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Abstract

Adapting pre-trained foundation models to novel sensor modalities is a fundamental chal-
lenge. These models are pre-trained on large RGB datasets that typically lack exposure to
the imaging characteristics of other modalities. Physical acquisition effects, such as photon
statistics and sensor-specific noise, produce appearance shifts that are underrepresented in
pre-training and can degrade transfer performance. We propose a noise-aware adaptation
framework that conditions model adaptation on sensor-specific acquisition statistics. Central
to our approach is a lightweight Noise Adapter that modulates pre-trained visual features
using summary statistics of the sensor’s outputs, to decouple acquisition-induced appearance
variation from semantics and improve robustness in low-label regimes. We instantiate this
idea as a case study on single-photon LiDAR depth images by designing a Noise Adapter
that leverages summary statistics computed from raw single-photon histograms for few-shot
classification. We also present an exploratory analysis showing how learned modulation
patterns correspond to noise-induced feature shifts, providing insight into the adapter’s role
in feature robustness. Experiments on both synthetic and real single-photon datasets show
that our method improves accuracy over baselines, with an average improvement of 3% over
the best baseline. These results suggest that explicitly conditioning adaptation on physi-
cal acquisition factors is a practical and promising strategy that may generalize to other
non-standard modalities.

1 Introduction

Foundation models such as CLIP (Radford et al., 2021) and DINO (Caron et al., 2021} |Oquab et al., |2024)
have demonstrated impressive generalization across a wide range of vision tasks. However, their pre-training
is grounded in large-scale RGB datasets, which do not systematically cover the sensing characteristics of
non-standard modalities such as thermal cameras or medical imaging, nor of new modalities such as single-
photon LiDAR. These domains introduce appearance variations driven by physical acquisition processes
(e.g., photon statistics, sensor noise) that are largely absent from pre-training. Additionally, datasets in such
modalities are typically small, making it often insufficient to rely solely on fine-tuning to bridge the domain
gap. This raises a central challenge: how can we adapt foundation models to new sensing modalities in a
way that explicitly incorporates the variability introduced by their physical acquisition conditions?

Single-photon avalanche diode (SPAD) LiDAR provides a representative case study of this challenge. SPAD
detectors enable high-precision depth imaging in photon-starved environments by capturing individual pho-
tons with picosecond timing resolution (Hadfield} |2009; [Halimi et al., 20195 [McCarthy et al.,|2025};|Chan et al.,
. This makes them particularly attractive for long-range and low-albedo scenarios such as autonomous
navigation, robotics, and environmental sensing (Degnan, |2016; Rapp et al., 2020; Shangguan et al., 2023)).
While existing research has primarily focused on improving geometric reconstruction (Tachella et all [2019;
[Malik et all, 2023), there is growing interest in extending SPAD imaging toward semantic tasks such as
classification and scene understanding (Suonsivu et al., 2025; Axelsson, [2024; |Zhang et al., [2025)). However,
achieving reliable semantic recognition from SPAD images remains difficult due to both the scarcity of la-
beled data (Li et al.l 2024} Hong et al., 2023) and their strong sensitivity to photon-level noise. Variations
in photon counts and signal-to-background ratio (SBR) can drastically alter image appearance, as shown in
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Figure[l] introducing imaging condition-driven shifts that models struggle to disentangle from true semantic
differences (Suonsivu et al., 2025)).

Adapting foundation models to SPAD images offers a
promising direction to address these challenges. These
models learn transferable representations from massive
RGB datasets and can be adapted to downstream tasks
with only a few labeled samples (Radford et all 2021}
2023)). Despite the modality gap, SPAD images often
preserve coarse geometric patterns that can support trans-
ferable representations (Auty & Mikolajczyk, |2023; [Huang|
. Several recent adaptation methods have pro-
posed lightweight mechanisms to adapt pre-trained foun-
dation models to downstream tasks (Zhou et all [2022b;  (a) Low photon count  (b) High photon count
[Gao et al.l[2024; [Zhang et all[2022). However, these meth- )

ods primarily adjust features or prompts without explicitly Figure 1: Examples of SPAD depth images un-

incorporating physical acquisition conditions. As a result, der varying imaging conditions. Images are

they remain vulnerable to the large intra-class appearance Arawn from the SPAD real dataset (Zhang et al.
2025) and correspond to the same scene cap-

tured with different average photon counts per

variations induced by SPAD imaging noise. This motivates
us to develop a noise-aware adaptation framework tailored **
to the characteristics of SPAD data. pixel.

We argue that effective adaptation to new sensing modalities requires making the adaptation process explic-
itly aware of physical acquisition conditions. We instantiate this principle in SPAD imaging, where photon
statistics and SBR dominate appearance variability. To this end, we propose a noise-aware adaptation
framework that incorporates physically interpretable descriptors of imaging conditions as priors into the
adaptation process. El Specifically, we extract the average detected photons per pixel and the estimated SBR
from raw histograms and feed them into a Noise Adapter module that modulates frozen pre-trained visual
features. This design enables the model to attenuate noise-sensitive feature dimensions while preserving
robust semantic channels. Furthermore, we observe that the learned gating pattern correlates with feature
sensitivity to imaging noise, which motivates an exploratory feature-level augmentation strategy. Although
the gains from this augmentation are modest, it suggests a potential direction for leveraging gating behavior
to improve robustness.

Our contributions are three-fold: (1) We propose a modality-aware adaptation framework that conditions
feature modulation on imaging condition descriptors, bridging a key gap in adapting foundation models to
new sensing modalities. We instantiate this framework in the case of SPAD LiDAR depth images classifi-
cation, introducing a Noise Adapter that leverages photon statistics and SBR to guide feature modulation
and improve robustness. (2) We provide an exploratory analysis of how the learned gating vector captures
per-dimension noise sensitivity, and show that this property can be used to guide feature-level augmentation
that simulates noise-induced shifts. (3) We validate our approach on both synthetic and real SPAD datasets,
where it consistently outperforms existing adapter tuning methods.

2 Related Works

2.1 Semantic Understanding of Single-photon Lidar Data

Single-photon LiDAR systems have primarily been studied for depth estimation and 3D reconstruction under
extreme conditions (Legros et al., 2020; Malik et al., |2023; Luo et al., [2025). However, the semantic under-
standing of SPAD data remains largely unexplored. To promote research in this area, the Time-Resolved
MNIST dataset was introduced as a simulated SPAD dataset for single-photon recognition, demonstrating
how varying photon flux levels impact CNN recognition accuracy (Suonsivu et al.l [2025]).

n this paper, “physically interpretable” refers to the input noise descriptors (e.g., photon count and SBR), which have
clear physical meaning. The Noise Adapter itself is a learned module that transforms these descriptors into a modulation signal
and is not claimed to be fully interpretable.
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Many existing methods adapt architectures originally developed for RGB images to noisy, low-resolution
SPAD data, addressing tasks like object detection and human activity recognition under photon-starved
conditions (MoraMartin et al., 2024; |Li et al) |2024)). A recent study further integrates active learning to
enhance model performance using fewer labeled examples (Zhang et al. 2025). However, these approaches
rely on reconstructed depth images, neglecting richer noise information in raw SPAD histograms. Some
recent works directly utilize raw SPAD data for classification and detection without intermediate depth
reconstruction (Hong et all 2023} [Zhu et al., |2020). Yet data structures of raw SPAD data significantly
differ from RGB images, making it difficult to leverage models pre-trained on RGB images.

