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Abstract

Federated learning (FL) faces challenges of intermittent client availability and
computation/communication efficiency. As a result, only a small subset of clients
can participate in FL at a given time. It is important to understand how partial client
participation affects convergence, but most existing works have either considered
idealized participation patterns or obtained results with non-zero optimality error
for generic patterns. In this paper, we provide a unified convergence analysis for FL
with arbitrary client participation. We first introduce a generalized version of feder-
ated averaging (FedAvg) that amplifies parameter updates at an interval of multiple
FL rounds. Then, we present a novel analysis that captures the effect of client
participation in a single term. By analyzing this term, we obtain convergence upper
bounds for a wide range of participation patterns, including both non-stochastic
and stochastic cases, which match either the lower bound of stochastic gradient
descent (SGD) or the state-of-the-art results in specific settings. We also discuss
various insights, recommendations, and experimental results.

1 Introduction

We consider a federated learning (FL) problem with N clients [17, 120} 38]]. Our goal is to minimize:
F(x) = 3 Xasy Falx), )

where x € R™ is an m-dimensional model parameter. The local objective I, (x) of each client n is
usually defined as F, (x) := E¢, ~p, [¢n(%,&,)], where D, is the distribution of client n’s local data,
which cannot be observed globally because the data remains private, and ¢, (x, &) is the per-sample
loss function for parameter x and input data £. The objective can be extended to a weighted
average, but we do not write out the weights and consider them as part of £,,(x, §) and F,,(x). A
canonical way of solving (1)) is to use federated averaging (FedAvg) [24]], which is a form of stochastic
gradient descent (SGD) that operates in multiple rounds, where each round includes multiple local
update steps followed by communication between clients and a server to synchronize the updates.

Partial Participation. A major challenge in FL is that clients only intermittently participate in the
collaborative training process [3]]. The reason is twofold. First, FL applications usually have a large
pool of clients. It is impractical to have all clients participating in all FL rounds, because it would
require computation and communication that can consume a large amount of energy and also lead to
network congestion. Second, clients may become unavailable from time to time. For example, if the
client devices are smartphones, they may be willing to participate in FL only when they are charging
(usually at night), to avoid draining the battery in outdoor environments where no charger is available.

Open Problem. The convergence of FL algorithms with realistic client participation patterns
has not been fully understood. Most existing works on partial participation have only considered
idealized scenarios, such as those where clients are randomly selected according to a given probability
distribution that is independent across rounds [4} 8,9, [18| 21} 22| [36]. They cannot incorporate cases
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Table 1: Summary and comparison of results (only showing baselines without constant error term)

Method Participation Convergence error upper bound Remark
Unavailable (1+e2)NVAVE Add’l assumption:
Yan etal. [3J] < FE rounds o ( VST ) bounded gradient norm
Unavailable (1+02)VE Add’l assumptions: Hessian
Guetal. [12] < FE rounds o ( NIT ) Lipschitz, a.s. bounded noise
. - Cor. 4.3 matching
Regularized 0 ( VST T) centralized SGD lower bound
Ours Ergodic Approaches zero as ' — oo Prop. 4.4
(this paper) 5 N P
.. 1402\« o . lio _ rop. [4.6|& Cor. 4.8|
Mixing O(\/SIT) LE; O(cx/SIT) w.p. 1—c matching 1dealized bound
1402\ 1.y ((402) In(2/e) B Prop.& Cor. 4.8
Independent (’)( = IT) i.E.; O(iﬁsm ) wp. l—c matching fdealized bound

Note: We let p = % in our results for a direct comparison with other works, see Section |5|for more details. We
consider sufficiently large 7" in all cases and only show the dominant term in this table, with other variables
ignored in O(+). Definitions: i.E. = in expectation, w.p. = with probability, a.s. = almost surely, S: number of

participating clients in each round (S < N), other definitions are given throughout the paper.

where clients are unavailable for a period of time. Some recent results considering general scenarios
either include a constant error term that does not vanish at convergence [3}137]] or are otherwise less
competitive than state-of-the-art results obtained in idealized settings [[12} [35]]. Therefore, we ask:
1. What classes of participation patterns have guaranteed convergence to zero error?

2. For these classes, can the convergence rate match with that obtained in idealized scenarios?

To answer these questions, we need to overcome two challenges. First, we need to devise a unified
analytical methodology for obtaining the convergence rates under various participation patterns.
Second, we need a general and realistic algorithm for cross-device FL, with appropriate control
options that can be configured to make the convergence rate competitive.

