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ABSTRACT

The fairness of machine learning-based decisions has become an increasingly
important focus in the design of supervised machine learning methods. Most
fairness approaches optimize a specified trade-off between performance measure(s)
(e.g., accuracy, log loss, or AUC) and fairness metric(s) (e.g., demographic parity,
equalized odds). This begs the question: are the right performance-fairness trade-
offs being specified? We instead re-cast fair machine learning as an imitation
learning task by introducing superhuman fairness, which seeks to simultaneously
outperform human decisions on multiple predictive performance and fairness
measures. We demonstrate the benefits of this approach given suboptimal decisions.

1 INTRODUCTION

Figure 1: Three sets of deci-
sions (black dots) with differ-
ent predictive performance
and group disparity values
defining the sets of 100%-,
67%-, and 33%-superhuman
fairness-performance values
(red shades) based on Pareto
dominance.

The social impacts of algorithmic decisions based on machine learning
have motivated various group and individual fairness properties that
decisions should ideally satisfy Calders et al. (2009); Hardt et al. (2016).
Unfortunately, impossibility results prevent multiple common group
fairness properties from being simultaneously satisfied Kleinberg et al.
(2016). Thus, no set of decisions can be universally fair to all groups
and individuals for all notions of fairness. Instead, specified weightings,
or trade-offs, of different criteria are often optimized Liu & Vicente
(2022). Identifying an appropriate trade-off to prescribe to these fairness
methods is a daunting task open to application-specific philosophical
and ideological debate that could delay or completely derail the adoption
of algorithmic methods.

We consider the motivating scenario of a fairness-aware decision task
currently being performed by well-intentioned, but inherently error-
prone human decision makers. Rather than seeking optimal decisions
for specific performance-fairness trade-offs, which may be difficult to
accurately elicit, we propose a more modest, yet more practical objective:
outperform human decisions across all performance and fairness
measures with maximal frequency. We implicitly assume that available human decisions reflect
desired performance-fairness trade-offs, but are often noisy and suboptimal. This provides an
opportunity for superhuman decisions that Pareto dominate human decisions across predictive
performance and fairness metrics (Figure 1) without identifying an explicit desired trade-off.

To the best of our knowledge, this paper is the first to define fairness objectives for supervised
machine learning with respect to noisy human decisions rather than using prescriptive trade-offs
or hard constraints. We leverage and extend a recently-developed imitation learning method for
subdominance minimization Ziebart et al. (2022). Instead of using the subdominance to identify
a target trade-off, as previous work does in the inverse optimal control setting to estimate a cost
function, we use it to directly optimize our fairness-aware classifier. We develop policy gradient
optimization methods Sutton & Barto (2018) that allow flexible classes of probabilistic decision
policies to be optimized for given sets of performance/fairness measures and demonstrations.
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We conduct extensive experiments on standard fairness datasets (Adult and COMPAS) using accuracy
as a performance measure and three conflicting fairness definitions: Demographic Parity Calders
et al. (2009), Equalized Odds Hardt et al. (2016), and Predictive Rate Parity Chouldechova (2017)).
Though our motivation is to outperform human decisions, we employ a synthetic decision-maker
with differing amounts of label and group membership noise to identify sufficient conditions for
superhuman fairness of varying degrees. We find that our approach achieves high levels of superhuman
performance that increase rapidly with reference decision noise and significantly outperform the
superhumanness of other methods that are based on more narrow fairness-performance objectives.

2 FAIRNESS AND IMITATION LEARNING

2.1 GROUP FAIRNESS MEASURES

Group fairness measures are primarily defined by confusion matrix statistics (based on labels yi ∈
{0, 1} and decisions/predictions ŷi ∈ {0, 1} produced from inputs xi ∈ RM ) for examples belonging
to different protected groups (e.g., ai ∈ {0, 1}).

We focus on three prevalent fairness properties in this paper:

• Demographic Parity (DP) Calders et al. (2009) requires equal positive rates across protected
groups:

P(Ŷ = 1|A = 1) = P(Ŷ = 1|A = 0);

• Equalized Odds (EqOdds) Hardt et al. (2016) requires equal true positive rates and false positive
rates across groups, i.e.,

P(Ŷ =1|Y =y,A=1) = P(Ŷ =1|Y =y,A=0), y ∈ {0, 1};

• Predictive Rate Parity (PRP) Chouldechova (2017) requires equal positive predictive value (ŷ = 1)
and negative predictive value (ŷ = 0) across groups:

P(Y =1|A=1, Ŷ = ŷ) = P(Y =1|A=0, Ŷ = ŷ), ŷ ∈ {0, 1}.