To bridge this gap, we propose a lightweight noise adapter that incorporates physically interpretable noise
descriptors as priors to capture rich information from raw SPAD histograms, while enabling effective adap-
tation of powerful vision-language models pre-trained on large-scale RGB datasets.

2.2 Lightweight Adaptation of Foundation Models

Recent large-scale foundation models have demonstrated impressive zero-shot and few-shot generalization ca-
pabilities by learning robust image-text alignment or self-supervised vision tasks from massive datasets (Rad-
ford et al [2021} [Li et al., [2023; |Oquab et all |2024)). Existing lightweight adaptation approaches typically
fall into two main categories: prompt-tuning methods and adapter tuning.

Prompt tuning methods optimize a small set of learnable parameters to adapt the input of a frozen backbone,
either through learnable textual prompts (Zhou et al., [2022bsa)) or through visual prompts (Jia et al.; [2022;
Zeng et all |2024; Han et al.l[2023). Adapter tuning, in contrast, modifies the representations produced by the
pre-trained encoder. Some approaches train lightweight modules on top of the frozen backbone (Gao et al.,
2024; Huang et all [2024). Other methods adopt cache-based models that store key-value representations
derived from the few-shot training set. These caches can be used either as fixed non-parametric memories
or further optimized as learnable components to enhance matching performance at test time (Zhang et al.
2022; |Song et al.| 2023} |Zhu et al.| [2023; [Udandarao et al.| 2023)).

Despite these advances, current adaptation methods are predominantly tailored toward RGB imagery. Ex-
tending these adaptation frameworks to novel sensor modalities, such as SPAD depth images, poses unique
challenges due to the distinct physical noise characteristics. Addressing these challenges requires methods
capable of explicitly modeling sensor-specific variability alongside semantic content.

3 Preliminary: Physical Modeling of Single-Photon Noises

3.1 The Physics of Single-photon Imaging

Single-photon LiDAR operates by emitting pulsed laser signals, employs a single-photon avalanche diode
(SPAD) to capture echo signals, combines with time-correlated single-photon counting to record tempo-
ral information of reflected photons, and derives target depth and reflectivity through analyzing photon
statistical characteristics (Hadfield, |2009; McCarthy et al., 2025)).

Specifically, for each pixel (i,7) of the target scene, we emit a pulsed laser beam with temporal waveform
5(t). The transient photon flux ®; ;(t) at the corresponding coordinate can be detected by SPAD arrays,

given by Eq.

22 ;
O, () = nov;[s(t — %) b +d, (1)

where 7 is the quantum efficiency of the single photon detector, «; ; is the reflectivity of the target object,
z;,; is the depth of the target object, c is the speed of light, b is the ambient light intensity, and d is the dark
count of the detector.

When the light flux is very low, the response of the SPAD detector (photon count histogram) can be
considered as a non-uniform Poisson process as Eq. [2}
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Hij(k) ~P (N ;(t)), (2)

where kK = 1,..., K represents the time-bins, N is the pulse repetition period (Rapp & Goyal, |2017)). Each
time bin corresponds to a fixed photon arrival interval determined by the system’s bin duration At. Upon
completing the full scan of the target scene, the histogram data from all pixel positions collectively form a
matrix H. Then, single-photon imaging algorithms are used to recover the target’s depth and reflectivity
from the H (Tachella et al.,2019; [Yao et al., [2022).

3.2 Exploiting Physical Noise for Image Understanding

Single-photon LiDAR captures depth information by recording the arrival times of photons at each pixel
location as a histogram H. The observed photon counts are influenced by multiple imaging factors, including
signal strength, background illumination, and total exposure. These factors vary across conditions and
scenes, leading to significant visual changes in the reconstructed depth images. While conventional imaging
algorithms (Tachella et al., 2019; Yao et al. |2022)) recover depth estimates from H, downstream recognition
models that operate solely on these depth maps typically overlook the detailed noise statistics inherent in the
raw photon histograms. This limits their ability to distinguish between semantic variations and appearance
shifts induced by different noise conditions.

To address this issue, we extract a compact noise embedding from H, capturing two physically interpretable
descriptors: the average detected photon count and the estimated signal-to-background ratio (SBR). These
descriptors reflect meaningful properties of the imaging process: photon count relates to signal sparsity,
while SBR quantifies the proportion of useful signal relative to ambient noise. Crucially, both can be derived
from the raw histogram data without requiring additional supervision or calibration. By integrating these
descriptors into the downstream adaptation process, we enable the model to condition its predictions on
imaging context—helping it decouple semantic information from noise-induced variations. This forms the
basis of our noise-aware adaptation framework, detailed in the following sections.

4 Method

In this section, we formalize a framework for adapting a pre-trained foundation model to the unseen SPAD-
LiDAR depth image modality. Our goal is to transfer rich semantic knowledge from the pre-training domain
(RGB images) to SPAD data, while explicitly accounting for the unique noise characteristics of SPAD
imaging. We address two key challenges: (1) the substantial distribution shift between the pre-training
domain (natural RGB images) and the target SPAD depth images, and (2) strong intra-class appearance
variations in SPAD images caused by photon-level noise under varying imaging conditions.

To tackle these challenges, we propose a noise-aware adaptation framework consisting of three main com-
ponents: (1) Noise-Embedding Extraction, (2) Noise Adapter, and (3) Gate-Guided Feature Augmentation
(GGFA). In the following subsections, we first formalize the problem setup and present the overall framework,
and then describe each component in detail.

4.1 Overall Framework

We denote the available SPAD dataset as D = (Hi,Ii,yi)i]\Ll, where H? € RM*XWXB g the raw SPAD

histogram, I* € RM*W ig the corresponding depth image reconstructed from H® via a SPAD imaging
algorithm (Yao et al., 2022), and ¥ is the associated label. Each histogram records photon counts over B
time bins at each of the M x W pixels. The reconstructed depth image I’ serves as the input to the visual
encoder, while the raw histogram H’ is used to extract noise embeddings.

