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Abstract
To promote risk-averse behaviour in safety crit-
ical AI applications, Conditional-Value-at-Risk
(CVaR)—a spectral risk measure—is largely
being employed as a loss aggregation function
of choice. We study the calibration and the
refinement property of CVaR, by providing an
extension of the classical proper scoring risk
decomposition for CVaR. Our result suggests a
trade-off: CVaR provides tail-sensitive calibration
and refinement property, however this is at the
cost of calibration and refinement for non-tail
events. Our result calls to consider the inherent
cost-benefit analysis to employ CVaR as a risk
measure of choice for AI Safety.

1. Introduction
Machine learning algorithms are increasingly being used for
risk prediction in consequential decision-making scenarios
ranging from healthcare, public safety, cyber-security,
finance, etc. These algorithms inform decision-makers
about individual risk, and their predictions are then
translated to specific actions based on some utility or cost
structure. In such high-stakes applications with severe
consequences to individuals, a recent emerging trend is to
control for the “worst-case” errors.

In contrast to the traditional empirical risk minimisation,
where the loss is aggregated using an expectation operator
(or the empirical estimator of it), controlling for “worst-
case” errors require using an alternate functional of the loss
distribution, called risk measures, that are tailored to some
specific tail-behaviour (Fröhlich & Williamson, 2023; Meng
& Gower, 2023; Mehta et al., 2023), e.g. the conditional-
value-at-risk (CVaR) (Serraino & Uryasev, 2013). Such risk
measures have been used to promote risk-averse behaviour
in critical applications (Curi et al., 2020; Levy et al., 2020;
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Wang & Zhou, 2023; Qin et al., 2023; Williamson & Menon,
2019). In critical applications where algorithms are used
to drive decisions, calibration of the predictor is also very
crucial. While calibration properties as induced by minimis-
ing an expected version of the loss are widely documented
and studied, starting with the seminal work of DeGroot &
Fienberg (1983), not much is known about the calibration
properties induced as a result of alternate risk measures.

In this work, we study the calibration property of the
predictor as a result of using CVaR as a loss functional.
CVaR is a very versatile risk measure that interpolates
from the expectation to the supremum, capturing the
range of decision-making behaviours—from risk neutral to
extremely risk averse. Our results state that CVaR results in
tail-sensitive calibration and refinement behaviour, however
this comes at the cost of performance for non-tail events.

2. Background
Notation Let X × Y be the space with some distribution
P on it. We have access to the samples from this distribution
with xi ∈ X denoting the input and yi denotes the associ-
ated label, in the form of a dataset D = {(xi, yi)}N

i=1. The
goal is to find a confidence predictor gθ : X → ∆|Y| for
prediction tasks. This is usually accomplished via optimiza-
tion of some loss function ℓ : X × Y → R+, x, y, gθ 7→
ℓ (y, gθ (x)). Denoting z = ℓ (y, gθ (x)) as the incurred
loss for some (x, y), we also have access to the realizations
of the loss random variable z: {zi}N

i=1. To optimise for
the predictor gθ, we employ a suitable aggregator function
over the losses {zi}N

i=1 to form a summary statistic. Tra-
ditionally, this is the average operator, leading to a vastly
successful paradigm of empirical risk minimisation (ERM)
as described below.

2.1. Empirical Risk Minimisation (ERM) and
Calibration

In ERM, the summary statistic Rθ (D) of the losses {zi}N
i=1

is obtained using the average operator:

R̂θ (D) =
1

N

N∑
i=1

zi =
1

N

N∑
i=1

ℓ (yi, gθ (xi)) , (1)

and the resulting predictor is then obtained as
gθ∗ ∈ argming∈H R̂θ (D). This is arguably the
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foundational mechanism that underlies most of the success
of machine learning systems. Due to the law of large
numbers, R̂θ (D) also forms an unbiased estimator for
the expected population loss, also referred to as the
population risk: E(x,y)∼P [ℓ (y, gθ (x))], thereby lending
this mechanism a specific safety certification—the resulting
predictor g∗θ will make small error on average across the
population under consideration.