2.2 PERFORMANCE-FAIRNESS TRADE-OFFS

Numerous fair classification algorithms have been developed over the past few years, with most
targeting one fairness metric Hardt et al. (2016). With some exceptions Blum & Stangl (2019),
predictive performance and fairness are typically competing objectives in supervised machine learn-
ing approaches. Thus, though satisfying many fairness properties simultaneously may be naı̈vely
appealing, doing so often significantly degrades predictive performance or even creates infeasibility
Kleinberg et al. (2016).

Given this, many approaches seek to choose parameters θ for (probabilistic) classifier Pθ that balance
the competing predictive performance and fairness objectives Kamishima et al. (2012); Hardt et al.
(2016); Menon & Williamson (2018); Celis et al. (2019); Martinez et al. (2020); Rezaei et al. (2020).
Recently, Hsu et al. (2022) proposed a novel optimization framework to satisfy three conflicting
fairness metrics (demographic parity, equalized odds, and predictive rate parity) to the best extent
possible:

min
θ

Eŷ∼Pθ

[
loss(ŷ,y) + αDPD.DP(ŷ,a) + αOddsD.EqOdds(ŷ,y,a) + αPRPD.PRP(ŷ,y,a)

]
. (1)

2.3 IMITATION LEARNING

Imitation learning Osa et al. (2018) is a type of supervised machine learning that seeks to produce a
general-use policy π̂ based on demonstrated trajectories of states and actions, ξ̃ = (s̃1, ã1, s̃2, . . . , s̃T ).
Inverse reinforcement learning methods Abbeel & Ng (2004); Ziebart et al. (2008) seek to rationalize
the demonstrated trajectories as the result of (near-) optimal policies on an estimated cost or reward
function. Feature matching Abbeel & Ng (2004) plays a key role in these methods, guaranteeing
if the expected feature counts match, the estimated policy π̂ will have an expected cost under the
demonstrator’s unknown fixed cost function weights w̃ ∈ RK equal to the average of the demonstrated
trajectories:

Eξ∼π̂ [fk(ξ)] =
1

N

N∑
i=1

fk

(
ξ̃i

)
,∀k =⇒ Eξ∼π̂ [costw̃(ξ)] =

1

N

N∑
i=1

costw̃

(
ξ̃i

)
,

where fk(ξ) =
∑

st∈ξ fk (st). Syed & Schapire (2007) seeks to outperform the set of demonstra-
tions when the signs of the unknown cost function are known, w̃k ≥ 0, by making the inequality,
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Eξ∼π [fk(ξ)] ≤ 1
N

∑N
i=1 fk

(
ξ̃i

)
,∀k, strict for at least one feature. Subdominance minimization

Ziebart et al. (2022) seeks to produce trajectories that outperform each demonstration by a margin:
fk(ξ) + mk ≤ fk(ξ̃i),∀i, k, under the same assumption of known cost weight signs. However,
since this is often infeasible, the approach instead minimizes the subdominance, which measures the
α-weighted violation of this inequality:

subdomα(ξ, ξ̃) ≜
∑
k

[
αk

(
fk(ξ)− fk(ξ̃)

)
+ 1
]
+
, (2)

where [f(x)]+ ≜ max(f(x), 0) is the hinge function and the per-feature margin has been reparame-
terized as α−1

k . Previous work Ziebart et al. (2022) has employed subdominance minimization in
conjunction with inverse optimal control:

min
w

min
α

N∑
i=1

K∑
k=1

subdomα(ξ
∗(w), ξ̃i),where: ξ∗(w) = argmin

ξ

∑
k

wkfk(ξ),

learning the cost function parameters w for the optimal trajectory ξ∗(w) that minimizes subdomi-
nance. One contribution of this paper is extending subdominance minimization to the more flexible
prediction models needed for fairness-aware classification that are not directly conditioned on cost
features or performance/fairness metrics.

3 SUBDOMINANCE MINIMIZATION FOR FAIRNESS-AWARE CLASSIFICATION

We approach fair classification from an imitation learning view. We assume vectors of (human-
provided) reference decisions are available that roughly reflect desired fairness-performance trade-
offs, but are also noisy. Our goal is to construct a fairness-aware classifier that outperforms reference
decisions on all performance and fairness measures on withheld data as frequently as possible.

3.1 SUPERHUMANNESS AND SUBDOMINANCE

We consider reference decisions ỹ = {ỹj}M
j=1 that are drawn from a human decision-maker or

baseline method P̃, on a set of M items, XM×L = {xj}M
j=1, where L is the number of attributes in

each of M items xj . am from vector a indicate to which group item m belongs.

