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ABSTRACT

Data scarcity and distribution shifts often hinder the ability of machine learning
models to generalize when applied to proteins and other biological data. Self-
supervised pre-training on large datasets is a common method to enhance gen-
eralization. However, striving to perform well on all possible proteins can limit
model’s capacity to excel on any specific one, even though practitioners are often
most interested in accurate predictions for the individual protein they study. To ad-
dress this limitation, we propose an orthogonal approach to achieve generalization.
Building on the prevalence of self-supervised pre-training, we introduce a method
for self-supervised fine-tuning at test time, allowing models to adapt to the test
protein of interest on the fly and without requiring any additional data. We study
our test-time training (TTT) method through the lens of perplexity minimization
and show that it consistently enhances generalization across different models, their
scales, and datasets. Notably, our method leads to new state-of-the-art results on
the standard benchmark for protein fitness prediction, improves protein structure
prediction for challenging targets, and enhances function prediction accuracy.

1 INTRODUCTION
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TM-score: 0.63
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TM-score: 0.84

Figure 1: Example of test-time training (TTT)
applied to protein folding. ESMFold poorly pre-
dicts the structure of the CASP14 target T1074
(shown in white) because the underlying language
model ESM2 poorly fits the sequence, as indicated
by the high perplexity (Fig. 2E in Lin et al. (2023)
and the left panel here). Self-supervised test-time
training of ESM2 on the single sequence of T1074
minimizes the perplexity, leading to improved
structure prediction (better TM-score alignment
and higher pLDDT predicted confidence). The
same test-time training approach is also broadly
applicable to other tasks, such as protein fitness
and function prediction.

A comprehensive understanding of protein struc-
ture, function, and fitness is essential for ad-
vancing research in the life sciences (Subrama-
niam & Kleywegt, 2022; Tyers & Mann, 2003;
Papkou et al., 2023). While machine learning
models have demonstrated remarkable poten-
tial in protein research, they are typically op-
timized for achieving the best average perfor-
mance across large datasets (Jumper et al., 2021;
Watson et al., 2023; Yang et al., 2024; Kouba
et al., 2023). However, biologists often focus
their research on individual proteins or protein
complexes involved for example in metabolic
disorders (Ashcroft et al., 2023; Gunn & Neher,
2023), oncogenic signalling (Hoxhaj & Man-
ning, 2020; Keckesova et al., 2017), neurode-
generation (Gulen et al., 2023; oh Seo et al.,
2023), and other biological phenomena (Gu
et al., 2022). In these scenarios, detailed insights
into a single protein can lead to significant sci-
entific advances.

Nonetheless, general machine learning mod-
els for proteins often struggle to general-
ize to individual case studies due to data
scarcity (Bushuiev et al., 2023; Chen & Gong,
2022) and distribution shifts (Tagasovska et al., 2024; Feng et al., 2024). Bridging the gap be-
tween broad, dataset-wide optimizations and the precision required for studying single proteins in
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practical applications remains a critical challenge in integrating machine learning into biological
research (Sapoval et al., 2022).

By contrast, in other application domains of machine learning, such as computer vision and natural
language processing, customization and adaptation approaches have emerged as powerful tools to
improve model performance in specific contexts (Ruiz et al., 2023; Hardt & Sun, 2023). Drawing
inspiration from the test-time training (TTT) approach developed in computer vision to mitigate
distribution shifts (Sun et al., 2020; Gandelsman et al., 2022), in this work we propose the TTT
approach for proteins. Our method enables adapting protein models to one protein at a time, on the
fly, and without the need for additional data. Given a model that has been pre-trained using masked
language modeling, our method minimizes the perplexity of the model on a given test protein through
self-supervised fine-tuning, which, in turn, results in improved downstream performance without
updating the downstream task head.

The prevalence of masked modeling in protein machine learning makes our method broadly applicable
to various downstream tasks. Empirically, we demonstrate its effectiveness across three key challenges
in protein machine learning. First, TTT achieves state-of-the-art results on the ProteinGym dataset
(Notin et al., 2024), a well-established benchmark for protein fitness prediction. Second, TTT
enhances protein structure predictions with ESMFold (Lin et al., 2023) and ESM3 (Hayes et al.,
2024) on challenging targets. Third, the application of TTT to protein function predictors results in
improved classification of terpene synthase (TPS) substrates and protein subcellular localization.

In summary, the key contributions of this work are three-fold:

1. Motivated by the generalization challenges and distribution shifts prevalent in protein
machine learning, we introduce a new test-time training (TTT) method1 that enables models
to adapt to individual proteins on the fly and without requiring additional data.

2. We establish a link between our TTT approach and perplexity minimization, providing an
insight into why this approach enhances model effectiveness.

3. We empirically validate TTT, achieving state-of-the-art results in protein fitness prediction,
improving the protein structure prediction capabilities of well-established folding mod-
els, and enhancing protein function predictions in the tasks of terpene synthase substrate
classification and protein localization prediction.

2 BACKGROUND AND RELATED WORK

In this section, we present the context and related work that highlight the rationale, feasibility, and
broad applicability of test-time training (TTT) in the domain of machine learning on proteins. The
widespread adoption of Y-shaped architectures relying on masked modeling enables the development
of a general method for adapting protein models at test time via masking-based self-supervised
fine-tuning.

The Y-shaped paradigm of learning. In machine learning applied to biology, architectures often
follow a Y-shaped paradigm (Gandelsman et al., 2022), consisting of a backbone feature extractor f , a
self-supervised head g, and an alternative fine-tuning head h. During training, g ◦f is first pre-trained,
after which the pre-trained backbone f is reused to fine-tune h ◦ f toward a downstream task. Here,
◦ denotes a composition of two machine learning modules (e.g., g is applied on top of f in g ◦ f ). At
test time, the final model h ◦ f is fixed. Generalization is achieved by leveraging the rich knowledge
encoded in the backbone f and the task-specific priors acquired in the fine-tuning head h. This
paradigm enables overcoming data scarcity during fine-tuning and underlies breakthrough approaches
in protein structure prediction (Lin et al., 2023), protein design (Watson et al., 2023), protein function
prediction (Yu et al., 2023), and other protein-related tasks (Hayes et al., 2024).

The backbone f is typically a large neural network pre-trained in a self-supervised way on a large
dataset using a smaller pre-training projection head g (Hayes et al., 2024). The fine-tuning head h,
however, depends on the application. In some cases, h is a large neural network, repurposing the
pre-trained model entirely (Watson et al., 2023; Lin et al., 2023); in others, h is a minimal projection

1https://github.com/anton-bushuiev/ProteinTTT
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with few parameters (Cheng et al., 2023), or even without any parameters at all (i.e., a zero-shot
setup, (Meier et al., 2021; Dutton et al., 2024)). In some cases, the fine-tuning head h may also be a
machine learning algorithm other than a neural network (Samusevich et al., 2024).

Masked modeling. While the objective of fine-tuning h ◦ f is determined by the downstream
application, the choice of pre-training objective for g ◦ f is less straightforward. Nevertheless, most
methods employ various forms of masked modeling, i.e., optimizing the model weights to accurately
reconstruct missing parts of proteins, regardless of the downstream application. Masked modeling
pre-traning underpins models for protein structure (Lin et al., 2023) and function (Samusevich et al.,
2024) prediction, as well as for protein design (Hayes et al., 2024). For example, in AlphaFold2,
a significant part of the loss function weight is put onto masked modeling of multiple sequence
alignments (MSAs) (Jumper et al., 2021), and the model has been effectively fine-tuned for various
tasks beyond structure prediction (Jing et al., 2024; Cheng et al., 2023; Motmaen et al., 2023).

Masked modeling is a dominant pre-training objective not only across different tasks but also across
various protein representations. Sequence models applied to proteins are typically pre-trained to
predict randomly masked amino acids in a random or autoregressive manner (Lin et al., 2023; Rao
et al., 2021; Elnaggar et al., 2023; Madani et al., 2023; Ferruz et al., 2022; Rives et al., 2021; Rao
et al., 2020). Models utilizing graph neural networks or 3D convolutions on protein structures are also
commonly pre-trained to fill in missing structural fragments (Dieckhaus et al., 2024; Diaz et al., 2023;
Bushuiev et al., 2023; Hsu et al., 2022; Shroff et al., 2020). The most recent approaches combine
both sequential and structural information under masked modeling (Hayes et al., 2024; Su et al.,
2023; Heinzinger et al., 2023).

