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ABSTRACT

Recent progress in large language models (LLMs) has enabled tool-augmented
agents capable of solving complex real-world tasks through step-by-step reasoning.
However, existing evaluations often focus on general-purpose or multimodal scenar-
ios, leaving a gap in domain-specific benchmarks that assess tool-use capabilities in
complex remote sensing use cases. We present ThinkGeo, an agentic benchmark
designed to evaluate LLM-driven agents on remote sensing tasks via structured
tool use and multi-step planning. Inspired by tool-interaction paradigms, ThinkGeo
includes human-curated queries spanning a wide range of real-world applications
such as urban planning, disaster assessment and change analysis, environmental
monitoring, transportation analysis, aviation monitoring, recreational infrastructure,
and industrial site analysis. Queries are grounded in satellite or aerial imagery,
including both optical RGB and SAR data, and require agents to reason through a
diverse toolset. We implement a ReAct-style interaction loop and evaluate both
open and closed-source LLMs (e.g., GPT-40, Qwen2.5) on 486 structured agentic
tasks with 1,773 expert-verified reasoning steps. The benchmark reports both step-
wise execution metrics and final answer correctness. Our analysis reveals notable
disparities in tool accuracy and planning consistency across models. ThinkGeo
provides the first extensive testbed for evaluating how tool-enabled LLMs handle
spatial reasoning in remote sensing.

1 INTRODUCTION

Recent advances in LLMs have enabled the emergence of tool-augmented agents, systems that
can break down complex tasks into step-by-step plans, invoke external tools (e.g., vision modules,
calculators, and code interpreters), and reason across intermediate states Yao et al.|(2023); [Shen et al.
(2023)). This paradigm, popularized via ReAct-style frameworks|Yao et al.|(2023), has shown promise
in general-purpose settings through benchmarks like ToolBench |Qin et al.[(2023), GAIA Mialon
et al.[(2023), and GTA [Wang et al.| (2024)), which evaluate agents on procedural correctness, tool
use, and final task outcomes. However, these benchmarks largely focus on synthetic, open-domain,
or web-grounded scenarios, leaving the question of agentic capability in precision-critical, spatially
grounded domains, like remote sensing, largely unexplored.

Remote sensing (RS) is critical to a wide range of applications, including environmental monitoring,
urban infrastructure and transportation analysis, disaster response, and land-use mapping, with an
ever-growing stream of high-resolution imagery from earth observation (EO) satellites and drones
Kao et al.|(2025)). Despite advances in visual models for detection, segmentation, and change analysis,
current processing pipelines remain brittle and manually engineered across tasks. Integrating these
capabilities into LLM-driven agents demands reasoning over geodetic metadata, spatial resolutions,
temporal dynamics, and unit-aware calculations. Existing agentic benchmarks (e.g., GTA [Wang
et al.[ (2024), GAIA [Mialon et al.| (2023)) do not address these demands; they are built around
general-purpose or web-grounded images, lacking the spatial fidelity and grounding required for
geospatial workflows. Consequently, there is a pressing need for a benchmark that evaluates tool-
augmented agents in remote sensing contexts, for reasoning over real EO imagery, coordination of
general-purpose visual tools, and handling spatially grounded multi-step tasks.

In this work, we introduce ThinkGeo, the first agentic benchmark specifically designed to evaluate
tool-augmented LLM agents on realistic remote sensing tasks. As shown in Table|l} unlike exist-
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Table 1: Comparison of agentic benchmarks across key dimensions. ThinkGeo is the only benchmark
designed specifically for remote sensing (RS), incorporating real EO imagery alongside ReAct-style
annotation chains and deployed tools. It uniquely supports spatial reasoning and remote sensing-
specific tasks through geospatial grounded inputs and execution-level evaluation for studied models.

Benchmark
Real Deployed MM Annotation Execution RS
queries  tools inputs chains eval.  images
API-Bench [Patil et al.|(2023) X X X X X X
ToolBench [Qin et al.| (2023) X v X X X X
GAIA Mialon et al.| (2023)) v X v X v X
APIBank|Li et al.| (2023) X v X v X X
mé&m’s Ma et al.| (2024) X v v N v X
GTA |Wang et al.[(2024) v v v v v X
ThinkGeo (Ours) v v v v v v

ing agentic benchmarks built on general or web-grounded images, ThinkGeo focuses on spatially
grounded reasoning, requiring agents to plan and execute multi-step workflows using satellite and
aerial imagery. Each query is coupled with an executable tool environment and annotated with
structured evaluation signals, enabling rigorous assessment of perception, planning, and geospatial
reasoning under tool-based execution constraints. Our main contributions are as follows:

» Task Suite & Dataset: A curated set of 486 agentic tasks with 1,773 expert-verified
reasoning steps over medium to high-resolution optical RGB (with 436 tasks) and SAR
(with 50 tasks) images, spanning urban, environmental, transportation, aviation, industrial,
change detection, and disaster-related scenarios. Examples are shown in Figure[I]

e Executable Tool Set: An extended suite of 14 tools designed to simulate real-
world RS workflows. This includes perception modules (e.g., ObjectDetection,
SegmentObjectPixels, ChangeDetection), logic and numeric tools (e.g.,
Calculator, Solver, Plot), and visualization aids (e.g., DrawBox, AddText).

» Evaluation Protocol: We propose two evaluation modes, step-by-step and end-to-end,
paired with fine-grained metrics to assess instruction adherence, tool use correctness, argu-
ment formatting, multi-step reasoning, and final answer accuracy.

* Benchmarking Study: A comparative evaluation of state-of-the-art LLM agents, including
GPT-40, Claude-3, Qwen-2.5, and LLaMA-3, revealing persistent gaps in multimodal tool
reasoning and execution trace alignment, even among top-performing models.

By grounding agentic evaluation in real EO imagery and requiring interpretable, tool-based interaction
tracking, ThinkGeo provides a new foundation for benchmarking and ultimately providing insights
to improving spatially-aware, tool-augmented LLM agents for geospatial analysis.