The predictive performance and fairness of decisions ŷ for each item are assessed based on ground
truth y and group membership a using a set of predictive loss and unfairness measures {fk(ŷ,y,a)}.
Definition 1. A fairness-aware classifier is considered γ-superhuman for a given set of predictive
loss and unfairness measures {fk} if its decisions ŷ satisfy: P (f (ŷ,y,a) ⪯ f (ỹ,y,a)) ≥ γ.

If strict Pareto dominance is required to be γ-superhuman, which is often effectively true for con-
tinuous domains, then by definition, at most (1 − γ)% of human decision makers could be γ-
superhuman. However, far fewer than (1− γ) may be γ−superhuman if pairs of human decisions
do not Pareto dominate one another in either direction (i.e., neither f (ỹ,y,a) ⪯ f (ỹ′,y,a) nor
f (ỹ′,y,a) ⪯ f (ỹ,y,a) for pairs of human decisions ỹ and ỹ′). From this perspective, any deci-
sions with γ−superhuman performance more than (1 − γ)% of the time exceed the performance
limit for the distribution of human demonstrators.

Unfortunately, directly maximizing γ is difficult in part due to the discontinuity of Pareto dominance
(⪯). The subdominance Ziebart et al. (2022) serves as a convex upper bound for non-dominance in
each metric {fk} and on 1− γ in aggregate:

subdomk
αk

(ŷ, ỹ,y,a) ≜ [αk (fk(ŷ,y,a)− fk(ỹ,y,a)) + 1]+ .

subdomα(ŷ, ỹ,y,a) ≜
∑
k

subdomk
αk

(ŷ, ỹ,y,a). (3)

Given N vectors of reference decisions as demonstrations, Ỹ = {ỹi}N
i=1, the subdominance for

decision vector ŷ with respect to the set of demonstrations is1

subdomα(ŷ, Ỹ ,y,a) =
1

N

∑
ỹ∈Ỹ

subdomα(ŷ, ỹ,y,a),

1For notational simplicity, we assume all demonstrated decisions ỹ ∈ Ỹ correspond to the same M items
represented in X. Generalization to unique X for each demonstration is straightforward.
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Figure 2: A Pareto frontier for
possible P̂θ (blue) optimally trad-
ing off predictive performance
(e.g., inaccuracy) and group un-
fairness. The model-produced de-
cision (red point) defines domi-
nance boundaries (solid red) and
margin boundaries (dashed red),
which incur subdominance (green
lines) on three examples.

where ŷi is the predictions produced by our model for the set of
items Xi, and Ŷ is the set of these prediction sets, Ŷ = {ŷi}N

i=1.
The subdominance is illustrated by Figure 2. Following concepts
from support vector machines Cortes & Vapnik (1995), reference
decisions ỹ that actively constrain the predictions ŷ in a particular
feature dimension, k, are referred to as support vectors and denoted
as: ỸSVk

(ŷ, αk) =
{
ỹ|αk(fk(ŷ)− fk(ỹ)) + 1 ≥ 0

}
.

3.2 PERFORMANCE-FAIRNESS
SUBDOMINANCE MINIMIZATION

We consider probabilistic predictors Pθ : XM → ∆YM that make
structured predictions over the set of items in the most general
case, but can also be simplified to make conditionally independent
decisions for each item.
Definition 2. The minimally subdominant fairness-aware classifier
P̂θ has model parameters θ chosen by:

argmin
θ

min
α⪰0

Eŷ|X∼Pθ

[
subdomα

(
ŷ, Ỹ ,y,a

)]
+ λ∥α∥1.

Hinge loss slopes α ≜ {αk}K
k=1 are also learned during training. αk value defines by how far a

produced decision does not sufficiently outperform the demonstrations on the kth feature. When the
αk is large, the model chooses heavily weights support vector reference decisions for that particular
k when minimizing subdominance.
We use the subgradient of subdominance with respect to θ and α to update these variables iteratively,
and after convergence, the best learned weights θ∗ are used in the final model P̂θ∗ . A commonly
used model like logistic regression can be used for P̂θ.

Theorem 1. The gradient of expected subdominance under P̂θ with respect to the set of reference
decisions {ỹi}N

i=1 is:

∇θEŷ|X∼P̂θ

∑
k

Γk(ŷ,Ỹ,y,a)︷ ︸︸ ︷
min
αk

(
subdomk

αk

(
ŷ, Ỹ,y,a

)
+ λkαk

) = Eŷ|X∼P̂θ

[(∑
k

Γk(ŷ, Ỹ,y,a)

)
∇θ log P̂θ(ŷ|X)

]
,

where the optimal αk for each γk is obtained from:

αk = argmin
α
(m)
k

m such that fk (ŷ) + λ ≤ 1

m

m∑
j=1

fk
(
ỹ(j)

)
,

using α
(j)
k = 1

fk(ŷ(j))−fk(ỹ(j))
to represent the αk value that would make the demonstration with

the jth smallest fk feature, ỹ(j), a support vector with zero subdominance.