Model adaptation. In many scenarios, machine learning models for proteins benefit from being
adapted to a specific protein of interest. This adaptation is commonly achieved in two ways: either via
additional input features or via protein-specific fine-tuning. Multiple sequence alignments (MSAs)
containing sequences similar to the target protein provide a common way of supplying a model with
protein-specific features (Abramson et al., 2024; Jumper et al., 2021; Rao et al., 2021). Another
approach for injecting protein-specific knowledge into the model is standard supervised fine-tuning
(i.e., via the h ◦ f track) on protein-specific data (Notin et al., 2024; Kirjner et al., 2023; Rao et al.,
2019). An alternative is self-supervised fine-tuning (i.e., via the g ◦ f track) on proteins from the
MSA (Notin et al., 2022b; Frazer et al., 2021; Alley et al., 2019) or on proteins sharing another
property with the target protein, such as common family (Sevgen et al., 2023) or class (Samusevich
et al., 2024). However, constructing MSAs is time-consuming (Fang et al., 2023), and similar proteins
may not be available for many targets (Durairaj et al., 2023; Lin et al., 2023).

Here, we propose an extreme case of self-supervised fine-tuning: learning from a single target protein,
without the need for any additional data. To the best of our knowledge, this approach has not been
employed in the field of machine learning applied to biology; however, similar methods have been
developed in computer vision (Chi et al., 2024; Wang et al., 2023; Xiao et al., 2022; Karani et al.,
2021) and natural language processing (Hardt & Sun, 2023; Ben-David et al., 2022; Banerjee et al.,
2021). The paradigm of test-time training (TTT), developed to mitigate distribution shifts in computer
vision applications (Gandelsman et al., 2022; Sun et al., 2020), is a main inspiration for our work.
Here, we demonstrate that TTT is highly relevant for machine learning on proteins even without the
presence of explicit distribution shift. We investigate the link of TTT to perplexity minimization and
show that TTT improves performance on several downstream tasks.

3 TEST-TIME TRAINING (TTT) ON PROTEINS

As discussed in the previous section, many machine learning models for proteins employ Y-shaped
architectures, consisting of a backbone f with a self-supervised head g and a supervised head h. This
design facilitates the use of self-supervised fine-tuning across various tasks and models. Notably,
most of these models leverage masked modeling as a pre-training objective, which enables the
introduction of a broadly applicable test-time training (TTT) method based on masking. Our method
adapts models to specific test proteins through masked modeling (Figure 2). In this section, we first
formally define the proposed TTT approach (Section 3.1), followed by its application to a range of
well-established models (Section 3.2). Finally, we provide an insight into the effectiveness of our
method by linking it to perplexity minimization (Section 3.3).
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Figure 2: Overview of our test-time training (TTT) for proteins. Test-time training for proteins
builds on the prevalence of Y-shaped architectures relying on masked modeling (i.e., self-supervised
masking-based pre-training of g ◦ f followed by supervised fine-tuning of h ◦ f , sharing the back-
bone f ). Given a single test protein x, TTT adapts the backbone f to the protein using self-supervised
fine-tuning. This adaptation leads to better generalization for the downstream task, such as protein
fitness, structure, or function prediction.

3.1 SELF-SUPERVISED FINE-TUNING ON TEST PROTEINS

At test time, we assume a Y-shaped model with a backbone f that has been pre-trained via the
self-supervised track g ◦ f , followed by task-specific fine-tuning through the supervised track h ◦ f .
The goal of test-time training (TTT) is to adapt the backbone f to a single test example x before
performing test-time inference on a downstream task via the supervised track.

To achieve this, we first fine-tune all layers of the backbone f using the self-supervised track g ◦ f on
the single example x. This step customizes the backbone f to the test sample x, and, as demonstrated
in Section 4, enhances the generalization of h ◦ f without modifying the weights of the task-specific
head h. Figure 2 illustrates our method. Although the concept of TTT is relatively simple, it involves
several important design choices, such as selecting the optimizer and efficiently fine-tuning large
backbones, which we describe in the following paragraphs.

Training objective. We fine-tune g ◦ f on a test sample x via minimizing the masked language
modeling objective (Devlin, 2018; Rives et al., 2021):

L(x) = EM

[∑
i∈M

− log p(xi|x\M )

]
, (1)

where x denotes a sequence of protein tokens (typically amino acid types), and EM represents
the expectation over randomly sampled masking positions M . The loss function L(x) maximizes
the log-probabilities log p(xi|x\M ) of the true tokens xi at the masked positions i ∈ M in the
partially masked sequence x\M . Please note that here we focus on bi-directional masked modeling
models, which employ random masking, but the method can be straightforwardly extended to models
employing autoregressive masking.

In practice, EM can follow different distributions, such as sampling a fixed proportion (e.g., 15%) of
random amino acid tokens (Lin et al., 2023), or dynamically varying the number of sampled tokens
based on another distribution (e.g., a beta distribution) (Hayes et al., 2024). During test-time training,
we replicate the masking distribution used during the pre-training. If relevant, we also replicate other
pre-training tricks, such as replacing 10% of masked tokens with random tokens and another 10%
with the original tokens (Devlin, 2018; Lin et al., 2023; Su et al., 2023) or cropping sequences to
random 1024-token fragments (Lin et al., 2023; Su et al., 2023).

Optimization. We minimize the loss defined in Equation (1) using stochastic gradient descent
(SGD) with zero momentum and zero weight decay (Ruder, 2016). While a more straightforward
option might be to use the optimizer state from the final pre-training step, this approach is often
impractical because the optimizer parameters are usually not provided with the pre-trained model

4
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Figure 3: Test-time training (TTT) improves protein structure prediction by reducing protein
sequence perplexity. ESMFold fails to predict the structure of chain B from PDB entry 7EBL in the
CAMEO validation set, as shown at TTT step 0, where the perplexity is high and the TM-score is low.
By applying TTT on the single target sequence, the model iteratively improves the structure prediction
quality, as demonstrated by the increasing TM-score, associated with reduced perplexity. At step 7,
the predicted structure achieves the highest TM-score, as well as the highest predicted confidence
metric pLDDT, enabling the selection of this step as the final prediction by ESMFold + TTT.

weights (Hayes et al., 2024; Lin et al., 2023). Moreover, many models are pre-trained using the Adam
optimizer (Kingma & Ba, 2015) or its variants (Loshchilov & Hutter, 2019). However, it has been
shown that Adam results in less predictable behavior of test-time training (TTT) compared to the
SGD optimizer, possibly due to its more exploratory behavior (Gandelsman et al., 2022).

Because each TTT experiment assumes only one test example available, we are not able to halt the
training using early stopping on any validation sample. Therefore, for each choice of task-specific f
and h, we tune the optimal number of TTT steps using the entire validation set beforehand or rely on
available performance estimates (e.g., pLDDT in the case of protein structure prediction; Section 4.2)
to select the optimal number of optimization steps.

Fine-tuning large models. We aim for test-time training to be applicable on the fly, i.e., without
the need for any pre-computation and on a single GPU with a minimum computational overhead.
Since state-of-the-art models for many protein-oriented tasks are typically large, with up to billions
of parameters, our aim presents two key challenges. First, when using pre-trained transformers on a
single GPU, even for the forward pass, the batch size is typically limited to only several samples due
to the quadratic complexity of the inference (Vaswani, 2017). Second, for the backward pass, even a
batch size of one is not always feasible for large models. To address the first challenge, we perform
forward and backward passes through a small number of training examples and accumulate gradients
to simulate updates with any batch size. We address the second challenge by employing low-rank
adaptation (LoRA, Hu et al. (2021)), which in practice enables fine-tuning of any model for which a
forward pass on a single sample is feasible, due to a low number of trainable parameters.

3.2 INFERENCE ON DOWNSTREAM TASKS

Once the backbone f is adapted to a test protein via self-supervised fine-tuning, it can be used in
conjunction with a pre-trained downstream head h, as h ◦ f . The key idea of TTT is not to update the
head h during test time, but rather to leverage improved input representations from f .
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Since Y-shaped architectures are prevalent in protein machine learning, TTT can be straightforwardly
applied to numerous tasks in protein research. In this work, we address three primary challenges:
protein fitness, structure, and function prediction, applying TTT to corresponding well-established
models. For fitness prediction, we apply TTT to ESM2 (Lin et al., 2023) and SaProt (Su et al., 2023);
for folding, we apply it to ESMFold (Lin et al., 2023) and ESM3 (Hayes et al., 2024); and for function
prediction, we apply TTT to ESM-1v-based (Meier et al., 2021) TerpeneMiner (Samusevich et al.,
2024) and ESM-1b-based (Rives et al., 2021) Light attention (Stärk et al., 2021).

