
Under review as a conference paper at ICLR 2024

THE SNOWFLAKE HYPOTHESIS: TRAINING DEEP
GNN WITH ONE NODE ONE RECEPTIVE FIELD

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite Graph Neural Networks (GNNs) demonstrating considerable promise in
graph representation learning tasks, GNNs predominantly face significant issues
with overfitting and over-smoothing as they go deeper as models of computer vi-
sion (CV) realm. Given that the potency of numerous CV and language models is
attributable to that support reliably training very deep architectures, we conduct a
systematic study of deeper GNN research trajectories. Our findings indicate that
the current success of deep GNNs primarily stems from (I) the adoption of in-
novations from CNNs, such as residual/skip connections, or (II) the tailor-made
aggregation algorithms like DropEdge. However, these algorithms often lack in-
trinsic interpretability and indiscriminately treat all nodes within a given layer in a
similar manner, thereby failing to capture the nuanced differences among various
nodes. In this paper, we introduce the Snowflake Hypothesis – a novel paradigm
underpinning the concept of “one node, one receptive field”. The hypothesis draws
inspiration from the unique and individualistic patterns of each snowflake, propos-
ing a corresponding uniqueness in the receptive fields of nodes in the GNNs.
We employ the simplest gradient and node-level cosine distance as guiding prin-
ciples to regulate the aggregation depth for each node, and conduct comprehen-
sive experiments including: (1) different training scheme; (2) various shallow and
deep GNN backbones, especially on deep frameworks such as JKNet, ResGCN,
PairNorm etc. (3) various numbers of layers (8, 16, 32, 64) on multiple bench-
marks (six graphs including dense graphs with millions of nodes); (4) compare
with different aggregation strategies. The observational results demonstrate that
our framework can serve as a universal operator for a range of tasks, and it dis-
plays tremendous potential on deep GNNs. It can be applied to various GNN
frameworks, enhancing its effectiveness when operating in-depth, and guiding the
selection of the optimal network depth in an explainable and generalizable way.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2017; Hamilton et al., 2017) have emerged as
the leading models for various graph representation learning tasks, including node classification
(Velickovic et al., 2017; Abu-El-Haija et al., 2020), link prediction (Zhang & Chen, 2018; 2019),
and graph classification (Ying et al., 2018; Gao & Ji, 2019). The prominent performance of GNNs
GNNs primarily derives from their message passing mechanism (Wu et al., 2020). This mechanism,
operating iteratively, adeptly garners informative representations by aggregating knowledge from
neighboring nodes within the graph topology (Wu et al., 2020).

Though promising, overfitting (Rong et al., 2019), over-smoothing (Li et al., 2018; Chen et al.,
2020a) and vanishing gradients (Li et al., 2019; Zhao & Akoglu, 2019) are three long-standing
problems in the GNN area, especially when GNNs go deeper as Convolutional Neural Networks
(CNNs) (He et al., 2016). Consequently, when training an over-parameterized GNN on a small
graph or utilizing a deep GNN for graph modeling, we often end up with collapsed weights or
indistinguishable node representations (Chen et al., 2020a). Therefore, training 2-to-4-layer GNNs
is not a foreign phenomenon in the graph realm and most state-of-the-art GNNs are no deeper than
4 layers (Sun et al., 2019). In contast, the brilliant achievements on many computer vision tasks
can be primarily attributed to the consistent and effective training of deep networks (He et al., 2016;
Huang et al., 2017). Graph representation learning eagerly calls for the utilization of deeper GNNs,
particularly when dealing with large-scale graphs characterized by dense connections.

1

Under review as a conference paper at ICLR 2024

Remarkably, a number of recent endeavors have demonstrated the feasibility of training GNNs with
progressively increasing depth. We can summarize the existing approaches into two categories: The
first category involves prudently inheriting innovations from CNNs, such as residual/dense connec-
tions (Li et al., 2019; Sun et al., 2019; Xu et al., 2018; Li et al., 2021; Xu et al., 2018; Chen et al.,
2020b; Xu et al., 2021), which have proven to be universally applicable and practical. For instance,
JKNet (Xu et al., 2018) adopts skip connections to fuse the output of each layer to maintain the dis-
crepancies among different nodes. GCNII (Chen et al., 2020b) and ResGCN (Li et al., 2019) employ
residual connections to carry the information from the previous layer to avoid the aforementioned
issues. Another category is to combine various deep aggregation strategies with shallow neural net-
works (Wu et al., 2019; Chien et al., 2020; Liu et al., 2020; Zou et al., 2019; Rong et al., 2019;
Gasteiger et al., 2019). For example, GDC (Gasteiger et al., 2019) generalizes Personalized PageR-
ank into a graph diffusion process. DropEdge (Rong et al., 2019) resorts to a random edge-dropping
strategy to implicitly increase graph diversity and reduce message passing.

While CNN inheritances such as residual/skip connections can partially alleviate the over-smoothing
problem, these modifications fail to effectively explore the relationship between aggregation strate-
gies and network depth. Incorporating residuals into layers with suboptimal outputs may inadver-
tently propagate detrimental information to subsequent aggregation layers. Within the second cate-
gory, the majority of existing deep aggregation strategies attempt to sample a subset of neighboring
nodes around the central node to implicitly enhance data diversity and prevent over-smoothing. Un-
fortunately, the cumbersome and particular designs make GNN models neither simple nor practical,
lacking the ability to scale on other training strategies and specific datasets.

In this paper, we hypothesize that each node within a graph should possess its unique receptive
field. This can be actualized through the process of element-level adjacency matrix pruning. Such
a procedure enables an “early stopping” feature in node aggregation in terms of depth, which not
only amplifies interpretability but also aids in mitigating the over-smoothing issue. Drawing from
the extensive experimental observations, we first introduce the Snowflake Hypothesis (SnoH).

Layer 1

Early
Stopping

…

Layer 2

Layer N

GNN

MLP

 �� �� ��

Figure 1: The philosophy of SnoH.

The Snowflake Hypothesis (SnoH). When learning
on an abstracted graph G = (V, E) with a vertice set
V and an edge set E from the natural world using
GNN models1, by utilizing a masked adjacency ma-
trix to prune the graph structure, we can uncover the
distinctive receptive fields that each node ought to ag-
gregate, which is akin to the uniqueness observed in
each snowflake. This enables us to overcome the over-
smoothing problem when training deeper GNNs. We
summarize the philosophy of SnoH in Fig 1 for ease of
understanding.

We utilize the simplest gradient (denoted as Version 1) and node-level cosine distance (denoted as
Version 2) as the guiding principles to control the aggregation depth for each node, and we adopt
extensive experiments on node classification with various settings, including 1) Different training
algorithms such as a pre-training scheme (Liu et al., 2023), iterative pruning (Frankle & Carbin,
2018; Chen et al., 2021), and re-initialization. We found that compared to popular pruning algo-
rithms, our approach not only allowed us to leverage the benefits of pruning but also facilitated
better network convergence. 2) Integration with various deep GNN models, such as ResGCN (Li
et al., 2021), JKNet (Xu et al., 2018), and GCNII (Chen et al., 2020b). This integration empowers
us to more effectively aid the model in enhancing its performance and facilitating deeper architec-
tures. 3) In comparison with DropEdge or graph lottery ticket methods (Chen et al., 2020c), we
observe that our algorithm possesses better interpretability and generalizability. Our algorithm can
also be conceptualized as a data augmentation approach and a message passing reducer (Rong et al.,
2019), providing a new paradigm to benefit many graph pruning applications.

Identifying unique snowflake. We identify a unique snowflake by employing layer-wise adjacency
matrix pruning and node-level cosine distance discrimination. Taking a 2-layer vanilla GCN (Velick-
ovic et al., 2017) as example, we assume that the trainable parameters Θ = {Θ(0),Θ(1)} for node

1GNNs aim to learn a representation vector of a node or an entire graph based on the adjacency matrix
A ∈ R|V|×|V| and node features X ∈ R|V|×F

2

Under review as a conference paper at ICLR 2024

classification as:

Z = Softmax
(
Âσ

(
ÂXΘ(0)

)
Θ(1)

)
, loss function: L (G,Θ) = −

∑
vi∈Vl

yilog (zi)

where Z is the model predictions, σ (·) denotes an activation function, Â = S̃− 1
2 (A+ I) S̃− 1

2 is
the normalized adjacency matrix with self-loops and S̃ is the degree matrix of A+ I . We minimize
the cross-entropy loss L (G,Θ) over all labelled nodes Vl ⊂ V , where yi and zi represents the label
and prediction of node vi, respectively. We present the first versions (v1) of SnoH as follows:

1 Randomly initialize a GNN denoted as f (G,Θ0) for learning on the graph G.
2 Train the GNN (with totally D layer) for k iterations; compute the absolute gradient of each

element in the outermost adjacency matrix (denote as A(D)); remove the elements with the top-
p% smallest gradients in the adjacency matrix.

3 Repeat Step 2 by computing A(D−1) and assigning the index of zero elements in A(D−1) to A(D),
thereby setting corresponding positions of the next layer’s adjacency matrix to zero.

4 Repeat Step 2 & 3 iteratively; remove the corresponding elements from the adjacency matrix and
assign their zero-element positions to all deeper layers.

By utilizing the above gradient guidance which can indicate potentially promising elements (Le
et al., 2020; Blalock et al., 2020), we can realize the Snowflake Hypothesis, enabling each node to
have its unique aggregation depth and receptive field size. For ease of understanding, we showcase
a more comprehensive training implication in Appendix A. However, the task of calculating gra-
dients for the adjacency matrix presents a substantial challenge, especially for larger graphs with
millions of nodes such as Ogbn-product that possesses 61,859,140 edges (Hu et al., 2020). Blindly
calculating the gradient for each edge is both difficult and unwise. The sheer volume of parameters
involved poses a formidable obstacle when attempting to integrate this algorithm into deep GNNs.
To tackle this issue, we further present the second version, i.e., SnoHv2 in which we make a simple
modification to focus on node representations:

1 Randomly initialize a GNN denoted as f (G,Θ0) for learning on the graph G.

2 Train the D-layer GNN for k iterations; calculate the cosine distance D(Z(l), T (Z(l))) =

1 − Z(l)·T (Z(l))
||Z(l)||2·||T (Z(l))||2

between the representation of each node in the GNN and its aggregated

representation of the surrounding nodes at each layer; here Z(l) denotes the representation of the
i-th node at the l-th layer before aggregation by the adjacency matrix, while T symbolizes the rep-
resentation after aggregation. In the context of GCN, Z(l) is defined as H(l) ·W (l), and T (Z(l))
is represented as A(l)H(l)W (l), where H(l) is the feature embedding at the l-th layer.

3 Compute the nodes whose cosine distance (Le et al., 2020; Blalock et al., 2020) is below p% of
the distance at the initial layer, and remove the element for node aggregation corresponding to
these nodes. As an example, for the i-th node, this operation is equivalent to pruning all elements
in the i-th row of the adjacency matrix (excluding self-loops that are not pruned).