Our Contributions. In this paper, we overcome these challenges and give answers to the two
questions above. We first introduce a generalized version of FedAvg, which amplifies the parameter
updates after every P rounds, for some P > 1. When P = 1, our setting is the same as FedAvg with
two-sided learning rates [[18. [36l], but we focus on an extended setup where P can be greater than
one. For this generalized FedAvg algorithm, we perform a new convergence analysis that unifies the
effect of partial participation into a single term (§%(P) in Section . This allows us to decouple our
main convergence analysis from the analysis on partial participation, which largely simplifies the
analytical procedure. Our novel methodology gives the results shown in Table|l} for a broad range of
participation patterns. These patterns include non-stochastic and regularized participation, where
all clients participate equally but not simultaneously within P rounds, and sfochastic participation
settings including ergodic, stationary and strongly mixing (e.g., Markov process), and independent.
For the stochastic participation, we provide both expected and high probability convergence bounds,
where the expected rates match the state-of-the-art FedAvg convergence rates that were derived for
the idealized setting of random participation following an independent distribution. Furthermore, we
provide new insights related to non-IID data, amplification of updates, “linear speedup” [39], etc.

To summarize, our main contributions are as follows:

* We introduce a generalized FedAvg algorithm which amplifies the updates aggregated over
multiple rounds, where the amplification interval P can be tuned for the best convergence.

* We present novel analysis and unified methodology for obtaining competitive convergence
upper bounds with arbitrary client participation patterns.

* We discuss important insights from both the theoretical and experimental results.

Related Work. FedAvg [24] is characterized by partial client participation and multiple local updates
in each round. In the case of full participation, FedAvg is also known as local SGD [10, 14,23} 28-30]]
and parallel restarted SGD [40]. Partial participation was considered in [4} 18,9, [18| 21} 22} 36], with
the assumption that clients are selected to participate probabilistically according to a given distribution
that is independent across rounds. Some recent works have started to incorporate unavailable clients.
For example, the work in [27] allows inactive clients, but the theoretical result does not guarantee



convergence if a client participates with zero probability in a certain round. Similarly, the result in
[S}137] includes a constant error term in the case of general participation in cross-device FL. Other
works have obtained convergence rates related to the maximum number of inactive rounds, based
on additional assumptions such as Hessian Lipschitz [[12] and bounded gradient norm [35]]. Their
theory also requires all clients to participate once at the beginning (see [[12, Remark 5.2]). In contrast,
our result in this paper is based on a minimal set of assumptions. We consider a simple algorithm
without requiring initial full participation, and we provide a better rate of convergence to zero error
(see Table[T). Moreover, existing methods usually have separate analyses and results for each specific
class of participation pattern, whereas we present a unified framework that largely simplifies the
analytical procedure. Some more discussions on related works are in Appendix A. Note that all the
appendices of this paper are in the supplementary material.

2 Generalized FedAvg with Amplified Updates

We consider a generalized version of FedAvg as shown in Algorithm[I] In this algorithm, we define
gt to be the participation weight of client n in round ¢. If ¢i* = 0, the client does not participate in
this round. Each client n participates whenever ¢ > 0, where the weight g7’ is applied in the global
update step in Line 0] For mathematical convenience in our analysis, we assume in Algorithm [I] that
all clients compute their local updates in Lines BH8] regardless of whether they participate in the
current round or not. We emphasize that this is logically equivalent to the practical setting where
non-participating clients do not compute, because their computations have no effect in subsequent
rounds when ¢;* = 0 (see Line[J). In every round ¢, each client 7 computes I steps of local updates
according to Line where v > 0 is the local learning rate and gn(ygi) is the stochastic gradient of

F,(y};) such that E [gn(ygi)\ yii] = VE. ()

Starting at round ¢, the global updates are accumulated in u for P rounds (Line[I0). At the end of
every interval of P rounds, an amplification is applied to the accumulated updates (Line[T2). Since x;
is first updated without amplification in rounds to, ..., ¢y + P — 1, Line[I2]adds u after multiplying
1 — 1, which is equivalent to setting x; 1 to x;, + nu. When n = 1, there is no amplification and
Line[12]has no effect in this case. In general, we allow any 7 > 0 including values of 7 that are less
than one. When 77 < 1, we reduce (instead of amplify) the updates. Intuitively, amplification with
1 > 1 is usually preferred over reduction, because we can compute the gradients on similar model
parameters in each round where only a small number of clients participates. After P rounds, the
accumulated updates provide a better estimation for the overall client population, and amplifying
the updates allows the model parameter to progress towards the descent direction for the majority of
clients (see Appendix B.1 for an example). Also note that although P is a parameter in our algorithm,
the dominant terms of our convergence upper bounds shown in Table|l|do not depend on P.