In all the models we consider, f is a transformer encoder that takes a protein sequence as input
(except for SaProt, which also uses structural tokens), while g is a masked language modeling head
(a layer mapping token embeddings to amino acid types). The downstream task heads h, however,
vary significantly across tasks. For fitness prediction, h outputs a single value for a mutated sequence,
measuring how well the protein supports an organism’s functioning. Both ESM2 and SaProt perform
zero-shot inference using h ◦ f via log odds from g, with h functioning as a simple adaptation of g
without introducing additional parameters. For structure prediction, h is a protein structure decoder:
in ESMFold, it is an AlphaFold2-like structure prediction module (Jumper et al., 2021), while in
ESM3, it is a VQ-VAE decoder (Razavi et al., 2019). The function predictors are classification
models: in TerpeneMiner (Samusevich et al., 2024), h is a random forest that outputs substrate
probabilities, and in Light attention (Stärk et al., 2021), h is a light attention module predicting
localization class probabilities. Detailed descriptions of the models and their TTT adaptation are
provided in Appendix A.

3.3 JUSTIFICATION FOR TEST-TIME TRAINING VIA PERPLEXITY MINIMIZATION

Figure 4: The quality of protein
structure prediction, as measured by
TM-score, correlates with perplexity
of the underlying language model
on the challenging targets from the
CAMEO validation set. Higher TM-
scores are associated with lower per-
plexity, indicating that better predic-
tions are linked to lower uncertainty
in the language model’s understand-
ing of the protein sequence.

While the approach of test-time training has been extensively
investigated in computer vision and other domains, the reasons
behind its effectiveness remain unclear (Liu et al., 2021; Zhao
et al., 2023). Here, we offer a potential justification for the
effectiveness of TTT by linking it to perplexity minimization
within the context of protein sequence modeling.

Perplexity has traditionally been used in natural language pro-
cessing to evaluate how well models comprehend test sen-
tences (Brown, 2020; Chelba et al., 2013). Protein language
modeling has adopted this metric to assess how effectively
models understand amino acid sequences (Hayes et al., 2024;
Lin et al., 2023). For bidirectional, random masking language
models, which are the focus of this study, we consider the
following definition of perplexity 2:

Perplexity(x) = exp

(
1

|x|

|x|∑
i=1

− log p(xi|x\i)

)
, (2)

where |x| is the length of the input protein sequence x and
p(xi|x\i) represents the probability that the model correctly
predicts the token xi at position i when it is masked on the
input x\i. Perplexity ranges from 1 to infinity (the lower the
better), providing an intuitive measure of how well a model
understands, on average, positions within a given sequence. A perplexity value of 1 indicates that the
model perfectly understands the sequence, accurately predicting all the true tokens.

Several studies have shown that lower perplexity on held-out protein sequences (calculated through
the self-supervised track g ◦ f ) correlates with better performance on downstream tasks (via the
supervised track h ◦ f ), such as predicting protein contacts (Rao et al., 2020), structure (Lin et al.,
2023), or fitness (Kantroo et al., 2024). To provide an example, we analyze the correlation between
perplexity and structure prediction performance (Figure 4). A strong correlation suggests that

2Please note that this is an approximation of perplexity, which is computationally intractable for bidirectional
models, and is often referred to as pseudo-perplexity (Lin et al., 2023; Salazar et al., 2019).
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reducing a model’s perplexity on a single test sample x can lead to improved performance on the
downstream task (Figure 3; Figure 12).

Since we consider only a single test example x, the minimization of the masked language mod-
eling loss L(x) (Equation (1)) on this example is directly linked to minimizing the perplexity
Perplexity(x) (Equation (2)). For instance, in the case of a single masked position (i.e., |M | = 1),
the loss is equal to the logarithm of perplexity. More generally, it can be shown formally that by
minimizing the masked language modeling objective, one learns to approximate the conditional
marginals of the language (of proteins), including the leave-one-out probabilities evaluated in perplex-
ity (Hennigen & Kim, 2023). As a result, applying test-time training (TTT) through g ◦ f enhances
the representation of the test protein in the backbone f , leading to improved downstream performance
via the fine-tuning track h ◦ f .

4 EXPERIMENTS

Building on the broad applicability of our test-time training (TTT) approach, we apply it to three
example downstream tasks in protein machine learning: fitness, structure, and function prediction.
The experimental setup and results for each task are presented in the following subsections.

4.1 PROTEIN FITNESS PREDICTION

Protein fitness refers to the ability of a protein to efficiently perform its biological function, which
is determined by its structure, stability, and interactions with other molecules. Predicting protein
fitness allows researchers to understand how mutations affect protein function, aiding in protein
engineering (Notin et al., 2024). In this paper, we demonstrate that applying test-time training (TTT)
to representative models, such as ESM2 (Lin et al., 2023) and SaProt (Su et al., 2023), enhances
their protein fitness prediction capabilities. ESM2 is a protein language model trained on protein
sequences, while SaProt is an extension of ESM2 that incorporates 3D information via additional
structural tokens encoding structures predicted by AlphaFold2 (Jumper et al., 2021).

Evaluation Setup. We evaluate the models using ProteinGym, state-of-the-art benchmark for
fitness prediction (Notin et al., 2024), focusing specifically on its well-established zero-shot variant.
The zero-shot nature of this benchmark enables us to validate TTT in a simplified setting with a
minimalist head h, which is complementary to the other tasks described below. Since the zero-shot
setup only provides a test set without any data split, we aim to validate TTT on independent data.
To achieve this, we create a new fitness prediction dataset mined from MaveDB, a public repository
containing datasets from Multiplexed Assays of Variant Effect (MAVEs) (Esposito et al., 2019). The
quality of the new dataset is validated by confirming that both ESM2 and SaProt generalize well to
the new data, achieving comparable performance (Appendix A).

Given a protein and its variants, fitness prediction models output one real value per variant to estimate
fitness. ProteinGym uses Spearman correlation between predicted and experimentally measured
fitness values as the main evaluation metric for assessing the capabilities of models to score mutations.
The correlation is first calculated for each protein and then aggregated per types of measured fitness:
activity, binding, expression, organismal fitness, and stability. The final Spearman correlation metric
is obtained by averaging across these five categories. We adopt this metric in our benchmarking.

In our evaluation, we also include other top-performing baselines on the ProteinGym benchmark:
TranceptEVE (Notin et al., 2022b) and GEMME (Laine et al., 2019). TranceptEVE combines
language model Tranception (Notin et al., 2022a) with the protein-specific variational autoencoder,
EVE, capturing the evolutionary information via MSAs (Frazer et al., 2021). GEMME is a statistical
method deriving fitness predictions from evolutionary trees.

Results. Test-time training (TTT) consistently enhances the protein fitness prediction performance
of both ESM2 and SaProt models across varying model scales (35M and 650M parameters) and
both datasets, test ProteinGym (Table 1 left) and validation MaveDB (Table 6 in Appendix B.2).
Notably, SaProt (650M) + TTT sets a new state-of-the-art on the ProteinGym benchmark, achieving
a 40% higher improvement compared to the previous leaderboard update (SaProt (650M) against
TranceptEVE L). When examining performance across different phenotype categories, TTT yields

7
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Table 1: Test-time training (TTT) improves protein fitness prediction. The right section of the
table presents performance averaged across individual proteins and then across different protein
phenotypes, as classified in the ProteinGym benchmark (Notin et al., 2024). The middle column
shows the final performance, averaged across all five phenotype classes. In total, ProteinGym contains
2.5 million mutations across 217 proteins and TTT is applied to each protein individually. Standard
deviations are calculated over 5 random seeds and, for brevity, omitted in the right panel, where
the maximum standard deviation does not exceed 0.0004. Methods marked with an asterisk (“*”)
are the other top-5 methods in ProteinGym, and the metrics are reproduced from the leaderboard
(https://proteingym.org/benchmarks).