Using gradient descent, we update the model weights θ using an approximation of the gradient based
on a set of sampled predictions ŷ ∈ Ŷ from the model P̂θ:

θ ← θ + η

∑
ŷ∈Ŷ

(∑
k

Γk(ŷ, Ỹ,y,a)

)
∇θ log P̂θ(ŷ|X)

 ,

Algorithm 1 shows the steps required for the training of our model. Reference decisions {ỹi}N
i=1

from a baseline method P̃ are provided as input to the algorithm. In each iteration, we first sample a
set of model predictions {ŷi}N

i=1 from P̂θ(.|Xi) for the matching items used for reference decisions
{ỹi}N

i=1. We then find the new θ (and α) based on the algorithms discussed in Theorem 1.

4 EXPERIMENTS

The goal of our approach is to produce a fairness-aware prediction method that outperforms reference
(human) decisions on multiple fairness/performance measures. In this section, we discuss our
experimental design to synthesize reference decisions with varying levels of noise, evaluate our
method, and provide comparison baselines.
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Figure 3: Prediction error versus difference of: Demographic Parity (D.DP), Equalized Odds (D.EqOdds)
and Predictive Rate Parity (D.PRP) on test data using noiseless training data (ϵ = 0) for Adult (top row) and
COMPAS (bottom row) datasets.

4.1 TRAINING AND TESTING DATASET
Algorithm 1: Subdominance optimization
Draw N set of reference decisions {ỹi}N

i=1 from
a human decision-maker or baseline method P̃.
Initialize: θ ← θ0;

while θ not converged do
Sample model predictions {ŷi}N

i=1 from
P̂θ(.|Xi) for the matching items used in
reference decisions {ỹi}N

i=1;
for k ∈ {1, ...,K} do

Sort reference decisions {ỹi}N
i=1 in

ascending order based on their kth

feature value fk(ỹi): {ỹ(j)}N
j=1;

Compute α
(j)
k = 1

fk(ỹ(j))−fk(ŷ(j))
;

αk = argmin
α
(m)
k

m

such that
fk
(
ŷ(j)

)
≤ 1

m

∑m
j=1 fk

(
ỹ(j)

)
;

Compute Γk(ŷi, Ỹ,y,a);
θ ← θ +
η
N

∑
i

(∑
k Γk(ŷi, Ỹ,y,a)

)
∇θ log P̂θ(ŷi|Xi);

With repeated randomized splits of benchmark fair-
ness datasets, we apply fair learning methods over
noise-added ground truth data to emulate human
decisions. We will describe this process in detail.

Datasets We perform experiments on two bench-
mark fairness datasets:

• UCI Adult Dheeru & Karra Taniskidou (2017).

• ProPublica’s COMPAS Larson et al. (2016).

Partitioning the data We first split the entire
dataset randomly into a disjoint train (tr-all)
and test (ts-all) set of equal size. The test set
(ts-all) is entirely withheld from the training
procedure and ultimately used solely for evalua-
tion. To produce each demonstration (a vector of
reference decisions), we split the (tr-all) set,
randomly into a disjoint train (tr-demo) and test
(ts-demo) set of equal size.

Noise insertion We randomly flip ϵ% of the
ground truth labels y and group membership attributes a to add noise to our demonstrations.

Fair classifier P̃ Using the noisy data, we provide existing fairness-aware methods with labeled
tr-demo data and unlabeled ts-demo to produce decisions on the ts-demo data as demonstra-
tions ỹ. Specifically, we employ the Post-processing method of Hardt et al. (2016) with DP as the
fairness constraint for Adult dataset and Robust fair logloss method of Rezaei et al. (2020) with
EqOdds as the fairness constraint for COMPAS dataset. We repeat the process of partitioning tr-all
N = 50 times to create randomized partitions of tr-demo and ts-demo and to then produce a set
of demonstrations {ỹ}50i=1.

4.2 EVALUATION METRICS AND BASELINES

Predictive Performance and Fairness Measures Our focus for evaluation is on outperforming
demonstrations in K = 4 measures: inaccuracy (Prediction error), difference of demo-
graphic parity (D.DP), difference of equalized odds (D.EqOdds), difference of predictive rate parity
(D.PRP).

Baseline methods As baseline comparisons, we train five different models on the entire train set
(tr-all) and then evaluate them on the withheld test data (ts-all):
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Figure 4: Experimental results on the Adult and COMPAS datasets with noisy demonstrations (ϵ = 0.2).

