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Abstract

Neural Architecture Search (NAS) has been used recently to achieve improved performance
in various tasks and most prominently in image classification. Yet, most search strategies
rely on large labeled datasets, which limit their usage in the case where only a smaller
fraction of the data is annotated. Self-supervised learning has shown great promise in
training neural networks using unlabeled data. In this work, we propose a self-supervised
neural architecture search (SSNAS) that allows finding novel network models without the
need for labeled data. We show that such a search leads to comparable results to supervised
training with a “fully labeled” NAS. While such a result has been shown in concurrent
works, the uniqueness of this work is that we also show that such a search can also improve
the performance of self-supervised learning. We show that using the learned architectures
for self-supervised representation learning leads to improved performance. Thus, SSL can
both improve NAS and be improved by it. Specifically, due to the common case of resource
constrains, we exhibit the advantage of our approach when the number of labels in the
search is relatively small.

1 Introduction

Recently there has been an increasing interest in Neural Architecture Search (NAS). NAS algorithms emerge
as a powerful platform for discovering superior network architectures, which may save time and effort of
human-experts. The discovered architectures have achieved state-of-the-art results in several tasks such as
image classification Xie et al. (2020); Touvron et al. (2019) and object detection Wang et al. (2020).

The existing body of research on NAS investigated several common search strategies. Reinforcement learning
Zoph & V. Le (2017) and evolutionary algorithms Real et al. (2017; 2018) were proven to be successful but
required many computational resources. Various recent methods managed to reduce search time significantly.
For example, Liu et al. (2019b) suggested relaxing the search space to be continuous. This allowed them
to perform a differentiable architecture search (DARTS), which led to novel network models and required
reasonable resources (few days using 1-4 GPUs).

NAS methods learn from labeled data. During the search process, various architectures are considered
and their value is estimated based on their performance on annotated examples. However, acquiring large
amounts of human-annotated data is expensive and time-consuming, while unlabeled data is much more
accessible. As most NAS techniques depend on annotations availability, their performance deteriorates when
the number of annotations per each class is small.

The dependency on labeled data is not unique only to NAS but is a common problem in deep learning. Large-
scale annotated datasets play a critical role in the remarkable success of many deep neural networks, leading
to state-of-the-art results in various computer vision tasks. Considering how expensive it is to acquire such
datasets, a growing body of research is focused on relieving the need for such extensive annotation effort.
One promising lead in this direction is self-supervised learning (SSL) Doersch et al. (2015); Zhang et al.
(2016); Noroozi & Favaro (2016). Self-supervised methods learn visual features from unlabeled data. The
unlabeled data is used to automatically generate pseudo labels for a pretext task. In the course of training
to solve the pretext task, the network learns visual features that can be transferred to solving other tasks
with little to no labeled data. Contrastive SSL is a subclass of SSL that has recently gained attention thanks
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to its promising results Chen et al. (2020a); He et al. (2020); Chen et al. (2020b); Tian et al. (2019); Oord
et al. (2018). This family of techniques contrasts positive samples and negative samples to learn visual
representations.

Contribution. Inspired by the success of SSL for learning good visual representations, we apply an ad-
vanced self-supervised learning technique in NAS to rectify its limitation with respect to the availability
of data annotations. Our Self-Supervised Neural Architecture Search (SSNAS) framework can find novel
architectures without relying on data annotations. Instead of using self-supervision to learn visual represen-
tations, we employ it to learn the architecture of deep networks (see Figure 1). A recent work Liu et al.
(2020) also have shown that unsupervised neural architecture search achieves results comparable to those of
the supervised benchmarks. However, their experimental setting is different. Their main focus is on showing
that SSL can be used to perfrom NAS with no labels. In our work we further support their claim by using a
more advanced SSL technique, namely, SimCLR. More importantly, while they focus only on showing that
labels are not necessary for NAS, we address an additional question: can the architectures learned with-
out annotations improve self-supervised representation learning? We demonstrate for the case of limited
resources that using an architecture found by NAS (trained without labels) improves SSL performance. This
is a contribution that is unique to our work.