Algorithm 1: Generalized FedAvg with amplified updates and arbitrary participation

1 Input: v, n, xo, I, P, T; Output: {x; : Vt}
2 Initialize tg < 0, u + 0;

3fort=0,...,7T—1do 9 Xyl ¢ X¢ + Zﬁ;l g A}; /lupdate

4 forn=1,..., N inparallel do N onAn. g 1

< n O 10 }1<—u+zn:1qt %, /faccumulate
Yi,0 7 Xt u | ift+1—t, = P then

6 for i - 0,.., In_ 1 do . 12 Xi41 ¢ Xep1 + (1 — 1)u; //amplify

7 | Yiis1 < Vi — 78 (V) 13 to « t+1;

8 A?%y?’]*xt; 14 u<+ 0;

3 Convergence Analysis and Main Result

We analyze Algorithmas follows. For ease of analysis, we assume that Zﬁf:l qgi =1forgy >0
for all t We also define p such that Zgzl(qff < p? forall t. As 25:1 g = 1, there always

'When 25:1 g # 1, the algorithm is equivalent to the case of {¢i'} normalized to one and a global
learning rate applied to the updates in each round. Since we already amplify the updates every P rounds, we do
not apply a separate global learning rate to each round.



exists p such that ,02 < 1. We define Q := {q}* : Vn,t}. Mathematically, we use the conditional
expectation [E [-| Q] to denote the case where Q is given and the expectation is only over the stochastic
gradient noise. In the case where Q is stochastic, the full expectation |E [-] is taken over both the noise
and Q. We make the following assumptions that are commonly used in the literature.

Assumption 1 (Lipschitz gradient).
IVE,(x) = VE, ()|l < Lx -y, v%,y,n. (2)
Assumption 2 (Unbiased stochastic gradient with bounded variance).
E[g,(x)|x] = VF,(x) and E [Hgn(x) - vpn(x)ﬂ x] < o2, vx,n. 3)
Assumption 3 (Bounded gradient divergence).
IVF,(x) — Vf(x)|* < d? vx,n. 4)
The gradient divergence in Assumption [3]is related to the degree of non-IID data distribution across

clients. To better interpret how different divergence components affect the convergence, we introduce
an alternative set of divergence bounds in Assumption[3’]as follows. We will show later (in Section[4)

that if Assumption holds, then Assumption [3’|also holds with properly chosen 32, 72, and §2(P).
Assumption 3’ (Alternative gradient divergence bound).

2 -
HZL qft [VF,(x) — Vf(X)]H < 2,x,t, )
N n N n’ 2 ~2
Zn:l qt an(x) - Zn’:l qt VF”' (X)H S v ,VX, ta (6)
2 -
|4 S S @ (VFaG0 = V60)|| < 3(P), ¥ to. @

In the above, 52 and 72 capture the gradient divergence in an arbitrary round ¢, and SQ(P) captures

the divergence of time-averaged gradients over P rounds, which is a function of P. In particular, 32
is an upper bound of the divergence between the original objective’s gradient V f (x) and the averaged
gradient among participating clients weighted by {q!,}. When all the clients participate, we have

q; = % and (3 holds with 32 = 0. The quantity 72 is an upper bound of the divergence between
each client’s gradient and the averaged gradient of participating clients, where the average is also
weighted by {qf,}. We will show in Section that the overall divergence d? in Assumptioncan be

expressed as a sum of /32 and 2, as intuition suggests. The quantity 52 (P) in (7) extends 32 in (@) by
computing the average over P rounds (inside the norm) instead of a single round. When the weights
{q!,} are properly chosen, as P gets large, the average ¢, over P rounds gets close to each other for

different n, and 62 (P) becomes small. We will formally analyze this behavior in Section
In the following, let F := f(xg) — f*, where f* is the true minimum of (I)), i.e., f* := miny f(x).
Theorem 3.1. When Assumptions and hold, v < ﬁ, n < ﬁ, and P < % we have

minE [ |[V£(x) || ]

S(/)<PY77‘FI'11+72L21252+72L212P232+52(P)+(V2L21+,}/2L21Pp2+,y77Lp2)0_2> (8)

Proof Sketch. We first use smoothness to relate f(x:,+p) and f(xy,), which includes an inner-
product term that can be expanded into several terms. One of these terms includes VF), (y7;) —

’ ’ 2
V f(x4,). We upper bound this term with three other terms including ’ Yii— 25:1 a vyt

N ! !
HZn«zl a4 Vi~ xto(
recurrence relations, where the recurrence for the second term includes the first term. This nested
recurrence is a uniqueness in this proof. The full proof is given in Appendix C. O

>

2 -
, and 62(P). The upper bounds of the first two terms are found by solving

For two specific (but different) learning rate configurations, we can obtain the following corollaries.