• The Post-processing model of Hardt et al. (2016) with {DP and EqOdds} as the fairness constraint
(post proc dp and post proc eqodds).

• The Robust Fair-logloss model of Rezaei et al. (2020) with {DP and EqOdds} as the fairness
constraint (fair logloss dp and fair logloss eqodds).

• The Multiple Fairness Optimization framework of Hsu et al. (2022) which is designed to satisfy
three conflicting fairness metrics {DP, EqOdds and PRP} to the best extent possible (MFOpt).

4.3 SUPERHUMAN MODEL SPECIFICATION AND UPDATES

During the training process, we update the model parameter θ to reduce subdominance.

Sample from Model P̂θ In each iteration of the algorithm, we first sample prediction vectors
{ŷi}N

i=1 from P̂θ(.|Xi) for the matching items used in demonstrations {ỹi}N
i=1. In the implemen-

tation, to produce the ith sample, we look up the indices of the items used in ỹi, which constructs
item set Xi. We make predictions using our model on this item set P̂θ(.|Xi). The model produces a
probability distribution for each item which can be sampled and used as a prediction {ŷi}N

i=1.

Update model parameters θ We update θ until convergence using Algorithm 1.

4.4 EXPERIMENTAL RESULTS

After obtaining the best model weight θ∗ from the training data (tr-all), we evaluate our model
on unseen test data (ts-all). We employ hard predictions (i.e., the most probable label) using our
approach at test time rather than random sampling.
Noise-free reference decisions Our first set of experiments considers learning from reference
decisions with no added noise. The results are shown in Figure 3. We observe that our approach
outperforms demonstrations in all fairness metrics and shows comparable performance in accuracy.
Note that the margin boundaries (dotted red lines) in Figure 3 are equal to 1

αk
for feature k, hence

there is reverse relation between αk and margin boundary for feature k. We observe larger values
of αk for prediction error and demographic parity difference. The reason is that these features are
already optimized in demonstrations and our model has to increase αk values for those features to
sufficiently outperform them.
Noisy reference decisions In this set of experiments, we introduce significant amounts of noise
(ϵ = 0.2) into our reference decisions and also training data of baseline methods. The results are
shown in Figure 4. In the case of learning from noisy demonstrations, our approach still outperforms
the reference decisions. Due to the noisy setting, demonstrations have worse prediction error but
regardless of this issue, our approach still can achieve a competitive prediction error.
Relationship of noise to superhuman performance We also evaluate the relationship between the
amount of augmented noise in the label and protected attribute of demonstrations, with achieving
γ-superhuman performance in our approach. As shown in Figure 5, with slightly increasing the
amount of noise in demonstrations, our approach can outperform 100% of demonstrations and reach
to 1-superhuman performance. In Table 1 we show the percentage of demonstrations that each
method can outperform across all prediction/fairness measures (i.e., the γ−superhuman value).
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Table 1: Percentage of demonstrations that each method outperforms in all prediction/fairness measures.

Method Adult(ϵ = 0.0) Adult(ϵ = 0.2) COMPAS(ϵ = 0.0) COMPAS(ϵ = 0.2)
MinSub-Fair (ours) 96% 100% 100% 98%

MFOpt 42% 0% 18% 18%
post proc dp 16% 86% 100% 80%

post proc eqodds 0% 66% 100% 88%
fair logloss dp 0% 0% 0% 0%

fair logloss eqodds 0% 0% 0% 0%
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Figure 5: The relationship between the ratio of augmented noise in the label and the protected attribute of
reference decisions produced by post-processing (left) and fair-logloss (right) and achieving γ-superhuman
performance in our approach.

5 CONCLUSIONS

In this paper, we introduce superhuman fairness, an approach to fairness-aware classifier construction
based on imitation learning. Our approach avoids explicit performance-fairness trade-off specification
or elicitation. Instead, it seeks to unambiguously outperform human decisions across multiple
performance and fairness measures with maximal frequency. We develop a general framework
for pursuing this based on subdominance minimization Ziebart et al. (2022) and policy gradient
optimization methods Sutton & Barto (2018) that enable a broad class of probabilistic fairness-
aware classifiers to be learned. Our experimental results show the effectiveness of our approach in
outperforming synthetic decisions corrupted by small amounts of label and group-membership noise
when evaluated using multiple fairness criteria combined with predictive accuracy.