Our method leverages the strong semantic priors encoded in the frozen pre-trained visual encoder fy (),
while explicitly modeling the impact of noise. The overall framework is illustrated in Figure For each
SPAD image, we first extract a global noise embedding z from the raw histogram H", capturing key imaging
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Figure 2: Overview of our noise-aware adaptation framework for SPAD depth images. A noise embedding
extracted from the SPAD raw data modulates visual features obtained from the depth image via a noise-
gated adapter. The modulated features are used for classification.

condition statistics. This noise embedding is then used to modulate the visual feature v = fi/(I*) through
a learnable gating mechanism, producing a noise-aware feature representation. Additionally, we introduce a
Gate-Guided Feature Augmentation (GGFA) strategy that generates realistic feature perturbations guided
by the learned gating behavior, further improving model robustness to noise-induced variation. In the
following sections, we describe each component of our method in detail.

4.2 Noise Embedding Extraction

We first describe how to extract a noise embedding from the raw SPAD histogram, summarizing each
sample’s imaging condition as input to the noise adapter. While many statistics can be derived from a
SPAD histogram (e.g., variance, skewness, higher-order moments), we use two global descriptors: average
photon count per pixel and signal-to-background ratio (SBR). In SPAD imaging, once the scene geometry,
reflectance, and LiDAR acquisition parameters (e.g., pulse repetition period, bin duration, detector efficiency,
and system impulse response) are fixed, the per-pixel photon arrival statistics are largely determined by the
detected photon number and the signal-to-background ratio (Rapp & Goyal, [2017). These two quantities thus
provide a compact and physically grounded summary of the dominant noise conditions. Other descriptors
are possible, but we select these statistics for their concise coverage of key variability factors.

Given a SPAD histogram H?, we compute a global noise embedding z € R? consisting of two scalar statistics:
the average number of detected photons per pixel, and an estimated SBR. The average photon count per
pixel, Cpix, is computed as the total number of detected photons divided by the number of pixels (M x W),
providing a coarse measure of signal strength and imaging quality. Throughout this paper, we use the
overline notation (e.g., éix) to indicate spatial averaging across all pixels.

To estimate SBR, we leverage the depth image I° reconstructed from H? using a SPAD imaging al-
gorithm (Yao et all [2022). For each pixel (z,y), we first identify the expected signal arrival bin as
p(z,y) = round(2I*(z,y)/(cAt)), where ¢ denotes the speed of light and At is the bin duration. We then
define a signal window of size w centered around p(z,y) and compute the number of signal photons as Eq.

x,y)+w

Csig(‘r7y) = Z H' (JJ y7b) (3)

b=p(z,y)—w

The background photon count is computed by subtracting the estimated signal photons from the total count
at each pixel, i.e., chg(z,y) = 25:1 H'(z,y,b) — csig(x,y). Then, the per-pixel SBR is computed as Eq.
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SBR(z,y) = cbcgs(ii(a;)y—i)—e’ (4)

where € is a small constant to prevent division by zero. The global SBR is obtained by averaging SBR(x,y)
across all pixels, denoted as SBR. Finally, the global noise embedding is defined as z = [Epix; SBR|. The
resulting noise embedding z enables the noise adapter to modulate visual features according to the imaging
conditions.

4.3 Noise Adapter

SPAD depth images can be viewed as a superposition of two factors with different generative origins: a stable
semantic structure determined by scene geometry and object identity, and stochastic variations induced by
photon-limited imaging conditions. Vision encoders pre-trained on natural RGB images capture semantic
structure but have never been exposed to SPAD-specific variations. As a result, they lack robustness to the
condition-induced shifts characteristic of photon-limited imaging. Our goal is therefore to disentangle the
two components, preserving semantics while mitigating noise-driven variability.

To this end, we introduce a Noise Adapter that conditions feature adaptation on a noise embedding z. Given
a pre-trained visual feature v € R” and 2z € R?, we compute a per-dimension gating vector g € [0, 1]? via a
multilayer perceptron (MLP): g = MLP(z). The adapted representation is then obtained as Eq.

vV =v0g+u, (5)

where ® denotes element-wise multiplication. This formulation splits the representation into two comple-
mentary paths: an identity path v that preserves the pre-trained semantic baseline, and a residual path
v ® g that applies a condition-specific correction. Intuitively, the gating vector learns to attenuate feature
dimensions sensitive to noise while preserving robust semantic channels, and the residual connection prevents
the adapter from overwriting useful representations. Consequently, the model learns lightweight, noise-aware
adjustments rather than rediscovering an appropriate representation.

Finally, the modulated feature v’ is passed through a classification head to produce semantic predictions. By
conditioning feature modulation on physically grounded descriptors, the Noise Adapter enhances robustness
to appearance variations and improves the generalization of pre-trained models to the previously unseen
SPAD modality.

4.4 Gate-Guided Feature Augmentation

We observe that the learned gating vector g implicitly captures the sensitivity of different feature dimensions
to variations in imaging conditions. Specifically, dimensions with larger average gate values tend to exhibit
smaller variations across noise levels. This observation is supported by empirical analysis in Sec. where
we show a negative correlation between the average gate value and the standard deviation of CLIP features
across different noise levels.

Motivated by this, we propose a Gate-Guided Feature Augmentation (GGFA) strategy to further improve
model robustness under limited supervision. The key idea is to inject feature perturbations in a gate-informed
manner, where the perturbation strength for each feature dimension is proportional to (1 — g), encouraging
the model to be robust to variations from imaging conditions.

The overall GGFA workflow is as follows. We first train the Noise Adapter without GGFA, obtaining a learned
noise gate. In a second training stage, we freeze the noise gate and use it to guide feature augmentation.
Specifically, for each original visual feature v, we add controlled random noise to generate an augmented
feature as Eq. [6}

’Uaug[i] = U[Z] +o- (1 - g[l]) c€y, &Y N(O7 1)’ (6)
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where « is a global scaling factor that controls the overall perturbation strength, and (1 — g) determines
the dimension-wise noise scaling based on the gate. Since the gating network will further affect the noise
distribution, we pass the perturbed feature v,,, through the noise gate to obtain the final augmented
modulated feature, v}, = Vaug © g + Vaug-

During this augmentation phase, we freeze the noise gate parameters and only train the classifier on both
original and augmented features. For each augmented feature, we randomly sample a noise embedding to
generate the corresponding gate vector g. This design prevents the degradation of the previously learned
noise-aware modulation and ensures that the classifier is exposed to a broader range of noise-conditioned
feature variations. The training objective is a standard cross-entropy loss computed over both the original
and augmented samples in each iteration. This two-stage strategy enables the model to learn robust deci-
sion boundaries that generalize better across a spectrum of realistic noise-induced feature variations, while
preserving the noise-aware feature modulation introduced by the Noise Adapter.