2 RELATED WORK

Tool-augmented LLM Agents and Benchmarks: Integrating large language models (LLMs) with
executable tools has recently become a central focus in agent research. Early work presented tool
use as an alternating planning and execution. ReAct, for instance, interleaves “thought” tokens with
structured tool calls, enabling a single LLM to both reason and act|Yao et al.| (2023). Subsequent
systems generalized this idea to larger tool repertoires. HuggingGPT employs a GPT controller to
select from hundreds of vision, speech, and language models exposed as functions Shen et al.| (2023)),
while Visual ChatGPT and MM-ReAct demonstrate analogous pipelines for multimodal perception
tasks [Wu et al.| (2023)); [Yang et al.| (2024). To measure tool-use proficiency, several benchmarks
have been proposed. ToolBench, APIBench, and API-Bank evaluate single-step API invocation
within synthetic prompts Qin et al.[(2023)); Patil et al.| (2023)); [Li et al.[(2023)); m&m’s extends this
to multi-step multimodal settings [Ma et al.| (2024)). More recently, GAIA Mialon et al.|(2023)) and
GTA [Wang et al.|(2024) introduced human-written, step-implicit tasks paired with executable tool
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Figure 1: Representative samples from the ThinkGeo benchmark. Each row illustrates a user query
grounded in real RS imagery, followed by a ReAct-based execution chain comprising tool calls
and reasoning steps, and concludes with the resulting answer. The examples span diverse use
cases, including transportation analysis, urban planning, disaster assessment and change analysis,
recreational infrastructure, and environmental monitoring, highlighting multi-tool reasoning and
spatial task complexity.

chains, revealing substantial performance gaps: GPT-4 completes fewer than half of GTA queries
once real tools and intermediate checks are enforced. MLGym casts the agent problem into a Gym
environment for open-ended Al-research workflows, highlighting long-horizon planning and code
execution and also without geospatial imagery Nathani et al.| (2025).

Remote Sensing Agents: Recent efforts to extend LLM agents into EO have produced diverse
tool-augmented pipelines, yet planning transparency, and step-level reasoning fidelity remain limited.
Remote Sensing ChatGPT Guo et al.| (2024)) and RS-Agent Xu et al.|(2024) represent early vision-
language pipelines that chain pretrained detectors, segmenters, and geospatial utilities under GPT-
based planners. However, they typically report only final answer accuracy, omitting structured
ReAct-style trace evaluation or step-wise error attribution. TreeGPT and GeoMap-Agent Du et al.
(2023)); Huang et al.|(2024) introduce domain-specific agents for forestry and geological mapping,
respectively. While these systems operate over visual maps and structured visual inputs, they rely
on template-grounded or qualitative responses and do not implement formal multi-step evaluation.
UnivEARTH [Kao et al.|(2025)), by contrast, employs a purely language-based framework that requires
LLMs to generate valid Google Earth Engine (GEE) code, revealing that over 58% of completions
fail to execute and that even the best agents answer only around 33% of geospatial queries correctly.
Together, these works suggest that while EO agents can interface with rich toolsets, failures in
tool selection, argument grounding, and spatial unit reasoning persist, underscoring the need for
benchmarks that explicitly evaluate tool-level correctness alongside geospatial task outcomes.

Evaluation Protocols: Early benchmarks for tool-augmented LLMs, such as ToolBench |Qin et al.
(2023)), APIBench [Patil et al.| (2023)), and API-Bank Li et al.|(2023)), primarily evaluate single-step
tool usage in synthetic or isolated API call settings. While useful for measuring basic tool and
argument prediction, these setups lack support for multi-tool planning, intermediate tracking, or
long-horizon reasoning. To address these limitations, GTA |Wang et al.[| (2024) presents a tightly
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(a) Use case taxonomy. The benchmark spans
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ter Assessment & Change Analysis, Environmen-
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Figure 2: Overview of task domains and reasoning-tool interaction characteristics in ThinkGeo.

scoped yet richly instrumented benchmark requiring sequential tool usage across perception, logic,
operation, and generation modules. GTA adopts a ReAct-style interface and introduces fine-grained
supervision for each agent step, reporting metrics like ToolAcc, ArgAcc, StepAcc, and final answer
correctness, thereby uncovering latent failure modes in tool selection and planning. Complementing
this, MLGym Nathani et al.|(2025) reframes agent evaluation as multi-task episodic learning within a
Gym-style environment, simulating end-to-end ML workflows (e.g., training, evaluation, reporting)
that demand persistent memory and adaptive behavior.

3 THINKGEO BENCHMARK

In this section, we present the design of ThinkGeo, a benchmark designed to evaluate tool-augmented
LLM agents in the context of remote sensing. ThinkGeo focuses on spatially grounded reasoning
tasks that require agents to interpret optical EO imagery, plan multi-step tool usage, and produce
geospatially coherent outputs. We describe our core design goals, define the use case categories that
span both primary and supporting remote sensing tasks, detail the query construction pipeline, and
provide a summary of the integrated datasets and task coverage.

3.1 DESIGN GOALS

Geospatial Reasoning: Tasks are modeled after real-world use cases in environmental monitoring
and disaster response. Queries reflect practical challenges such as measuring metre-scale distances,
counting structures within spatial buffers, and identifying features of damaged buildings. These tasks
require fine spatial fidelity, unit-based reasoning, and visual attribute grounding, capabilities often
overlooked in existing benchmarks such as GAIA Mialon et al.| (2023)) or ToolBench |Qin et al.|(2023)).

Step-Implicit Tool Use: Unlike benchmarks where tool use is predefined or explicitly mentioned
(e.g., APIBench Patil et al.[(2023)), ThinkGeo presents step-implicit, tool-implicit queries. Prompts
do not reference tools by name; agents must infer which modules (e.g., perception, logic, operation)
are needed and in what order. This design promotes true agentic planning and aligns with ReAct-style
decision traces as used in GTA |Wang et al.| (2024).