4 Once the cosine distance of the i-th node at the r-th layer falls below p% of the distance at the
initial layer, all elements within the i-th row of the adjacency matrices in all subsequent layers
will undergo pruning.

The rationale behind SnoHv2 is rather straightforward: As the depth of GNNs increases, the issue
of over-smoothing becomes more severe. Representations of neighboring nodes tend to converge,
which in turn leads to the network losing its discriminative capacity. Implementing early stopping
in terms of depth can aid in restoring the expressiveness of the nodes.

2 IMPLEMENTATIONS & CONTRIBUTIONS

In our paper, we aim to examine the effectiveness of SnoH over various training schemes, backbones,
and datasets. We also integrate our approach with state-of-the-art (SOTA) deep GNNs and compare
it with similar popular algorithms to further demonstate its scalability and generality.

Training schemes. We select three training methods to explore the performance of our algo-
rithm and the benefits of combining our algorithm with mainstream training approaches: (1)
SnoHv1/v2(O): we adopt the original hierarchical one-shot adjacency pruning approach. (2)
SnoHv1/v2(IP): As our work can be regarded as a graph pruning method, we have opted for the

3

Under review as a conference paper at ICLR 2024

widely recognized iterative pruning (IP) strategy (Frankle & Carbin, 2018) within the framework of
unified graph sparsification (UGS) (Chen et al., 2020c). (3) SnoHv1/v2(ReI): Due to the challenge
of determining whether the model has converged during pruning, after pruning an adjacency matrix,
we fix it and reinitialize the GNN for the next training phase. We place the details in Appendix B.

Datasets & Backbones. In this paper, we utilize six graph benchmarks to evaluate the performance
of our hypothesis. Specifically, we select three widely-used small graphs, namely Core, citeseer,
and PubMed (Kipf & Welling, 2017), for node classification. Additionally, to assess the scalability
of our proposal, we incorporate three large-scale graphs known as Ogbn-arxiv, Ogbn-proteins and
Ogbn-products (Hu et al., 2020). For all selected datasets, we compare our framework with different
baseline settings under the same network configurations. We adopt GCN (Kipf & Welling, 2017),
GIN (Xu et al., 2019) and GAT (Veličković et al., 2017) as shallow GNNs backbones. Further, we
take deep ResGCNs (Li et al., 2020), JkNet (Xu et al., 2018) and PairNorm (Zhao & Akoglu, 2019)
as deep backbones. To evaluate our framework on the graph classification task, DropEdge (Rong
et al., 2019) and UGS (Chen et al., 2020c) are leveraged as the comparison algorithms. More details
about experimental settings can be found in Appendix C.

Contributions. We summarize our contributions as three folds:
• We propose a node “early stopping” technique based on edge pruning to help better combat the

issue of over-smoothing and overfitting. Based on extensive observational results, we put forth
“The Snowflake Hypothesis – one node one receptive field”, which is inspired by the notion that
each snowflake is unique and possesses its own pattern. Likewise, each node in GNNs should
have its own receptive field, reflecting its unique characteristics.

• Our algorithm inherently possesses explainability and, while inheriting the advantages of the prun-
ing algorithms (accelerating inference time and reducing storage overhead), it can also benefit the
current graph pruning algorithms. More importantly, our algorithm is simple and convenient.
Compared to developing complex aggregation strategies, our framework does not introduce any
additional information (e.g., learnable parameters), which can be easily scaled up to deep GNNs.

• We conduct extensive experiments, i.e., spanning a series of training algorithms, integration with
various backbone architectures, and comparisons with DropEdge/UGS frameworks, across mul-
tiple graph benchmarks. The results show that SnoHv1/v2 consistently delivers standout perfor-
mance, even in scenarios where the adjacency matrix is notably sparse. This underscores our
initial hypothesis – certain nodes necessitate early termination in their depth progression.

Prior work. Our work contributes to the domain of graph pruning algorithms, aligning with the
research trajectories of graph sampling (Chen et al., 2018; Eden et al., 2018; Chen et al., 2021) and
graph pooling (Ranjan et al., 2020; Zhang et al., 2021; Ying et al., 2018). In particular, our algorithm
shares significant parallels with the prevalent graph lottery ticket pruning algorithm (Chen et al.,
2020c), striving to replicate the performance of an original, unpruned graph by means of iterative
pruning. Moreover, we aim to address the over-smoothing and overfitting problems that may surface
during the training of deep GNNs (Li et al., 2018; Chen et al., 2020a). Current methodologies in
training deep GNNs principally concentrate on two areas: (1) incorporating components such as
residual/skip connections from the architecture of CNNs (Li et al., 2019; Sun et al., 2019; Xu et al.,
2018) , and (2) crafting a diverse array of aggregation strategies (Wu et al., 2019; Chien et al., 2020;
Liu et al., 2020; Zou et al., 2019). These focal areas also form the bedrock of our proposed research
framework. We refer detailed discussions in Appendix D.

3 IDENTIFYING THE UNIQUE SNOWFLAKES IN SMALL GRAPHS

In this section, we meticulously conduct a multitude of experiments to validate our hypothesis on
several small graphs, namely Cora, citeseer, and PubMed. We choose SnoHv1/v2(O) as the bench-
mark training scheme. The experimental settings are placed in Appendix E.

As depicted in Tab 1, under conditions of deep GNNs (especially for high graph sparsity at deep
layers), SnoHv1 can achieve results approximating those of the original baseline. This observation
indicates that implementing early stopping for certain nodes in terms of depth does not compromise
the overall performance of the model. Upon transitioning to the more robust SnoHv2 version (Fig
2), we notice a performance enhancement in our model. This further suggests that early stopping
in depth may help overcome the over-smoothing phenomenon. As frameworks like ResGCN and
JKNet are specifically designed for deep GNNs, we have not presented results for shallow layers.
Here, we independently document the results of SnoHv2 for shallow layers. In the case of a 2-layer

4

Under review as a conference paper at ICLR 2024

Table 1: Performance comparisons on 8, 16, 32 layer settings using SnoHv1/v2 across three small graphs. All
experimental results are the average of five runs and the red font indicates the optimal value in a set of results.

Backbone 8 layers 16 layers 32 layers 64 layers
Original SnoHv1/v2 Original SnoHv1/v2 Original SnoHv1/v2 Original SnoHv1/v2

Train scheme: SnoHv1/v2(O), Dataset: Cora, 2-layer performance: GCN without BN = 85.37
GCN 85.11 85.17/85.68 83.75 83.87/84.19 80.33 81.10/83.09 66.11 68.45 /72.88

ResGCN 85.31 85.37/86.11 85.75 85.99/86.52 86.27 86.33/86.64 85.21 85.24/85.90
JKNet 86.33 87.01/86.53 86.28 86.17/87.08 87.20 87.31/88.86 84.84 85.19/85.96

PairNorm 83.66 82.11/85.90 80.29 80.44/83.25 78.66 79.34/83.16 74.12 74.19/78.60

Train scheme: SnoHv1/v2(O), Dataset: Citeseer, 2-layer performance: GCN without BN = 72.44
GCN 72.39 72.41/73.24 71.28 72.10/72.33 68.99 69.21/69.89 44.37 45.12/46.65

ResGCN 72.11 72.07/72.23 72.40 71.91/71.91 72.43 72.44/73.53 71.65 72.10/72.94
JKNet 71.77 71.50/71.47 70.72 70.60/71.47 70.12 70.01/72.67 69.92 70.09/71.55

PairNorm 72.88 72.34/73.84 73.91 73.95/74.58 73.36 73.05/73.92 70.88 70.85/72.99

Train scheme: SnoHv1/v2(O), Dataset: PubMed, 2-layer performance: GCN without BN = 86.50
GCN 86.41 86.50/86.56 84.77 84.74/85.79 83.76 83.77/84.06 77.29 78.15/78.99

ResGCN 87.45 87.50/87.84 87.73 87.47/88.33 87.66 87.33/88.49 87.01 86.03/88.11
JKNet 88.20 88.31/88.51 87.32 87.62/87.95 88.81 88.75/88.99 87.25 86.98/87.93

PairNorm 87.63 87.50/88.68 87.92 87.74/88.60 87.07 87.24/87.69 85.41 85.48/87.06

Figure 2: Performance comparisons on 32/64-layer settings using SnoHv2 across three small graphs.

GCN on Cora, we observe a score of 86.08% (baseline 85.37%), on Citeseer, it’s 73.81% (baseline
72.44%), and on PubMed, it’s 88.54% (baseline 86.50%). Tab 1 shows that even in shallow GCN,
implementing “early stopping” for certain nodes in depth could enhance performance (0.29%↑ on
Cora and 0.23%↑ on Citeseer). With regard to PubMed, we argue that due to the relative largeness,
even after two layers of aggregation, better representations may not have been learned. All nodes
may require a deeper receptive field, which aligns with the phenomenon observed in the table where
extending the depth to between 8-32 layers leads to a performance boost after pruning.
We have another interesting observation: when the depth of the GCN reaches 32/64 layers, SnoHv2
shows a stronger performance boost. Under the experimental setup of a 64-layer GCN + SnoHv2,
improvements of 6.77%/1.66%/1.12% are achieved on Cora/Citeseer/PubMed, respectively. These
astonishing results clearly verify the effectiveness of our algorithm. In Tab 7 of Appendix E, we
present the sparsity under different datasets. As the network goes deeper, both node sparsity2 and
edge sparsity are decreasing. At a lower level with high sparsity (around 17%∼32%), certain nodes
and edges were pruned, resulting in an improvement in model accuracy. This validates the contribu-
tion of reducing the receptive field in shallow layers. In Tab 8, the 64-layer GNN on Cora can reach
6.57% node sparsity and 15.26% edge sparsity in deep layers, which further indicates that many
nodes in deep networks do not necessitate such an extensive receptive field.

2Node sparsity denote the ratio of nodes that do not aggregate information from their neighborhood (i.e., its
degree is zero at this layer) to the total number of nodes in the graph.

5

Under review as a conference paper at ICLR 2024

....

Input

Output

GCN layer

GCN layer

GCN layer

+

ResGCN

....

Input

Output

GCN layer

GCN layer

GCN layer

JKNet

(b)
Number of layers

C
os

in
e

di
st

an
ce

ResGCN+SnoHv2

(a)

Max pooling

Figure 3: (a) Cosine distances of ResGCN+SnoHv2 on Cora vs. #layers. (b) Pipeline of ResGCN and JKNet.