Besides this safety certification, decision-makers in
consequential applications also care about the confidence
of the predictor. The output of the associated function g is
interpreted as the confidence of the predictor, and to mean-
ingfully use it as a metric of reliability, decision-makers
care about the canonical calibration of the predictor, as
defined below:

Definition 2.1. (Canonical Calibration). Given d some
divergence measure, e.g. squared error, a confidence predic-
tor g : X → [0, 1]|Y| is said to be (perfectly) canonically
calibrated if the following holds true:

E(x,y)∼P [d (E [ y | g (x) ] , g (x))] = 0. (2)

Canonical calibration, thus, asserts that on average the confi-
dence predictor means what it says, i.e. E [y|g (x)] = g (x) .
When Y = {0, 1}, this translates that if the predictor outputs
that the confidence in some event is α, among all the sam-
ples that have the same confidence α, the event will occur α
times on average. By itself, it is a weak condition, and can be
trivially satisfied, for example, by the average constant pre-
dictor g (x) = E [y], and there are infinitely many calibrated
predictors (Vaicenavicius et al., 2019). Thus, the confidence
predictor is also verified for its refinement as defined below:

Definition 2.2. (Refinement error). With d some divergence
measure, the refinement error of a confidence predictor g :
X → [0, 1]|Y| is defined as

E(x,y)∼P [d (E [ y | g (x) ] , y)] . (3)

Intuitively, refinement means that, on average, the
confidence predictor is useful for predicting y, and low
refinement error signals the discriminativeness of the
confidence predictor.

A machine learning practitioner expects to obtain the confi-
dence predictor with both the low calibration error and the
low refinement error natively as a result of the expected risk
minimisation framework. With the usual proper scoring loss
functions (Gneiting & Raftery, 2007) utilised in the machine
learning pipelines, this expectation is not unfounded as the
population risk can be decomposed into the defined calibra-
tion and the refinement error terms (DeGroot & Fienberg,
1983; 1982; Kull & Flach, 2015), as below:

E [d (y, g (x))] = E [d (E [ y | g (x)] , g (x))]
+ E [d (E [ y | g (x)] , y)] .

(4)

When ℓ is the mean squared error (MSE), the decomposition
is widely known, and is stated below as an example:

E
[
(y − g (x))

2
]
= E

[
(y − E [ y | g (x)])2

]
︸ ︷︷ ︸

refinement error

+ E
[
(g (x)− E [ y | g (x)])2

]
︸ ︷︷ ︸

calibration error

,

where the squared error is the divergence measure d, and the
expectation is over (x, y) ∼ P . Thus, if one is to minimise
a (strictly) proper scoring loss function, one expects the
predictor to have low calibration error and low refinement
error. Conversely, DeGroot & Fienberg (1983) show that if
one is not calibrated, then one can get the risk to go down.
The result is stronger: it says one can reduce the risk if and
only if one is not calibrated. Thus, ERM (over the proper
loss function) and calibration are intricately related.

Calibration of neural networks The connection between
loss minimisation and calibration also applies to deep neural
networks. Recently, Błasiok et al. (2023) showed that if
the neural network’s loss cannot be improved through post-
processing by a simple class of smooth functions, then the
network would be approximately-calibrated, and the argu-
ment goes in the reverse direction as well. The recent class
of neural networks, they argue, natively satisfy this con-
straint, and hence they are relatively well-calibrated. This
is in contrast to the common empirical wisdom that neural
networks are mis-calibrated, and the usual approach has
been to calibrate them post-hoc by methods like tempera-
ture scaling (Guo et al., 2017). The findings of Błasiok et al.
(2023) also explain the inconsistent calibration behaviour
of neural networks where they went from being empirically
well-calibrated (Niculescu-Mizil & Caruana, 2005) to mis-
calibrated (Guo et al., 2017), and then later to be relatively
well-calibrated again (Minderer et al., 2021). The focus of
this work is the native calibration property as a result of the
risk minimisation, and following Błasiok et al. (2023) our
results also apply to deep neural networks.

2.2. General Risk Measures and CVaR

While ERM provides some safety certifications in terms
of minimum average error across the population, and
the resulting notion of calibration and refinement, it is
argued that marginal average guarantees are sometimes
not enough in safety-critical applications, and could even
mislead statistical conclusions, inter alia Simpson’s paradox
(Sprenger & Weinberger, 2021). Thus, in situations where
the safety is the top-most priority, the emerging focus is to
control the extreme errors.

Following Mehta et al. (2023), this is accomplished by the
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loss aggregator of the form

R̂σ
θ (D) =

N∑
i=1

σiz(i) =

N∑
i=1

σiℓ(i) (yi, gθ (xi)) , (5)

where z(1) ≤ z(2) ≤ . . . ≤ z(N) are the order statistics of
the observed losses, and 0 ≤ σ1 ≤ . . . ≤ σN ≤ 1 is a
sequence of non-decreasing weights such that

∑N
i=1 σi = 1.

The aggregator of the above form is generally known as the
L-estimator (Shorack; Maurer et al., 2021), where σs are
defined by the choice of a risk measure. Comparing this to
Equation 1, it means suitably weighing the observed losses
going from the uniform 1

N for all σi as in the case of ERM,
to σN = 1 to only consider the worst observed loss.