Under review as a conference paper at ICLR 2026

High-quality data samples ReAct Format Validation

Real-world scenario
based i S
ased queries {f@@
1T Valid

(4 / Tool Chain Experts
n— }éﬁ Verifications | —
Human

(&

N @&
_. By

1
1
1
1
1
1
1
1
1
1
i
1
</ 1 Final Dataset
1
1
1
1
1
1
1
1
1
1
1

—
RS Datasets Experts Annotator
@ % Analyze RS Image Invalid
Q #/Compose query Script-based

< Manually annotate missing objects

< Semi-automatic dialog flow Verifications

Queries

Manual
Refinement

e the distance
Is and track

1
1
1
1
:
‘ Sample
:
1
1
1
1
1

Figure 3: End-to-end dataflow for constructing the ThinkGeo benchmark. We begin with expert-
curated samples from remote sensing datasets, guided by scenario-specific query design templates.
Human annotators inspect images and generate ReAct-style multi-step queries using a semi-automated
GPT-powered interface. Each query is validated via expert review and script-based consistency
checks. Invalid cases are manually refined. The final dataset consists of JSON-formatted ReAct
traces grounded in satellite or aerial imagery.

3.2 USE CASE CATEGORIES

ThinkGeo is organized into seven primary categories, each reflecting critical application domains
within the remote sensing ecosystem. These include Urban Planning, Disaster Assessment & Change
Analysis, Environmental Monitoring, Transportation Analysis, Aviation Monitoring, Recreational
Infrastructure, and Industrial Sites. Fig.[2a shows the use case taxanomy. Each category encapsulates
a range of spatially grounded, tool-invoking subtasks inspired by operational workflows in urban
analytics, environmental science, and infrastructure planning:

* Urban Planning tasks involve residential layout analysis, swimming pool and parking area
detection, road and bridge mapping, accessibility assessment, and proximity-based zoning.

* Disaster Assessment & Change Analysis includes multi-temporal damage comparison across
disaster events like floods, hurricanes, wildfires, and volcanoes, featuring change detection,
categorical damage classification (e.g., no-damage, minor, major, destroyed), area-based
summaries, and quadrant-level spatial reports.

» Environmental Monitoring spans water-body adjacency, garbage and construction waste
detection, contamination risk evaluation, and agricultural land-use impact assessments.

* Transportation Analysis covers vehicle detection and counting, heading direction estimation,
traffic flow characterization, and distance-based safety checks across roads and intersections.

* Aviation Monitoring includes aircraft identification and categorization, runway occupancy,
gate-terminal proximity analysis, and airfield layout planning.

* Recreational Infrastructure tasks address playground identification (e.g., basketball, baseball,
tennis, and football fields), orientation detection, and coverage estimation.

* Industrial Sites focus on storage tank localization, diameter and area measurement, and
spatial relation mapping to adjacent operational zones.

These categories serve as testbeds for evaluating diverse capabilities such as multimodal reasoning,
fine-grained spatial understanding, tool composition, and temporal change detection. By covering
both canonical and underexplored use cases, ThinkGeo supports a systematic, application-driven
evaluation of agentic LLM pipelines for real-world geospatial intelligence.

3.3 QUERY CONSTRUCTION PIPELINE

To evaluate the capabilities of agentic systems in solving realistic remote sensing problems, we
curate a diverse set of complex queries, defined as prompts that are concise and natural for humans
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but require agents to perform multi-step reasoning across multiple tools. These queries cannot be
answered by the invocation of a single tool in isolation and instead test the agent’s ability to plan and
compose a coherent sequence of actions. We implement a semi-automated query generation pipeline.

Step 1: Data Sampling & Guidelines. We begin by curating high-quality samples from diverse
RS datasets. Domain experts provide task-specific guidelines and generate initial reference queries
to bootstrap the selection process. Step 2: Authoring ReAct Format. Using these guidelines,
annotators manually inspect imagery, identify key objects and spatial relationships, and construct
natural language queries following the ReAct format|Yao et al.|(2023). This involves composing a
user query that implies multi-step reasoning, manually annotating missing elements, and generating a
semi-structured dialog trace (thoughts, tool calls, observations, answers).

The process is supported by a script built on the OpenAI GPT API. This script leverages per-image
metadata (e.g., object types, GSD, bounding boxes) and tool definitions to generate diverse, tool-
requiring prompts. Used prompts in the query construction pipeline are given in the supplementary
material. Step 3: Validation. All generated samples are verified through a two-stage validation
protocol. First, expert reviewers assess the semantic correctness, relevance, and alignment with the
toolset. Second, we apply script-based checks to validate tool argument consistency, dialog structure,
and completeness. Invalid samples are manually refined and corrected before inclusion in the final
dataset. Fig. [3]shows the end-to-end dataflow for constructing our ThinkGeo benchmark.

Additional Details. Beyond the core steps described above, the query construction pipeline incorpo-
rates several design elements to ensure scale, diversity, and inference robustness:

* Query Diversity: For each image, we generate 1 to 5 distinct queries that vary in spatial
relationships, counting logic, or temporal comparisons, ensuring broad coverage of tool use
compositions and reasoning patterns within the same scene context. As illustrated in Fig
these queries span a range of agentic reasoning complexity and tool invocation diversity,
capturing variations in interaction depth and logical structure across tasks.

Difficulty Annotation: We categorized the queries into easy and hard levels based on
two criteria: the number of complex keywords present and the number of reasoning steps
required. Queries containing terms such as “estimate,” “compare,” “distribution,” ”count,”
“area,” how many,” ”orientation,” and “proximity,” along with more reasoning steps, were
considered harder. To organize the queries, we sorted them based on the count of complex
keywords and the number of steps. Queries appearing earlier in the sorted list, with fewer
complex keywords and shorter reasoning steps, were labeled as easy, while the rest were
classified as hard. This sorting strategy provides a simple yet effective way to separate
queries by their semantic and procedural complexity.