How does SnoH help deep GNNs? Our investigations have revealed that the integration of our
framework yields discernible benefits for deep GNNs such as ResGCN, JKNet, and PairNorm, which
are summarized as follows. Obs 1. In deep architectures (e.g., with 32 or 64 layers), SnoH brings
more significant improvements to ResGCN than in shallow architectures. For instance, ResGCN
achieves an accuracy of 85.21%, 71.65%, and 87.01% on Cora, Citeseer, and PubMed at 64 layers.
When combined with SnoHv2, its performance is enhanced to 85.90%, 72.94%, and 88.11%, as
shown in Fig 10 of Appendix E. Obs 2. Taking ResGCN and JKNet as examples (Fig 3 (b)), the
sparsity of each layer can surprisingly help us determine the specific depth that the GCN architecture
should retain. For instance, in the case of JKNet+Cora, the edge sparsity decays to zero after the
13th layer. This indirectly indicates that the aggregation output of the adjacency matrix after the
16th layer no longer contributes to the model, and similar phenomena occur under different combi-
nation designs, such as ResGCN+Citeseer with fewer than 26 layers. Obs 3. Fig 3(a) depicts the
cosine distance for each layer of ResGCN+SnoHv2 settings with various depths of GNN on Cora.
We witness a gradual decrease in cosine distance with increasing depth, furnishing additional sub-
stantiation for the presence of the over-smoothing phenomenon. This leads to the convergence of
node representations as the network deepens, consequently impeding predictive performance. To
surmount the over-smoothing challenge and augment interpretability, we implement a pruning strat-
egy to curtail the depth of node expansion within the network. Additional results are presented in
Fig 11&12 of Appendix E.

Compare with pruning algorithm. Our algorithm can be essentially viewed as an adjacency matrix
pruning algorithm. We thus choose a SOTA graph pruning algorithm (i.e., UGS (Chen et al., 2020c))
and a universal method (i.e., random pruning) for comparison. To keep consistent settings, we
removed the part of UGS that targets weight pruning; we control the iterative pruning rates at 5%,
10%, and 20% and prune 5 times. In order to make a better comparison, we record the pruning
rates when discovering tickets in the lottery ticket scenario, and the pruning rates of SnoHv2 when
it gets the best performance for comparison. We showcase the comprehensive results in Tab 12
(Appendix E) and summarize our findings: Obs 1. Our model can clearly surpass random pruning
and UGS, even under higher sparsity levels. This further validates our performance in deeper GNNs,
providing assurance for our algorithm’s scalability on large datasets. Obs 2. In contrast to UGS, our
method exhibits superior interpretability. UGS maintains a consistent graph sparsity level for each
layer, potentially resulting in the elimination of numerous nodes during early training stages. This is
unreasonable as early nodes should aggregate essential information, ensuring they can learn better
representations. Our experiments further confirm that the receptive field should gradually increase.

We also migrate potential training strategies in pruning to SnoHv1 and display the results in Ap-
pendix E. As can be easily seen, different training strategies do not significantly improve SnoHv1’s
results. However, in practice, iterative pruning and re-initialization strategies can bring about severe
efficiency problems, e.g., even D× on the training burden of re-initialization. Hence, we adopt a

Table 2: Comparison performances of SnoHv2 with UGS and random pruning (RP). Here IPR denotes iterative
pruning rate and we set number of layers as 8. We use GCN backbone and set early stopping threshold of cosine
distance as ρ (Detailed descriptions in Appendix E).

Dataset RP UGS(IPR=5%) UGS(IPR=10%) UGS(IPR=20%) SnoHv2 GCN
Cora (L=8) 69.60 73.64 66.01 53.29 85.68 85.11

Citeseer (L=8) 45.50 65.80 51.50 43.10 73.24 72.39
PubMed (L=8) 77.82 84.33 80.91 71.05 86.56 86.41

6

Under review as a conference paper at ICLR 2024

one-shot pruning strategy as the preferred strategy for SnoHv1. Unless specified otherwise, the per-
formance we present is that of SnoHv1(O). In terms of SnoHv2 which fundamentally determines
the early stopping depth of each node by similarity, different training strategies will not have much
significance in this case.

Comparision with DropEdge. Another related approach is edge dropping, e.g., DropEdge (Rong
et al., 2019) shares similarities with SnoH. Although DropEdge can improve performance through
implicit data augmentation, it lacks interpretability in its aggregation strategy. In fact, it should not
continue aggregation after halting the information aggregation for a certain node at a higher layer. It
is worth noting that since DropEdge involves temporarily increasing data samples during training, it
can be easily combined with SnoHv2. We present the comparison results in Tab 3.

Generalizability on different backbones. To validate the generalization capability of our algorithm
across different backbones, we further selected popular GNN frameworks GIN (Xu et al., 2019) and
GAT (Veličković et al., 2017) as the backbones for the generalization evaluation. We control the
parameter ρ in {0.2, 0.1, 0.05} under experiments with network depths of 8, 16 and 32 layers,
respectively. As depicted in Fig 4, our hypothesis remains viable when applied to GIN and GAT.
When combined with SnoHv2, these backbones still demonstrate improved performance in deeper
layers. Specifically, we achieve a gain of 2.46% and 0.73% gains on a 16-layer GIN and a 64-layer
GAT, respectively. These results further support the generalization capability of our algorithm.

Total
layers

Graphs
Cora Citeseer PubMed

DropEdge
8

16
32

86.98
84.01
80.81

74.57
73.17
71.77

86.91
86.35
82.23

DropEdge
+ SnoHv2

8
16
32

81.70
80.32
76.64

72.97
72.12
65.56

87.25 ↑
86.99 ↑
87.19 ↑

Table 3: Comparison between DropE-
dge and DropEdge+SnoHv2.

A
cc

ur
ac

y

Figure 4: Experiment results on different graph backbones (i.e.,
GIN, GAT) over the Cora dataset. Additional results on Citeseer and
PubMed can be found in Appendix F.

4 SNOHV1/V2 ON LARGE-SCALE GRAPHS

In this section, we thoroughly assess our hypothesis on large graphs, employing three benchmark
datasets: Ogbn-Arxiv, Ogbn-Proteins, and Ogbn-Product. The dataset partition adheres to the guide-
lines provided by (Hu et al., 2020). For Ogbn-ArXiv, our training data comprises papers published
until 2017, validation data encompasses papers published in 2018, and testing data includes papers
published since 2019. Regarding Ogbn-Proteins, we partition proteins into training, validation, and
test sets based on their species. For the Product dataset, we adopt sales ranking as the criterion to
divide nodes into training, validation, and test sets. Specifically, we assign the top 8% of products
to the training set, the next top 2% to the validation set, and the remainder to the test set.

4.1 SNOHV1/V2 ON CITATION NETWORK

We first investigate the Snowflake Hypothesis on Ogbn-Arxiv, a dataset that serves as a representa-
tive example of real-world graph scenarios. Specifically, we consider GCN, ResGCN and ResGCN+
(Li et al., 2020) as backbones for evaluation. Among them, we prune the adjacency matrix each layer
separately guided by the cosine distance. Due to the superior ability of ResGCN and ResGCN+ to
mitigate over-smoothing compared to GCN, we adopt larger values of ρ on ResGCN and ResGCN+
networks. Specifically, for ResGCN and ResGCN+, we use threshold values of 0.1, 0.07, and 0.02
at layers 16, 32, and 64, respectively. For GCN, we use thresholds of 0.08, 0.05 for 16 and 32
layers. The experimental results are shown in Fig 5, from which we can conclude: Obs 1. SnoHv2,
when combined with three types of backbones, can achieve the same or even better performance
under relatively high sparsity conditions as compared to the original network. Obs 2. SnoHv1
can achieve a slightly higher improvement (Tab 4) compared to SnoHv2 on the citation network.
Through heterogeneity analysis (Pei et al., 2020), the citation network possesses relatively more
severe heterogenous networks, and the comparison at different levels might be of relatively low sig-
nificance for this type of graph; we should rather avoid the aggregation of heterogenous information
from the initial layers. We have placed specific analysis and conjecture in Appendix G.

Similarly, we follow UGS with a 28-layer ResGCN+Arxiv as the benchmark setting, and remove
the weight pruning part. We iteratively prune at a rate of 0.05 for 20 times, observing the sparsity

7

Under review as a conference paper at ICLR 2024

16 layer 32 layer

16 layer 64 layer32 layer

16 layer 32 layer 64 layer

Red: 69.53
Blue: 69.76

Red: 63.91
Blue: 65.67

Red: 71.14
Blue: 70.58

Red: 70.49
Blue: 70.92

Red: 70.80
Blue: 70.72

Red: 70.87
Blue: 70.18

Red: 70.63
Blue: 70.37

Red: 70.18
Blue: 70.20

Figure 5: Performance comparisons on 16, 32, 64 layers using SnoHv2 across GCN, ResGCN and ResGCN+.

Table 4: Comparison between different backbones with SnoHv1 on Ogbn-Arxiv, where L denotes layers.

GCN, ρ = 0.08, 0.05 ResGCN, ρ = 0.1, 0.07, 0.02 ResGCN+, ρ = 0.1, 0.07, 0.02

16-L 32-L 64-L 16-L 32-L 64-L 16-L 32-L 64-L
+SnoHv1 69.89 55.88 Collapse 71.78 71.17 70.96 70.01 70.93 70.44

w/o SnoHv1 69.47 53.84 Collapse 70.53 70.43 70.61 70.79 70.58 70.17

at which it finds the winning ticket, and compare it to the optimal sparsity of SnoHv1/v2. We
control the pruning rate of each layer in SnoHv1 to be 0.3, while in SnoHv2, we set ρ to 0.2. All
network training for 1000 epochs with learning rate 0.001 with Adam optimizer. As shown in Fig
6, we find that our pruning rate on the ResGCN is higher than that of the graph lottery ticket, yet
we can achieve relatively comparable performance. This corroborates the possibility that deep layer
aggregation may indeed no longer contribute to the model, allowing for stopping at shallower layers.

4.2 SNOHV2 ON OGBN-PROTEIN AND OGBN-PRODUCT

To verify the scalability of our model on large datasets, we further expanded the dataset size and
tested its performance on datasets with tens of millions of edges, by employing the Ogbn-Protein
and Ogbn-Product datasets as benchmarks. Due to the high complexity of training on the entire
graph, we adopted the common subgraph training approach (Chiang et al., 2019). As our pruning
mask is static, we split the above two datasets into a fixed number of subgraphs for training (we set
values as 30, 10 for two graphs in this work). Based on the aforementioned algorithms, we integrated
GCN, ResGCN, and ResGCN+, referring to them as Cluster-GCN, Cluster-Res and Cluster-Res+
respectively. Due to the need to measure an excessive number of edge element gradients, the im-
plementation efficiency of SnoHv1 on these two datasets is relatively low. Therefore, we only use
SnoHv2 as our method for hypothesis verification.

Sp
ar

si
ty

Sp
ar

si
ty

Sp
ar

si
ty

Number of layers Number of layers Number of layers

Sp
ar

si
ty

Number of layers

Avg sparsity:
51.26%

Avg sparsity:
36.81%

Avg sparsity:
54.04%

(a) (b) (c) (d)

Figure 6: (a) (b) (c) denote the edge sparsity under different backbones. It is worth noting that sparsity is
represented as the ratio of the remaining edges to the total number of edges. (d) represents the sparsity of each
layer under ResGCN+Arxiv setting of SnoHv1/v2 and UGS.

8

Under review as a conference paper at ICLR 2024

Table 5: Comparisons with SnoHv2 on Ogbn-Proteins/Products, where L denotes layers. w/o denotes without.