5 Experiments

5.1 Experimental Setup

Dastaset: We evaluate our method on both synthetic and real SPAD datasets comprising 11 categories
introduced in the prior work (Zhang et al|2025). The synthetic SPAD dataset is generated by simulating
single-photon histograms from RGB-D images. It contains about 33,000 samples across 11 object classes.
To align the spatial sparsity of SPAD imaging, all simulated images are downsampled to a resolution of
128 x 72 pixels. The real SPAD dataset contains 4,400 reconstructed depth images spanning the same
11 categories as the synthetic dataset. Each class includes 400 single-photon samples. The depth image is
reconstructed using the SSPI algorithm (Yao et al.; |2022) with a resolution of 64 x 64 pixels.

Implementation Details: We evaluate our method on both synthetic and real single-photon datasets,
splitting each dataset into training, validation, and test subsets with a ratio of 0.6:0.1:0.3. All methods
use the pre-trained CLIP ViT-B/32 model as the visual feature encoder. To ensure a fair comparison, all
trainable models are optimized using the AdamW optimizer with an initial learning rate of 0.001, batch size
of 64, and a cosine annealing learning rate schedule over 100 epochs.

Following prior work, we evaluate performance under different data-scarce scenarios by selecting 1, 2, 4, 8,
and 16 labeled samples per class for training (Zhang et al., |2022; |Gao et al., |2024). Each experiment is
repeated with 5 different random seeds. For each run, the data split is regenerated following the specified
ratio. We report the mean classification accuracy and standard deviation across these runs.

In our proposed Noise Adapter, both the noise-gating module and the classification head are implemented
as two-layer MLPs. The hidden dimension of each MLP is set equal to the feature dimension of the CLIP
visual encoder output.

Baseline: (1) Linear-probing: trains a linear classifier on top of the frozen visual encoder using the few-shot
labeled samples; (2) Tip-Adapter: a training-free adapter that builds a key-value cache from support features
and combines visual-textual similarities by tuning their weights on the validation set (Zhang et al., 2022); (3)
Tip-Adapter-F: fine-tunes the cached visual embeddings while also searching for the optimal combination of
visual and textual similarity weights using the validation set (Zhang et al. |2022); (4) CLIP-Adapter: trains
a two-layer MLP to adapt visual features and combines them with CLIP text features, weights are tuned on
the validation set for best fusion (Gao et all |[2024)); (5) Meta-Adapter utilizes meta-testing mechanism and
a lightweight adapter (Song et al.| 2023]).

5.2 Results and Analysis

Figure |3 shows the few-shot classification performance of various methods on both the synthetic SPAD
dataset (Figure and the real SPAD dataset (Figure . Our proposed Noise Adapter consistently
outperforms all baseline methods across different numbers of labeled samples per class, especially when more
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training examples are available. Due to the domain shift between the RGB data used to pre-train CLIP
and the SPAD depth images in our task, the zero-shot accuracy of CLIP is relatively low (Table [4] and
Table [5)). This domain gap also negatively impacts methods that rely heavily on CLIP’s text embeddings,
such as Meta-Adapter, which shows limited performance improvements even as the number of labeled samples
increases. In addition, the large modality gap makes it difficult for training-free approaches like Tip-Adapter
or methods that only apply minimal changes to the pre-trained features (e.g., Linear Probing), to adapt
effectively, leading to suboptimal accuracy. In contrast, CLIP-Adapter and Tip-Adapter-F, which allow for
more flexible adaptation of CLIP features, achieve relatively better performance.

—§— Linear Probing CLIP Adapter —]— Tip Adapter ¥ Tip Adapter F —f— Meta Adapter -4-- Noise Adapter
80 80
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Figure 3: Few-shot classification accuracy comparison on (a) synthetic and (b) real SPAD datasets. Each
curve shows the average accuracy and standard deviation over 5 random trials.

Our Noise Adapter adopts a similar structure to CLIP-Adapter, utilizing a two-layer MLP to adapt visual
features. However, it further enhances adaptation by incorporating noise embeddings extracted from SPAD
raw data. These noise embeddings encode information about imaging conditions, which helps the adapter
distinguish between noise-induced and semantics-induced variations in the images. As a result, the model
achieves higher accuracy.

As shown in Figure [3] Noise-Adapter performs comparably to other trainable adapters in the 1-shot setting,
as limited data makes it challenging to learn meaningful noise-conditioned representations. However, as more
training data becomes available, Noise-Adapter demonstrates significant performance gains, highlighting the
benefit of modeling noise explicitly in this domain.

Performance of Different Noise Levels We further evaluate the robustness of different methods under
varying noise levels on the real SPAD depth image dataset. Since the quality of SPAD depth images is highly
correlated with the average number of detected photons per pixel, we partition the test samples into four
groups based on their normalized average photon count. Lower photon counts (e.g., 0-0.25) correspond to
lower imaging quality and higher noise levels. Figure[d]shows the performance of all methods across different
photon count ranges under 2-shot, 4-shot, 8-shot, and 16-shot settings. Across all methods, prediction
accuracy generally improves as photon count increases, confirming that photon noise significantly impacts
classification performance in SPAD depth images.

In the low-shot settings (2-shot and 4-shot), our proposed Noise Adapter exhibits clear advantages over
baselines in the higher photon count ranges (0.5-1.0), but performs comparably to baselines in the lowest
photon count range (0-0.25). We attribute this to the limited number of labeled samples constraining the
model’s ability to fully learn the complex interaction between noise characteristics and semantic structure
in very noisy samples. However, the explicit incorporation of noise embeddings provides the adapter with
valuable information about imaging conditions, helping to improve its overall accuracy.
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Figure 4: Classification accuracy of our method and baselines under different noise levels of the real SPAD
dataset. Each subfigure corresponds to a different few-shot setting ( (a) 2, (b) 4, (c) 8, and (d) 16 shots),
while the x-axis indicates four photon count intervals that represent increasing image quality. Results are
averaged over 5 random trials.

As the number of labeled samples increases (8-shot and 16-shot), Noise Adapter consistently achieves the
best accuracy across all photon count ranges. With more supervision, the model can learn more effectively
how to disentangle noise-induced variations from semantic content, enabling better generalization across
both low- and high-noise samples. These results validate our hypothesis that incorporating explicit noise-
awareness into the adaptation process is critical for recognizing SPAD depth images that are highly sensitive
to variations in imaging conditions.