Avg. Spearman ↑
Spearman by phenotype ↑

Activity Binding Expression Organismal
Fitness Stability

ESM2 (35M) (Lin et al., 2023) 0.3211 0.3137 0.2907 0.3435 0.2184 0.4392
ESM2 (35M) + TTT (Ours) 0.3407 ± 0.00014 0.3407 0.2942 0.3550 0.2403 0.4733
SaProt (35M) (Su et al., 2023) 0.4062 0.3721 0.3568 0.4390 0.2879 0.5749
SaProt (35M) + TTT (Ours) 0.4106 ± 0.00004 0.3783 0.3569 0.4430 0.2955 0.5795
ESM2 (650M) (Lin et al., 2023) 0.4139 0.4254 0.3366 0.4151 0.3691 0.5233
ESM2 (650M) + TTT (Ours) 0.4153 ± 0.00003 0.4323 0.3376 0.4168 0.3702 0.5195

TranceptEVE S* (Notin et al., 2022b) 0.4519 0.4750 0.3957 0.4426 0.4491 0.4973
GEMME* (Laine et al., 2019) 0.4547 0.4820 0.3827 0.4382 0.4517 0.5187
TranceptEVE M* (Notin et al., 2022b) 0.4548 0.4792 0.3858 0.4525 0.4538 0.5025
TranceptEVE L* (Notin et al., 2022b) 0.4559 0.4866 0.3758 0.4574 0.4597 0.5003
SaProt (650M) (Su et al., 2023) 0.4569 0.4584 0.3785 0.4884 0.3670 0.5919
SaProt (650M) + TTT (Ours) 0.4583 ± 0.00001 0.4593 0.3790 0.4883 0.3754 0.5896

improvements specifically in the categories where the baseline performance is weakest: “Organismal
Fitness”, “Binding”, and “Activity” (Table 1 right). This improvement indicates the ability of TTT to
enhance predictions on challenging targets. Additionally, we observe an inverse correlation between
the degree of TTT enhancement and the depth of the MSA (i.e., the number of available homologous
sequences) available for each test protein, suggesting that TTT primarily improves predictions for
proteins with fewer similar sequences available in the training data (Table 5 in Appendix B.1).
Interestingly, TTT more effectively enhances the performance of smaller ESM2 and SaProt models
compared to their larger variants (Table 1 and Table 6 in Appendix B) and does not require the
application of LoRA even for the larger models (Table 4).

4.2 PROTEIN STRUCTURE PREDICTION

Protein structure prediction, also known as protein folding, is the task of predicting 3D coordinates of
protein atoms given the amino acid sequence. Arguably, one of the most remarkable applications
of machine learning in the life sciences has been in protein folding (Jumper et al., 2021; Lin et al.,
2023; Abramson et al., 2024), paving the way for numerous advances in the understanding of biology
(Yang et al., 2023; Akdel et al., 2022; Barrio-Hernandez et al., 2023). However, even state-of-the-art
protein folding methods struggle to generalize to entirely novel proteins (Kryshtafovych et al., 2023).
In this work, we focus on the ESMFold (Lin et al., 2023) and ESM3 (Hayes et al., 2024) models,
demonstrating how their performance on challenging targets can be boosted by utilizing TTT.

Evaluation setup. To evaluate the performance of TTT, we use CAMEO, a standard benchmark
for protein folding. We use the validation and test folds from Lin et al. (2023), focusing only on
challenging targets by filtering them according to standard measures of prediction confidence based
on pLDDT and perplexity (Appendix A.2).

Given a protein sequence, the goal of protein folding is to predict 3D coordinates of the protein
atoms. To assess the quality of the predicted protein structures with respect to the ground truth
structures, we use two standard metrics: TM-score (Zhang & Skolnick, 2004) and LDDT (Mariani
et al., 2013). TM-score measures the quality of the global 3D alignment of the target and predicted
protein structures, while LDDT is an alignment-free method based on local distance difference tests.

As baseline methods, we use techniques alternative to TTT for improving the performance of the
pre-trained base models. In particular, the ESMFold paper proposes randomly masking 15% of
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Table 2: Test-time training (TTT) improves protein structure prediction. The metrics are averaged
across the 18 challenging targets (TTT is applied to each protein individually) in the CAMEO test set
and standard deviations correspond to 5 random seeds. CoT and MP stand for the chain of though
and masked prediction baselines.

TM-score ↑ LDDT ↑
ESM3 (Hayes et al., 2024) 0.3480 ± 0.0057 0.3723 ± 0.0055
ESM3 + CoT (Hayes et al., 2024) 0.3677 ± 0.0088 0.3835 ± 0.0024
ESM3 + TTT (Ours) 0.3954 ± 0.0067 0.4214 ± 0.0054

ESMFold (Lin et al., 2023) 0.4649 0.5194
ESMFold + MP (Lin et al., 2023) 0.4862 ± 0.0043 0.5375 ± 0.0070
ESMFold + TTT (Ours) 0.5047 ± 0.0132 0.5478 ± 0.0058

amino acids in a protein sequence, allowing for sampling multiple protein structure predictions
from the regression ESMFold model (Lin et al., 2023). For each sequence, we sample a number
of predictions equal to the total number of TTT steps and refer to this baseline as ESMFold + MP
(Masked Prediction). As a baseline for ESM3, we use chain-of-thought iterative decoding, referred to
as ESM3 + CoT, proposed in the ESM3 paper (Hayes et al., 2024).

Results. Test-time training (TTT) consistently improves the performance of both the ESMFold and
ESM3 models, outperforming the masked prediction (ESMFold + MP) and chain-of-thought (ESM3
+ CoT) baselines, as shown in Table 2. Of the 18 most challenging CAMEO test proteins, ESMFold
and ESM3 significantly improved the prediction of 7 and 6 structures, respectively, while only slightly
disrupting the prediction of 2 and 1 structures, respectively (Figure 9 in Appendix B.1). Most notably,
TTT enables accurate structure prediction for targets that are poorly predicted with original base
models. For instance, Figure 1 presents a strongly improved structure predicted using ESMFold +
TTT for the target that was part of the CASP14 competition and shown as an unsuccessful case in the
original ESMFold publication (Lin et al. (2023), Fig. 2E). Another example is shown in Figure 3,
where TTT refined the structure prediction from a low-quality prediction (TM-score = 0.29) to a
nearly perfectly folded protein (TM-score = 0.92). Figure 8 in Appendix B shows that ESMFold +
TTT maintains computational efficiency comparable to ESMFold while being orders of magnitude
faster than AlphaFold2. Figure 13 in Appendix B additionally demonstrates the robustness of ESM3
+ TTT to the choice of hyperparameters.

4.3 PROTEIN FUNCTION PREDICTION

Protein function prediction is essential for understanding biological processes and guiding bioengi-
neering but is challenging due to its vague definition and limited data (Yu et al., 2023; Radivojac
& et al., 2013; Stärk et al., 2021; Mikhael et al., 2024; Samusevich et al., 2024). While improved
structure prediction with TTT (Section 4.2) can already enhance function prediction (Song et al.,
2024), we also evaluate TTT directly on two function classification tasks: subcellular localization,
predicting protein location within a cell (Stärk et al., 2021), and substrate classification for terpene
synthases (TPS), enzymes producing terpenoids, the largest class of natural products (Christianson,
2017; Samusevich et al., 2024). Using TTT with TerpeneMiner (Samusevich et al., 2024) for TPS
detection and Light attention (Stärk et al., 2021) for subcellular localization, we achieve consistent
performance gains.

Evaluation setup. For the terpene substrate classification, we use the largest available dataset of
characterized TPS from Samusevich et al. (2024) and repurpose the original cross-validation schema.
In the case of protein localization prediction, we use a standard DeepLoc dataset (Almagro Armenteros
et al., 2017) as a validation set and setHard from (Stärk et al., 2021) as a test set.

Given a protein, the goal of function prediction is to correctly classify it into one of the predefined
functional annotations. We assess the quality of the TPS substrate prediction using standard multi-
label classification metrics used in the TerpeneMiner paper (Samusevich et al., 2024): mean average
precision (mAP) and area under the receiver operating characteristic curve (AUROC). In the case of
protein localization prediction, we similarly use the classification metrics from the original paper
(Stärk et al., 2021): accuracy, multi-class Matthews correlation coefficient (MCC), and F1-score.
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TTT steps

0 (no TTT) 5 15 29

Incorrect TPS substrate

Correct TPS substrates

TPS enzyme
(UniProt A0A075FBG7)

Figure 5: Test-time training (TTT) enables the correct substrate classification for a terpene
synthase (TPS) enzyme. With progressive test-time training steps of TerpeneMiner + TTT, the
probability of the initially misclassified substrate (red) decreases, while the probability of the true
substrates (green) increases. The bar plots also display the predicted probabilities for other substrates
with non-zero values (grey).

Table 3: Test-time training (TTT) improves protein function prediction. For the terpene syntase
(TPS) substrate classification task, the metrics are computed on the 512 TPS sequences (TTT
is applied to each protein individually) based on the cross-validation schema of the TPS dataset
(Samusevich et al., 2024). Subcellular localization prediction performance is reported for 432 protein
sequences from the setHard test set (Stärk et al., 2021). The error bars show standard deviations
across five random seeds.