Cluster-GCN, ρ = 0.15 Cluster-Res, ρ = 0.15 Cluster-Res+, ρ = 0.15

16-L 32-L 64-L 16-L 32-L 64-L 16-L 32-L 64-L
Ogbn-Proteins 71.88 71.32 71.08 79.80 78.87 OOM 80.04 79.32 OOM

Ogbn-Proteins (w/o) 71.32 68.44 70.55 78.40 77.71 OOM 79.90 79.05 OOM
Ogbn-Product 68.46 69.44 OOM 72.17 72.22 OOM 72.34 72.64 OOM

Ogbn-Product (w/o) 68.40 69.18 OOM 71.45 70.94 OOM 71.27 71.09 OOM

As depicted in Table 5, the adoption of SnoHv2 leads to a considerable improvement when compared
to conventional backbones. These findings align with the observed behavior in smaller datasets.
Specifically, under the configuration of 16 and 32 layers with the combination of protein and Cluster-
Res, we manage to outperform the baseline by approximately 1.0%. On the GCN architecture, a
notable enhancement of almost 3.0% was achieved at 32 layers. This further clarifies the validity
of our hypothesis. Intriguingly, we uncover that denser graphs, such as Ogbn-Proteins, demonstrate
greater resilience to sparsification. Upon contrasting the node classification outcomes on Ogbn-
ArXiv (average degree≈13.77) and Ogbn-Proteins (average degree≈597.00), it becomes evident
that Ogbn-Proteins maintains only a minimal performance discrepancy with SnoHv2, even when
applied to heavily pruned graphs (≈ 34.77%, sparsity of SnoHv2+Arxix ≈ 36.81%), this finding is
also consistent with the conclusions drawn in (Chen et al., 2020c).

5 CASE STUDY
Original Graph UGS SnoHv1 (ρ=0.15) SnoHv2 (ρ=0.15)

Score: 0.710 Score: 0.693 Score: 0.719 Score: 0.728

Prediction: 3 (×) Prediction: 3 (×) Prediction: 2 (√) Prediction: 2 (√)

3

0

C

1

32

22

0

3

1

3
2

3

0

C

1

32

22

0

3

1

3
2

3

0

C

1

32

22

0

3

1

3
2

3

0

C

1

32

22

0

3

1

3
2

We only illustrate the aggregation channels for the central node C, omitting the information output channels for clarity.

Top

Bottom

Figure 7: Top. Illustration of the two-hop receptive fields for
two nodes (blue and red) along with the results showcased by
different algorithms. Bottom. Prediction results for the central
node C (The label is 2) using different algorithms.

After investigating the overall perfor-
mance of the SnoH in Sec 3 and 4, we
further turn to qualitatively analyze the
effect of the receptive fields on certain
nodes in Citeseer graph via some case
studies shown in Fig 7, where all the ac-
curacy scores belonging to the same set-
tings and GCN baseline. Based on the
information conveyed in Fig 7, the fol-
lowing observations can be made: Obs
1 (top line). Generally, we argue that
nodes with a greater number of neigh-
bors should be assigned a relatively
higher pruning rate, while those with
fewer neighboring information should
be inclined to be retained. However, UGS does not adequately preserve the adjacency matrices
of nodes with fewer neighbors within the receptive field, which can be detrimental to the prediction
of certain nodes. The SnoH, in comparison to UGS, might exhibit better selectivity in this aspect.
This ensures predictive capability for certain nodes and overcomes over-smoothing issues. Obs 2
(bottom line). When closely examining a particular node, it becomes evident that obstructing spe-
cific information transmission channels to the central node fosters a heightened focus on its pivotal
neighbors. This, in turn, culminates in a more precise final prediction. The comprehensive blocking
of entire aggregation channels for less critical neighbors underscores how SnoH effectively mitigates
the challenges associated with overfitting and over-smoothing.

6 CONCLUSION & FUTURE WORK

In this paper, we have presented the Snowflake Hypothesis for the first time to discover the unique
receptive field of each node, carefully suggesting the depth of early stopping for each node through
the prevalent techniques of adjacency matrix pruning and cosine distance judgment. Our exper-
iments on multiple graph datasets have demonstrated that early stopping of node aggregation at
different depths can effectively enhance inference efficiency (pruning benefits), overcome the over-
smoothing problem (early stopping benefits), and simultaneously offer better interpretability. Our
framework is both general and succinct, compatible with many mainstream deep networks, such
as ResGCN, JKNet, etc., to boost performance and can also be integrated with different training
strategies. Our empirical study of the existence of snowflakes invites a number of future work and
research questions. We have listed the potential research points and future work in Appendix H.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. N-gcn: Multi-scale graph
convolution for semi-supervised node classification. In uncertainty in artificial intelligence, pp.
841–851. PMLR, 2020.

Yue Bai, Huan Wang, Zhiqiang Tao, Kunpeng Li, and Yun Fu. Dual lottery ticket hypothesis. arXiv
preprint arXiv:2203.04248, 2022.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of machine learning and systems, 2:129–146, 2020.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In Proceedings of the
AAAI conference on artificial intelligence, volume 34, pp. 3438–3445, 2020a.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. arXiv preprint arXiv:1801.10247, 2018.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pp. 1725–1735. PMLR,
2020b.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. Advances in neural
information processing systems, 33:15834–15846, 2020c.

Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery
ticket hypothesis for graph neural networks. In International Conference on Machine Learning,
pp. 1695–1706. PMLR, 2021.

Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Zhangyang Wang, and Jingjing Liu. Earlybert:
Efficient bert training via early-bird lottery tickets. arXiv preprint arXiv:2101.00063, 2020d.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-
gcn: An efficient algorithm for training deep and large graph convolutional networks. CoRR,
abs/1905.07953, 2019. URL http://arxiv.org/abs/1905.07953.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Shaojin Ding, Tianlong Chen, and Zhangyang Wang. Audio lottery: Speech recognition made
ultra-lightweight, noise-robust, and transferable. In International Conference on Learning Repre-
sentations, 2021.

Talya Eden, Shweta Jain, Ali Pinar, Dana Ron, and C Seshadhri. Provable and practical approxima-
tions for the degree distribution using sublinear graph samples. In Proceedings of the 2018 World
Wide Web Conference, pp. 449–458, 2018.

Joan Bruna Estrach, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and
deep locally connected networks on graphs. In 2nd International conference on learning repre-
sentations, ICLR, volume 2014, 2014.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pp. 2943–2952.
PMLR, 2020.

Junfeng Fang, Xiang Wang, An Zhang, Zemin Liu, Xiangnan He, and Tat-Seng Chua. Cooperative
explanations of graph neural networks. In WSDM, pp. 616–624. ACM, 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

10

http://arxiv.org/abs/1905.07953

Under review as a conference paper at ICLR 2024

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In International Conference on Machine Learning, pp.
3259–3269. PMLR, 2020.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning,
pp. 2083–2092. PMLR, 2019.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. Advances in neural information processing systems, 32, 2019.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Wei Huang, Yuan Cao, Haonan Wang, Xin Cao, and Taiji Suzuki. Graph neural networks
provably benefit from structural information: A feature learning perspective. arXiv preprint
arXiv:2306.13926, 2023.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works. In Proceedings of the 5th International Conference on Learning Representations, 2017.

Eric-Tuan Le, I. Kokkinos, and N. Mitra. Going deeper with lean point networks. 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9500–9509, 2020.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International confer-
ence on machine learning, pp. 3734–3743. PMLR, 2019.

Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as
cnns? In The IEEE International Conference on Computer Vision (ICCV), 2019.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. Deepergcn: All you need to train
deeper gcns. arXiv preprint arXiv:2006.07739, 2020.

Guohao Li, Matthias Müller, Guocheng Qian, Itzel Carolina Delgadillo Perez, Abdulellah Abual-
shour, Ali Kassem Thabet, and Bernard Ghanem. Deepgcns: Making gcns go as deep as cnns.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings
of the 26th ACM SIGKDD international conference on knowledge discovery & data mining, pp.
338–348, 2020.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. ACM Computing Surveys, 55(9):1–35, 2023.

11

Under review as a conference paper at ICLR 2024

Xiaolong Ma, Geng Yuan, Xuan Shen, Tianlong Chen, Xuxi Chen, Xiaohan Chen, Ning Liu, Ming-
hai Qin, Sijia Liu, Zhangyang Wang, et al. Sanity checks for lottery tickets: Does your winning
ticket really win the jackpot? Advances in Neural Information Processing Systems, 34:12749–
12760, 2021.

Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the lottery ticket
hypothesis: Pruning is all you need. In International Conference on Machine Learning, pp. 6682–
6691. PMLR, 2020.

Costas Mavromatis and George Karypis. Graph infoclust: Leveraging cluster-level node information
for unsupervised graph representation learning. arXiv preprint arXiv:2009.06946, 2020.

Yimeng Min, Frederik Wenkel, and Guy Wolf. Scattering gcn: Overcoming oversmoothness in
graph convolutional networks. Advances in neural information processing systems, 33:14498–
14508, 2020.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. Asap: Adaptive structure aware pooling for
learning hierarchical graph representations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 5470–5477, 2020.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. arXiv preprint arXiv:1907.10903, 2019.

Kashob Kumar Roy, Amit Roy, AKM Mahbubur Rahman, M Ashraful Amin, and Amin Ahsan Ali.
Structure-aware hierarchical graph pooling using information bottleneck. In 2021 International
Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

Ke Sun, Zhanxing Zhu, and Zhouchen Lin. Adagcn: Adaboosting graph convolutional networks
into deep models. arXiv preprint arXiv:1908.05081, 2019.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. stat, 1050:20, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Haonan Wang, Jieyu Zhang, Qi Zhu, and Wei Huang. Can single-pass contrastive learning work for
both homophilic and heterophilic graph? arXiv preprint arXiv:2211.10890, 2022a.

Kun Wang, Yuxuan Liang, Pengkun Wang, Xu Wang, Pengfei Gu, Junfeng Fang, and Yang Wang.
Searching lottery tickets in graph neural networks: A dual perspective. In The Eleventh Interna-
tional Conference on Learning Representations, 2022b.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Junran Wu, Xueyuan Chen, Ke Xu, and Shangzhe Li. Structural entropy guided graph hierarchical
pooling. In International Conference on Machine Learning, pp. 24017–24030. PMLR, 2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Proceedings
of the 35th International Conference on Machine Learning, volume 80, pp. 5453–5462. PMLR,
10–15 Jul 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

12

Under review as a conference paper at ICLR 2024

Keyulu Xu, Mozhi Zhang, Stefanie Jegelka, and Kenji Kawaguchi. Optimization of graph neural
networks: Implicit acceleration by skip connections and more depth. In International Conference
on Machine Learning, pp. 11592–11602. PMLR, 2021.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hier-
archical graph representation learning with differentiable pooling. Advances in neural information
processing systems, 31, 2018.