Societal impacts By design, our approach has the potential to identify fairness-aware decision-
making tasks in which human decisions can frequently be outperformed by a learned classifier on a
set of provided performance and fairness measures. This has the potential to facilitate a transition
from manual to automated decisions that are preferred by all interested stakeholders, so long as
their interests are reflected in some of those measures. However, our approach has limitations. First,
when performance-fairness tradeoffs can either be fully specified (e.g., based on first principles) or
effectively elicited, fairness-aware classifiers optimized for those trade-offs should produce better
results than our approach, which operates under greater uncertainty cast by the noisiness of human
decisions. Second, if target fairness concepts lie outside the set of metrics we consider, our resulting
fairness-aware classifier will be oblivious to them. Third, our approach assumes human-demonstrated
decision are well-intentioned, noisy reflections of desired performance-fairness trade-offs. If this is
not the case, then our methods could succeed in outperforming them across all fairness measures, but
still not provide an adequate degree of fairness.

Future directions We have conducted experiments with a relatively small number of perfor-
mance/fairness measures using a simplistic logistic regression model. Scaling our approach to much
larger numbers of measures and classifiers with more expressive representations are both of great in-
terest. Additionally, we plan to pursue experimental validation using human-provided fairness-aware
decisions in addition to the synthetically-produced decisions we consider in this paper.

6 ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation Program on Fairness in AI in collabora-
tion with Amazon under award No. 1939743.

7



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the International Conference on Machine Learning, pp. 1–8, 2004.

Avrim Blum and Kevin Stangl. Recovering from biased data: Can fairness constraints improve
accuracy? arXiv preprint arXiv:1912.01094, 2019.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press, 2004.

Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. Building classifiers with independency
constraints. In 2009 IEEE International Conference on Data Mining Workshops, pp. 13–18. IEEE,
2009.

L Elisa Celis, Lingxiao Huang, Vijay Keswani, and Nisheeth K Vishnoi. Classification with fairness
constraints: A meta-algorithm with provable guarantees. In ACM FAT*, 2019.

Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big data, 5(2):153–163, 2017.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20:273–297,
1995.

Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017. URL http:
//archive.ics.uci.edu/ml.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning. Advances
in Neural Information Processing Systems, 29:3315–3323, 2016.

Brian Hsu, Rahul Mazumder, Preetam Nandy, and Kinjal Basu. Pushing the limits of fairness
impossibility: Who’s the fairest of them all? In Advances in Neural Information Processing
Systems, 2022.

Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware classifier with
prejudice remover regularizer. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pp. 35–50. Springer, 2012.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair determi-
nation of risk scores. arXiv preprint arXiv:1609.05807, 2016.

Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. How we analyzed the compas
recidivism algorithm. ProPublica, 9, 2016.

Suyun Liu and Luis Nunes Vicente. Accuracy and fairness trade-offs in machine learning: A
stochastic multi-objective approach. Computational Management Science, pp. 1–25, 2022.

Natalia Martinez, Martin Bertran, and Guillermo Sapiro. Minimax Pareto fairness: A multi objective
perspective. In Proceedings of the International Conference on Machine Learning, pp. 6755–6764.
PMLR, 13–18 Jul 2020.

Aditya Krishna Menon and Robert C Williamson. The cost of fairness in binary classification. In
ACM FAT*, 2018.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al.
An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):
1–179, 2018.

Ashkan Rezaei, Rizal Fathony, Omid Memarrast, and Brian Ziebart. Fairness for robust log loss
classification. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
5511–5518, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. Advances
in neural information processing systems, 20, 2007.

8

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Vladimir Vapnik and Olivier Chapelle. Bounds on error expectation for support vector machines.
Neural computation, 12(9):2013–2036, 2000.

Brian Ziebart, Sanjiban Choudhury, Xinyan Yan, and Paul Vernaza. Towards uniformly superhuman
autonomy via subdominance minimization. In International Conference on Machine Learning, pp.
27654–27670. PMLR, 2022.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In AAAI, volume 8, pp. 1433–1438, 2008.

9



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

A PROOFS OF THEOREMS

Proof of Theorem 1. The gradient of the training objective with respect to model parameters θ is:

∇θEŷ|X∼P̂θ

∑
k

Γk(ŷ,Ỹ,y,a)︷ ︸︸ ︷
min
αk

(
subdomk

αk

(
ŷ, Ỹ ,y,a

)
+ λkαk

) = Eŷ|X∼P̂θ

[(∑
k

Γk(ŷ, Ỹ ,y,a)

)
∇θ log P̂θ(ŷ|X)

]
,

which follows directly from a property of gradients of logs of function:

∇θ log P̂(ŷ|X) =
1

P̂(ŷ|X)
∇θP̂(ŷ|X) =⇒ ∇θP̂θ(ŷ|X) = P̂(ŷ|X)∇θ log P̂(ŷ|X). (4)

We note that this is a well-known approach employed by policy-gradient methods in reinforcement
learning Sutton & Barto (2018).