TPS substrate classification
mAP ↑ AUROC ↑

TerpeneMiner (Samusevich et al., 2024) 0.805 0.948
TerpeneMiner + TTT (Ours) 0.811 ± 0.0011 0.950 ± 0.0002

Subcellular localization prediction

Accuracy ↑ MCC ↑ F1-score ↑

Light attention (Stärk et al., 2021) 0.627 0.549 0.618
Light attention + TTT (Ours) 0.634 ± 0.004 0.557 ± 0.005 0.627 ± 0.004

Results. TTT improves the performance of the base models on both protein function prediction
tasks and across all considered metrics (Table 3). Figure 5 provides a qualitative result, where TTT
fine-tuning iteratively refines the prediction of TerpeneMiner toward a correct TPS substrate class.

5 DISCUSSION

In this work, we have developed test-time training (TTT) for proteins, enabling per-protein adaptation
of machine learning models for enhanced generalization. TTT improves performance across models,
their scales, and benchmarks, while primarily enhancing performance on challenging targets. Our
results open up the field of self-supervised adaptation for proteins and provide a proof-of-concept for
other biology-related domains. While our method demonstrated strong potential, adressing several
limitations and researching underexplored directions remain important tasks for future research.
Specifically, the success and failure modes of TTT remain unclear, and applying TTT to new tasks
requires tuning task-specific hyperparameters. However, our results show that reliable confidence
estimates, such as pLDDT, make TTT relatively robust to hyperparameter choices (Figure 13 in
Appendix B). Therefore, our future work aims to develop task-agnostic confidence estimates based
on protein model representations (Zhang et al., 2024; Rives et al., 2021). Additionally, our findings
encourage exploring broader adaptation frameworks for proteins, such as domain adaptation, which
leverages both training and test data to address new domains (Ganin & Lempitsky, 2015), and adaptive
risk minimization, which employs meta-learning for domain shift adaptation (Zhang et al., 2021).
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REPRODUCIBILITY STATEMENT

Our efforts are focused on ensuring that this research is easily reproducible. The proposed test-time
training (TTT) method will be released as a Python package, providing easy-to-use wrappers for the
models adapted in this paper. Detailed explanations of the application of TTT to individual models
and the construction of datasets are included in the appendix. Where applicable, we will also release
the source code for dataset generation.
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APPENDIX

In Appendix A, we provide further details on the experimental setup, including comprehensive
descriptions of the models, datasets, and metrics used. Next, in Appendix B, we present additional
results and their analysis. We discuss the distribution of TTT effects and demonstrate that TTT pri-
marily improves performance on challenging targets. We also explore the impact of hyperparameters
by showing the performance on validation sets.

A EXPERIMENTAL DETAILS

In this section, we describe the experimental details for the three downstream tasks considered in this
work: protein fitness prediction (Appendix A.1), protein structure prediction (Appendix A.2), and
protein function prediction (Appendix A.3). Each subsection describes the application of test-time
training (TTT) to the respective models, along with details on the datasets, metrics, and models.
Table 4 additionally summarizes the hyperparameters used for the application of TTT to individual
models.

A.1 PROTEIN FITNESS PREDICTION

A.1.1 DATASETS

ProteinGym. ProteinGym3 is the standard benchmark for protein fitness prediction (Notin et al.,
2024). The latest, second version of the dataset includes 217 deep mutation scanning experiments
(DMSs) across different proteins. We focus on the well-established zero-shot variant of the benchmark
and do not experiment with the supervised variant, as it has not yet been fully incorporated into the
official codebase at the time of this study. In total, the dataset contains 2.5 mutants with annotated
ground-truth fitness. Since ProteinGym does not contain a data split for the zero-shot setup, employed
in this work, we use the whole dataset as the test set.

MaveDB dataset. To establish a validation set disjoint from ProteinGym (Notin et al., 2024),
we mined MaveDB4 (Esposito et al., 2019). As of August 1, 2024, the database contains 1178
Multiplexed Assays of Variant Effects (MAVEs), where each assay corresponds to a single protein,
measuring the experimental fitness of its variants. We applied quality control filters to remove
potentially noisy data. Specifically, we ensured that the UniProt identifier (Consortium, 2023) is
valid and has a predicted structure available in the AlphaFold DB (Varadi et al., 2022). We also
excluded assays with fewer than 100 variants, as well as those where at least one mutation had a
wrongly annotated wild type or where most mutations failed during parsing. Additionally, to ensure
no overlap between datasets, we removed any assays whose UniProt identifier matched with those in
ProteinGym, ensuring that the validation and test sets contain different proteins.

The described methodology resulted in the MaveDB dataset comprising 676 assays (out of 1178
in the entire MaveDB) with experimental fitness annotations. This corresponds to 483 unique
protein sequences and 867 thousand mutations in total. The large size of the dataset, despite the
comprehensiveness of ProteinGym containing 217 assays, can be attributed to the fact that many
assays in MaveDB were released after the ProteinGym construction (Figure 6A). To ensure the quality
of the constructed MaveDB dataset, we validated that representative baselines from ProteinGym
generalize to the new assays, following a similar distribution of predictions (Figure 6B,C). Finally,
for efficiently tuning hyper-parameters for fitness prediction models we sampled 50 random proteins
(Figure 6D), corresponding to 83 assays and collectively 134 thousand variants.

A.1.2 METRICS

Protein fitness labels are not standardized and can vary across different proteins. Nevertheless, the
ranking of mutations for a single protein, as defined by fitness labels, can be used to assess the
mutation scoring capabilities of machine learning models. As a result, Spearman correlation is a
standard metric for evaluation.

3https://github.com/OATML-Markslab/ProteinGym
4https://www.mavedb.org
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A B

C D

Figure 6: Comparison of the standard ProteinGym dataset with the MaveDB dataset constructed
in this work. A) MaveDB, mined from Esposito et al. (2019), includes novel assays even after
filtering to ensure distinct proteins from the comprehensive ProteinGym dataset. This is largely
because most MaveDB assays post-filtering date to 2024, whereas the latest assays in ProteinGym
date to 2023. B, C, D) MaveDB is of sufficient quality for model evaluation. Representative baselines,
ESM2 and SaProt with both 35 million and 650 million parameters, evaluated on ProteinGym
generalize effectively to MaveDB, following a similar distribution of predictions. Panel D illustrates
the random subset of 50 proteins used for hyperparameter tuning for fitness prediction. Each point
in the plots represents one protein and shows the Spearman correlation averaged across all assays
corresponding to the protein (typically one assay per protein). The box plots standardly depict
quartiles, medians, and outliers.

Spearman by phenotype. When computing Spearman correlations, we follow the evaluation
protocol proposed in ProteinGym (Notin et al., 2024). First, for each protein, we compute Spearman
correlation scores between the predicted ranks of mutations and their corresponding labels. Then, we
average the scores across five categories of assayed phenotypes, measuring the effects of introduced
mutations: protein catalytic activity (“Activity”), binding affinity to a target (“Binding”), protein
expression levels in a cell (“Expression”), organism growth rate (“Organismal Fitness”), and protein
thermostability (“Stability”).

Avg. Spearman. We refer to the mean score across the five phenotype categories as “Avg. Spear-
man”. We report the “Avg. Spearman” metric as the mean and standard deviation across five random
seeds (Table 1, Table 5).

Spearman by MSA Depth. Following (Notin et al., 2024), we split the performance by the depth
of available multiple sequence alignment (MSA), i.e., the number of homologous sequences available,
as provided in ProteinGym: “Low depth”, “Medium depth”, and “High depth”, and report the
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Spearman correlation for each subset individually (Table 6). Specifically, the MSA depth categories
in ProteinGym are determined using the following thresholds from Hopf et al. (2017): “Low” is
defined as Neff/L < 1, “Medium” as 1 < Neff/L < 100, and “High” as Neff/L > 100, where
Neff represents the normalized number of effective sequences in the MSA, and L is the sequence
length covered in the MSA.