We apply our strategy with the popular DARTS Liu et al. (2019b) method. We adopt their differentiable
search, which allows using gradient-based optimization, but replace their supervised learning objective with
a contrastive loss that requires no labels to guide the search. In particular, we adopt the method used in
the SimCLR framework Chen et al. (2020a). This approach for learning visual representations has recently
achieved impressive performance in image classification. We adapt their approach to the architecture search
process. We perform a composition of transformations on the inputs, which generates augmented images
and look for the model that maximizes the similarity between the representations of the augmented images
that originate from the same input image. As the focus of this work is on efficient search, we limit the used
batch sizes to be the ones that can fit a conventional GPU memory. This allows SSNAS to efficiently learn
novel network models without using any labeled data.

We demonstrate that our self-supervised approach for NAS achieves results comparable to the ones of its
equivalent supervised approach. While these findings are similar to Yan et al. (2020); Liu et al. (2020) but
with a different strategy, we further show that SSNAS does not only achieves the same results as supervised
NAS, but it also succeeds in some scenarios where the supervised method struggles. Specifically, SSNAS
can learn good architectures from data with a small number of annotated examples available for each class.
We also demonstrate the potential of using NAS to improve unsupervised learning. We show some examples
where SSL applied with the learned architectures generates visual representations that lead to improved
performance. We claim that in addition to the fact that NAS can benefit from SSL, also SSL can benefit
from NAS.

2 Related work

Neural architecture search. The first methods to perform neural architecture search focused on using
reinforcement learning Zoph & V. Le (2017) and evolutionary (genetic) algorithms Real et al. (2017; 2018).
They have shown that the architecture found using these techniques outperform the performance achieved
by manually designed models. The disadvantage of these approaches is their very long search time and the
need for a significant amount of resources.

To overcome the computational issue, efficient searches have been proposed. These include the effective
NAS (ENAS) Pham et al. (2018) and differentiable architecture search (DARTS) Liu et al. (2019b). The
first reduces the computational load of RL models using a graph structure and the second model searches
in a differentiable manner, which makes it computationally efficient. These approaches have been further
extended to improve the search Cai et al. (2019); Noy et al. (2020); Liang et al. (2019); Chen et al. (2019); Xie
et al. (2019b); Tan et al. (2019); Wu et al. (2019) and also for applying it to applications beyond classification
such as semantic segmentation Liu et al. (2019a), medical image segmentation Weng et al. (2019); Zhu et al.
(2019), object detection Ning et al. (2020), image generation Wang & Huan (2019), few-shot learning Doveh
et al. (2019), etc.
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Figure 1: The SSNAS framework. We perform network architecture search in an unsupervised manner
(with no data labels) by using a contrastive loss that enforces similarity between two different augmentations
of the same input image. Both augmentations pass through the same network (i.e., the weights are shared).

One of the disadvantages of most search methods is that they require labeled data for the search. Moreover,
when the number of training examples per class in a given dataset is low, the search becomes less stable. For
example, while DARTS gets very good network architectures on CIFAR-10 Krizhevsky (2009) that has 5000
labeled examples per class, its performance degrades significantly on CIFAR-100 Krizhevsky (2009), where
each class contains only 500 labeled examples per class. Follow-up works Liang et al. (2019); Chen et al.
(2019) have added a regularization on the searched operations to mitigate these issues. Yet, an important
question is whether such regularizations that require prior knowledge on the target network structure are
needed.

In this work, we use a technique to perform a search on the data without the labels at all, which leads to a
stable search using even vanilla DARTS. Moreover, it allows performing the search on datasets with no (or
only a few) labels where none of the above methods is applicable.

Self-supervised learning. A considerable amount of literature was published on self-supervised represen-
tation learning. These studies suggested various pretext tasks where pseudo labels generated from unlabeled
datasets drive networks to learn visual features. There is a wide choice of such pretext tasks available in
the literature: predicting patch position Doersch et al. (2015), image colorization Zhang et al. (2016), jigsaw
puzzles Noroozi & Favaro (2016), image inpainting Pathak et al. (2016), predicting image rotations Gidaris
et al. (2018), etc. Using this approach, researchers achieved good results. However, the generality of the
representations produced is arguably limited due to the specific nature of the pretext tasks.