Next, we consider how to obtain the α−minimized subdominance for a particular tuple (ŷ,Ỹ ,y,a),
Γk

(
ŷ, Ỹ ,y,a

)
= minαk

(
subdomk

αk

(
ŷ, Ỹ ,y,a

)
+ λkαk

)
, analytically.

First, we note that subdomk
αk

(
ŷ, Ỹ ,y,a

)
+ λkαk is comprised of hinged linear functions of αk,

making it a convex and piece-wise linear function of αk. This has two important implications: (1)
any point of the function for which the subgradient includes 0 is a global minimum of the function
Boyd & Vandenberghe (2004); (2) an optimum must exist at a corner of the function: αk = 0 or
where one of the hinge functions becomes active:

αk(fk(ŷi)− fk(ỹi)) + 1 = 0 =⇒ αk =
1

fk(ỹi)− fk(ŷi)
. (5)

The subgradient for the jth of these points (ordered by fk value from smallest to largest and denoted
fk(ỹ

(j)) for the demonstration) is:

∂αk
subdomk

αk

(
ŷ, Ỹ ,y,a

) ∣∣∣
αk=(fk(ŷ)−fk(ỹ(j)))−1

= ∂αk

(
1

N

j∑
i=1

[
αk

(
fk(ŷ)− fk(ỹ

(i))

)
+ 1

]
+

+ λαk

)

= λ+
1

N

j−1∑
i=1

(
fk(ŷ)− fk(ỹ

(i))

)
+
[
0, fk(ŷ)− fk(ỹ

(j))
]
,

where the final bracketed expression indicates the range of values added to the constant value
preceding it.

The smallest j for which the largest value in this range is positive must contain the 0 in its corre-
sponding range, and is thus the provides the j value for the optimal αk value.

Proof of Theorem 2. We extend the leave-one-out generalization bound of Ziebart et al. (2022) by
considering the set of reference decisions that are support vectors for any learner decisions with
non-zero probability. For the remaining reference decisions that are not part of this set, removing
them from the training set would not change the optimal model choice and thus contribute zero error
to the leave-one-out cross validation error, which is an almost unbiased estimate of the generalization
error Vapnik & Chapelle (2000).

B GENERALIZATION BOUNDS

With a small effort, we extend the generalization bounds based on support vectors developed for
inverse optimal control subdominance minimization Ziebart et al. (2022).
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Theorem 2. A classifier P̂θ trained to minimize subdomα (ŷ, ỹi) on a set of N iid reference

decisions has the support vector set
{⋃

ŷ:Pθ(ŷ|X)>0 ỸSVk
(ŷ, αk)

}
defined by the union of support

vectors for any decision with support under P̂θ. Such a classifier is on average γ-superhuman on
the population distribution with: γ = 1− 1

N

∥∥∥⋃K
k=1

⋃
ŷ:Pθ(ŷ|X)>0 ỸS Vk

(ŷ, αk)
∥∥∥.

This generalization bound requires overfitting to the training data so that the P̂θ has restricted support
(i.e., P̂θ(ŷ|X) = 0 for many ŷ) or becomes deterministic.

C ADDITIONAL RESULTS

We show the numerical results for noiseless and noisy experiements shown in Figures 3 and 4 in
Tables 2 and 3, respectively.

Table 2: Experimental results on noise-free datasets, along with the αk values learned for each feature in
subdominance minimization.

Method
Dataset Adult COMPAS

Prediction error DP diff EqOdds diff PRP diff Prediction error DP diff EqOdds diff PRP diff
αk 62.62 35.93 6.46 4.98 82.5 4.27 3.15 12.72

γ-superhuman 98% 94% 100% 100% 100% 100% 100% 100%
MinSub-Fair (ours) 0.210884 0.025934 0.006690 0.183138 0.366806 0.040560 0.124683 0.171177

MFOpt 0.195696 0.063152 0.077549 0.209199 0.434743 0.005830 0.069519 0.161629
post proc dp 0.212481 0.030853 0.220357 0.398278 0.345964 0.010383 0.077020 0.173689

post proc eqodds 0.213873 0.118802 0.007238 0.313458 0.363395 0.041243 0.060244 0.151040
fair logloss dp 0.281194 0.004269 0.047962 0.124797 0.467610 0.000225 0.071392 0.172418

fair logloss eqodds 0.254060 0.153543 0.030141 0.116579 0.451496 0.103093 0.029085 0.124447

Table 3: Experimental results on datasets with noisy demonstrations, along with the αk values learned for each
feature.