A.1.3 MODELS

ESM2. The ESM2 model is a bidirectional, BERT-like (Devlin, 2018) transformer trained on
millions of protein sequences using masked modeling (Lin et al., 2023). The goal of protein fitness
prediction is to predict the effects of mutations, and protein language models are often adapted to this
task using zero-shot transfer via log odds ratio (Notin et al., 2024; Meier et al., 2021). Specifically,
for a given single- or multi-point mutation, where certain amino acids T are substituted from xi to
xm
i for each i ∈ T , the fitness prediction via the log odds ratio is defined as:∑

i∈T

log p(xm
i |x\i)− log p(xi|x\i), (3)

where the sum iterates over mutated positions i ∈ T with p(xm
i |x\i) and p(xi|x\i) denoting the

predicted probabilities of the mutated amino acid and the original one (i.e., wild type), respectively.
The conditionals x\i indicate that the input sequence to the model has the position i masked. In
this setup, the native (unmutated) sequence, where T = ∅, has a predicted fitness of 0. Mutations
with negative values represent favorable mutations, while positive values correspond to disruptive
mutations. We follow the ProteinGym benchmark and use this formula (Notin et al., 2024) to evaluate
the fitness prediction capabilities of ESM2. We use the implementation of ESM2 from ProteinGym.

ESM2 + TTT. ESM2 can be straightforwardly enhanced with test-time training. Specifically, we
treat the transformer encoder as the backbone f , and the language modeling head, which projects
token embeddings to amino acid probabilities, as the pre-training head g. The log odds ratio given by
Equation (3) serves as the task-specific head h, which in this case involves the pre-training head g
that predicts log probabilities. Overall, we apply TTT to the pre-trained ESM2 model and, after a
pre-defined number of self-supervised fine-tuning steps, score mutations using Equation (3). During
TTT we fine-tune all parameters in g ◦ f end-to-end except for token and position embeddings.

SaProt. We also experiment with the state-of-the-art fitness prediction model, SaProt (Su et al.,
2023). SaProt builds off the ESM2 model but incorporates structural information from predicted
protein structures. Specifically, SaProt uses the same transformer architecture but expands its
vocabulary by combining the 20 standard amino acid tokens with 20 structural tokens from the 3Di
vocabulary, increasing the total alphabet size to 400. The 3Di tokens capture the geometry of the
protein backbone and are generated using VQ-VAE (Razavi et al., 2019), which projects continuous
geometric information into discrete tokens and was trained as part of the Foldseek method (van
Kempen et al., 2022).

Since SaProt is also a protein language model, it also uses Equation (3) to score variants. However,
please note that SaProt, as implemented in ProteinGym (Notin et al., 2024), uses a slightly different
version of the log odds ratio. In SaProt, the conditions in the log probabilities in Equation (3) are
replaced with x\T instead of x\i, not assuming the independence of substitutions. During TTT, we
only mask sequential information and leave the structural part of the tokens unchanged, reflecting the
original pre-training setup. We use the implementation of SaProt from ProteinGym3.

SaProt + TTT. Since the architecture of SaProt is based on ESM2, the TTT components f , g, and
h remain the same. It means that test-time training can be applied to the model in the same way as in
the case of ESM2 + TTT discussed above.

A.2 PROTEIN STRUCTURE PREDICTION

A.2.1 DATASETS

CAMEO dataset. To evaluate the capabilities of TTT on protein folding, we employ the CAMEO
validation and test sets as described in Lin et al. (2023). Specifically, the validation set was obtained
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by querying the CAMEO (Continuous Automated Model Evaluation) web server5 (Robin et al., 2021)
for entries between August 2021 and January 2022, while the CAMEO test set consists of entries
from April 1, 2022, to June 25, 2022. Most of the entries in the CAMEO sets are predicted with high
accuracy and confidence (Lin et al., 2023). Therefore, we subselected the challenging validation and
test sets where TTT is relevant.

Specifically, we applied two criteria: (1) preserving entries with ESMFold pLDDT scores below 70
to filter out high-confidence predictions (Jumper et al., 2021), and (2) selecting entries with ESM2
perplexity scores greater than or equal to 6, ensuring that the predictions are challenging due to poor
sequence understanding rather than other factors. Additionally, most structures with perplexity scores
below 6 are already associated with high-confidence predictions (Figure S5 in Lin et al. (2023)).
After filtering, the resulting challenging validation and test sets consist of 27 (out of 378) and 18 (out
of 194) targets, respectively. The vast majority of the remaining structures have accurate ESMFold
structure predictions.

A.2.2 METRICS

To assess the quality of the predicted protein structures with respect to the ground truth structures, we
use two standard metrics averaged across the test dataset: TM-score (Zhang & Skolnick, 2004) and
LDDT (Mariani et al., 2013).

TM-score. The TM-score (Template Modeling score) is a metric used to assess the quality of the
global 3D alignment between the predicted and target protein structures. It evaluates the structural
similarity by comparing the distance between corresponding residues after superposition. The
TM-score ranges from 0 to 1, where higher values indicate better alignment.

LDDT. The Local Distance Difference Test (LDDT) is an alignment-free metric used to assess the
accuracy of predicted protein structures. Unlike global metrics, LDDT focuses on local structural
differences by measuring the deviation in distances between atom pairs in the predicted structure
compared to the target structure. It is particularly useful for evaluating the accuracy of local regions,
such as secondary structure elements. LDDT scores range from 0 to 100, with higher values indicating
better local structural agreement.

A.2.3 MODELS

ESMFold. The ESMFold architecture comprises two key components: a protein language model,
ESM2, which, given a protein sequence, generates embeddings for individual amino acids, and a
folding block that, using these embeddings and the sequence, predicts the protein 3D structure along
with per-amino-acid confidence scores, known as pLDDT scores. In our experiments, we use the
esmfold_v0 model from the publicly available ESMFold checkpoints6. Please note that we use
esmfold_v0 and not esmfold_v1 to avoid data leakage with respect to the CAMEO test set.

ESMFold + TTT. Since ESM2 backbone of ESMFold was pre-trained in a self-supervised masked
modeling regime, the application of TTT to ESMFold is straightforward. We treat ESM2 as the
backbone f , the language modeling head predicting amino acid classes from their embeddings as the
self-supervised head g, and the folding trunk along with the structure modules as the downstream
task head h. After each TTT step, we run h ◦ f to compute the pLDDT scores, which allows us to
estimate the optimal number of TTT steps for each protein based on the highest pLDDT score.

Since the backbone f is given by the ESM2 model containing 3 billion parameters, we apply LoRA
(Hu et al., 2021) to all matrices involved in self-attention. This enables fine-tuning ESMFold + TTT
on a single GPU.

ESMFold + ME. Since ESMFold is a regression model, it only predicts one solution and does
not have a straightforward mechanism of sampling multiple structure predictions. Nevertheless, the
authors of ESMFold propose a way to sample multiple candidates (Section A.3.2 in Lin et al. (2023)).

5https://www.cameo3d.org/modeling
6https://github.com/facebookresearch/esm/blob/main/esm/esmfold/v1/

pretrained.py
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To sample more solutions, the masking prediction (ME) method randomly masks 15% (same ratio
as during masked language modeling pre-training) of the amino acids embeddings before passing
them to the structure prediction block. Selecting the solution with the highest pLDDT may lead to
improved predicted structure. Since sampling multiple solutions with ESMFold + ME and selecting
the best one via pLDDT is analogous to ESMFold + TTT, we employ the former as a baseline,
running the method for the same number of step.

ESM3. Unlike ESMFold, ESM3 is a fully multiple-track, BERT-like model (Devlin, 2018), pre-
trained to unmask both protein sequence and structure tokens simultaneously (along with the function
tokens). The structure tokens in ESM3 are generated via a separately pre-trained VQ-VAE (Razavi
et al., 2019) operating on the protein geometry. In our experiments, we use the smallest, publicly
available version of the ESM3 model (ESM3_sm_open_v0)7.

ESM3 + TTT. We treat the transformer encoder of ESM3 as f , the language modeling head
decoding amino acid classes as g, and the VQ-VAE decoder, which maps structure tokens to the
3D protein structure, as h. During the TTT steps, we train the model to unmask a protein sequence
while keeping the structural track fully padded. During the inference, we provide the model with a
protein sequence and run it to unmask the structural tokens, which are subsequently decoded with the
VQ-VAE decoder. After each TTT step, we run h ◦ f to compute the pLDDT scores, which allows us
to estimate the optimal number of TTT steps for each protein based on the highest pLDDT score.
We choose the optimal hyperparameters by maximizing the difference in TM-score after and before
applying TTT across the validation dataset.

Despite the fact that the model contains 1.4 billion parameters, even without using LoRA, ESM3
+ TTT can be fine-tuned on a single NVIDIA A100 GPU. Therefore, we do not employ LoRA for
fine-tuning ESM3.

ESM3 + CoT. To improve the generalization and protein-specific performance of ESM3, the
original ESM3 paper employs a chain of thought (CoT) procedure. The procedure unfolds in n steps
as follows. At each step, 1/n of the masked tokens with the lowest entropy after softmax on logits
are unmasked. Then, the partially unmasked sequence is fed back into the model, and the process
repeats until the entire sequence is unmasked. In our experiments, we set n = 8, which is the default
value provided in the official GitHub repository.