Haoran You, Zhihan Lu, Zijian Zhou, and Yingyan Lin. Gebt: Drawing early-bird tickets in graph
convolutional network training. arXiv preprint arXiv:2103.00794, 2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang and Yixin Chen. Inductive matrix completion based on graph neural networks. arXiv
preprint arXiv:1904.12058, 2019.

Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Zhao Li, Chengwei Yao, Dai Huifen, Zhi Yu,
and Can Wang. Hierarchical multi-view graph pooling with structure learning. IEEE Transactions
on Knowledge and Data Engineering, 2021.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. arXiv preprint
arXiv:1909.12223, 2019.

Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan Gu. Layer-dependent
importance sampling for training deep and large graph convolutional networks. Advances in
neural information processing systems, 32, 2019.

13

Under review as a conference paper at ICLR 2024

A DETAILS OF SNOHV1

In this section, we start by providing a simple illustration of our second version model, SnoHv1,
through examples. We then delve into the detailed description of our algorithmic workflow. As
shown in the Fig 8, we execute our SnoHv1 on a three-layer GCN. The adjacency matrix undergoes
an assigning process to align the pruning elements from inner layers with the outer layer’s adjacency
matrix, propagating their influence layer by layer. Additionally, the outer layer also adds pruning
edges during each individual pruning, ensuring that the same node has different aggregation depths
on different neighbors. Compared to SnoHv2, this type of pruning allows for more refined handling
of the node’s receptive field issue.

�(0)
�(1) �(2)

Assigning Process

Pruing edge in �(0) Pruing edge in �(1) Pruing edge in �(2)

Pruning Process3-layer GCN

Figure 8: An example of our SnoHv1 in 3-layer GCN.

B TRAINING SCHEMES

In this part, we present the detailed processes of the three training methods in the Fig 9. For
SnoHv1/v2(O), we employ the one-shot pruning training approach, where a complete pruning of
the adjacency matrix is performed every k iterations, removing p% of the rows. This process is
repeated until all adjacency matrices are traversed. For SnoHv1/v2(IP), we refine the pruning of an
adjacency matrix into an iterative pruning process, where a portion of rows (v1) or elements (v2) are
pruned at each regular iterations, followed by continued training and multiple pruning iterations. It
is worth noting that our approach resembles the UGS algorithm (Chen et al., 2020c), however, the
key difference lies in our pruning being based on the notion of receptive fields. The inner layer’s
adjacency matrix influences the size of the receptive field in the outer layer, providing better in-
terpretability and algorithmic rationality in an intuitive sense. As for SnoHv1/v2(ReI), during the
training process, it is possible that while adjusting the receptive fields of the outer layer’s adjacency
matrix, the network parameters have already converged to a relatively good local optima. At this
point, pruning the inner layer’s adjacency matrix may have minimal impact on the model’s perfor-
mance. To address this, we employ a re-initialization (ReI) strategy. After each adjacency matrix
pruning is completed, we re-initialize the entire model while keeping the pruned adjacency matrix
fixed. Subsequently, we proceed to train and optimize the inner layer’s adjacency matrix. Although
the training processes of SnoHv1/v2(ReI) and SnoHv1/v2(O) involve k iterations, they may not
necessarily be the same in practice. For ease of representation, we use k to denote the number of
training iterations. However, in the actual implementation, we will provide specific values for the
hyperparameters.

C DETAILS OF DATASETS AND BACKBONES

In this section, we provide detailed descriptions of the datasets used in this paper. The statistical
characteristics of the datasets are presented in Table 6.

14

Under review as a conference paper at ICLR 2024

Pruned adjacent matrix

�(�)

�(�)

�(�−�)

�(�)

....

�(�)

�(�)

�(�−�)

�(�)

....

�(�)

�(�)

�(�−�)

�(�)

........

�(�)

�(�)

�(�−�)

�(�)

....

SnoHv1/v2(O)

� 2� (� − 1) × �
Iterations

� × �

�(�)

�(�)

�(�−�)

�(�)

....

�(�)

�(�)

�(�−�)

�(�)

....

SnoHv1/v2(IP)

�
Iterations

2�

�(�−�) �(�−�)

....

�(�)

�(�)

�(�−�)

�(�)

....

� × �
Pruned adjacent matrix

Pruned elements in adjacent matrix

Iterative pruning for v times

....

Pruned adjacent matrix

�(�)

�(�)

�(�−�)

�(�)

....

�(�)

�(�)

�(�−�)

�(�)

....

�(�)

�(�)

�(�−�)

�(�)

........

�(�)

�(�)

�(�−�)

�(�)

....

SnoHv1/v2(ReI)

� 2� (� − 1) × �
Iterations

� × �
Reinitialization Reinitialization Reinitialization

Figure 9: An illustration of three training schemes depicted in our paper.

Table 6: Statistical characteristics of the dataset used in our paper.

Dataset Task #Nodes #Edges #Classes Evaluation Metric

Cora Node classification 2,708 5,278 Multi-class Accuracy
Citeseer Node classification 3,327 4,732 Multi-class Accuracy
PubMed Node classification 19,717 88,338 Multi-class Accuracy

Ogbn-Proteins Node classification 132,534 39,561,252 Binary ROC-AUC
Ogbn-Products Node classification 2,449,029 61,859,140 Multi-class Accuracy

Ogbn-Arxiv Node classification 169,343 1,166,243 Multi-class Accuracy

D RELATED WORK

Graph Neural Networks. The Graph Neural Networks (GNNs) family encompasses a diverse array
of graph message-passing architectures, each capable of integrating topological structures and node
features to create more expressive representations of the entire graph. The efficacy of GNNs, as
we illustrate, primarily originates from their inherent “message-passing” function, represented as
H(k) = M

(
A,H(k−1); Θ(k)

)
. Here, H(k) ∈ R|V|×F corresponds to the node embedding after k

iterations of GNN aggregation, M denotes the message propagation function, and Θ(k) signifies the
trainable parameters at the k-th layer of the GNN (H(0) = X). In light of the growing popularity of
graph neural networks, a myriad of propagation functions M (Gilmer et al., 2017; Hamilton et al.,
2017) and GNN variants (Estrach et al., 2014; Velickovic et al., 2017; Li et al., 2020; Mavromatis &
Karypis, 2020) have emerged.

15

Under review as a conference paper at ICLR 2024

Deep Graph Neural Networks. Despite the promising results obtained by GNNs, they encounter
notorious over-smoothing and overfitting issues when scaling up to deep structure. To this end, many
streams of work have been dedicated to solving these issues and help GNNs have a deep structure.
A prominent approach is to inherit the depth modules of CNNs to the graph realm, such as skip and
residual connections (Li et al., 2019; Sun et al., 2019; Xu et al., 2018; Li et al., 2021; Xu et al., 2018;
Chen et al., 2020b; Xu et al., 2021). However, these works do not involve customized operations for
the receptive field of each node and lack a specific understanding of graphs. Another representative
is combine deep aggregation strategies with shallow GNNs (Wu et al., 2019; Chien et al., 2020; Liu
et al., 2020; Zou et al., 2019; Rong et al., 2019; Gasteiger et al., 2019; Huang et al., 2023; Wang
et al., 2022a). Similarly, these works prevent the over-smoothing issue by replacing the aggregation
strategy of the entire network, lacking an understanding of node-specific differentiations. There are
also some works that make efforts to theoretically propose methods for training deep GNNs (Xu
et al., 2021; Min et al., 2020). However, these works are limited to specific types of GNNs, lacking
generalizability and practical significance.

Graph Pooling & Sampling. Graph pooling and sampling devote to reducing the computational
burden of GNNs by selectively sampling sub-graphs or applying pruning methods (Chen et al.,
2018; Eden et al., 2018; Chen et al., 2021; Eden et al., 2018; Chen et al., 2021; Gao & Ji, 2019;
Lee et al., 2019). We divide current graph pooling or sampling techniques into two categories. (1)
Sampling-based methods aims at selecting the most expressive nodes or edges (i.e., dropping the
rest) from the original graph to construct a new subgraph (Gao & Ji, 2019; Lee et al., 2019; Ranjan
et al., 2020; Zhang et al., 2021). Though efficient, the dropping of nodes/edges sometimes results
in severe information loss and isolated subgraphs, which may cripple the performance of GNNs
(Wu et al., 2022). (2) Clustering-based methods learns how to cluster together nodes in the original
graph, and produces a reduced graph where the clusters are set as nodes (Ying et al., 2018; Wu et al.,
2022; Roy et al., 2021), which can remedy the aforementioned information loss problem.

Lottery Ticket Hypothesis (LTH). LTH articulates that a sparse and admirable subnetwork can
be identified from a dense network by iterative pruning (Frankle & Carbin, 2018). LTH is initially
observed in dense networks and is broadly found in many fields (Evci et al., 2020; Frankle et al.,
2020; Malach et al., 2020; Ding et al., 2021; Chen et al., 2020c; 2021). Derivative theories (Chen
et al., 2020d; You et al., 2021; Ma et al., 2021) are proposed to optimize the procedure of network
sparsification and pruning. In addition to them, Dual Lottery Ticket Hypothesis (DLTH) considers a
more general case to uncover the relationship between a dense network and its sparse counterparts
(Bai et al., 2022; Wang et al., 2022b). Recenlty, graph lottery ticket (Chen et al., 2020c) proposes to
use iterative pruning methods on adjacency matrix and weights (called UGS approach) can obtain a
graph lottery ticket during the trianing phase. Meanwhile, the strong potential of the LTH has been
proven to promote the development of explainable AI (XAI) (Fang et al., 2023).

E EXPERIMENTAL SETTINGS AND RESULTS ON SMALL GRAPHS

Experimental settings. As for three small-scale graphs, we adopt the supervised node classification
setting. In our implementation, we choose 60%, 20%, 20% split ratio as our train-val-test splitting of
datasets. During the training phase, we choose Adam as optimizer and set learning rate as 0.01, and
hidden layer deimension as 64. Tab 9 illustrates the experimental details of three compact datasets:
Cora, Citeseer, and PubMed. In this table, the term “SnoHv1(O) PE” signifies the pruning epoch
within the one-shot pruning strategy under SnoHv1, detailing the number of epochs completed prior
to pruning the adjacency matrix for each layer. “SnoHv1(ReI) PE” signifies the epoch count for
reinitialization under the reinitialization scenario. The symbol ρ is indicative of the depth at which
the model halts aggregation under SnoHv2, which can be interpreted as an early termination when
the cosine distance between the consolidated output and the initial layer output falls beneath ρ. As
a rule of thumb, a larger ρ induces earlier termination at lesser depths. In our experiment, different
depths may correspond to different values of ρ. We will later discuss in detail how the settings of ρ
values affect the performance of the model.

16

Under review as a conference paper at ICLR 2024

Table 7: Node sparsity (NS) and edge sparsity (ES) of each layer when GCN+SnoHv2 achieves optimal per-
formance under three small datasets. Li denotes L-th layer.