Method
Dataset Adult COMPAS

Prediction error DP diff EqOdds diff PRP diff Prediction error DP diff EqOdds diff PRP diff
αk 29.63 10.77 5.83 13.42 29.33 4.51 3.34 57.74

γ-superhuman 100% 100% 100% 100% 100% 100% 100% 98%
MinSub-Fair (ours) 0.202735 0.030961 0.009263 0.176004 0.359985 0.031962 0.036680 0.172286

MFOpt 0.319696 0.005651 0.017385 0.198472 0.459731 0.091892 0.039745 0.153257
post proc dp 0.225462 0.064232 0.237852 0.400427 0.353164 0.087889 0.088414 0.160538

post proc eqodds 0.224561 0.103158 0.010552 0.310070 0.351269 0.144190 0.158372 0.148493
fair logloss dp 0.285549 0.007576 0.057659 0.115751 0.484620 0.005309 0.145502 0.183193

fair logloss eqodds 0.254577 0.147932 0.012778 0.118041 0.487025 0.127163 0.011918 0.153869

In the main paper, we only included plots that show the relationship of a fairness metric with
prediction error. To show the relation between each pair of fairness metrics, in Figures 6 and 7 we
show the remaining plots removed from Figures 3 and 4 respectively.
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Figure 6: The trade-off between each pair of: difference of Demographic Parity (D.DP), Equalized Odds
(D.EqOdds) and Predictive Rate Parity (D.PR) on test data using noiseless training data (ϵ = 0) for Adult
(top row) and COMPAS (bottom row) datasets.
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Figure 7: The trade-off between each pair of: difference of Demographic Parity (D.DP), Equalized Odds
(D.EqOdds) and Predictive Rate Parity (D.PR) on test data using noiseless training data (ϵ = 0.2) for Adult
(top row) and COMPAS (bottom row) datasets.

C.1 EXPERIMENT WITH MORE MEASURES

Since our approach is flexible enough to accept wide range of fairness/performance measures, we
extend the experiment on Adult to K = 5 features. In this experiment we use Demographic Parity
(D.DP), Equalized Odds (D.EqOdds), False Negative Rate (D.FNR), False Positive Rate (D.FPR)
and Prediction Error as the features to outperform reference decisions on. The results are shown in
Figure 8.
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Figure 8: The trade-off between each pair of: difference of Demographic Parity (D.DP), Equalized Odds
(D.EqOdds), False Negative Rate (D.FNR), False Positive Rate (D.FPR) and Prediction Error on test data
using noiseless training data (ϵ = 0) for Adult dataset.

D GROUP FAIRNESS VIOLATIONS

Group fairness measures are primarily defined by confusion matrix statistics (based on labels yi ∈
{0, 1} and decisions/predictions ŷi ∈ {0, 1} produced from inputs xi ∈ RM ) for examples belonging
to different protected groups (e.g., ai ∈ {0, 1}).

We focus on three prevalent fairness properties in this paper:

• Demographic Parity (DP) Calders et al. (2009) requires equal positive rates across protected
groups:

P(Ŷ = 1|A = 1) = P(Ŷ = 1|A = 0);

• Equalized Odds (EqOdds) Hardt et al. (2016) requires equal true positive rates and false positive
rates across groups, i.e.,

P(Ŷ =1|Y =y,A=1) = P(Ŷ =1|Y =y,A=0), y ∈ {0, 1};

• Predictive Rate Parity (PRP) Chouldechova (2017) requires equal positive predictive value (ŷ = 1)
and negative predictive value (ŷ = 0) across groups:

P(Y =1|A=1, Ŷ = ŷ) = P(Y =1|A=0, Ŷ = ŷ), ŷ ∈ {0, 1}.

13



Workshop on the pitfalls of limited data and computation for Trustworthy ML, ICLR 2023

Violations of these fairness properties can be measured as differences:

D.DP(ŷ,a) =

∣∣∣∣∣
∑N

i=1 I [ŷi=1, ai=1]∑N
i=1 I [ai=1]

−
∑N

i=1 I [ŷi=1, ai=0]∑N
i=1 I [ai=0]

∣∣∣∣∣; (6)

D.EqOdds(ŷ,y,a) = max
y∈{0,1}

∣∣∣∣∣
∑N

i=1 I [ŷi=1, yi=y, ai=1]∑N
i=1 I [ai=1, yi=y]

−
∑N

i=1 I [ŷi=1, yi=y, ai=0]∑N
i=1 I [ai=0, yi=y]

∣∣∣∣∣; (7)

D.PRP(ŷ,y,a) = max
y∈{0,1}

∣∣∣∣∣
∑N

i=1 I [yi=1, ŷi=y, ai=1]∑N
i=1 I [ai=1, ŷi=y]

−
∑N

i=1 I [yi=1, ŷi=y, ai=0]∑N
i=1 I [ai=0, ŷi=y]

∣∣∣∣∣. (8)
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