A.3 PROTEIN FUNCTION PREDICTION

A.3.1 DATASETS

TPS dataset. For the evaluation of terpene substrate classification, we use the largest available
dataset of characterized TPS enzymes from Samusevich et al. (2024) and repurpose the original
5-fold cross-validation schema. We focus on the most challenging TPS sequences, defined as those
predicted by the TPS detector, proposed by the dataset authors, with confidence scores below 0.8.
This filtering results in 104, 98, 113, 100, 97 examples in the individual folds.

setHard. For the test evaluation of subcellular location prediction, we use the setHard dataset
constructed by Stärk et al. (2021). The dataset was redundancy-reduced, both within itself and
relative to all proteins in DeepLoc (Almagro Armenteros et al. (2017); next paragraph), a standard
dataset used for training and validating machine learning models. The setHard dataset contains 490
protein sequences, each annotated with one of ten subcellular location classes, such as “Cytoplasm”
or “Nucleus”. Since we use ESM-1b (Rives et al., 2021) in our experiments with the dataset, we
further filter the data to 432 sequences that do not exceed a length of 1022 amino acids. This step,
consistent with Stärk et al. (2021), ensures that ESM-1b can generate embeddings for all proteins.

DeepLoc. For hyperparameter tuning in the subcellular location prediction task, we use the test
set from the DeepLoc dataset (Almagro Armenteros et al., 2017). Similar to setHard, DeepLoc
assigns labels from one of ten subcellular location classes. The dataset contains 2768 proteins,
which we further filter to 2457 sequences that do not exceed a length of 1022 amino acids, ensuring

7https://github.com/evolutionaryscale/esm
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compatibility with the embedding capabilities of ESM-1b. Since setHard was constructed to be
independent of DeepLoc, setHard provides a leakage-free source of data for validation.

A.3.2 METRICS

mAP, AUROC. The TPS substrate prediction problem is a 12-class multi-label classification task
over possible TPS substrates. Therefore, we assess the quality of the predictions using standard
multi-label classification metrics such as mean average precision (mAP) and area under the receiver
operating characteristic curve (AUROC) averaged across individual classes. These metrics were
used in the original TerpeneMiner paper (Samusevich et al., 2024). We report the performance by
averaging the metric values concatenated across all validation folds from the 5-fold cross-validation
schema.

Accuracy, MCC, F1-score. To evaluate the performance of subcellular location prediction methods,
we use standard classification metrics as employed in Stärk et al. (2021). Accuracy standardly
measures the ratio of correctly classified proteins, while Matthew’s correlation coefficient for multiple
classes (MCC) serves as an alternative to the Pearson correlation coefficient for classification tasks
(Gorodkin, 2004). The F1-score, the harmonic mean of precision and recall, evaluates performance
from a retrieval perspective, balancing the trade-off between false positives and false negatives.

A.3.3 MODELS

TerpeneMiner. TerpeneMiner is a state-of-the-art method for the classification of terpene synthase
(TPS) substrates (Samusevich et al., 2024). The model consists of two parallel tracks. Given a
protein sequence, TerpeneMiner first computes its ESM-1v embedding (Meier et al., 2021) and
a vector of similarities to the functional domains of proteins from the training dataset, based on
unsupervised domain segmentation of AlphaFold2-predicted structures (Jumper et al., 2021). The
ESM-1v embedding and the similarity vector are then concatenated and processed by a separately
trained random forest, which predicts TPS substrate class probabilities.

In our experiments, we use the “PLM only” version of the model, which leverages only ESM-1v
embeddings (PLM stands for protein language model). This version exhibits a minor performance de-
crease compared to the full model but exactly follows a Y-shaped architecture, allowing us to validate
the effectiveness of test-time training for predicting TPS substrates. We use the implementation of
TerpeneMiner available at the official GitHub page 8.

TerpeneMiner + TTT. When applying TTT to TerpeneMiner, we treat the frozen ESM-1v model
as a backbone f , its language modeling head as a self-supervised head g, and the random forest
classifying TPS substrates as a downstream supervised head h.

Light Attention. We use Light attention (Stärk et al., 2021) as a representative baseline for
subcellular location prediction. Light attention leverages protein embeddings from a language model,
which in our case is ESM-1b (Rives et al., 2021). The model processes per-residue embeddings via a
softmax-weighted aggregation mechanism, referred to as light attention, which operates with linear
complexity relative to sequence length and enables richer aggregation of per-residue information, as
opposed to standard mean pooling. We re-train the model using ESM-1b embeddings on the DeepLoc
dataset (Almagro Armenteros et al., 2017) using the code from the official GitHub page9.

Light attention + TTT. When applying TTT to Light attention, we treat the frozen ESM-1b as the
backbone f , the language modeling head of ESM-1b as the self-supervised head g, and the Light
attention block as the fine-tuning head h.

B EXTENDED RESULTS

In this section, we provide additional results on test sets (Appendix B.1) and discuss validation
performance (Appendix B.2).

8https://github.com/pluskal-lab/TerpeneMiner
9https://github.com/HannesStark/protein-localization
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Table 4: Hyperparameters used for adapting TTT to individual models. The optimal hyperparam-
eters were estimated using validation datasets corresponding to each of the considered tasks: Fitness
prediction, Structure prediction, and Function prediction. Comma-separated lists show the values
used for hyperparameter grid search, while the final values selected for computing the test results are
highlighted in bold. Low-rank adaptation (LoRA) was only used with ESMFold, containing 3 billion
parameters in the ESM2 backbone. Please note that we did not tune the number of TTT steps, as
adjusting the learning rate and batch size effectively controls the expected performance under the
fixed number of steps, as shown in Figure 12. Therefore, we used 30 steps in all our experiments. The
only exception was ESM3 + TTT, where the number of steps was set to 50 during initial experiments
with different models/tasks conducted in parallel before standardizing the number of steps to 30.

Learning rate Batch size Grad. acc. steps TTT steps LoRA rank r LoRa α

Fitness prediction

ESM2 (35M) + TTT 4e-5, 4e-4, 4e-3 4 4, 8, 16, 32, 64 30 -, 4, 8, 32 -, 8, 16, 32
ESM2 (650M) + TTT 4e-5, 4e-4, 4e-3 4 4, 8, 16, 32 30 -, 4, 8, 32 -, 8, 16, 32
SaProt (35M) + TTT 4e-5, 4e-4, 4e-3 4 4, 8, 16, 32 30 - -
SaProt (650M) + TTT 4e-5, 4e-4, 4e-3 2, 4 4, 8, 16, 32 30 - -

Structure prediction

ESMFold + TTT 4e-4 4 4, 8, 32, 64 30 (max pLDDT) 4, 8, 32 8, 16, 32
ESM3 + TTT 1e-4, 4e-4, 1e-3 2 1, 4, 16 50 (max pLDDT) - -

Function prediction

TerpeneMiner + TTT 4e-4, 1e-3 2 2, 4, 8 30 - -
Light attention + TTT 4e-4, 1e-3, 3e-3 2 2, 4 30 - -

B.1 DETAILED TEST PERFORMANCE

In this section, we provide details on the test performance. Specifically, Table 5 shows that test-time
training (TTT) primarily enhances performance on challenging targets, characterized by a low number
of similar proteins in sequence databases, as measured by MSA depth. Additionally, we provide an
example illustrating how TTT substantially improves the correlation between ESM2-predicted fitness
and ground-truth stability by better identifying disruptive mutations in the protein core (Figure 7).

Next, Figure 9 shows the distribution of TTT effects: in many cases, TTT has minimal impact
on performance; often, it leads to substantial improvements; and in rare cases TTT results in a
decrease in performance. This positions TTT as a method for enhancing prediction accuracy, while a
comprehensive analysis of its failure modes remains an important direction for future research. While
we demonstrate these effects using a protein folding example, we observe a similar distribution of
TTT impact across the tasks.

We also observe that the overall trend of TTT generally leads to improved performance, with robust
consistency across random seeds. However, the progression of the performance curve can be rugged,
particularly in classification tasks, where substantial changes in the underlying representations are
required to shift the top-predicted class in the discrete probability distribution (Figure 11).

B.2 VALIDATION PERFORMANCE

This section discusses the performance of test-time training (TTT) on validation data. Table 6
illustrates the validation performance of all tested methods for fitness prediction on our newly
constructed MaveDB dataset. TTT enhances the performance of all the methods.