Recent attention was given to the contrastive self-supervised learning Chen et al. (2020a); He et al. (2020);
Chen et al. (2020b); Tian et al. (2019); Oord et al. (2018). Methods that use this concept such as SimCLR
Chen et al. (2020a) and MoCo He et al. (2020) attained promising results, narrowing significantly the gap
between supervised and unsupervised learning. SimCLR Chen et al. (2020a) employed a composition of data
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augmentations on input images to create different views of the same image and used a nonlinear head on the
representation before applying a contrastive loss. MoCo He et al. (2020) maintained a dynamic dictionary
and aimed at maximizing the similarity between an encoded query and keys encoded by a slowly progressing
momentum encoder. The follow-up work, MoCo v2 Chen et al. (2020b) adopted a few techniques from
SimCLR to further improve MoCo performance.

A previous study Kolesnikov et al. (2019) on self-supervised representation learning has established that
model design choices that lead to improved performance for supervised learning, are not necessarily the
optimal design choices for self-supervised learning. Six models have been investigated and design choices
such as the width of the model and the number of filters have been analyzed. Our work is complementary
to that work since we also consider different models for SSL, only that we suggest employing a complete
self-supervised architecture search, using a gradient-based optimization to discover superior architectures (as
opposed to only considering a few manually designed architectures, which gained popularity based on their
performance in the supervised setting).

A recent work Liu et al. (2020) shows that architectures learned without using labels are comparable in
performance to architectures learned by supervised methods. The authors experiment with SSL methods
different than ours (namely rotation prediction, colorization, and solving jigsaw puzzles). They investigate
whether NAS can be executed without using labels, while we also demonstrate the improved performance of
self-supervised representation learning using the architectures learned by self-supervised NAS in the case of
limited resources. Note that the work in Liu et al. (2020) shows only the impact of SSL for NAS and not of
NAS for SSL as demonstrated in this work.

Another study Yan et al. (2020) separates architecture representation learning from architecture search and
shows how an unsupervised version of the first can help the latter in terms of efficiency and robustness.
Though architecture embeddings are learned in an unsupervised manner, their search still requires labeled
data, while our self-supervised search does not require any labels. They also adopt a very different strategy
than ours (namely, they use Reinforcement Learning and Bayesian Optimization) and introduce unsupervised
learning through Variational Graph Isomorphism Autoencoders while we utilize contrastive self-supervised
learning. As mentioned above, we also show the advantage of NAS for SSL, which is not discussed in Yan
et al. (2020).

3 Method

Our SSNAS framework aims at finding effective models without using data annotations. Instead, it learns
by maximizing the similarity between projected representations of different views originating from the same
input image. We focus on the case of limited resources and opt for approaches we can carry out using a
single GPU.

Our approach is inspired by the following key observation: Virtually, all currently used networks overfit the
training data, i.e., if we compare the randomly sampled networks to the found ones, all of them attain close
to zero training error. Therefore, the difference between them is their generalization ability. In other words,
the search goal is to find the training architecture that inherently generalizes best the data.

Given the above, an important question is whether we can find networks that generalize well without using
the labels? To do so, we first revisit the NAS problem and present it from the perspective of learning to
generalize well on the training data. Then we discuss how one may improve generalization without access
to the labels. Namely, we rely on recent theoretical findings that show that networks with a large margin
exhibit good generalization abilities Xu & Mannor (2012); Liu et al. (2016); Sokolić et al. (2017); Bartlett
et al. (2017); Neyshabur et al. (2018).

With this perspective in mind, we suggest using a recent self-supervised technique, SimCLR, which uses
the contrastive loss that increases the network margin in an unsupervised way, to perform an unsupervised
architecture search (we demonstrate our approach on the DARTS strategy). Specifically, we train the network
on one part of the data to increase the margin between examples and select the network architecture that
succeeds to maintain the largest distance between samples that were not present during training (i.e., the
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one that can achieve the largest margin). We start by presenting our general framework and then briefly
describe the used SimCLR and DARTS approaches.