5.3 Ablation Study

To better understand the contributions of different components in our method, we conduct a series of
ablation studies on the syn/real SPAD depth image datasets. The ablations are organized into two parts:
model architectures and feature augmentations. In addition, we provide extended analysis in the appendix,
including results across different pre-trained backbones (Appendix and a deeper investigation of GGFA

(Appendix @

5.3.1 Analysis of Noise Adapter architecture

First, we analyze the impact of different model architectures for incorporating noise information. We compare
(1) a linear classifier trained on the CLIP visual features v, (2) a linear classifier trained on concatenated
visual features and noise embeddings [v, z], (3) a MLP classifier trained on the same concatenated features,
and (4) our proposed Noise Adapter, which uses a noise gate to map the noise embedding into a gating
vector that modulates the visual features.

As shown in Figure [f] the worst-performing variant is linear probing with noise embedding, which even
underperforms standard linear probing. This suggests that directly concatenating noise embeddings to CLIP
features can harm the representation, especially when the classifier lacks sufficient capacity to compensate
for this disturbance (e.g. Linear probing).

MLP probing with noise performs better and is able to exploit the additional information provided by noise
embeddings. However, under few-shot settings (e.g., 1-shot and 2-shot), it tends to overfit the specific
noise conditions in the training samples, leading to suboptimal generalization. This result likely stems from
its reliance on learning complex mappings from limited data, without a structured mechanism to separate
noise-related variations from semantic cues.

In contrast, our Noise Adapter achieves consistently strong results. Under limited labeled samples, it per-
forms on par with or better than the linear probing baseline, indicating that it preserves the semantic
structure of CLIP features. As the number of labeled samples increases, the Noise Adapter shows more
substantial improvements over all other variants. This demonstrates the benefit of its design: by using noise
embeddings to modulate the visual features through a learnable gating mechanism, it allows the model to
suppress noise-induced variations while retaining relevant semantic information. Overall, these results high-
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Figure 5: Ablation study comparing different ways of incorporating noise information into the classification
pipeline. We compare: (1) Linear Probing, (2) Linear Probing with Noise, which concatenates noise em-
beddings to visual features before linear classification; (3) MLP Probing with Noise, which uses an MLP on

concatenated features; and (4) our proposed Noise Adapter on (a) Syn SPAD dataset and (b) Real SPAD
dataset.

light the importance of both incorporating noise-aware signals and using them in a structured, learnable way
to enhance model robustness under varying imaging conditions.

Feature Visualization To further analyze how different ways of integrating noise information impact
feature representations, we visualize the features produced by different variants using PaCMAP (Wang
2021) in the real SPAD depth image dataset, as shown in Figure@

* Apple Banana e«  Building Cap ¢ e-Bike Fireplug e Waste Container Human ¢ Road Blocker Boat e Bottle

(a) CLIP visual feature v (b) Concatenated feature [v, 2] (c) Modulated features v’

Figure 6: PaCMAP visualization of different feature representations on the real SPAD dataset. (a) Original

CLIP visual features v, (b) features obtained by concatenating CLIP features with noise embeddings [v, 2],
and (c) features v produced by our Noise Adapter.

In Figure [6a] the original CLIP visual features demonstrate good generalization despite being pre-trained
on natural images, which are substantially different from SPAD depth images. Distinct classes form well-

separated clusters, indicating that the pre-trained CLIP encoder captures transferable semantic information
even under the SPAD modality.

However, as shown in Figure [6D] directly concatenating noise embeddings with CLIP visual features in-
troduces degradation in features. The added noise embedding increases sensitivity to imaging condition
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variations, causing features of the same semantic class to fragment into multiple sub-clusters corresponding
to different noise levels. Moreover, certain classes become less separable and exhibit overlap with other cat-
egories, suggesting that naive concatenation can amplify nuisance variation rather than helping the model
to disambiguate it.

In contrast, Figure shows that our Noise Adapter effectively leverages the noise embeddings through
a learned gating mechanism, improving the quality of the feature space. The modulated features exhibit
improved inter-class separation, indicating that the adapter successfully helps to disentangle noise-induced
variation from semantic structure. This supports our design choice of using a gating-based modulation
instead of direct feature concatenation, allowing the model to better preserve semantic information while
adapting to varying imaging conditions.

5.3.2 Analysis of Gate-Guided Feature Augmentation

Second, we evaluate the effect of different feature augmentation strategies. We compare (1) no feature
augmentation, (2) adding random noise with fixed standard deviation to the modulated features v’, (3)
adding random noise with fixed standard deviation to the original visual features v, and then applying the
learned noise gate to produce augmented modulated features, and (4) our full method, where the noise gate’s
mean values are used to determine dimension-wise noise scaling for feature augmentation.

Correlation between Gate and Feature across various noise levels We first analyze how the learned
gating vector g relates to the noise sensitivity of different feature dimensions. Figure [7] shows the correlation
between the average gate value and the standard deviation of CLIP visual features across different noise
levels, under 1-shot, 4-shot, and 16-shot settings. Each point corresponds to one feature dimension.

A negative correlation is observed, indicating that dimensions with lower gate values tend to exhibit
higher variability across noise conditions. This suggests that the gating mechanism implicitly captures
per-dimension noise sensitivity, with ¢ modulating feature robustness accordingly.
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Figure 7: Correlation between the averaged gate value and the standard deviation of CLIP features across
different noise levels. Each point corresponds to one feature dimension. A negative correlation is observed,
indicating that the gating mechanism tends to assign lower gate values to dimensions with higher feature
variability. (a), (b), and (c) show the results under the 1-shot, 4-shot, and 16-shot settings, respectively.
The correlation coefficient is computed using Spearman’s rank correlation.

As shown in Figure [7] this correlation (Spearman’s rank correlation (Zwillinger & Kokoska, [1999))) becomes
stronger as the number of labeled samples increases. In the 1-shot setting, the correlation is weak (r =
—0.070), likely due to insufficient supervision. However, with 4-shot and 16-shot settings, the negative
correlation strengthens (r = —0.293 and r = —0.336, respectively), suggesting that the model progressively
learns to align the gating pattern with feature sensitivity as more data becomes available.

These results provide empirical support for the design of our Gate-Guided Feature Augmentation (GGFA)
strategy, where (1 — g) is used to modulate the strength of feature perturbations. By leveraging the learned
gate pattern, GGFA introduces noise-consistent variations during training, making the augmented features
more closely resemble the actual feature variations observed under different imaging conditions. This en-
courages the classifier to generalize better to real noise-induced feature shifts.
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Effect of gate-guided feature augmentation We next analyze the impact of different feature aug-
mentation strategies on the performance of the Noise Adapter. The experiments compare variants with and
without feature augmentation, as well as different noise injection schemes designed to improve the robustness
of the modulated features. As shown in Table [I] and Table [2 the benefits of GGFA are more pronounced
in low-shot scenarios (1-shot and 2-shot), where limited supervision makes it more important to expose the
model to a diverse range of noise-conditioned feature variations. In higher-shot settings, the model can
already learn such variations from the data itself, diminishing the impact of the feature augmentation.