The primary focus of the section is hyperparameter tuning. Table 4 provides the grid of hyperpa-
rameters explored for each model and its size. Figure 12 demonstrates the trend of hyperparameter
tuning with optimal hyperparameter combination balancing underfitting and overfitting to a single test
protein. While most hyperparameter configurations lead to overall improvements when using TTT,
poorly chosen hyperparameters can have detrimental effects due to rapid overfitting. However, with
a reliable predicted confidence measure, such as pLDDT, the appropriate TTT step can be selected
to mitigate overfitting. Figure 13 demonstrates that when using ESM3 + TTT with pLDDT-based
step selection for protein folding, all hyperparameter configurations result in improved performance
compared to the base ESM3 model.
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Figure 7: Example of test-time training (TTT) applied to fitness prediction. Fitness predictions
from ESM2 (650M) show poor correlation with experimental fitness values in the ProteinGym test set
measured by the stability assay “UBR5_HUMAN_Tsuboyama_2023_1I2T” (Tsuboyama et al., 2023)
(left). ESM2 + TTT achieves significantly higher correlation, likely due to improved detection of
disruptive mutations in the protein core that impact protein stability (middle). The ground-truth fitness
data aligns with the TTT-enhanced model, showing that residues crucial for stability (i.e., having
negative mean fitness) are concentrated in the protein core (right). Residue colors represent the mean
fitness upon all single-point substitutions (with the exception of several missing mutations in the
ground-truth data), with red indicating residues where mutations have detrimental effects on average.
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Table 5: Test-time training (TTT) performance on ProteinGym depending on MSA depth. MSA
depth reflects the number of available proteins similar to the target protein and, when using large
protein language models, can be interpreted as a measure of the representation of similar proteins in
the training data (Appendix A.1.2). TTT primarily improves performance on difficult targets, with
low MSA depth. Standard deviations are calculated over 5 random seeds but are omitted in the right
panel for brevity, where the maximum standard deviation does not exceed 0.0004.

Avg. Spearman ↑ Spearman by MSA depth ↑
Low depth Medium depth High depth

ESM2 (35M) (Lin et al., 2023) 0.3211 0.2394 0.2707 0.451
ESM2 (35M) + TTT (Ours) 0.3407 ± 0.00014 0.2445 0.3144 0.4598
SaProt (35M) (Su et al., 2023) 0.4062 0.3234 0.3921 0.5057
SaProt (35M) + TTT (Ours) 0.4106 ± 0.00004 0.3253 0.3972 0.5091
ESM2 (650M) (Lin et al., 2023) 0.4139 0.3346 0.4063 0.5153
ESM2 (650M) + TTT (Ours) 0.4153 ± 0.00003 0.3363 0.4126 0.5075

SaProt (650M) (Su et al., 2023) 0.4569 0.3947 0.4502 0.5448
SaProt (650M) + TTT (Ours) 0.4583 ± 0.00001 0.3954 0.4501 0.5439

Table 6: Performance of test-time training (TTT) on the MaveDB dataset. In this work, we
use our newly constructed MaveDB benchmark as a validation fold for tuning the hyper-parameters
of TTT for fitness prediction. For computational efficiency, we only select a subset of 50 proteins
(Appendix A.1.1) and do not run TTT across multiple random seeds to estimate standard deviations.
The performance shown was calculated by first aggregating correlations per assay, and then per
protein (some assays correspond to the same protein).

Avg. Spearman ↑
ESM2 (35M) (Lin et al., 2023) 0.4458
ESM2 (35M) + TTT (Ours) 0.4593
ESM2 (650M) (Lin et al., 2023) 0.4568
ESM2 (650M) + TTT (Ours) 0.4604
SaProt (650M) (Su et al., 2023) 0.4926
SaProt (650M) + TTT (Ours) 0.4926
SaProt (35M) (Su et al., 2023) 0.5251
SaProt (35M) + TTT (Ours) 0.5271
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Figure 8: Running time of ESMFold + TTT. For ESMFold and its variants, the median and
interquartile ranges of running times on the CAMEO test set are shown using a single NVIDIA
A100 GPU. For AlphaFold2, we use estimates from Lin et al. (2023). Specifically, a forward pass
through AlphaFold2 is approximately 60 times more computationally expensive than ESMFold
(e.g., AlphaFold2, no MSA: 2× 60 = 120 seconds), with additional MSA construction taking
at least 10 minutes using standard pipelines (AlphaFold2: 2 × 60 + 10 × 60 = 720 seconds).
ESMFold + TTT (30 steps) involves test-time training parameter updates with LoRA, along with
forward passes at each TTT step to estimate pLDDT and select the structure with the highest
predicted confidence. Disabling pLDDT significantly reduces computational overhead (ESMFold
+ TTT, no pLDDT compared to ESMFold + TTT), but may require careful parameter tuning
(Appendix B.2). Overall, ESMFold + TTT maintains the speed advantage of ESMFold, and is
significantly faster than AlphaFold2.

ESMFold + TTT ESM3 + TTT

Figure 9: Per-protein performance of ESMFold + TTT and ESM3 + TTT on the CAMEO test
set. The y-axis shows the change in TM-score after applying test-time training (TTT), with higher
values indicating improvement. The x-axis represents performance across five random seeds. The red
dashed line marks no change in TM-score (TM-score difference = 0), and the pink band represents
minor changes in TM-score (−0.05 < TM-score difference < 0.05), which we do not consider
significant. Each point in the swarm plot corresponds to a single protein from the CAMEO test set.
On average, applying TTT to ESMFold improves the structure predictions for 7 out of 18 proteins,
with 2 showing degradation. The rest of the proteins are not significantly affected. Similarly, applying
TTT to ESM3 results in 6 improvements out of 18 proteins, with 1 case of degradation.
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Figure 10: Test performance of ESMFold + TTT and ESM3 + TTT on the CAMEO test set
depending on the total number of TTT steps. The x-axis shows the averaged performance across
all test proteins, with error bars representing the standard deviation across five random seeds. The
y-axis metrics correspond to the structure with the highest pLDDT score up to the given step. While
an increased number of TTT steps generally enhances performance, only a few TTT steps (e.g., five)
may suffice to achieve significant performance improvement.

Figure 11: Test performance of TerpeneMiner + TTT across fine-tuning steps. The performance
is averaged across all 512 proteins in the dataset, with error bars representing the standard deviation
across 5 random seeds.
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Figure 12: Dependence on hyperparameters in test-time training for fitness prediction. Each
plot shows the progression of Spearman correlation (green) increasing alongside a decrease in
perplexity (pink) for each TTT step, averaged across all assays in the MaveDB validation dataset.
The model used is ESM2 (35M) + TTT, and the grid displays the combinations of different numbers
of gradient accumulation steps (i.e., effective batch sizes; shown in rows, increasing from top to
bottom) and learning rates (columns, increasing from left to right). As the learning rate increases and
the number of gradient accumulation steps grows, the model reaches peak performance more quickly
but begins to overfit to a test protein. The optimal hyperparameter combination (learning rate = 4e-4,
gradient accumulation steps = 16) lies near the center of the grid, balancing between underfitting
and overfitting to a test protein. Notably, the figure demonstrates that, although TTT involves three
main hyperparameters (batch size, learning rate, and the number of TTT steps), there are effectively
only two degrees of freedom controlling the performance of the model. In other words, by keeping
the number of steps constant (e.g., 30), the expected performance can be controlled by adjusting the
learning rate and the batch size.
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Figure 13: Hyperparameter search for protein structure prediction with ESM3 + TTT. We
conducted a comprehensive grid search based on three key hyperparameters: learning rate (denoted as
“lr”), number of gradient accumulation steps (denoted as “grad_steps”; with the batch size of two), and
masking strategy (denoted as “mask”). We explored two learning rates, 4e-4 and 1e-3, three gradient
accumulation step values of 1, 4, and 16, and five different masking strategies: uniform sampling
of 0.05, 0.5, and 1.0 fractions of amino acids, as well as the beta30 and betalinear30 distributions
proposed in the ESM3 paper (Hayes et al., 2024). Each row in the table presents the mean TM-score
and LDDT metrics with standard deviations across five random seeds on the CAMEO validation
fold. The last row, denoted as “No TTT”, shows the performance of ESM3 without TTT. The results
indicate that ESM3 + TTT is robust to the choice of hyperparameters and consistently outperforms
the base model across all configurations. We selected the configuration from the last row (excluding
“No TTT”) to compute the results on the test fold. For the hyperparameter search, we used 30 TTT
steps instead of 50 to reduce computation time.
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