3.1 Margin based search

In essence, any architecture search technique splits the data into two parts, the train set TT and the validation
set TV , and then tries to find the best architecture fW (with a set of weights W ) from a certain search space
A that leads to the best performance on the validation set, i.e., it aims at solving an optimization problem
of the form

min
fW∗∈A

E(fW∗ , TV ) (1)

s.t. W ∗ = argminW E(fW , TT ),

where E(fW , T ) is the error of the network fW on the dataset T . Next, assume that all the networks in the
search space are capable of attaining an error close to zero, i.e.,

min
W

E(fW , TT ) ≤ ε, ∀fW ∈ A. (2)

Under this assumption, we may rewrite Eq. (1) as

min
fW∗∈A

E(fW∗ , TV )− E(fW∗ , TT ) (3)

s.t. W ∗ = argminW E(fW , TT ).

The term E(fW∗ , TV )−E(fW∗ , TT ) is known as the generalization error of the network (to be precise, we need
to replace E(fW∗ , TV ) with the expected error over all the data; yet the validation error is often considered
to be a good proxy of the latter). Clearly, the error in the optimal architecture found by solving Eq. (3) is
the same as the one found by solving Eq. (1) up to an ε difference.

The above discussion suggests that instead of minimizing the error in the search (as in Eq. (1)), one may aim
at finding the model that is capable of attaining the smallest generalization error (as in Eq. 3). Performing
a search using the latter still requires having the data labels. Yet, in the literature, various measures have
been developed to upper bound the generalization error of the network Neyshabur et al. (2017); Arora et al.
(2018). In this work, we focus on the margin-based approach that relates the generalization error of the
network to the margin of the network Xu & Mannor (2012); Liu et al. (2016); Sokolić et al. (2017); Bartlett
et al. (2017); Neyshabur et al. (2018). These works show that increasing the margin of the network, i.e.,
the distance from the training examples to the decision boundary of the network, improves the network’s
generalization error. Moreover, it is shown that if we make a network invariant to different augmentations,
its generalization error improves Sokolic et al. (2017).

Therefore, we replace the labeled based search with an unsupervised search that maximizes the margin. While
there are many possible directions to perform this, we focus on a self-supervised learning-based approach
that optimizes the embedding space.

3.2 The Contrastive Loss for Self-supervised Search

To search without using labels, we adopt the SSL approach of SimCLR Chen et al. (2020a). First, a com-
position of random data augmentations (e.g. crop and resize, horizontal flip, color distortion and gaussian
blur) is applied to input images. The augmentations of the same input are considered to be a positive pair
and the augmentations of different inputs are considered to be negative pairs. The distance between views
of positive pairs is minimized while the distance between negative samples is maximized.

Consider such an optimization from a margin perspective. If each input image is a class, then the optimization
aims at finding the feature space with the largest margin between these classes. A network capable of finding
a feature space with a large margin in this case, is also expected to find a feature space with a large margin
when the classes correspond to groups of multiple input examples. (In that case, we are only concerned with
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the margin between the classes, which is an easier task). This provides us with a proxy loss for NAS when
not enough labels are available for the search.

In view of the above, we expect that applying NAS with a SimCLR objective will lead to finding network
architectures that have good generalization properties, which is exactly our goal in the optimization in
Eq. (3). While SimCLR uses a fixed ResNet He et al. (2015) to learn effective visual representation, we use
our dynamic network of stacked cells with mixed operations (following the DARTS approach) to learn an
effective network architecture. This choice enables us to increase the network margin by contrasting positive
pairs and negative pairs generated on the fly.

Before we turn to show empirically that indeed, using this loss in NAS leads to comparable results to the
supervised search, we briefly describe the DARTS approach and the SimCLR strategy in more detail. A
reader that is familiar with these methods may skip directly to Section 4.

3.3 Differential Architecture Search

We perform neural architecture search by adapting the framework of DARTS Liu et al. (2019b). We search
for a cell to be stacked to a deep network. Searching for a cell that serves as a building block for the final
architecture is an efficient approach yet it comes at the expense of optimality.