Corollary 3.2. Choosing v = m and 1 = min { % VPLI}—; 12\/T},f0r P < % we have
VLF LPF ? 32 o?
inE | ?loj <o 2 32(P :
Corollary 3.3. If p\/‘/% < ﬁ, choosing v = W and n = 122v LIF,for P < T we have
. 14+02)pVLF 62 o?
E| ’lo] <o ( (P .0
min IV f(xe)l"| Q| < Nids +P2T T —+0°(P )+IPT (10)

These two corollaries are key building blocks of our unified convergence analysis framework. The
choice between them depends on whether and how fast P grows with 7". We will also see in the next

section that 42 (P) is key in capturing the effect of different participation patterns. After deriving
52(P) such that H holds, plugging it back to one of the above corollaries gives the results in Table

4 Interpreting and Applying the Unified Framework

4.1 Discussion on 32 and 7%: Decomposition of Divergence

In Corollaries [3.2]and we have an interesting observation that the term involving  decreases
with P, whereas the term involving 3 does not decrease with P. This suggests that when P is large,

the divergence term [ has the main effect on convergence. We recall that & captures the divergence
between the gradient of each client and the average gradient of clients that participate in a round t.
Since the learning rate +y is inversely proportional to both I and P, a large P gives a smaller learning
rate which makes the divergence (related to ) after [ iterations in each round less significant. For

the term with B , increasing P does not have the same effect, because parameter averaging is only
conducted across the participating clients instead of all the clients, and [ captures the divergence with
respect to all the clients. The effect of all clients’ participation pattern is captured by the term 62(P).

From Assumption by adding and subtracting ij,:l q{‘/ V F,,/(x) inside the norm and expanding
the square, we can obtain

Sone 4 [V Fa(x) = Vf(x))*
=N g [ VR - SN VB || SN VR 60 - V0| <2y

because Zf:le gy = 1 and the inner-product term is zero. The two terms in the right-hand side
(RHS) of (1I) are equal to the left-hand side (LHS) of (3) and (), respectively. We thus have the

following result showing that ,32 and 2 can be seen as a decomposition of the original divergence d?.
Proposition 4.1. There exist 32 and 72, such that 3% + 72 < d? while satisfying @) and (6).

4.2 Discussion on 0(P): Effect of Partial Participation

The results in Theorem and Corollaries and include a term of &2 (P). To guarantee
convergence to zero error, 32(P) needs to be either equal to zero or decrease in 7.

Condition for 5*(P) = 0. From (I), we know that 0 = LY F(x) — f(x) =
2S5 (Fu(x) — f(x)). Hence,
fitg Yoy (Fu(x) = f(x)) =0 (12)
for an arbitrary constant fi;,, which can possibly depend on ¢y. Then, we obtain
2
P— 1 P-1 p
|4 S o g (VAo — )| = SN B S g (Vo) - V00|

1 —~to+P—1 p 2
- Hznd[ﬁ g = | (VEu ()= VI )| (13)
where the last equality is due to (I2). Since is equal to the LHS of (7)), we have the following.




Proposition 4.2 (Regularized participation). If % Z?:tffl a3 — i, = 0 for some 1, and all

ne{l,...,N}, to € {0,P,2P,...}, then (7) holds with 5*(P) = 0.
This implies that if P is chosen so that the averaged participation weights over every interval of
P rounds (% if’:tffl q7') are equal to each other among all the clients n € {1,..., N}, ie.,
regularized, then 52 (P) = 0. Together with Corollary|3.2{and Proposition we have the following.
Corollary 4.3 (Regularized participation). If the condition of Proposition holds for P < %, and
we choose the learning rates according to Corollary[3.2} then
opvV LF n LPF +d? +o?
VIT T '

min E [Hw(xtnﬂg] < 0( (14)
If Proposition holds for a finite P that does not depend on 7', we obtain a convergence rate of

(@) (% + 1+T"2 for T' > 2P, where all the other constants are ignored in the O (-) notation here.

For full gradient descent with o = 0, this convergence rate is improved to O ().

