown
low-rank matrix X , where Ω is the index set of the observed entries and PΩ is the mask that sets
all but entries in Ω to 0. Assuming Mn,m

r is the set of n × m matrices with rank at most r and
X ∈Mn,m

r . If the mask is random, and the left and right eigenvectors U, V of X are incoherent, in
the sense that

max
1≤i≤n

‖UT ei‖ ≤
√
µ0r

n
, max

1≤i≤m
‖V T ei‖ ≤

√
µ0r

m
, (4)

max
1≤i≤n,1≤j≤m

‖(UV T )i,j‖ ≤
√
µ1r

nm
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then it is known (e.g. (Candes & Plan, 2010)) that provided that the number of observations

|Ω| & µ0rmax{m,n} log2 max{m,n},
then with overwhelming probability, the inverse map F−1 : Y → X exists and is Lipschitz continu-
ous. Let us denote the set of low-rank matrices satisfying (4) to be C. To estimate the complexity of
the inverse map, we compute the covering number of UY for Y = {Y = PΩX : X ∈Mm,n

r ∩ C}.
Proposition 10. Suppose the mask is chosen so that the inverse map F−1 : Y = PΩX → X
is Lipschitz continuous with Lipschitz constant L, then for Y = {PΩX : X ∈ Mm,n

r ∩ C}, the
logarithm of the covering number of the set of unit secants of Y is bounded by

logN (UY , ‖ · ‖2, δ) . r(m+ n) log

(
L

δ

)
.

Combining this proposition with Theorem 2 and 3, we obtain that there exist neural networks of full
connected type or of CNN type having about O(ε−r(m+n) log(Lnm)) number of weights, that can
solve the blind-deconvolution problem up to an error of ε.

5 CONCLUSION AND DISCUSSION

The main message of this paper is that when neural networks are used to approximate Lipschitz
continuous functions, the size of the network only needs to grow exponentially with respect to
the intrinsic complexity of the input set measured using either the Gaussian width or the covering
numbers. Therefore, it is more optimistic than the previous estimate that requires the size of the
network to grow exponentially with respect to the input dimension.

Similar results were derived previously in (Chen et al., 2019) in a more restrictive setting, namely,
the input set is assumed to be close to a smooth manifold with a small curvature, and the network
type is restricted to the feedforward ReLU networks. In this paper, by utilizing the JL map, we
are able to state the result in a very general setting, that does not pose any structural requirement
on the inputs set other than that they have a small complexity. In addition, our result holds for
many different types of networks – although we only stated it for feedfoward neural networks and
the ResNet type of convolutional neural networks, the same idea naturally applies to other types of
networks as long as an associated JL-map exists.

The estimate we provided for the network size ultimately depends on the complexity of the input
set, measured by either the covering number or the Gaussian width of its set of unit secants. The
computation of these quantities varies case by case, and in some cases might be rather difficult. This
is a possible limitation of the proposed method. Because if the estimation of the input complexity is
not tight enough, we may again get a pessimistic bound. Having said that, for most of the classical
inverse problems, the covering number and the Gaussian width are not too difficult to calculate. As
we demonstrated in Section 4, there are many known properties of them that one can use to facilitate
the calculation. And when a training dataset is given, one can even compute the covering number
numerically with off-the-shelf algorithms.

Finally, although the applications of neural networks to inverse problems are seeing its success.
There are much more failed attempts with unclear reasons. One common explanation is that the
size of the network in use is not large enough for the targeted applications. Since inverse problems
models usually have a much higher intrinsic dimensionality than say image classification models, the
required network sizes might also be much larger. The classical universal approximation theorems
only guarantees small errors when the network size approaches infinity, therefore is not very helpful
in the non-asymptotic regime where we have to choose the network size, which is now known to be
critical to good performances. We hope the presented result can give more insight on this matter.
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