A cell is represented by a directed acyclic graph (DAG) of N nodes {xi}N−1
i=0 . Node xi represents a feature

map and edge (i, j) represents an operation o(i,j) performed on xi. Cell input nodes are the outputs of two
previous cells. Intermediate nodes are obtained by summing the operations performed on previous nodes:
xj =

∑
i<j o(i,j)xi. Cell output is a concatenation of all intermediate nodes.

During the search, operations are selected from the set O, which contains the possible operations (e.g.
convolution, pooling, identity and zero). To relax the search space, instead of having a specific operation
oi,j applied to each node xi, a mixture of operations is applied, i.e., we have a weighted sum of all possible
operations: The candidate operations are weighted by the α(i,j) vectors. A softmax is applied over all the
weights in α(i,j) to emphasize the ones with the larger weights. To obtain a discrete architecture once search
is concluded, we select the most dominant operation by applying argmax on the α(i,j) vectors. The set
α = {α(i,j)} (after the pruning) encodes the architecture. To form the final network, the stacked cells are
preceded by a convolutional layer and followed by a global pooling. The original DARTS also includes a linear
layer (with softmax at the end), yet we replaced it with an MLP, as described in the following subsection.

The architecture α and the network’s weights are learned jointly via solving a bilevel optimization problem.
This is required since the validation loss depends on the weights that minimize the training loss, which
in turn depends on alpha that is obtained by minimizing the validation loss. To solve it, the architecture
gradient is computed via approximation of the weights that minimize the training loss (instead of training
the network fully). According to a second-order approximation, those weights are computed by performing
a single train step. The first-order approximation simply uses the current weights. Using this approximation
rather than the second-order one speeds up the search, yet it comes at the cost of reduced performance.
Please refer to the DARTS Liu et al. (2019b) paper for more details.

3.4 The SimCLR approach

In SimCLR each input image x, is augmented twice, forming a positive pair x̃i and x̃j . Then, the augmented
views are passed through our network of stacked cells (as in the DARTS model). Denoting the output of the
network final pooling layer by hi, an MLP g(·) is used to project it to a latent space, obtaining zi = g(hi).
As SimCLR demonstrated, this mapping is effective as presumably, it allows hi to keep all the information
necessary for classification, while zi can discard some of it to predict the agreement between pairs of views
more accurately.

In a batch of N input images, there are 2N augmented images. Among them, each pair of augmented views,
namely x̃i and x̃j , form a positive pair, while the other pairs serve as negative examples. For each positive
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pair, we use the normalized temperature-scaled cross entropy loss Chen et al. (2020a):

`i,j = − log exp(sim((zi, zj)/τ)∑2N
k=1 1[k 6=i] exp(sim(zi, zk)/τ)

,

where sim(zi, zj) = z>i zj

‖zi‖‖zj‖ is the cosine similarity, 1 is an indicator function and τ is a temperature
hyperparameter.

3.5 Self-Supervised Neural Architecture Search

To find network architectures that generalize best the data without accessing the labels, we have to tailor a
single framework, namely SSNAS, which puts together concepts from the areas of NAS and SSL. Adapting
the work of DARTSLiu et al. (2019b), we have to suggest different techniques for learning from the data
without any annotations and define an objective to drive the search accordingly. In order to enhance the
generalization ability of the learned models, we look for a method to increase the margin of the network.
Inspired by how SimCLRChen et al. (2020a) uses contrastive loss for visual representation learning, we
also use the contrastive loss and perform the strong data augmentations that encourage effective learning
of the network architecture. While SimCLR uses a fixed ResNetHe et al. (2015) to learn effective visual
representation, we use our dynamic network of stacked cells with mixed operations to learn an effective
network architecture. This choice enables us to increase the network margin by contrasting positive pairs
and negative pairs generated on the fly. In order to generalize well on the training data, we keep the
procedural choice of separating the original training set into two separate sets, where one is used to learn
the network weights while the other pushes towards a network structure with an increased margin.