SnoHv2 32-layer GCN ρ=0.001

GCN+Cora GCN+Citeseer GCN+PubMed GCN+Cora GCN+Citeseer GCN+PubMed
L0 NS: 100.00% L0 NS: 100.00% L0 NS: 100.00% L0 ES: 100.00% L0 ES: 100.00% L0 ES: 100.00%
L1 NS: 100.00% L1 NS: 100.00% L1 NS: 100.00% L1 ES: 100.00% L1 ES: 100.00% L1 ES: 100.00%
L2 NS: 66.32% L2 NS: 67.06% L2 NS: 94.90% L2 ES: 73.86% L2 ES: 78.79% L2 ES: 90.66%
L3 NS: 43.24% L3 NS: 41.90% L3 NS: 85.85% L3 ES: 50.79% L3 ES: 50.60% L3 ES: 78.59%
L4 NS: 30.39% L4 NS: 30.69% L4 NS: 74.99% L4 ES: 35.32% L4 ES: 39.25% L4 ES: 65.41%
L5 NS: 16.47% L5 NS: 20.53% L5 NS: 71.90% L5 ES: 22.00% L5 ES: 25.37% L5 ES: 61.13%
L6 NS: 14.11% L6 NS: 17.79% L6 NS: 67.93% L6 ES: 17.49% L6 ES: 22.76% L6 ES: 55.95%
L7 NS: 12.63% L7 NS: 17.13% L7 NS: 61.69% L7 ES: 15.46% L7 ES: 22.29% L7 ES: 48.10%
L8 NS: 9.12% L8 NS: 14.70% L8 NS: 59.53% L8 ES: 12.25% L8 ES: 18.38% L8 ES: 46.21%
L9 NS: 8.42% L9 NS: 14.25% L9 NS: 59.23% L9 ES: 11.72% L9 ES: 17.99% L9 ES: 45.63%
L10 NS: 8.42% L10 NS: 13.98% L10 NS: 54.65% L10 ES: 11.72% L10 ES: 17.42% L10 ES: 41.52%
L11 NS: 3.21% L11 NS: 10.43% L11 NS: 54.31% L11 ES: 6.24% L11 ES: 13.64% L11 ES: 40.78%
L12 NS: 3.06% L12 NS: 10.10% L12 NS: 54.13% L12 ES: 6.19% L12 ES: 13.15% L12 ES: 40.65%
L13 NS: 2.95% L13 NS: 9.65% L13 NS: 53.77% L13 ES: 6.12% L13 ES: 12.45% L13 ES: 40.30%
L14 NS: 2.66% L14 NS: 9.56% L14 NS: 52.41% L14 ES: 6.00% L14 ES: 12.41% L14 ES: 37.90%
L15 NS: 2.66% L15 NS: 7.15% L15 NS: 51.70% L15 ES: 6.00% L15 ES: 9.87% L15 ES: 37.45%
L16 NS: 2.55% L16 NS: 6.88% L16 NS: 49.26% L16 ES: 5.90% L16 ES: 9.70% L16 ES: 35.97%
L17 NS: 2.29% L17 NS: 6.88% L17 NS: 49.09% L17 ES: 5.63% L17 ES: 9.70% L17 ES: 35.59%
L18 NS: 2.03% L18 NS: 5.77% L18 NS: 48.92% L18 ES: 5.49% L18 ES: 8.07% L18 ES: 35.36%
L19 NS: 1.88% L19 NS: 5.77% L19 NS: 47.60% L19 ES: 5.07% L19 ES: 8.07% L19 ES: 34.68%
L20 NS: 1.14% L20 NS: 5.53% L20 NS: 47.49% L20 ES: 4.23% L20 ES: 7.88% L20 ES: 34.58%
L21 NS: 1.00% L21 NS: 5.50% L21 NS: 45.56% L21 ES: 3.95% L21 ES: 7.83% L21 ES: 32.89%
L22 NS: 0.89% L22 NS: 4.84% L22 NS: 44.47% L22 ES: 3.89% L22 ES: 6.05% L22 ES: 31.81%
L23 NS: 0.89% L23 NS: 4.57% L23 NS: 44.02% L23 ES: 3.89% L23 ES: 5.81% L23 ES: 31.40%
L24 NS: 0.89% L24 NS: 3.91% L24 NS: 43.86% L24 ES: 3.89% L24 ES: 5.05% L24 ES: 31.28%
L25 NS: 0.89% L25 NS: 3.91% L25 NS: 43.53% L25 ES: 3.89% L25 ES: 5.05% L25 ES: 30.92%
L26 NS: 0.81% L26 NS: 3.85% L26 NS: 43.33% L26 ES: 3.46% L26 ES: 5.00% L26 ES: 30.82%
L27 NS: 0.55% L27 NS: 3.22% L27 NS: 43.28% L27 ES: 2.05% L27 ES: 3.23% L27 ES: 30.81%
L28 NS: 0.52% L28 NS: 3.01% L28 NS: 41.57% L28 ES: 2.04% L28 ES: 2.93% L28 ES: 30.25%
L29 NS: 0.52% L29 NS: 2.98% L29 NS: 41.40% L29 ES: 2.04% L29 ES: 2.91% L29 ES: 30.16%
L30 NS: 0.48% L30 NS: 2.98% L30 NS: 41.37% L30 ES: 1.99% L30 ES: 2.91% L30 ES: 30.15%
L31 NS: 0.48% L31 NS: 2.89% L31 NS: 27.80% L31 ES: 1.99% L31 ES: 2.76% L31 ES: 17.68%

17

Under review as a conference paper at ICLR 2024

Table 8: Node sparsity (NS) and edge sparsity (ES) of each layer when GCN+SnoHv2 achieves optimal per-
formance under Cora datasets. Li denotes L-th layer.

SnoHv2 64-layer GCN+Cora ρ=0.001

L17 NS: 36.93% L17 ES: 47.08%
L18 NS: 36.89% L18 ES: 47.06%
L19 NS: 36.89% L19 ES: 47.06%
L20 NS: 36.89% L20 ES: 47.06%
L21 NS: 36.41% L21 ES: 46.82%
L22 NS: 36.41% L22 ES: 46.82%
L23 NS: 36.41% L23 ES: 46.82%
L24 NS: 36.41% L24 ES: 46.82%
L25 NS: 36.37% L25 ES: 46.80%
L26 NS: 36.37% L26 ES: 46.80%
L27 NS: 36.37% L27 ES: 46.80%
L28 NS: 36.37% L28 ES: 46.80%
L29 NS: 29.21% L29 ES: 41.43%
L30 NS: 25.26% L30 ES: 37.16%
L31 NS: 25.26% L31 ES: 37.16%
L32 NS: 25.26% L32 ES: 37.16%
L33 NS: 25.26% L33 ES: 37.16%
L34 NS: 25.26% L34 ES: 37.16%
L35 NS: 25.26% L35 ES: 37.16%
L36 NS: 25.26% L36 ES: 37.16%
L37 NS: 11.82% L37 ES: 21.92%
L38 NS: 11.82% L38 ES: 21.92%
L39 NS: 7.87% L39 ES: 16.89%
L40 NS: 7.87% L40 ES: 16.89%
L41 NS: 7.87% L41 ES: 16.89%
L42 NS: 7.87% L42 ES: 16.89%
L43 NS: 7.72% L43 ES: 16.70%
L44 NS: 7.72% L44 ES: 16.70%
L45 NS: 7.53% L45 ES: 16.36%
L46 NS: 7.53% L46 ES: 16.36%
L47 NS: 7.53% L47 ES: 16.36%
L48 NS: 7.53% L48 ES: 16.36%
L49 NS: 7.53% L49 ES: 16.36%
L50 NS: 7.53% L50 ES: 16.36%
L51 NS: 7.53% L51 ES: 16.36%
L52 NS: 7.53% L52 ES: 16.36%
L53 NS: 7.53% L53 ES: 16.36%
L54 NS: 7.53% L54 ES: 16.36%
L55 NS: 7.53% L55 ES: 16.36%
L56 NS: 7.53% L56 ES: 16.36%
L57 NS: 7.53% L57 ES: 16.36%
L58 NS: 7.50% L58 ES: 16.32%
L59 NS: 6.79% L59 ES: 15.54%
L60 NS: 6.79% L60 ES: 15.54%
L61 NS: 6.79% L61 ES: 15.54%
L62 NS: 6.79% L62 ES: 15.54%
L63 NS: 6.57% L63 ES: 15.26%

Table 9: Implementation details of SnoH on node classification on Cora, Citeseer and PubMed datasets.

Task Node classification

Dataset Learning rate Optimizer SnoHv1(O) PE SnoHv1(ReI) PE ρ Total training epoch

Cora 0.01 Adam 30 300 - 1000
Citeseer 0.01 Adam 30 300 - 1000
PubMed 0.01 Adam 30 300 - 1000

Ogbn-Arxiv 0.001 Adam 30 - - 500
Ogbn-Protein 0.01 Adam - - - 75
Ogbn-Product 0.001 Adam - - - 500

18

Under review as a conference paper at ICLR 2024

Epoch

A
cc

ur
ac

y
(%

)

A
cc

ur
ac

y
(%

)

Epoch

A
cc

ur
ac

y
(%

)

Epoch

ResGCN
ResGCN+SnoHv2

Cora + 16 layer GCN Cora + 32 layer GCN Cora + 64 layer GCN

Epoch

A
cc

ur
ac

y
(%

)

Citeseer + 16 layer GCN

A
cc

ur
ac

y
(%

)

Epoch

Citeseer + 32 layer GCN

A
cc

ur
ac

y
(%

)

Epoch

Citeseer + 64 layer GCN

ResGCN
ResGCN+SnoHv2

A
cc

ur
ac

y
(%

)

PubMed + 16 layer GCN

Epoch

A
cc

ur
ac

y
(%

)

Epoch

PubMed + 32 layer GCN

A
cc

ur
ac

y
(%

)

Epoch

PubMed + 64 layer GCN

ResGCN
ResGCN+SnoHv2

ResGCN
ResGCN+SnoHv2

Figure 10: Test curves during training on 16, 32, 64 layer settings using SnoHv2 across three small graphs
with ResGCN backbone. We recorded the ResGCN original performance as 85.21%, 71.65%, 87.01% on
Cora, Citeseer and PubMed at 64 layers. When combined with SnoHv2, the performance is 85.90%, 72.94%,
88.11%.

SnoHv2 + ResGCN on Citeseer SnoHv2 + ResGCN on Citeseer

Number of layers Number of layers Number of layers

SnoHv2 + ResGCN on Citeseer

C
os

in
e

di
st

an
ce

C
os

in
e

di
st

an
ce

C
os

in
e

di
st

an
ce

C
os

in
e

di
st

an
ce

Number of layers

SnoHv2 + ResGCN on Citeseer

SnoHv2 + ResGCN on PubMed

C
os

in
e

di
st

an
ce

Number of layers

SnoHv2 + ResGCN on PubMed

C
os

in
e

di
st

an
ce

Number of layers

C
os

in
e

di
st

an
ce

Number of layers

SnoHv2 + ResGCN on PubMed SnoHv2 + ResGCN on PubMed

Number of layers

C
os

in
e

di
st

an
ce

Figure 11: The experimental settings of ResGCN+SnoHv2 on the Citeseer and PubMed datasets are demon-
strated using cosine distance. It can be clearly observed that a gradual decrease in cosine distance occurs across
results obtained with 8 to 64 layers, indicating that as the depth of the GNN increases, the model exhibits over-
smoothing phenomenon. Our approach effectively demonstrates this process.