Inference-Aligned Prompting: Prompts are designed such that the agent must recover
the reasoning chain without relying on field names or explicit tool indicators, promoting
alignment with real-world, instruction-following behavior. This adheres to the tool-implicit
design philosophy established in agentic benchmarks like GTA [Wang et al.| (2024).

This modular structure supports robust and scalable generation of diverse queries, enabling ThinkGeo
to serve as a high-coverage benchmark for multimodal, tool-augmented RS agentic systems.

3.4 SOURCE RS DATASETS

To construct the ThinkGeo benchmark, we leverage a diverse set of publicly available remote sensing
datasets (Table @) spanning various domains: DOTA [Xia et al.|(2018)), NWPU-VHR-10 Bian|(2023)),
UCAS-AOD [Zhu et al, (2015), and iSAID Waqgas Zamir et al.| (2019) support transportation and
aviation-related tasks; FloodNet| Rahnemoonfar et al.|(2021) and xBD |Gupta et al.|(2019) contribute
flood-specific and temporal disaster imagery; AID Xia et al.| (2017) covers urban and industrial
scenes; and the Global Dumpsite Dataset|Sun & Yin|(2023)) addresses environmental monitoring. To
expand transport and object-specific coverage, we additionally incorporate SSDD |Zhang et al.| (2021)
for maritime ship monitoring, SADD |Zhang et al.| (2022) for aviation and aircraft monitoring, and
SIVED [Lin et al.|(2023)) for ground vehicle detection. Original images are reused, while task-specific
annotations are added where the datasets lack required labels.
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Table 2: Remote sensing datasets used as image sources in the construction of the ThinkGeo
benchmark. These datasets span a wide range of applications, sensor resolutions, and annotation
types. Notably, the agentic tasks defined on these images are newly annotated bottom-up.

Name Tasks Annotation Type Sensor (Res)  Year
Optical RGB Datasets
DOTA Xia et al.|(2018) Monitoring Transport, Aviation, Infrastructure GSD, B-Box, Category (0.1-Dm/px 2021
NWPU-VHR-10/Bian|(2023) Monitoring Transport, Aviation, Infrastructure B-Box, Category (0.5-2)m/px 2023
UCAS-AOD|Zhu et al.[(2015}) Monitoring Transport, Aviation B-Box, Category (0.5-2)m/px 2015
AID|Xia et al.|(2017} Urban Planning, Monitoring Transport, Industr. Sites B-Box, Category (0.2-2)ym/px 2017
iSAID|Wagas Zamur et al.|(2019) Monitoring Transport GSD, B-Box, Seg. Map, Pixel Count 0.1-Hm/px 2019
xBD|Gupta et al.|[(2019) Disaster Assessment & Change Analysis GSD, B-Box, Category, Pixel Count (1-3.5)m/px 2019
FloodNet|Rahnemoontar et al.|(2021) Urban Planning, Disaster, Transport Analysis GSD, B-Box, Category, Seg. Map, Pix. Count (0.015-0.02)m/px 2020
Global-Dumpsite|Sun & Yin[(2023) Environmental Monitoring B-Box, Category (0.3-0.8)m/px 2023
SAR Datasets
SSDD Zhang et al.|(2021} Monitoring Transport B-Box, Category (1-15)m/px 2021
SADD|Zhang et al. (2022} Aviation B-Box, Category (0.5-3)m/px 2022
SIVED|Lin et al.|(2023) Monitoring Transport B-Box, Category (0.1-0.3)m/px 2023

4 ToOL SUITE AND EVALUATION

Task Format: Each task is posed as a step and tool-implicit query, requiring the agent to reason
and respond in a ReAct-style format|Yao et al.|(2023). Agents autonomously generate thought steps,
select tools from a predefined set, format arguments, and produce final answers, evaluating spatial
reasoning, planning, and multi-step execution grounded in remote sensing imagery.

Tool Categories: ThinkGeo extends the AgentLego framework |AgentLego Contributors|(2023) with
two additional tools: ChangeDetection [Irvin et al.|(2024) for multi-temporal remote sensing
analysis and SegmentObjectPixels Kirillov et al.|(2023);|Li et al.[|(2022) for segmentation
and pixels counting. The toolset is organized into three functional categories: Perception (e.g.,
TextToBbox, ChangeDetection), Logic, and Operation, supporting object localization, spatial
reasoning, and interactive annotation. Logic tools (e.g., Calculator, Solver) support numer-
ical reasoning, distance calculations, and spatial comparisons. Operation tools (e.g., DrawBox,
GoogleSearch) facilitate visual annotation and output formatting. This categorization supports
fine-grained evaluation (e.g., tool-category performance) and structured analysis of planning behavior
across spatial, logical, and domain-specific subtasks.

Evaluation Methodology: We adopt the evaluation framework of GTA |Wang et al.| (2024) for
step-by-step metrics, including instruction-following (InstAcc), tool selection (ToolAcc), argument
correctness (ArgAcc), and summary generation (SummaAcc), to assess agent behavior. While GTA
computes final answer accuracy (AnsAcc) using deterministic string matching, this can misclassify
predictions due to variations in phrases. To mitigate this, we introduce LL.M-as-a-judge: curated

Table 3: Evaluation results across models on the ThinkGeo benchmark. The table reports step-by-
step (left) and end-to-end evaluation results (right), including tool-type accuracy (P: Perception, O:
Operation, L: Logic), Ans. (final answer), and answer accuracy under image grounding (Ans_I).
Overall, GPT4 family performs the best.