Though SSL frameworks achieve state-of-the-art results by using many computation resources (namely Sim-
CLR uses large batch sizes up to 8192 and up to 128 cores of TPUs), we focus on the case of limited resources.
We use small batch sizes and work with models that fit in a single GPU.

4 Experiments

We turn to test our SSNAS approach and conduct a self-supervised architecture search to identify novel
architectures without using labeled data. To evaluate the learned cells, we measure the performance of the
found architectures using labeled data. To further examine our approach, we experiment with self-supervised
pretraining1 in the case of limited resources and evaluate the learned representations for classification with
limited annotations. We show that using the learned architectures with SSL can improve the learned repre-
sentations.

Datasets. We conduct most of our search experiments on CIFAR-10 Krizhevsky (2009). In this case,
we show that search with and without labels lead virtually to the same performance. To evaluate cell
transferability, we train learned cells on ImageNet Russakovsky et al. (2015). Then, we turn to other datasets
where the number of available labels per class is relatively small. These include CIFAR-100 Krizhevsky
(2009), where the vanilla DARTS Liu et al. (2019b) struggles, and STL-10 Coates et al. (2011), where the
number of labels is significantly small and thus applying supervised NAS techniques is very challenging. We
then train a classifier for the latter based on representations learned by SSL using the unlabeled data in STL
showing the potential of the learned architecture to contribute to visual representation learning.

4.1 Implementation details

We describe now the setup we use for the architecture search with the SSL loss, both in the training and
evaluation phases. We also detail the SSL pretraining of the found architectures.

Architecture search. We use the same setup that was detailed in DARTS Liu et al. (2019b). We learn
a normal cell and a reduction cell, each consisting of 7 nodes. The candidate operations include separable
convolutions and dilated separable convolutions (3x3, 5x5), average pooling (3x3), max pooling (3x3), zero,

1Here and elsewhere in the paper pretraining refers to unsupervised pretraining by SSL.
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Architecture Search Type Test Error (%)
Random sampling random 3.29
DARTS (first order) supervised 3.00
DARTS (second order) supervised 2.62
SSNAS (first order) self-supervised 2.61

Table 1: Image classification test error on CIFAR-10

Test Error (%)
Architecture Search Type top-1 top-5
DARTS (second order) supervised 28.92 10.24
SSNAS (first order) self-supervised 27.75 9.55

Table 2: Image classification test errors on ImageNet

Architecture Search Type Test Accuracy (%)
DARTS (first order) supervised 64.46
Random sampling random 82.61
SSNAS (first order) self-supervised 83.36

Table 3: Image classification accuracies on CIFAR-100

Test Accuracy (%)
Architecture Batch Size Linear Evaluation Semi-supervised
ResNet-18 32 87.63 88.85
Random sampling 32 83.48 88.39
SSNAS (first order) 32 88.78 89.45
ResNet-18 64 90.53 90.17
Random sampling 64 88.13 90.03
SSNAS (first order) 64 90.87 90.94

Table 4: Learning visual representations from CIFAR-10 (limited-resources scenario)
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and identity. To obtain the final cell after the search concludes, we keep for each node the two strongest
operations (among all the operations from the predecessor nodes). By stacking the cells, we form a deep
network. As search results might be sensitive to initialization, we run the search four times with different
random seeds. In order to generalize well on the training data, we keep the procedural choice of separating
the original training set into two separate sets, where one is used to learn the network weights while the
other pushes towards a network structure with an increased margin.

To solve the optimization problem, we use the first-order approximation of the gradient which requires fewer
resources. Even though it comes at the cost of reduced performance, we were still able to use it to get
performance comparable to DARTS and even better in some cases.

Though SSL frameworks achieve state-of-the-art results by using many computation resources (namely Sim-
CLR uses large batch sizes up to 8192 and up to 128 cores of TPUs), we focus on the case of limited resources:
We use small batch sizes and work with models that fit in a single GPU.