19

Under review as a conference paper at ICLR 2024

Table 10: Edge sparsity (ES) of each layer when ResGCN+SnoHv2 or JKNet+SnoHv2 achieves optimal per-
formance under Cora, Citeseer and PubMed datasets on 32 layer settings. Li denotes L-th layer.

SnoHv2 32-L ResGCN/JKNet

ResGCN+Cora ResGCN+Citeseer ResGCN+PubMed JKNet+Cora JKNet+Citeseer JKNet+PubMed
L0 ES: 100.00% L0 ES: 100.00% L0 ES: 100.00% L0 ES: 100.00% L0 ES: 100.00% L0 ES: 100.00%
L1 ES: 92.75% L1 ES: 100.00% L1 ES: 100.00% L1 ES: 94.48% L1 ES: 89.07% L1 ES: 97.15%
L2 ES: 54.58% L2 ES: 95.17% L2 ES: 79.52% L2 ES: 80.03% L2 ES: 84.46% L2 ES: 90.99%
L3 ES: 26.89% L3 ES: 59.25% L3 ES: 49.29% L3 ES: 65.13% L3 ES: 73.92% L3 ES: 85.81%
L4 ES: 10.33% L4 ES: 10.87% L4 ES: 30.32% L4 ES: 48.10% L4 ES: 55.69% L4 ES: 74.01%
L5 ES: 5.14% L5 ES: 5.67% L5 ES: 16.31% L5 ES: 43.79% L5 ES: 37.75% L5 ES: 52.65%
L6 ES: 2.91% L6 ES: 4.57% L6 ES: 15.19% L6 ES: 24.47% L6 ES: 30.84% L6 ES: 46.98%
L7 ES: 1.95% L7 ES: 1.26% L7 ES: 10.53% L7 ES: 19.51% L7 ES: 20.73% L7 ES: 13.83%
L8 ES: 1.42% L8 ES: 0.36% L8 ES: 9.00% L8 ES: 16.45% L8 ES: 12.01% L8 ES: 13.74%
L9 ES: 0.96% L9 ES: 0.31% L9 ES: 8.92% L9 ES: 8.76% L9 ES: 5.01% L9 ES: 13.74%

L10 ES: 0.86% L10 ES: 0.31% L10 ES: 8.57% L10 ES: 8.72% L10 ES: 0.00% L10 ES: 13.74%
L11 ES: 0.62% L11 ES: 0.30% L11 ES: 8.14% L11 ES: 8.28% L11 ES: 0.00% L11 ES: 13.74%
L12 ES: 0.57% L12 ES: 0.27% L12 ES: 6.27% L12 ES: 7.78% L12 ES: 0.00% L12 ES: 13.74%
L13 ES: 0.50% L13 ES: 0.26% L13 ES: 5.56% L13 ES: 0.00% L13 ES: 0.00% L13 ES: 0.00%
L14 ES: 0.46% L14 ES: 0.18% L14 ES: 4.14% L14 ES: 0.00% L14 ES: 0.00% L14 ES: 0.00%
L15 ES: 0.36% L15 ES: 0.15% L15 ES: 2.67% L15 ES: 0.00% L15 ES: 0.00% L15 ES: 0.00%
L16 ES: 0.30% L16 ES: 0.14% L16 ES: 2.38% L16 ES: 0.00% L16 ES: 0.00% L16 ES: 0.00%
L17 ES: 0.28% L17 ES: 0.04% L17 ES: 2.36% L17 ES: 0.00% L17 ES: 0.00% L17 ES: 0.00%
L18 ES: 0.27% L18 ES: 0.04% L18 ES: 2.22% L18 ES: 0.00% L18 ES: 0.00% L18 ES: 0.00%
L19 ES: 0.09% L19 ES: 0.03% L19 ES: 1.65% L19 ES: 0.00% L19 ES: 0.00% L19 ES: 0.00%
L20 ES: 0.09% L20 ES: 0.03% L20 ES: 1.65% L20 ES: 0.00% L20 ES: 0.00% L20 ES: 0.00%
L21 ES: 0.09% L21 ES: 0.03% L21 ES: 1.58% L21 ES: 0.00% L21 ES: 0.00% L21 ES: 0.00%
L22 ES: 0.09% L22 ES: 0.01% L22 ES: 1.55% L22 ES: 0.00% L22 ES: 0.00% L22 ES: 0.00%
L23 ES: 0.07% L23 ES: 0.01% L23 ES: 1.34% L23 ES: 0.00% L23 ES: 0.00% L23 ES: 0.00%
L24 ES: 0.07% L24 ES: 0.01% L24 ES: 1.22% L24 ES: 0.00% L24 ES: 0.00% L24 ES: 0.00%
L25 ES: 0.07% L25 ES: 0.01% L25 ES: 1.08% L25 ES: 0.00% L25 ES: 0.00% L25 ES: 0.00%
L26 ES: 0.07% L26 ES: 0.00% L26 ES: 0.90% L26 ES: 0.00% L26 ES: 0.00% L26 ES: 0.00%
L27 ES: 0.07% L27 ES: 0.00% L27 ES: 0.90% L27 ES: 0.00% L27 ES: 0.00% L27 ES: 0.00%
L28 ES: 0.05% L28 ES: 0.00% L28 ES: 0.80% L28 ES: 0.00% L28 ES: 0.00% L28 ES: 0.00%
L29 ES: 0.04% L29 ES: 0.00% L29 ES: 0.76% L29 ES: 0.00% L29 ES: 0.00% L29 ES: 0.00%
L30 ES: 0.04% L30 ES: 0.00% L30 ES: 0.61% L30 ES: 0.00% L30 ES: 0.00% L30 ES: 0.00%
L31 ES: 0.04% L31 ES: 0.00% L31 ES: 0.56% L31 ES: 0.00% L31 ES: 0.00% L31 ES: 0.00%

Cora 32 layer PubMed 32 layer

Cora 64 layer

Citeseer 32 layer

Citeseer 64 layer PubMed 64 layer

Figure 12: The experimental settings of JKNet+SnoHv2 on the Cora, Citeseer and PubMed datasets with 32
and 64 layers.

20

Under review as a conference paper at ICLR 2024

Table 11: Performance comparisons on 8, 16, 32 layer settings using SnoHv1(O), SnoHv1(IP), and
SnoHv1(ReI) across three small graphs, all experimental results are the average of three runs.

Backbone 8 layers 16 layers 32 layers

SnoHv1(O) SnoHv1(IP) SnoHv1(ReI) SnoHv1(O) SnoHv1(IP) SnoHv1(ReI) SnoHv1(O) SnoHv1(IP) SnoHv1(ReI)

Train scheme: SnoHv1(O), Dataset: Cora, 2-layer performance: GCN without BN = 85.37
GCN 84.37 83.77 84.30 83.19 82.21 82.77 82.09 82.76 82.45

ResGCN 85.12 85.47 84.99 84.35 85.17 84.72 85.37 85.21 85.87
JKNet 85.43 85.35 84.44 86.11 85.87 86.01 86.47 87.39 85.21

Train scheme: SnoHv1/v2(O), Dataset: Citeseer, 2-layer performance: GCN without BN = 72.44
GCN 73.39 73.45 72.11 72.29 72.45 72.10 68.71 67.59 68.98

ResGCN 71.71 71.54 72.01 71.98 70.14 70.43 72.01 71.45 70.49
JKNet 71.34 70.57 71.38 70.47 70.98 71.03 69.89 68.47 68.47

Train scheme: SnoHv1/v2(O), Dataset: PubMed, 2-layer performance: GCN without BN = 86.50
GCN 86.15 85.78 86.21 84.37 84.23 84.65 83.54 83.66 83.06

ResGCN 87.41 86.24 85.30 87.40 86.54 86.01 87.26 87.01 86.45
JKNet 88.29 87.68 88.11 87.27 86.57 85.92 88.65 87.81 86.53

Training scheme on SnoHv1. In this section, we further test different training strategies for
SnoHv1, including one-shot pruning, iterative pruning, and re-initialization pruning strategies. (1)
The commonly used strategy is one-shot pruning, where we prune the adjacency matrix of each
layer during each training process. (2) The iterative pruning method involves splitting each train-
ing process and pruning some elements of the adjacency matrix in each layer during each epoch.
The training continues iteratively by removing elements from the adjacency matrix. (3) The re-
initialization strategy prunes one layer of the adjacency matrix at a time. We set the training epoch
to 200, meaning that every 200 epochs, we determine which elements in each layer’s adjacency
matrix should be pruned.

We found that under different training strategies, there was no significant difference in the model’s
performance. All three training strategies achieved similar performance levels. However, the iter-
ative pruning process, which involves repeatedly determining important parameters, was executed
on the CPU and proved challenging to accelerate using a GPU. Additionally, when applied to large
graphs, this iterative parameter evaluation process consumed a substantial amount of time. Simi-
larly, the re-initialization method, with its repeated training and reinitialization to assess important
parameters in each layer, resulted in significant time wastage. In some cases, it even took more than
D times the original training time (D is the network depth for GNNs), which hampers its scalability
to large graphs. Based on the above observations, we conducted tests on our framework us-
ing large graphs, specifically employing the SnoHv2 version. We believe that our findings can
provide valuable insights for future research in evaluating and testing various new designs.

The effect of ρ on SnoHv2. Interestingly, we observed varying sensitivities of the parameter ρ
across different datasets. The extreme sparsity of the deep adjacency matrix depends on the proper-
ties of graphs and backbones. Specifically, on sparse graphs like Cora and Citeseer, as the depth of
the GCN increases, the stop rate ρ gradually decreases. For example, with a 16-layer Cora+SnoHv2
configuration, the optimal value for ρ is 0.4, while for 32 and 64 layers, the optimal values are 0.2
and 0.05, respectively. However, on moderately large datasets such as PubMed, sometimes a larger
value of ρ can lead to performance improvement.

This phenomenon also shows slight variations with different backbone architectures. When intro-
ducing residual structures, the sparsity of the deep adjacency matrix becomes even higher. This
might be because residual structures preserve shallow layer information, reducing the need for deep
layer information to assist in predictions.

21

Under review as a conference paper at ICLR 2024

Compare with graph lottery tickets (UGS algorithm). In our experiment, we compared the model
performance of GCN+SnoHv2 and UGS, as well as random pruning under configurations of 8, 16,
and 32 layers. We were pleasantly surprised to find that our results considerably outperformed those
of random pruning and UGS, particularly under these deep-layer conditions. Our model demon-
strated excellent performance. For instance, under a 16-layer setup for the Citeseer dataset, our
results were 6.57% better than the best UGS configuration (five iterations of pruning, with each it-
eration pruning 5%). This trend was consistent across all datasets and under various depth settings,
further corroborating the superior capabilities of our algorithm in deep scenarios.