Interpreting 52(P) Using Variance. The condition for & 2(P) = 0 may be too stringent for some
practical scenarios of FL. Next, we show that 62(P) can be expressed as the variance of client
participation weights averaged over P rounds. We first express 62(P) with d? by further bounding:

M@ < NN (@ — o) @2, (15)

where we first use Jensen’s inequality on the sum over n in (T3)), then move the term gj) — iy, to the

outside of the norm, where we define ¢’ := igfﬁl qp forany n € {1,..., N}, and afterwards

bound ||V F,(x) — Vf(x)||* by d? according to Assumption We note that (7)) holds if the RHS
of (T3) is upper bounded by 6%(P). Therefore, we can obtain §2(P) by analyzing the statistical
properties of g — 14, and then choosing 52(P) to be equal to the RHS of (T3).

In the following, we assume that j, is chosen such that py, = E[¢}] foralln € {1,..., N} and
t € {to,to +1,...,to + P — 1}. This implies that the mean participation weights of all the clients
within the same cycle of P rounds are equal. Note that this condition is the same as unbiased client
sampling in existing works [8, 9, [18 21}, 22 [36]], because we consider an unweighted average in (I)
and any weighting is included in the local objective function F,,(x). However, differently from these
existing works, we do not assume independence here (we will only assume independence in a special

case later). Under this condition, it is apparent that Var (¢} ) = E {(ﬁ - Mto)2:| is the variance of
q;* averaged over P rounds, for any n € {1,..., N}. We immediately have the following result.
Proposition 4.4 (Ergodic participation). If {q} : Vt} is a mean-ergodic process for any n €
{1,..., N}, which means that limp_,, E {(@ — ﬂto)ﬂ = 0 for any n and tq, then there exists
62(P) such that imp_,, 6(P) = 0 while satisfying (7) in expectation.

Next, we consider the class of stationary and strongly mixing processes. Informally, a random process
is said to be strongly mixing with coefficient «( P) if the outcomes that are at least P steps apart are
nearly independent, where the distance between the joint probability distribution of the outcomes and
their independent counterpart is at most «(P). See [2, Sec. 27] for a formal definition. A specific
example of stationary and strongly mixing processes is finite-state irreducible and aperiodic Markov
chains, which have an «(P) that exponentially decreases in P [2, Thm. 8.9]. It is known that the
following (generalized) central limit theorem holds for stationary and strongly mixing processes,
where we adapt the result to our participation weights.

Lemma 4.5 ([2, Thm. 27.4]). If {q}* : Vt} is stationary and strongly mixing with a(P) = O(P~9),
foranyn € {1,...,N}, then qi', ~ N (,uto, %) for any to when P — oo, where N (-, ) denotes
the normal distribution and ©* := Var(q}.) + 2 Z;il Cov(at, » 41t +p)-

From the definition of strongly mixing, we know that Cov(q;! , g; 1,,) in the definition of 02 ap-
proaches zero as p gets large, hence Z;il Cov(qi, a1, +p) converges to a finite value. When P — oo



and a(P) = O(P79), Lemmashows that Var (¢ ) = {’—;. Chebyshev’s inequality gives
Pr{(@futo) §U—P}Zl—c. (16)

Plugging Var(q7) :E[(@—Mto)ﬂ = % and (@—Mto)Q < f% into the RHS of gives the fol-
lowing expected and high-probability results, respectively, where “w.p.” stands for “with probability”.

Proposition 4.6 (Stationary and strongly mixing participation). If {q}" : Vt} is stationary and strongly
mixing with o(P) = O(P~5), foranyn € {1,...,N}, then as P — 00!
Choosing 6*(P) = W satisfies (7)) in expectation; 62(P) = N d o* satisfies () wp. 1 —c.

For independent participation, we can obtain a similar result while not requiring P — co. Assuming
. . . — 2 .
that Var(g}") < v2 for any ¢ and n, it is evident that Var (q,{ﬁJ ) < %, because the variance of the sum

of independent random variables is equal to the sum of the variance, and Var(aZ) = a*Var(Z), for
an arbitrary constant ¢ and random variable Z. We note that Hoeffding’s inequality [[L6] gives

— 2 n(2/c
Pr{(@ —m,)” <=2} >1-c (17)

We have the following result by plugging into the RHS of (T3).
Proposition 4.7 (Independent participation). If {q}" : Vt} is independent across t, for any n, then:
Choosing 0%(P) = W satisfies (7 in expectation; 6%(P) = %;(2/@ satisfies (7) w.p. 1—c.

Note that the independence here is only assumed across ¢, so g;* and ¢} " for the same ¢ but n #n/
can still be dependent of each other. Compared to Proposmon @li the hlgh probablhty bound in
Proposition |4.7|has c in the logarithmic term, which is tighter since 5 < s—3 (1gn0r1ng 02).