Architecture evaluation. To select which model to evaluate, we employ the following model selection
strategy as in Liu et al. (2019b): We train each network for a small number of epochs (100) and pick the best
model based on its performance on a validation set. To evaluate the final architecture, we train the network
from scratch and test it on a test set. The network used for model selection and training is larger than the
one used for search (8 cells for search and 20 cells for training), and also the number of input channels is
higher (16 channels for search and 36 channels for training).

Self-supervised pretraining. For pretraining, we adapt the procedure used in SimCLR Chen et al.
(2020a). We use our learned architecture as the base network, and add a nonlinear head on top of it (namely
an MLP with two layers and a ReLU nonlinearity). The representations are mapped to 128-dimensional
projections. The composition of random augmentations includes random crop and resize, random horizontal
flip, color distortion, and Gaussian blur. As we investigate the case of limited resources, we use small
batch sizes of 32 and 64 on a single GPU (unlike the original SimCLR Chen et al. (2020a) framework that
experimented with batches of size up to 8192 and used up to 128 TPU cores). The same settings are used
also in SSNAS (to enforce the contrastive loss and perform the search without labels).

Evaluation of the self-supervised learned representations. We evaluate the learned representations
using the common linear evaluation protocol Zhang et al. (2016); Chen et al. (2020a); Oord et al. (2018).
We freeze the pretrained network and add a linear classifier on top of it, and train it on the entire train set.

We also evaluate the learned representation in a semi-supervised setting. We sample 10% of the labels in
a given labeled dataset and fine-tune the entire pretrained network on the labeled data. We conclude with
testing the fine-tuned model on the test set. For datasets that are already suitable for semi-supervised
learning (e.g., STL), we use the few provided examples (instead of taking a fraction of the annotations).
These experiments show the potential of the learned architecture to contribute to visual representation
learning with SSL.

4.2 Learning network architectures from unlabeled data

Comparisons to the fully annotated case. We used our SSNAS framework to search for novel architec-
tures on CIFAR-10 without using any annotations. For model selection, we ran a short self-supervised train
(100 epochs) for each of the learned architectures and measured its performance on the validation set based
on the model’s contrastive loss (without using annotations). For evaluation purposes, we then performed a
full supervised train (650 epochs) on the selected model and tested it on the test set.

Table 1 compares our results to the baseline (DARTS) that requires data annotations. Notice that our search,
which uses only a first-order approximation, is comparable to the results of DARTS with the second-order
approximation and outperforms both the first order DARTS and the random sampling. Remarkably, this is
obtained without using any labels during the search.

We investigated cell transferability by evaluating the learned model on ImageNet Russakovsky et al. (2015).
We adjusted the model to have 14 cells and 48 input channels. We trained the network from scratch for
250 epochs and tested its performance on the test set. We used the same hyperparameters as in DARTS
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Architecture Fine-tune Test Acc. (%)
Random sampling pretrained model 84.55
ResNet-18 pretrained model 86.13
SSNAS (first order) random weights 67.00
SSNAS (first order) pretrained model 86.70

Table 5: Learning visual representations from STL-10 (semi-supervised setting)

Liu et al. (2019b) except for a bigger batch size to speed up the training. The same settings were used
to evaluate SSNAS and DARTS. Table 2 shows SSNAS results for cell transferability against the results of
DARTS. These results confirm that SSNAS matches the performance of the supervised approach also when
transferring the architecture.

Comparisons to scarce labels case. To experiment on datasets for which the number of labeled examples
per class is relatively small, we also employed SSNAS to search for architectures on CIFAR-100 (following the
same procedure described for CIFAR-10). Table 3 shows comparisons between SSNAS results and the results
of the baseline. In this case, we show that our method succeeds while the vanilla DARTS struggles, without
adding regularization or employing specific techniques to prevent DARTS collapse. We also show that
SSNAS outperforms random sampling as well. This experiment demonstrates the advantage of performing
architecture search with no labels when the number of labeled examples per class is relatively small.