Upon further analysis, we believe that our enhanced performance stems from the early stopping of
the receptive field for some nodes in graphs. In fact, our network can be understood as a GCN
in the shallow layers and approximates an MLP in the deeper layers. While it ceases to aggregate
information for nodes in the deeper layers, it successfully circumvents the issue of gradient vanishing
that often plagues deep MLPs.

Table 12: Comparison performances of SnoHv2 with UGS and random pruning (RP). Here IPR denotes itera-
tive pruning rate and we set number of layers as 8. We use GCN backbone and set early stopping threshold of
cosine distance as ρ (Detailed descriptions in Appendix E).

Dataset RP UGS(IPR=5%) UGS(IPR=10%) UGS(IPR=20%) SnoHv2 GCN

Cora (L=8) 69.60 73.64 66.01 53.29 85.68 85.11
Citeseer (L=8) 45.50 65.80 51.50 43.10 73.24 72.39
PubMed (L=8) 77.82 84.33 80.91 71.05 86.56 86.41
Cora (L=16) 51.98 60.32 55.53 47.24 84.19 83.75

Citeseer (L=16) 60.36 66.31 58.12 30.13 72.33 71.28
PubMed (L=16) 53.22 79.22 72.52 58.39 85.79 84.77

Cora (L=32) 58.25 69.25 53.64 39.20 83.09 80.33
Citeseer (L=32) 51.95 57.37 50.31 51.24 69.89 68.99
PubMed (L=32) 58.32 77.42 64.26 60.77 84.06 83.76

We also evaluate the joint pruning algorithm of UGS to test our fusion capability with weight pruning
on smaller graphs. We employ GCN and GAT as backbones, and conduct tests on Cora, Citeseer,
and PubMed to examine the results under various depths (4 → 16 layers). We control the weight
sparsity from 0 to 90%, testing SnoHv1 and UGS by iteratively pruning the graph 10 times at a
pruning rate of 5%, and finally showcasing the optimal results when finding GLTs at graph sparsity.

As shown in Fig 13 and 14, we find that UGS struggles to locate GLTs at different sparsity levels, in
contrast, SnoHv1 manages to find a relatively favorable lottery ticket. Interestingly, we discovered
that the benefits yielded from joint pruning for the SnoH algorithm even surpass those from UGS.
We speculate that this might be due to our algorithm having a higher pruning rate for graphs, which
further substantiates the generalization capability of our algorithm in the pruning domain. This
also significantly benefits the graph lottery ticket research line. We argue that our algorithm is
extremely versatile and can exhibit substantial benefits across varying network depths, backbone
configurations, and pruning scenarios.

22

Under review as a conference paper at ICLR 2024

Table 13: The performance comparison between UGS and SnoHv1 in discovering graph lottery tickets (GLTs)
on GCN backbone across various weight sparsity settings (10% → 90%) and GNN layer configurations (4 →
16 layers).

Weight
Sparsity

Method Cora Citeseer PubMed

4 8 12 16 4 8 12 16 4 8 12 16

0% Baseline 83.95 83.65 84.80 83.60 75.10 74.20 73.80 74.00 88.10 84.40 85.60 83.10

10%
UGS 84.05 83.72 82.43 81.85 71.45 71.59 72.80 75.00 88.73 86.42 83.77 80.32

SnoHv1 84.17 85.27 84.12 82.75 75.35 73.19 75.21 74.59 88.11 8.27 85.42 83.79

30%
UGS 81.35 81.67 83.69 83.68 70.46 72.00 72.11 74.23 88.29 82.09 85.78 82.94

SnoHv1 85.64 85.95 83.78 81.05 76.35 74.66 74.89 72.68 88.71 86.42 86.18 83.01

50%
UGS 78.94 78.97 80.03 81.65 68.95 72.20 71.22 73.39 86.07 84.57 82.22 79.50

SnoHv1 85.83 84.53 84.92 81.15 76.65 74.29 76.32 73.45 88.69 85.66 83.44 82.65

70%
UGS 77.45 75.85 79.08 76.84 65.72 68.17 67.80 66.91 78.21 78.92 76.40 76.23

SnoHv1 84.93 84.00 80.70 77.15 75.63 74.29 73.68 73.10 88.96 86.74 86.40 82.75

90%
UGS 75.35 70.95 70.51 67.26 64.55 62.08 53.20 58.61 76.40 76.11 72.27 70.09

SnoHv1 85.43 83.35 81.21 78.25 76.09 74.88 70.56 64.52 89.08 84.27 85.38 80.16

Table 14: The performance comparison between UGS and SnoHv1 in discovering GLTs on GAT backbone
across various weight sparsity settings (10% → 90%) and GNN layer configurations (4 → 16 layers).

Weight
Sparsity

Method Cora Citeseer PubMed

4 8 12 16 4 8 12 16 4 8 12 16

0% Baseline 78.20 78.08 76.12 75.53 69.82 67.50 67.40 67.56 78.10 76.82 76.30 76.81

10%
TGLT 78.79 79.39 73.52 71.49 70.11 67.79 68.10 67.08 78.64 77.91 77.09 76.92

SnoHv1 79.22 78.28 76.70 75.31 69.90 67.69 68.41 67.82 78.44 78.22 77.98 77.10

30%
TGLT 78.25 78.80 73.28 70.66 69.94 66.34 63.52 63.90 78.35 76.93 76.49 73.66

SnoHv1 78.71 78.67 77.10 76.97 69.83 67.77 67.54 68.20 78.64 78.49 77.04 76.91

50%
TGLT 78.21 76.42 70.19 72.00 69.86 67.73 64.49 60.70 78.13 74.36 72.97 70.28

SnoHv1 78.64 78.35 76.57 74.83 69.83 67.46 68.45 67.07 78.34 77.12 76.28 75.33

70%
TGLT 73.74 73.65 70.56 70.88 67.26 63.40 60.77 62.89 74.48 69.08 68.71 65.58

SnoHv1 78.65 77.92 72.65 70.85 69.90 67.02 66.38 66.22 79.12 77.42 73.08 72.15

90%
TGLT 70.10 67.71 62.28 63.56 64.22 63.19 55.46 54.76 66.80 67.72 59.71 60.02

SnoHv1 74.63 73.28 68.12 65.78 63.28 64.30 61.38 60.23 76.01 76.88 69.50 67.42

23

Under review as a conference paper at ICLR 2024

F GENERALIZATION VALIDATION EXPERIMENTS ON GIN AND GAT

n this subsection, we evaluated the generalization ability of SnoHv2. We adopted the experimental
setups of GIN+SnoHv2 and GAT+SnoHv2, and conducted comprehensive experiments on the Cite-
seer and Pubmed datasets. We found that, under the aforementioned experimental setups, the model
almost consistently demonstrated performance improvements. Particularly, with GIN+SnoHv2 un-
der PubMed, the model exhibited the most pronounced performance enhancement, achieving a per-
formance improvement range of 0.22% to 3.1%. These results further clarify the excellent general-
ization and extensibility of the snowflake hypothesis.

Citeseer Citeseer

PubMed PubMed

Figure 13: The experimental settings of GIN+SnoHv2 and GAT+SnoHv2 on the Citeseer and PubMed datasets
are demonstrated using cosine distance. It can be readily observed that our algorithm significantly improves
the performance of various GNN backbones.

G HOMOPHILY RATIO

Definition. Homophily indicates that adjacent nodes in the graph are likely to have similar attributes
or labels. In a social network, for example, people with similar interests or beliefs tend to connect
with each other. This pattern holds true in various kinds of networks, and its presence can signifi-
cantly affect the way GNNs process and learn from the graph.

Impact on GNN Learning. In GNNs, information is often propagated between neighboring nodes,
and node embeddings are updated based on the features of adjacent nodes. If the graph exhibits ho-
mophily, this propagation of information is likely to reinforce consistent features among neighboring
nodes, which can make learning tasks like node classification more tractable.

Challenges. Conversely, if a graph does not exhibit homophily (i.e., similar nodes are not more
likely to be connected), this can present challenges for learning. GNN models might have diffi-
culty making accurate predictions or inferences in such cases, as neighboring nodes may provide
conflicting or less relevant information.

Measuring Homophily. In some scenarios, quantifying the level of homophily can be beneficial for
understanding the graph’s structure and for selecting or designing appropriate models or algorithms.
Various metrics and analyses might be used to gauge the extent of homophily within a given graph.

Heterophily. The opposite of homophily is heterophily, where neighboring nodes are more likely to
be dissimilar. Recognizing whether a graph is more homophilous or heterophilous can be essential
in choosing the correct approach and model for graph-based learning tasks.

In summary, homophily within GNNs signifies the inclination of connected nodes to exhibit similar
attributes. This phenomenon is fundamental to the way GNNs interpret and learn from graphs, guid-
ing not only the design but also the interpretation of various graph learning tasks. Its understanding
leads to more effective model development and nuanced analysis.

24

Under review as a conference paper at ICLR 2024

1

|V|
∑
v∈V

|{(w, v) : w ∈ N (v) ∧ yv = yw}|
|N (v)| (1)

Through heterogeneity analysis (Pei et al., 2020), We use Eq 1 to calculate the degree of isomor-
phism in Arxiv, and we find that the homophily degree in Arxiv is relatively low (0.635). This might
cause our SnoHv2 to be deeper in the early stopping networks when judging the cosine distance at
the hierarchical layer, without overcoming the problem of early aggregation. As a result, this may
lead to an insignificant improvement in our SnoHv2. As shown in Figure 5, we find that our pruning
rate on the 28-layer resgcn is higher than that of the lottery ticket, yet we can achieve relatively
comparable performance. This corroborates the possibility that low-level aggregation may indeed
no longer contribute to the model, allowing for early stopping at shallower layers.

H FUTURE WORK

Future work. (1) Introducing the block concept from CV. A relatively simple and faster way to ac-
celerate training is to introduce the block concept from CV, combining multiple layers of adjacency
matrices into one block. Within the same block, the pruning elements of all adjacency matrices
are the same, and the shallow blocks align the reduced edges to the deeper layers. (2) Designating
improved early stopping strategies, in this paper we have utilized the simplest pruning strategy to
determine whether a node should stop early. We anticipate that in the future, more adaptive early
stopping strategies can be discovered to assist in better supporting the Snowflake Hypothesis.

25

	Introduction
	Implementations & Contributions
	Identifying the unique snowflakes in small graphs
	SnoHv1/v2 on large-scale graphs
	SnoHv1/v2 on Citation Network
	SnoHv2 on Ogbn-Protein and Ogbn-Product

	Case Study
	Conclusion & Future Work
	Details of SnoHv1
	Training schemes
	Details of datasets and backbones
	Related Work
	Experimental settings and results on small graphs
	Generalization Validation Experiments on GIN and GAT
	Homophily ratio
	Future Work