Table 1: Ablation study of Gate-Guided Feature Augmentation (GGFA) on the SPAD real dataset. Results
show average accuracy with standard deviation (%) over 5 trials. The best results are shown in blue.

Few-shot Setup 1 2 4 8 16
w/o GGFA 50.39 + 4.75 62.95 +2.31 73.09 £ 0.95 80.14 + 1.68 86.61 + 1.19
Rand 49.55 £ 5.11 62.68 +2.26 72.68 £ 0.62 80.36 + 2.08 86.26 £ 1.18
Rand with Gate 51.02 +4.37 63.27 £ 2.53 72.97 + 0.98 80.42 £ 2.64 86.21 + 1.38
GGFA 51.24 +£ 448 63.18 £ 2.70 73.15 £ 0.52 80.45 + 2.42 86.68 £ 1.28

Results show that adding random noise directly to the modulated features (Rand) does not yield noticeable
performance gains. We attribute this to the fact that such augmented features deviate substantially from
the true distribution of noise-modulated features. In contrast, injecting noise at the original feature level
followed by gating (noise gate) produces augmented features that better match the characteristics of the
modulated feature space, leading to more consistent performance improvements across both synthetic and
real datasets.

Using gate-aware scaling (GGFA) further refines the augmentation process by adapting the noise strength
based on the learned sensitivity of each feature dimension. However, this brings only modest gains. One
reason is that the correlation between the gate values and the actual feature variance across noise levels is
relatively weak (Spearman correlation ~ —0.33), as shown in Figure @ and stronger relationships require
more training data to emerge. Another factor is that the range of observed per-dimension feature variance
across gate value is relatively small (typically varying from approximately 0.5 x 1072 to 0.75 x 10~2), which
limits the potential benefit of fine-grained noise scaling. Overall, these results suggest that the primary
contribution of our framework lies in the Noise Adapter, while GGFA should be viewed as an exploratory
extension. Although its gains are modest, GGFA offers useful insights into how the learned gate relates to
feature sensitivity and provides a promising direction for future work on noise-aware augmentation.

6 Conclusion

Foundation models have demonstrated strong generalization in conventional vision domains, but adapting
them to non-standard sensing modalities remains challenging. These modalities, such as thermal cameras,
medical imaging, or SPAD LiDAR, exhibit appearance variations tied to underlying physical acquisition
conditions that are absent from large-scale RGB pre-training. Addressing this gap calls for adaptation
strategies that are explicitly aware of modality-specific noise.

In this work, we proposed a noise-aware adaptation framework and instantiated it in the context of SPAD
imaging. The central component is a Noise Adapter that incorporates physically interpretable noise descrip-
tors as priors to modulate pre-trained visual features, thereby attenuating noise-sensitive channels while
preserving semantic structure. This yields improved robustness to condition-induced variability and consis-
tent performance gains across both synthetic and real SPAD datasets. Beyond this main design, we also
examined how the learned gating pattern reflects feature sensitivity and explored its use for feature-level
augmentation. While the improvements from this augmentation are modest, the analysis provides additional
insight into the interplay between noise-aware modulation and feature-level data augmentation.

Taken together, our findings illustrate that explicitly conditioning adaptation on acquisition factors can be
an effective strategy for transferring foundation models to sensing modalities unseen during pre-training.
SPAD serves here as a case study, demonstrating the value of lightweight, noise-aware modules in bridging
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the gap between large-scale pre-training and physics-driven data domains. More broadly, this perspective
highlights the potential of modality-aware adaptation as a practical route for extending foundation models
beyond natural RGB imagery into photon-limited or otherwise non-standard modalities.

7 Limitations and Future Directions

While our approach demonstrates strong performance improvements for SPAD depth image understanding,
several limitations remain. First, the SPAD histogram data inherently contains richer information beyond
what is captured by the two simple global statistics, average photon count and signal-to-background ratio,
used in our current noise embedding. More sophisticated representations of the raw histogram could provide
additional cues about imaging quality and noise characteristics, and may further improve adaptation perfor-
mance. Exploring how to effectively incorporate this richer information and better align it with pre-trained
RGB-based foundation models is an important direction for future research.

Second, the quality of SPAD depth images at different noise levels is also influenced by the choice of the
SPAD imaging algorithm. In this work, we rely on the depth images provided by the public dataset and
do not analyze how different reconstruction methods affect the learned features or the adaptation process.
Studying the interaction between SPAD imaging algorithms and adaptation remains an open area for further
exploration.
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A Broader Impact Statement

This work aims to enable semantic understanding of SPAD LiDAR depth images by adapting large-scale
pre-trained vision-language models, such as CLIP, using a novel noise-aware adapter. SPAD LiDAR systems
offer unique capabilities for depth imaging under extremely low-light or long-range conditions, making them
attractive for applications such as autonomous navigation and remote sensing. However, the semantic
interpretation of SPAD data remains a significant challenge due to photon-level noise and the scarcity of
data. Our proposed method improves robustness and label efficiency in this setting.

The broader impact of this work is twofold:

Positive Impact: By bridging the gap between pre-trained vision-language models and photon-limited
sensing, our method could facilitate intelligent perception in safety-critical environments where conventional
cameras or LiDARs fail (e.g., nighttime robotics or rescue missions under adverse conditions). It also
contributes toward reducing the data collection burden in new imaging modalities.

Potential Concerns: Like many general-purpose vision models, SPAD-based perception systems adapted
from foundation models may inherit dataset biases from the pre-training dataset, and could be misused
in surveillance or military systems. Although our method is technically agnostic to downstream applica-
tions, developers and practitioners should ensure that such systems are deployed responsibly, with careful
consideration of fairness, accountability, and privacy.

We encourage the community to continue exploring reliable, interpretable, and ethically sound methods for
adapting foundation models to new sensing modalities.

B Visualizations

To complement the quantitative results in the main paper, we provide additional visualizations that illustrate
(1) how different adaptation methods behave under varying SPAD imaging conditions, and (2) representative
failure cases that highlight the challenges of classification when photon-level noise severely degrades imaging
quality.

B.1 Classification Across Imaging Conditions

Figure [§| presents several representative examples. For each class, we visualize three samples captured under
different imaging conditions, with corresponding signal-to-background ratio (SBR) and average photon count
per pixel (PPP). Below each image we report the predictions of two methods: CLIP-Adapter and our Noise
Adapter. We observe that CLIP-Adapter often misclassifies samples under degraded imaging conditions, but
recovers when SBR/PPP improves. In contrast, the Noise Adapter achieves stable predictions across various
imaging conditions, demonstrating robustness to appearance shifts induced by imaging conditions. These
visualizations provide direct evidence of how incorporating noise descriptors improves consistency across
imaging conditions.