4.3 Self-supervised learning using searched models

To investigate the potential of using NAS to improve unsupervised learning, we used the architectures we
found for CIFAR-10 as the base network for learning visual representations from CIFAR-10 using SSL in
the case of limited annotations. We carried out the model selection by running short pretraining on each of
the searched architectures and then selected the best performing network based on the model’s contrastive
loss on the validation set (without using any annotations). We then pretrained the selected model with a
relatively small batch size (32 or 64) as we consider the limited-resources scenario. To evaluate our results,
we applied SSL also with randomly selected architectures and with ResNet-18. We compare to ResNet-18 as
this is the architecture employed in Chen et al. (2020a) for CIFAR-10. For evaluation, we used the common
linear evaluation protocol and the semi-supervised settings.

Table 4 presents our results and compare them to the randomly selected architectures and SimCLR’s base
network (ResNet-18). Notice that the learned architecture attains better performance for the batch sizes
that are considered compared to both the randomly selected architecture and the ResNet-18 model. This
shows the potential of combining SSL with NAS to learn improved visual representations.

To assess the applicability of our framework on datasets that are suitable for semi-supervised learning with
only a few labels available, we experimented on STL-10 Coates et al. (2011). As the number of annotations is
relatively small (500 labeled training examples per class), we cannot apply supervised methods for the search.
Instead, we used SSNAS to search for a compact architecture (with 5 cells) that served as the base network
for pretraining. In the next step, we used the labeled examples in the training set (5000 training images)
to finetune the network. We repeated this procedure several times, with the following changes: (i) using a
random architecture instead of the learned one; and (ii) training from scratch (initializing the architecture
with random weights) rather than using the weights of the pretrained model. For comparison, we also
performed pretraining with ResNet-18He et al. (2015) as the base model using the same settings. Results of
this experiment are presented in Table 5. Fine-tuning the pretrained model learned by SSNAS outperforms
fine-tuning the original ResNet-18 model, fine-tuning a random model or using the learned model without
the learned weights. This experiment demonstrates the advantage of pretraining with a learned architecture
on datasets that are suitable for semi-supervised learning and confirms the potential of NAS to improve SSL.
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4.4 The train set and the validation set of SSNAS

During the search, we split the data into two parts, a train set used to learn the network weights, and a
validation set used to learn the architecture parameter α. An interesting question is whether to perform
such a split or to use the same set (containing all the samples) for both learning the network’s weights
and learning α. While for supervised search the first is practiced, we wanted to verify that this is also the
preferred choice for our SSL search. Our experiments have shown that indeed using separate sets leads
to improved performance compared to using the same set (with twice as many examples): We observe a
difference in performance on the test set of 0.63% in favor of splitting the data.

5 Conclusion

In this paper, we present a framework for self-supervised neural architecture search. This study set out to
support the claim that architecture search can be carried out without using labeled data. We demonstrated
this with the SimCLR approach, which is a leading technique in SSL. Indeed, our framework matched the
performance of equivalent supervised methods without using annotations at all.

Our work also identified that the learned architectures can be used as the base network in SSL frameworks
and improve their performance. In particular, we exhibited this advantage for datasets with few labels, i.e.,
using SSL in the limited annotations scenario. Our findings demonstrated that SSL and NAS can be put in
a symbiosis where both benefit from each other.

The focus of this work is exploring the search and training with limited resources. A natural progression of
this work is to expand the experiments on SSL to larger models, datasets, and batch sizes. One may also
experiment with other recent learning methods such as self-training with noisy student Xie et al. (2019a). We
believe (although we do not have the resources to check that) that the same advantage will be demonstrated
in these cases. Notwithstanding these limitations, the results established in this work already demonstrate
the great advantage of using SSL and NAS together.

Another possible follow-up research direction is using an architecture search to learn better augmentations
to be used with the self-supervised learning techniques. This can be done for example by extending methods
such as auto-augment that searches for the optimal augmentations for a given supervised task Cubuk et al.
(2018); Lim et al. (2019). While Chen et al. (2020a) reported that using the current augmentations found by
auto-augment does not improve the learned representations in their method, we believe that by combining
the two such that the learned augmentations are designed specifically for the SSL task, the learned visual
representations can be improved.

Finally, in this work, we also established a margin view of SSL when used as a loss for architecture search.
We believe that this view has the potential to further be developed and perhaps lead to an explanation for
the general SSL success.
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