Choosing P as a Function of T. The choices of 6%(P) in Propositions |4.6|and |4.7|include P in the
denominator. Hence, we can guarantee convergence to zero error if we choose P to be an increasing

function of 7', which also ensures that P — oo as T' — oo. If we choose P N%\/ IT, we can
obtain the following convergence rate from Corollary [3.3]together with Proposition [4.1]
Corollary 4.8 (Stochastic participation). If the conditions of either Proposition[d.6lor Proposition

hold, and we choose P = @2]\[%\/ IT or P = UQN%\/ IT, respectively, and the learning rates
according to Corollary[3.3] then the convergence error in expectation over Q satisfies

(L+o?)pVLF =~ & &+ 02>

1
VIT VNIT L (18)

p . . . p
forI < NTEVLE and T — oo when using conditions ofProposmon orl < VINTEVLE and

T > 4v*IN°® when using condition of Proposition

minE [|IV£(x,)]1*] < o(

Remark. Although the upper bound of I in Corollary .8 may appear restrictive, note that the optimal
solution x* to (I)) remains the same when the objective f(x) is scaled by a multiplicative positive

constant, which in turn scales v/ LF. More specifically, consider an arbitrary a > 0, we define
F'(x) := aF(x) and f'(x) := + Zi:;l F!(x) = af(x). Then, we have f'(xq) — f"™* = af(xq) —
af* = aF. We also have |VF} (x) — VF, (y)| = w(x) — VE,(¥)|l < oL |x —y| from
Assumption due to the linearity of gradients. Hence, by choosing a € (0, 1) and replacing F'(x)

with F’(x), we can make v/ LF arbitrarily small and s s 75 O 7o s — (the upper bound
of I in Corollary arbitrarily large without affecting the optimal solution x*. Thus, we can
potentially allow arbitrarily large I by scaling f(x) without changing the optimal solution x*. We
leave the in-depth study of this phenomenon for future work, where we recognize that such a scaling

will affect the LHS of the convergence bound too, although the optimal solution x* does not change.

We also give the following further 1n51ght related to Corollary .8 In Corollary 4.8 we choose P
to be proportional to the variance ©2 or v2. This is intuitive because when the clients’ participation
weights have higher variance, we would hke to wait for more rounds before amplifying, so that the
contributions of clients are more balanced. In the same way, P increases with the number of clients

N. Recall that ZnN:1 g = 1. Intuitively, when the participation patterns of individual clients remain



“unchanged”, ¢;* scales with % and its variance 02 or v2 scales with ﬁ, so the product 02N% ~ /N
or v2Nz ~ /N, implying that P effectively scales with v/ N when this intuition holds.

While the result in Corollary [.8]is in expectation, the high-probability bound is similar (see Table ).

In general, since (7)) is used as an upper bound in the proof of Theorem if 62 (P) is chosen so that
holds in expectation or with a certain probability, such as in Propositions and then the
final convergence result also holds in expectation or with a certain probability, respectively.

5 Discussions and Insights

Interpretation of “Linear Speedup”. Linear speedup is a desirable property seen in existing works
that consider idealized client participation [36,39,40]. It essence, it means that the same convergence
error can be achieved by increasing the number of participating clients .S (with S < ) and reducing
the number of rounds T, while keeping the product ST unchanged. In our case of arbitrary client
participation, the coefficient p is a generalization of the 1/v/5 term for linear speedup in existing
works that select a fixed number of S clients in each round. When S clients participate with equal
weight, because 25:1 g = 1, we have ¢' = 1/s for the participating clients and ¢}* = 0 for the

non-participating clients, so p = [Zgzl(qt")z] e 1/v/5. Plugging this p back to the convergence

results, we achieve a convergence rate of O (¢/v/51T) in Corollary 4.3|and O ((1 +¢*)/V/5TT) in
Corollary for sufficiently large 7" while ignoring the other variables in O(+), as shown in Table
This shows that we can achieve linear speedup in .S in this special case. We can also generalize
to having at least Sy, clients participating with equal weight in each round. Following the same
argument, we have p < 1//5... in this case, giving a linear speedup in Spin. In general, we achieve
a linear speedup factor of 1/»? in the case of arbitrary participation.