B.2 Failure Case Analysis

Figure [ shows representative failure cases from the 16-shot setting using the proposed Noise Adapter. Most
errors occur under poor imaging conditions (e.g. low SBR and low photon counts), which cause the SPAD
imaging algorithm to produce depth maps with significant structural distortions. For example, the human
sample in (h) is missing the head, apples and bananas show strong geometric deformation (a-b), the e-
bike appears fragmented (c), and the boat region contains many voids (j). These artifacts hinder reliable
semantic recognition and explain the observed misclassifications. In contrast, failure cases under relatively
clean imaging (e.g., the building example) are rare, suggesting that classification errors are predominantly
linked to degraded imaging conditions rather than limitations of the noise adapter itself.
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Figure 8: Qualitative comparisons. Each row corresponds to one ground-truth class (left label). For each
class, three SPAD depth images captured under different imaging conditions are shown with predictions from
CLIP-Adapter and the proposed Noise-Adapter, along with signal-to-background ratio (SBR) and photon
count per pixel (PPP).
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Figure 9: Examples of failure cases from the real SPAD dataset. Our noise-aware adapter fails to correctly
classify these samples despite training under the 16-shot setting.

C Influence of Pre-trained Backbone

To assess the generality of our method, we further evaluate its performance across a variety of visual back-
bones. In addition to CLIP ViT-B/16 and ResNet-50, we further experiment with recent self-supervised
models, including DINOv2 ViT-S/14, DINOv2 ViT-B/14, DINOv3 ViT-S/16, and DINOv3 ViT-B/16 (dis-
tilled versions). As shown in Figure our Noise-Adapter consistently outperforms all baselines across
various numbers of labeled samples per class, regardless of the backbone architecture.

While the absolute accuracies vary slightly due to differences in encoder capacity, architecture and pre-
training strategy. Noise-Adapter maintains a clear performance advantage across both low-shot and higher-
shot regimes. Interestingly, several baselines (e.g., Tip-Adapter, Meta-Adapter, and Linear Probing) exhibit
large sensitivity to the choice of backbone, whereas our method remains comparatively stable. This sug-
gests that our approach is not tied to a particular encoder design and can robustly adapt to SPAD depth
images across a range of vision backbones. These results demonstrate the flexibility and generalizability of
Noise-Adapter, confirming that incorporating noise-aware representations remains effective even when the
underlying visual feature extractor changes.

D Additional Analysis of GGFA

The numerical results of the ablation study in the synthetic SPAD dataset are shown in table [2| where we
report the average accuracy and standard deviation over 5 runs.

Table 2: Ablation study of Gate-Guided Feature Augmentation (GGFA) on the SPAD synthetic dataset.
Results show average accuracy with standard deviation (%) over 5 trials. The best results are shown in blue.

Few-shot Setup 1 2 4 8 16
w/o GGFA 43.67 + 3.61 54.53 +2.62 67.13 & 3.51 79.34 + 2.62 86.52 + 0.60
Rand 43.49 + 3.44 53.75 + 3.14 67.04 +4.13 79.34 + 2.55 86.71 + 0.49
Rand with Gate 44.47 + 3.66 54.90 +£2.99 67.29 + 3.66 79.46 +£2.59 86.78 + 0.63
GGFA 44.41 + 3.58 54.96 £ 3.07 67.50 £ 3.71 79.48 £ 2.54 86.68 £ 0.52
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Figure 10: Performance comparison of different methods using various pre-trained visual backbones: (a)
CLIP ViT-B/16, (b) CLIP ResNet-50, (¢) DINOv2 ViT-S/14 distilled, (d) DINOv2 ViT-B/14 distilled, (e)
DINOv3 ViT-S/16 distilled, and (f) DINOv3 ViT-B/16 distilled. Results are reported on the real SPAD
dataset across different few-shot settings, averaged over 5 random seeds.

D.1 Effect of Hyper-parameter «
We further analyze the sensitivity of GGFA to the perturbation strength «, which controls the magnitude

of feature perturbations during augmentation. The choice of « is guided by the empirical observation that
the mean standard deviation of feature dimensions in the training set is approximately 0.02. Based on this,
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we vary « in the range [0.015,0.05] and evaluate the performance on the real SPAD dataset across 1-shot,
2-shot, 4-shot, 8-shot, and 16-shot settings.
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Figure 11: Sensitivity of GGFA to perturbation strength « on the real SPAD dataset. Accuracy remains
stable across different « values, indicating robustness to the choice of this hyper-parameter.

Figure [11] shows that the classification accuracy remains stable across different values of «, indicating that
GGFA is not sensitive to the precise choice of this hyperparameter. This robustness simplifies practical
deployment, as « can be set to roughly match the average feature standard deviation without the need for
extensive tuning.

D.2 Visualization Analysis of Gate-Guided Feature Augmentation

To better understand how different augmentation strategies affect feature distributions, we visualize the
augmented features produced by various methods using PAaCMAP on the real SPAD dataset. Specifically,
we compare (a) adding uniform random noise (with o = 0.02) directly to the modulated features, (b) adding
the same random noise to the CLIP features and applying the learned noise gate to obtain augmented mod-
ulated features (Rand with Gate), and (c) our proposed GGFA method. For each method, we generate 200
augmented samples; black points indicate the augmented features in the visualizations shown in Figure

As observed, directly adding random noise to the modulated features results in augmented samples that are
distributed far from the original feature clusters. This likely explains why this approach fails to improve
performance in Table[T] as the resulting augmented features do not resemble realistic noise-induced variations.

In contrast, both Rand with Gate and GGFA produce augmented features that are well aligned with the
distribution of real features, with samples naturally scattered around the corresponding class clusters. This
indicates that applying perturbations before the gating operation better preserves the underlying feature
structure. Compared to Rand with Gate, GGFA tends to generate fewer augmented samples in ambiguous
regions where features from multiple classes overlap, which likely reduces the introduction of unrealistic or
label-ambiguous samples. This behavior may explain why GGFA achieves slightly better performance than
Rand with Gate.

D.3 Comparison with Image-level Augmentation

In addition to the analyses on hyperparameter sensitivity and different injection strategies, we further inves-
tigate the relationship between Gate-Guided Feature Augmentation (GGFA) and image-level augmentation
methods. Image-level augmentation, such as flipping or random erasing (Zhong et al., 2020)), is widely
adopted in vision tasks to increase data diversity. However, the variations it introduces are different from
those induced by SPAD imaging conditions. In SPAD data, appearance shifts are strongly governed by
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Figure 12: PaCMAP visualization of augmented features generated by different augmentation strategies
on the real SPAD dataset. Black markers denote 200 augmented samples. (a) Rand: random noise added
directly to the modulated features, (b) Rand with Gate: random noise added to the original CLIP features
followed by gate modulation, (¢) GGFA: noise strength is scaled by (1 — g) and the resulting perturbed
features are passed through the noise gate.

physical factors such as photon count and signal-to-background ratio (SBR), which affect the reliability and
completeness of depth reconstruction. These effects cannot be easily replicated through simple image-level
augmentation. For example, while one can degrade a high-quality SPAD capture into a low-SBR. version
by down-sampling photon counts or injecting additional background noise, the reverse process is not feasi-
ble: a low-SBR or low-photon-count depth image often contains erroneous or missing regions that prevent
reconstructing a plausible high-quality counterpart. This key difference highlights the need for feature-level
augmentation strategies, such as GGFA, that explicitly model the impact of imaging conditions on learned
representations.