Model | Step-by-Step Metrics | End-to-End Metrics

| Inst. Tool. Arg. Summ.| P. 0. L. | Ans. AnslI
GPT-40 73.31 6375 3331 59.15 87.05 76.68 67.88 | 11.51 20.02
GPT-4-1106 8244 7321 3774 6422 | 7991 69.15 5629 | 946 1691
Claude-3.7-Sonnet 2135 2621 0.33 66.19 | 85.16 8593 6441 | 895 1142
Qwenl.5-7b-chat 23.44  8.67 3.26 45.17 494 3725 2098 | 691 6.74
Qwen2.5-7b-Instruct 5738 45.63 18.84 6310 | 22.61 36.36 26.70 | 6.91 9.28

InternLM3-8b-Instruct 23.19 2327 1336 1141 | 3693 3478 3438 | 9.46 8.80
LLaMA3-1-8b-Instruct 4458 3598 1349 54.66 | 54.87 3420 56.41 | 7.16 8.12
Phi-3-mini-4k-Instruct 18.40 16.88  9.65 16.58 | 24.07 54.68 2128 | 7.16 6.15
Mistral-7B-Instruct-v0.2 | 18.51 16.56 0.00  44.57 | 31.38 14.74 40.51 | 11.25 5.15
Yi-1.5-6B-Chat 2240 2647 0.26 32.16 556 222 464 | 997 583
Qwen3-8B (w/reasoning) | 20.98 13.36  3.26 50.95 | 5945 70.37 3353 | 7.67 8.68
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evaluation questions per query and use 4o-mini to verify the correctness of the model’s prediction.
This offers a more reliable measure of task success, especially for multi-fact answers.

5 EXPERIMENTS & DISCUSSION

To assess the reasoning and tool-use capabilities of language models under real-world remote sensing
scenarios, we conduct comprehensive evaluations on the ThinkGeo benchmark. Our benchmark
poses multimodal and tool-implicit challenges that require agentic models to invoke tools across
perception, operation, and logic categories. Unlike prior evaluations that rely on synthetic queries or
shallow tool interactions, our benchmark emphasizes realistic queries grounded in satellite or aerial
imagery and demands multi-step reasoning with spatial and numerical precision.

Quantitative Analysis: We evaluate a wide range casy and Hard Correct Answers per Mode

of models, including GPT-40 Hurst et al.| (2024), ] sy Corect

GPT-4-1106 Achiam et al[(2023), and several open- =

source variants (e.g., Qwen |Hui et al.| (2024); ‘
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ting (Arg.), and summary generation (Summ.). The EP
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egories (P: Perception, O: Operation, L: Logic), final
answer correctness (Ans.), and answer correctness
under visual grounding (Ans_I). All evaluations and
analyses presented in the paper are conducted on op-
tical RGB imagery, ensuring consistency and comparability across models. To demonstrate the
extension of our framework to additional modalities, we present SAR-based analysis in Appendix
(section [A.T). As reported in Table[3] GPT-40 and GPT-4-1106 achieve the strongest overall accuracy,
reflecting superior planning and execution across multi-step tool chains. Most open-source models
struggle with tool call formatting and argument prediction, resulting in significantly lower accuracy
of the answers. Among all step-by-step metrics, tool selection has the highest correlation with final
answer accuracy, underscoring its importance in agentic performance (Fig. [3).
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Figure 6: Number of correctly answered

queries per model, categorized by difficulty
level.

Tool Call & Error: Tool calls and error rates highlight key gaps in agentic reliability. Proprietary
models (GPT-40, GPT-4-1106) show frequent tool use with relatively low error rates (47.3% and
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Message: You are an assistant, provided with an image <file> and a text query <query>, who can utilize external tools. {tool_description} To use a tool,

please use the following format:
[{action_names}]

{thought} Think what you need to solve,

do you need to use tools?

{action} the tool name, should be one of
{action_input}the input to the action. The response after utilizing tools should use the following format: {response}the results after

call the tool. If you already know the answer, or you do not need to use tools, please use the following format to reply: {thought}the thought process to

get the final answer {finish} final answer.

GPT 40

@ query: Inside the area of all flooded houses, how many cars are parked?

Error Response:
Step 1:

{“arguments”: (“flooded houses”, topl: true),
“tool”: “TextToBbox”,

“tool_output”: “(821, 446, 1308, 924), score 63”}
Step 2:

{“arguments”: {“text”: “car”, “bbox”: “(821, 446,
1308, 924)”},

“tool”: “CountGivenObject”, “tool_output”:”
ARGS_ERROR”}

Step 3:

{“arguments”: (“car”, bbox: “821, 446, 1308,
924”), “tool”: “CountGivenObject”,

“tool_output”: “2”}

Step 4:

{“arguments”: (“car”, bbox: “821, 446, 1308,
924”), “tool”: “CountGivenObject”,

“tool_output”: “2”}

Final answer:

There are 2 cars parked inside the flooded houses.

Issues:
- Incorrect argument to TextToBbox

The correct Response:
Step 1:

{“arguments”: (“flooded
house”, topl: false),
“tool”: “TextToBbox”,
“tool_output”: “(129,
654, 689, 1343), score
90\n(818, 288, 1550,
919), score 89”7}

Step 2:

{“arguments”:
(“expression”= “min(129,
818), min(288, 654),
max(689, 1550),
max(1343, 919)”),
“tool”: “Calculator”,
“tool_output”: “129,
288, 1550, 1343”}
Step 3:

{“arguments”: (“car”,
bbox: “129, 288, 1550,
1343”), “tool”:
“CountGivenObject”,
“tool_output”: “6”}

Cv;; Qwen3

@ Query: How nuch area is majorly damaged, while counting the buildings in

the image, GSD 2.1m/px?

Error Response:
Step 1:

{“arguments”: (“”, ), “tool”: “NoAction”,
“tool_output”: “API_ERROR: Please follow the
format”}

{“arguments”: (“majorly damaged buildings”, topl:
false), “tool”: “TextToBbox”,
“tool_output”: “(3, 21, 1021, 1024), score 60”}

Step 3:
{“arguments”: (“expression” = “(1021-3) * (1024-
21) * (2.1**¥2)”), “tool”: “Calculator”,
“tool_output”: “4502848.14”}

Final answer:

The area that is majorly damaged in the image is
approximately 4,502,848.14 square meters, based on
the GSD of 2.1 meters per pixel.