Matching Lower Bound or State-of-the-Art Results. We continue to assume sufficiently large
T. For regularized participation (Corollary [4.3)), our convergence rate of O (¢/v/5TT) matches the
lower bound of convergence error for centralized SGD [1]]. The lower bound states that to reach
a convergence error of e, there exists an objective function such that at least {2 (¢°/e?) stochastic
gradient oracle calls are requiredﬂ We have SIT oracle calls to reach ¢ = O (¢/v/STT) according
to our result, thus our upper bound matches this lower bound and is asymptotically optimal. Note
that our upper bound still matches the lower bound if we include the coefficient v LF in O (-) and
LF in Q (-). For stochastic participation (Corollary [4.8), our convergence rate of O (1 +¢*)/V/SIT)
matches state-of-the-art results of FedAvg (18,118} 136] that were obtained for the more idealized case
of clients being selected to participate according to a specific independent sampling scheme.

Special Case of Waiting for All Clients. We consider a specific configuration of FedAvg where
all the clients wait for P rounds before proceeding with SGD. In every iteration ¢ of round ¢ within
these P rounds, each participating client » may call the stochastic gradient oracle to obtain g, (x;),
but it does not perform local updates. Instead, it accumulates and averages the sampled instances of
gn(x¢). SGD is performed once after these P rounds using the average g, (x;) from each client n.
Assume that P is large enough so that each client n computes g, (x;) at least M > 1 times that are
averaged afterwards. If the M instances of g, (x;) are all independent from each other, the noise o
(defined in Assumption becomes /M. This configuration can be considered as a special case of
Algorithmm where all N clients perform SGD once in P rounds, so there are 7'/p updates in total,
with a reduced stochastic gradient noise of o*/m. By replacing o and STT in our bound O (¢/v/STT)
with o/v/a7 and NT'/p, respectively, we obtain a convergence rate of O (evP/vaMNT) for regularized
participation with this “wait-for-all” method.

In theory, when considering regularized participation and M is large enough, the convergence rate of
this “wait-for-all” method can potentially match with that of the original configuration of Algorithm |T]
In this way, the convergence error upper bound of both methods can match the lower bound of SGD
convergence error (see discussion above). However, in practice, reducing the stochastic gradient noise
as in this “wait-for-all” method may only give limited improvement. One reason is that practical
settings have a finite number of training data samples, so the noise can only be reduced by a certain
degree. In addition, having some noise in SGD can prevent the model parameter from being trapped in
saddle points and local minima in practice. The empirical results in Section [6]show that Algorithm T]

?Note that [T] defines the convergence error as ||V f(x;)|| whereas we define it as ||V f(x.)||*. Hence, the
order of our € is different from that in [/1]].



with amplification performs better than waiting for all the clients. We also note that our results for
stochastic participation (Corollary [4.8)) does not require all the clients to participate within P rounds.

Achieving Regularized Participation in Practice. In theory, regularized participation requires that

% Ei”;gp_l q} is equal to each other for all the clients n € {1,..., N}, for a properly chosen P.
When all the clients are connected to the system and client sampling is performed to limit the compu-
tation and communication overhead, this condition holds when the clients are selected according to a
permutation, i.e., all the clients participate once before the same client can be selected again. In the
case where clients get disconnected from time to time, the system can try to properly schedule the
participation of connected clients and their weights {g}'}, so that within a cycle of P rounds, all the
clients participate with equal averaged weights. In practice, it can be sufficient if this regularized
condition is only approximately satisfied, especially when multiple clients have similar datasets
so that 62(P) is small although not necessarily zero. The empirical results in Section@ show that
Algorithm [T with amplification can give good performance even if P is less than the participation
cycle of all clients. This suggests that, as long as the subset of clients that participate in P rounds are
more representative of the overall data distribution than the (usually much smaller) subset of clients
that participate in a single round, amplifying the updates every P rounds can be useful.

6 Experiments

We ran experiments of training convolutional neural networks (CNNs) with FashionMNIST [34] and
CIFAR-10 [[19] datasets, each of which has images in 10 different classes. We set the total number of
clients to N = 250. Similar to existing works [6, [7,136], we partition the data into clients so that each
client has data of one majority class label, with 5% of data of other (minority) labels, to simulate a
setup with non-IID data distribution which is often encountered in FL scenarios. We assume that
the clients’ availability exhibits a periodic pattern inspired by [6} [7]. Namely, in the first 100 rounds,
only clients with the first two majority labels are available; in the next 100 rounds, only clients with
the next two majority labels are available, and so on. In each round, S = 10 clients participate in a
regularized manner, out of all the currently available clients. To speed up initial rounds of training,
similar to practical deep learning implementations, we start with standard FedAvg with a relatively
large initial learning rate. The initial rates are v = 0.1 and v = 0.05 without amplification (i.e.,
1 = 1) for FashionMNIST and CIFAR-10, respectively, which were obtained using grid search in a
separate scenario of always participation. After an initial training of 2, 000 rounds for FashionMNIST
and 4, 000 rounds for CIFAR-10, we study the performance of different approaches with their own
learning rates. Additional setup details and results are given in Appendix D.