To this end, we directly compare GGFA with common image-level augmentation techniques, including ran-
dom erasing and Gaussian noise injection. Feature visualization in Figure [I3] demonstrates that GGFA
produces augmented samples that are distributed more closely to real imaging variations, whereas image-
level augmentations tend to generate features that deviate from the true distribution. This indicates that
GGFA is able to mimic realistic feature shifts induced by changes in imaging conditions.

We further evaluate the effect of combining GGFA with image-level augmentation. Experimental results in
Table [3] show that while each augmentation strategy brings moderate improvements individually, combin-
ing GGFA with image-level methods consistently achieves better performance, particularly in the low-shot
regime. This suggests that GGFA and image-level augmentation are complementary: image-level transfor-
mations enrich diversity, while GGFA introduces variability that more directly reflects the impact of physical
imaging conditions.

In summary, GGFA not only provides a way of imaging condition-induced feature variability in SPAD
data, but also complements image-level augmentation strategies, together offering a richer and more realistic
augmentation pipeline.

E SBR Estimation Accuracy

We further evaluated the accuracy of our SBR estimation on the synthetic dataset, where the ground-truth
SBR values (0.06, 0.5, and 2.0) are known. The accuracy was measured using the relative estimation error,
57

E_ SBR — SBRy;
~ SBRyg
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Figure 13: PaCMAP visualization of augmented features generated by different augmentation strategies
on the real SPAD dataset. Black markers denote 500 augmented samples. (a) Random Erasing, (b) Add
Gaussian noise, (¢) GGFA and (d) Imaging variations

Table 3: Performance comparison of Noise Adaptor versus baselines on Real dataset. Results show average
classification accuracy with standard deviation (%) across 5 trials. The best results are shown in red and

the second best results are shown in blue. single augmentation

Few-shot Setup 1 2 4 8 16
W/o Augmentation 50.39 £ 4.75 62.95 £ 231 73.09 £0.95 80.14 £ 1.68 86.61 + 1.19
Flipping 51.52 £ 3.87 63.58 £2.71 73.61 £0.98 80.09 £1.74 87.08 £ 1.40
Gaussian noise 51.52 +3.92 63.11 £2.83 73.65 £0.96 79.61 £2.26 86.95+ 1.23
Random erasing 51.35 £4.81 64.17 £ 3.35 75.00 £2.20 80.91 £1.30 87.74 £ 1.09
Flipping + Gaussian noise 51.48 £ 3.93 62.65 £ 2.34 7342+ 1.38 79.65 £ 1.75 86.39 & 1.04
Flipping + Random erasing 52.77 £4.38 63.77 £ 296 74.14 £ 2.11 80.26 £ 2.06 87.73 £ 1.21
Random erasing + Gaussian noise  52.20 £ 4.05 62.98 £ 2.50 73.09 + 2.27 80.29 + 2.38 87.12 + 1.04
Random erasing + GGFA 53.15 + 3.88 64.58 £ 3.45 7547 £2.74 80.74 £2.01 87.44 + 1.59
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where SBR is the estimated value and SBR,¢ is the ground-truth SBR in the simulation. The mean relative
error is 0.093, and the overall distribution of errors is shown in Figure These results indicate that our
estimation procedure provides a reliable approximation of SBR, sufficient for representing imaging conditions

in the proposed framework.
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Figure 14: Histogram of relative estimation errors € on simulated single-photon LiDAR data.

F Numerical Results

The numerical results of the fig. [3] in the main text are shown in table [f] and table [5] where we report the
average accuracy and standard deviation over 5 runs.

Table 4: Performance comparison of Noise Adaptor versus baselines on Synthetic dataset. Results show
average classification accuracy with standard deviation (%) across 5 trials. The best results are shown in
red and the second best results are shown in blue.

Few-shot Setup 1 2 4 8 16
CLIP Zero-shot 11.18 £ 0.14
Tip-Adapter 12.18 £ 0.36 14.09 £ 0.51 21.23 £ 3.69 33.71 £4.26 45.13 + 2.94
Tip-Adapter-F 34.99 £ 3.54 44.89 £2.89 59.15 £4.13 73.33 £2.53 82.85 £ 0.94
CLIP-Adapter 40.66 £ 3.48 49.68 + 2.62 63.80 £ 2.78 75.81 + 2.25 84.08 £ 0.96
Meta-Adapter 37.03 £3.01 43.81 £2.89 50.95 £ 3.75 54.62 £ 2.01 59.75 £ 2.99
Linear Probing 43.45 £ 4.48 4890 + 3.98 56.62 + 5.22 62.33 £ 3.39 67.53 £ 1.36
Noise-Aware Adapter (ours) 44.41 £ 3.58 54.96 + 3.07 67.50 & 3.71 79.48 + 2.54  86.68 £ 0.52
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Table 5: Performance comparison of Noise Adaptor versus baselines on Real dataset. Results show average
classification accuracy with standard deviation (%) across 5 trials. The best results are shown in red and

the second best results are shown in blue.

Few-shot Setup 1 2 4 8 16
CLIP Zero-shot 18.99 + 0.85
Tip-Adapter 26.48 + 1.85 33.97 £ 1.38 43.76 + 2.84 54.80 £ 2.58 63.12 + 1.77
Tip-Adapter-F 46.91 £ 3.18 58.80 £ 2.87 69.00 £ 0.36 75.74 £ 1.52 81.64 + 1.04
CLIP-Adapter 51.33 £ 3.28 60.20 &+ 2.23 70.45 £1.30 77.03 &+ 2.45 82.21 £ 0.45
Meta-Adapter 46.65 £ 2.91 54.32 £2.66 59.14 £ 1.36 62.86 &= 1.27 64.94 £ 0.40
Linear Probing 47.76 £ 4.27 57.44 £ 3.36 66.23 £ 1.26 67.65 &= 1.54 70.35 £ 1.00
Noise-Aware Adapter (ours) 51.24 +4.48 63.18 £ 2.70 73.15 + 0.52 80.45 + 2.42 86.68 + 1.28
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