Issues:
- Redundant Step 1 with unnecessary NoAction tool

The correct Response:
Step 1:

{“arguments”: (“major-
damage building”, topl:
false), “tool”:
“TextToBbox”,
“tool_output”: “(917,
288, 951, 322), score
91\n(737, 202, 775,
238), score 92\n(543,
167, 569, .”}

Step 2:

{“arguments”:
(“expression” = “((951-
917)*(322-288) + (775-
737....

“tool”: “Calculator”,
“tool_output”:
“27685.98”}

Final answer:
There are 10 major-

- Incorrect bounding box returned
- Calling the tool CountGivenObject counted twice
- The number of cars is incorrect

damage buildings, with a
total damaged area of
27,685.98 square meters.

- Empty or invalid arguments in Step 1

- single low-confidence box used for area

- Final answer lacks justification for area
estimate

Final answer:

There are 6 cars parked
inside the area of the
flooded houses.

Figure 7: Examples of typical failure cases in GPT-40 and Qwen3 during ThinkGeo benchmark
queries. On the left, GPT-40 struggles with incorrect argument formatting, misidentifies bounding
boxes, redundantly invokes tools, and produces an incorrect final count. On the right, Qwen3 misuses
tools (e.g., invoking NoAct ion), introduces redundant reasoning steps, and fails to provide spatial
justification in its area estimate. In contrast, the correct responses illustrate structured reasoning with
accurate spatial computation and coherent tool invocation.

30.0%), indicating strong tool-handling capabilities (Fig. ). In contrast, open-source models (Qwen3-
8B, InternL.M3-8B, LLaMA3-8B) invoke tools aggressively but incur high error rates, reflecting poor
execution control. Meanwhile, smaller models ( Qwen1.5-7B, Phi-3) often fail despite limited tool
use, underscoring formatting and context alignment issues. These trends suggest that effective agent
behavior hinges not just on tool access but on precise invocation and robust reasoning.

Easy vs Hard Queries: We analyze the performance of LLM agents on queries of varying difficulty
levels, as defined in Section [3.3|Figure[6]presents a bar chart of correct responses per model, separated
by difficulty level. The x-axis lists the evaluated models, while the y-axis indicates the count of
correctly answered queries. Blue bars represent easy queries, and red bars denote hard ones. This
analysis highlights a consistent performance gap across difficulty levels, emphasizing the increased
challenges LLMs face when dealing with complex, multi-step reasoning tasks.

Failure Analysis: The qualitative examples in Fig.[7|illustrate common failure cases in multimodal
agentic reasoning. GPT-40, despite its high tool usage, struggles with incorrect argument formatting,
misaligned bounding boxes, and redundant tool calls, resulting in inaccurate counts. Qwen3 frequently
invokes unnecessary tools (e.g., NoAction), performs disconnected reasoning steps, and fails to
justify numerical outputs with spatial context. These cases underline critical challenges in agent
planning, such as argument misalignment, repeated tool misuse, and lack of unit-aware calculations,
underscoring the need for precise reasoning across perception and logic modules in RS tasks.

6 CONCLUSION

We propose ThinkGeo, the first benchmark tailored specifically to evaluate tool-augmented LLM
agents on real-world RS tasks. Since ThinkGeo grounds evaluation in high-resolution EO imagery,
structured tool-use pipelines, and fine-grained reasoning annotations, it reveals critical gaps in current
agent capabilities. In particular, our analysis shows room for improvement in spatial planning,
temporal consistency, and domain-specific tool integration. Our extensive study across 486 tasks and
multiple SOTA LLMs demonstrates that, while tools like segmentation and change-detection improve
raw perception, true geospatial reasoning remains an open challenge. ThinkGeo aims to attract further
efforts towards the development of next-generation multimodal agents that can seamlessly blend
perception, planning, and execution in complex, spatially grounded RS and EO environments.
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A APPENDIX

This supplementary material provides extended analysis and additional results to support the main
paper. It includes evaluations on the SAR data(A.T)), and detailed error breakdowns (A.2). We also
present representative samples across use case categories (A.3), tool usage distribution (A.4)), and
category-wise sample counts (A.5). Moreover, we report the human effort (A.6) involved in curating,
generating, and verifying the proposed ThinkGeo benchmark. Additionally, we analyze the runtime
performance of the evaluated models

A.1 SAR DATA EVALUATION

A set of 50 queries over 244 tool-reasoning steps utilize SAR imagery. This data is developed through
the same rigorous, three-phase manual curation pipeline described above, ensuring identical depth and
consistency in annotation; evaluation results are reported in Table ] Proprietary models like GPT-4
variants lead in instruction and tool usage accuracy on SAR imagery, showing strong generalization
in structured reasoning. However, final answer accuracy remains low (< 10%) across all models,
revealing that even the best proprietary models struggle with visual grounding in non-optical scenarios.
This highlights a key gap: tool competence alone is not sufficient for reliable SAR understanding.

Table 4: Evaluation results across models on the ThinkGeo SAR benchmark. The table reports
step-by-step execution metrics (left) and end-to-end evaluation results (right), including tool-type
accuracy (P: Perception, O: Operation, L: Logic), Ans. (final answer), and answer accuracy under
image grounding (Ans_I).