Comparing Different Methods. We show the results of Algorithm |l| both with and without
amplification. When using amplification, we set n = 10 and P = 500. We also compare to
an algorithm that waits for all the clients, related to our discussion in Section E], for two settings
where each client computes its gradients either on a minibatch or on the entire dataset, which we refer
to as “wait-minibatch” and “wait-full”, respectively. The best learning rate -y of each approach was
separately found on a grid that is {1,0.1,0.01,0.001, 0.0001} times the initial learning rate, with the
periodic participation pattern described above. The results are shown in Figure

We make a few key observations as follows. First, we clearly see that Algorithm[I|with amplification
gives the best performance. By choosing P = 500, we match with the participation period of clients,
as described in the setup above. This corresponds to our setting with regularized participation. In
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Figure 1: Results for different approaches with periodically connected clients (P = 500).



— P=1 — P=100 — P=300 —— P=500 —— P=700 P=900

FashionMNIST FashionMNIST CIFAR-10 CIFAR-10
. 0.00350 :

0.00325 4
0.00300 4

0.00275 -

Test accuracy

0.00250 -

Global training loss
Global training loss

0.00225 4

T T 0.86 T T 0.00200 T T 0.66 T T
0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000 0 100000 200000 300000

Training rounds Training rounds Training rounds Training rounds

Figure 2: Algorithmwith amplification and different P, with periodically connected clients.

this case, Algorithm[I| with amplification allows different groups of clients to make small progress
among themselves first. After P rounds, each client has made its own share of contribution, and
the updates get amplified so that the model parameter progresses faster towards the direction that
is overall beneficial for all the clients. As our theory predicts, this approach gives a desirable
convergence rate, which is now verified by experiments. Next, we observe that the “wait-minibatch”
and “wait-full” methods perform worse than Algorithm[I\with amplification. We also observe that
“wait-full”, which computes the gradient on the entire dataset, does not provide substantial gain
compared to “wait-minibatch” in the experiments. These observations align with our discussion
in Section 5| on the practical performance of different methods. Finally, we observe that standard
FedAvg (i.e., Algorithm [I) without amplification) gives the lowest performance. This is because
without amplification, the algorithm cannot put more emphasis on the collective updates by the cohort
of all clients, and the parameter updates may diverge from the overall optimal direction.

Different Values of P. Next, we fix 77 = 10 in Algorithm[I]and study the effect of choosing different
values of P. We use the same learning rate ~y that is obtained from grid search in the previous
experiment. Note that the clients’ availability pattern remains the same as described above. The
choice of different P simulates the practical scenario where the estimation of P may not perfectly
align with the actual participation cycle. The results are shown in Figure 2]

We observe that P = 1, which corresponds to the “classical” setting of FedAvg with two-sided
learning rates [[18}136]], does not give the best performance. Interestingly, compared to P = 500, we
see that P = 100 and P = 300 give a similar performance, and even slightly better performance
in the case of CIFAR-10 data. Due to the random offset applied to the first participation cycle in
each experiment (see Appendix D.1 for details), every interval of 100 rounds can include the “partial”
contributions by two subsets of clients (with data in 4, out of 10, majority classes). The results
suggest that amplifying such partial contributions by multiple subsets of clients can still improve
performance. In the case of CIFAR-10 data, the reason for P = 500 being slightly worse may be that
the accumulated update within P rounds generally becomes larger as P gets larger, in which case
amplification causes a bigger change in the model parameter. Depending on the landscape of the loss
function, this change may be too big so that the model performance decreases. For a similar reason,
the performances of P = 700 and P = 900 are even worse. Nevertheless, we expect that choosing a
smaller learning rate -y can improve the performance for large P values.

7 Conclusion

In this paper, we have studied FL with arbitrary client participation. For a generalized FedAvg
algorithm that amplifies parameter updates every P rounds, we have developed a unified framework
for convergence analysis and obtained convergence rates for a variety of client participation patterns.
Our findings suggest that regularized participation with finite P gives the best performance and
matches the lower bound of SGD convergence error when T is sufficiently large. For stochastic
participation, first, we have formally proven that convergence is guaranteed when the participation
process is ergodic. Then, for two generic classes of participation processes, we have proven that with
a properly chosen P, our convergence rate matches state-of-the-art FedAvg convergence rates that
were derived for the idealized case of independent and unbiased participation. The empirical results
have confirmed that amplification is useful and also provided further insights. Future directions
include analysis of advanced FL algorithms and more detailed empirical study.
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