Model | Step-by-Step Metrics | End-to-End Metrics

| Inst. Tool. Arg. Summ. | P. 0. L. | Ans. AnsI
GPT-40 75.00 69.67 49.18 50.00 | 87.43 81.82 48.15 | 5.56 22.29
GPT-4-1106 7571 7131 4877 58.33 56.93 7045 17.45 | 556 17.10
Claude-3.7-Sonnet 14.64 2172 041 7778 | 8593 5556 70.06 | 8.33 24.00
Qwenl.5-7b-chat 1536 4.10 2.05 36.11 0.00 47.06 1.44 | 2.78 10.00
Qwen?2.5-7b-Instruct 5643 4426 29.10 61.11 16.49 26.67 2797 | 556 8.00
InternL.M3-8b-Instruct 51.79 47.13 2992 36.11 30.87 30.51 29.81 | 0.00 7.74
LLaMA3-1-8b-Instruct 40.71 3443 20.08 5556 | 56.38 25.35 46.06 | 2.78 8.00
Phi-3-mini-4k-Instruct 33.21 29.51 16.80 33.33 | 21.05 25.00 24.52 | 556 8.00

A.2 ERROR ANALYSIS

The error analysis summarized in Tab. [5|provides insights into the types of prediction failures exhibited
by different models on the ThinkGeo benchmark, categorized into planning and format-related errors.
Planning errors, specifically NoAction, is prominent for models like GPT-4-1106 (84.87%), GPT-40
(95.82%), and Qwen1.5-7b (94.90%), indicating extra reasoning or summaries without delivering
a final actionable response, i.e., either a tool call or an explicit answer. In contrast, models such
as LLama3-1-8b and Qwen2.5-7b show high rates of ’Invalid JSON” errors (82.89% and 84.44%,
respectively), revealing difficulty in producing syntactically correct tool input formats even when
the correct tool is selected. Among format-related errors, “Final Answer (SingleStep)” exhibits high
rates: Phi-3-mini-4k (73.74%), Qwen1.5-7b (80.05%), and Qwen2.5-7b (74.94%), where models
bypass intermediate reasoning and prematurely generate a final answer. In particular, GPT-40 and
GPT-4-1106 show remarkably low error rates in the format category, demonstrating strong capabilities
in structured reasoning. Overall, the results highlight that models face different challenges, some
struggle with planning and step-by-step reasoning, while others have issues formatting tool inputs or
following the required response structure.

A.3 MORE SAMPLES BY USE CASE
Fig. [§] shows examples in which ThinkGeo queries prompt-driven agents to compose multiple

tools from the available set. Each ReAct-style execution chain demonstrates spatial reasoning and
multi-step decision making grounded in satellite imagery, reflecting the benchmark’s focus on real,

13



Under review as a conference paper at ICLR 2026

Table 5: Breakdown of errors made by models on the ThinkGeo benchmark. Errors are grouped into
planning and format-related categories (percentages are reported).

Model Planning Format Errors
NoAction | Inv. JSON Arg. Values Tool Name Final Ans. (SingleStep)

GPT-40 95.82 1.92 2.18 0.08 0
GPT-4-1106 84.87 11.54 3.08 0.26 0
Claude-3.7-Sonnet |  58.04 41.73 0.00 0.23 18.44
Qwenl.5-7b 3.06 94.90 0.00 2.04 80.05
Qwen2.5-7b 11.11 84.44 4.44 0.00 74.94
InternLM3-8b 57.37 33.92 0.62 7.80 44.44
LLaMA3-1-8b 13.01 82.89 0.16 3.94 14.08
Phi-3-mini-4k 56.36 40.61 0.09 2.94 73.74
Mistral-7B 49.17 40.67 0.17 10.00 53.13
Yi-1.5-6B 81.06 4.25 0.00 14.69 59.71
Qwen3-8B 81.34 18.52 0.07 0.00 4.32

tool-oriented geospatial problem solving. Additionally, we illustrate complete reasoning trajectories
and grounding in queries in Fig.[I0and [IT]
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Figure 8: Representative examples from the ThinkGeo benchmark. Each row shows a user query
(left), the corresponding ReAct-style execution chain involving tool calls (center), and the final
answer (right).

A.4 TooL USAGE DISTRIBUTION

The distribution of tool usage across the ThinkGeo benchmark is shown in Fig.[9] The most frequently

invoked tools are Calculator, TextToBbox, and RegionAttributeDescription, re-
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Table 6: Category-wise count of easy and hard tasks, including totals.

Main Category Combined | Easy-level | Hard-level
Disaster Assessment & Change Analysis 148 95 53
Urban Planning 71 48 23
Transportation Analysis 90 54 36
Aviation Monitoring 40 24 16
Industrial Sites 15 12 3
Recreational Infrastructure 41 28 13
Environmental Monitoring 31 20 11
Total 436 281 155

flecting the benchmark’s emphasis on spatial computation, object localization, and attribute reasoning.
Mid-frequency tools such as CountGivenObject and ChangeDetection support core analy-
sis tasks, while tools such as AddText, ObjectDetection, and OCR are rarely used, indicating
their narrower application scope. This spread highlights the diversity in tool reliance and the com-
plexity of multi-step reasoning across geospatial scenarios.

Tool-wise Usage Distribution

Calculator
TextToBbox
RegionAttributeDescription
CountGivenObject
ChangeDetection
Solver

DrawBox
SegmentObjectPixels
Plot

GoogleSearch
ImageDescription
OCR
ObjectDetection

AddText

0 50 100 150 200 250 300 350 400
Usage Count

Figure 9: Tool-wise usage distribution in the ThinkGeo benchmark.

A.5 CATEGORY-WISE SAMPLE STATISTICS

Tab. [ summarizes the ThinkGeo benchmark by task category and difficulty level. Among the seven
core domains, Disaster Assessment & Change Analysis contributes the largest share (148 queries),
reflecting the complexity of temporal reasoning and damage interpretation. Urban Planning and
Transportation Analysis are followed by diverse spatial reasoning tasks.

A.6 HUMAN ANNOTATION EFFORT

The construction of the ThinkGeo benchmark involved a coordinated annotation effort totaling ~ 500
human hours, distributed across a 4-member team. This time was spent across three core stages:

Sample Selection and Query Drafting (100 hours): Annotators began by selecting high-quality
image samples from diverse remote sensing datasets. Scenario-specific query design guidelines were
developed per use case, and representative prompts were drafted for further guidance.

Analyzing Image and ReAct Construction (280 hours): Human annotators analyzed each image to
understand the spatial and semantic context, composed task-relevant queries, and manually filled in
missing annotations (e.g., object bounding boxes, counts) where necessary. Using a semi-automated
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interface powered by o4-mini, ReAct-style interaction traces were constructed that included
thought steps, tool invocations, and final answers, all grounded in the content.

Validation and Finalization (120 hours): Each ReAct trace was rigorously verified through manual
review and script-based checks. This involved ensuring that all reasoning steps (thoughts), tool
arguments, and outputs were present and logically coherent, and that the final answer could be derived
correctly.

: Now | will expand the house's bounding box by @ﬁ@;\@
50 meters using GSD 1.29325097. Y’® 14

: Solver

"command": "def solution():\n x1, y1, x2, y2 =
120, 393, 253, 523\n r = 50 / 1.29325097\n ex1 =
round(x1 - r)\n eyl = round(y1 - r)\n ex2 =
round(x2 + r)\n ey2 = round(y2 + r)\n return
str((ex1, eyl, ex2, ey2))\n\n solution() "

}

TESETTRE: (81, 354, 292, 562)

®
: Now | will count the number of cars within the @ﬁ@\@
How many cars are parked within a 50-meter perimeter expanded bounding box. \o@ o/
around the house using gsd 1.29325097? CountGivenobinet
: CountGiv j

A

® b
@A@\é : First, | will detect the house in the image. "image": "image/P0327.png",
N4 "text" :"car",
® : TextToBbox " won
bbox" :
2 4 }

"image": "image/P0327.png",

"text" :"house",

"topl" :true Observation 3]

}

There are 2 cars parked within a 50-meter perimeter
CTTSIECTIEL: (120, 393, 253, 523) around the house.

Figure 10: Example of a tool-augmented reasoning in ThinkGeo benchmark query. The illustration
shows a multi-step task where the agent is required to combine perception, logic, and spatial reasoning
tools in sequence. The figure highlights how queries are grounded in real remote sensing imagery
and require tool-augmented reasoning chains to arrive at correct geospatial conclusions.

A.7 RUNTIME ANALYSIS

To complement the evaluation results, we analyze the runtime performance of the evaluated models.
Table [7] reports both the step-by-step latency (measuring average runtime per query) and the end-
to-end pipeline latency (including LLM inference, tool calls, and result aggregation). These results
highlight the computational cost of agentic reasoning for geospatial tasks.

Table 7: Average runtime per query across evaluated models. Step-by-step latency corresponds to
the time required to execute all reasoning steps; end-to-end latency accounts for the entire pipeline
execution.

Model Step-by-step Avg. (s/query) End-to-end Avg. (s/query)
GPT-40 12.10 12.01
GPT-4-1106 22.43 16.65
Qwen1.5-7b-chat 22.54 6.79
Qwen2.5-7B-Instruct 16.79 7.17
InternLM3-8b-Instruct 22.68 27.01
LLaMA3-1-8b-Instruct 13.16 14.78

While proprietary models such as GPT-40 and GPT-4-1106 offer relatively stable runtime profiles,
open-source models often display higher variability across step-by-step and end-to-end latencies.
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Notably, InternLM3-8b exhibits significant end-to-end overhead. Step-by-step evaluation is longer
for some models, like Qwenl.5, despite appearing more incremental in nature. These models process
each action prediction by re-encoding the entire history of previous steps as context. This cumulative
context grows with each step, significantly increasing the load and inference time. By contrast, in the
end-to-end setting, Qwen1.5 often generates answers with fewer tool calls or shorter reasoning traces,
resulting in less overall computation.

These findings align with prior observations that current agentic pipelines continue to incur substantial
latency |[Mialon et al.| (2023)). Reducing end-to-end response time remains an important open research
direction for enabling real-time geospatial applications.

®
Next, I'll count the partially damaged buildings (minor or major) in the @A@\@
post-disaster image. N Y4
: ChangeDetection

: {"pre_image": "image/hurricane-
michael_00000327_pre_disaster.png",
"post_image": "image/hurricane-
michael_00000327_post_disaster.png",
"text": "How many buildings are partially damaged (minor or major)
in the post-disaster image. " }

(OSSR ELLh P Partially damaged buildings in post-image: 14

®
: Now, I'll calculate the ratio of destroyed to partially damaged @/‘;@5\@
buildings. eY
After the disaster, what is the ratio of y yed to partially : Calculator
(minor or major) buildings, and how many three-ton relief shipments are needed : {"expression": "5 / 14"}

if each shipment can service five damaged structures?
TEEEERE: 0.35714285714285715

@ﬁ’ ‘% First, | need the number of completely destroyed buildings in the post- P N
NgY disaster image. : Finally, I'll determine how many three-ton relief shipments are ®° 4 ©®
: ChangeDetection needed if each shipment can service five damaged structures (damaged WG,‘E/
: { "pre_image": "image/hurricane- structures include destroyed and partially damaged buildings, total = 19).
michael_00000327_pre_disaster.png", : Solver
"post_image": "image/hurricane- : { "command": "*"python\nimport math\ndef solution():\n return
michael_00000327_post_disaster.png", math.ceil(19 / 5\n"""}

"text": "How many buildings destroyed in the post-disaster image. " }

Observation 432

[TESEITLEL Destroyed buildings in post-image: 5

Ratio of destroyed to partially damaged buildings 0.357.
4 three-ton relief shipments are required when each shipment can service five
damaged structures.

Figure 11: Example of change detection in ThinkGeo Post-disaster damage assessment and resource
planning. The figure illustrates a task that requires the identification and comparison of temporal dif-
ferences between pre-disaster and post-disaster imagery. The ReAct-style execution chain illustrates
how agents must invoke perception and computation tools to quantify changes, such as structural
damage.

LLM Usage Statement: We used large language models exclusively for polishing the writing and

providing assistance during dataset curation. They were not involved in research ideation, model
design, and analysis.
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