CVaR The focus of this work is a specific case of risk mea-
sure, the CVaR. CVaR belongs to the class of spectral risk
measures (Acerbi, 2002) that has gained special attention in
the machine learning literature in recent years. Following
the notation from before, z denotes the loss random vari-
able, and assume it has some distribution function Fz, then
a spectral risk measure is defined by a spectrum function
σ : [0, 1] → R+ such that

∫ 1

0
σ (q) dq = 1 as below:

Rσ [Fz] =

∫ 1

0

F−1
z (q) · σ (q) dq. (6)

A monotonically increasing spectrum function, thus, models
the risk aversion behaviour by putting high weight on the
extreme values of the loss values z. For CVaR, defined by
some α ∈ (0, 1), the spectrum function is given as

σ (q) =

{
0 for 0 < q < α
1

1−α for q ≥ α,

which means the values below the α quantile of the distribu-
tion function Fz are ignored, and loss values in the top 1−α
quantile receive the constant weight. When the involved
distribution function Fz is continuous, CVaR has the equiva-
lent definition as RCVaR[z] = E

[
z | z ≥ F−1

z (α)
]

for some
α. It is appealing as it models a range of decision-making
behaviours ranging from risk neutral (α = 0) to the extreme
risk averse behaviour (α = 1), making it a suitable aggre-
gator for the loss for safety-critical applications with some
desired level of risk aversion.

While there is a growing body of work to replace the ex-
pectation operator with CVaR for loss aggregation to instill
the predictive systems with the risk-averse behaviour for
safety assurances, not much is known how does it affect
the calibration properties of the resulting predictive system.
While it is expected that this mechanism will control for the
desired tail-sensitive errors, it is important to also study the
consequences on the calibration and the resulting decision-
making properties as in extremely safety-critical scenarios,
the cost of the sub-optimal action would be severe.

3. Main contribution: Decomposition for
CVaR

In order to understand the resulting calibration property
as a result of using CVaR as the aggregator for the loss
realizations, we take the theory-first approach to provide
a guideline of the form of decomposition of the population
risk for ERM (Equation 4). The resulting decomposition
will inform what to expect when CVaR is employed
as an aggregation operator in loss minimisation. For
technical convenience, we assume the distribution function
Fz is continuous, and hence the definition of CVaR is
RCVaR [z] = E

[
z | z ≥ F−1

z (α)
]
.

One way of achieving our goal is to realize that RCVaR [z]
is a tail-risk measure, and is fully-specified by the
tail distribution of Fz beyond its α-quantile, defined as
Fα

z =
(Fz(z)−α)+

1−α , through the expectation operator, as
RCVaR [z] =

∫∞
0

z dFα
z (z). This directly gives a tractable

way to apply the already known decomposition results
(Equation 4) in terms of the tail-distribution Fα

z , leading to
the tail variants of the calibration and the refinement error. It
is to be noted that the confidence predictor g is deterministic,
and hence the distribution P over X ×Y can be identifiably
push-forwarded to define a distribution over z.

While this is informative, and leads to the conclusion that
minimising CVaR gives corresponding tail-sensitivity to
the calibration and the refinement error, we are interested
in understanding the calibration (and the refinement)
behaviour for the whole distribution. To achieve this,
we use the Rockafellar fundamental risk quadrangle
(Rockafellar & Uryasev, 2013) from risk management, and
exploit the one-to-one connection between the risk measure
and the associated deviation measure, and the connection
between the deviation measure and the error measure.
While the risk measure gives the aggregated summary
of the random variable, a deviation measure (e.g. the
standard deviation) quantifies the “non-constancy” of the
said random variable, and the error measure (e.g. Lp norms)
quantifies the “non-zeroness” of the random variable, and
they are fundamentally related as stated below:

Theorem 3.1. (Rockafellar & Uryasev (2013)). A risk
measure R [Fz] and the corresponding deviation measure
D [Fz] are related as R [Fz] = E [Fz] + D [Fz]

1. And the
deviation measure D [Fz] can be elicited from the error
measure E [Fz] as D [Fz] = minκ{E [z − κ]}.

The quantity κ∗ = argminκ{E [z − κ]} is referred to
as the statistic associated with the risk measure. As an
example, consider the L2 norm ||z||2 =

[
E
[
|z|2

]]1/2
. It is

easy to see that argminκ ||z − κ||2 = E [z], or minimising

1We abuse the notation, and use E[z] and E[Fz] interchangeably.
Similarly for others.
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the expected squared error elicits the expectation. The
resulting deviation measure then is the standard deviation,
σ (z) = ||z − E [z] ||2. To summarise, a risk measure can
be written in terms of the expectation and the deviation
measure which, in turn, can be written in terms of the error
measure defined in terms of the respective property it elicits.

For CVaR, the statistic κ∗ is the the α quantile value, and
defining A = { z | z ∈ (κ∗,∞)}, and using the result from
Rockafellar fundamental risk quadrangle gives the complete
decomposition for CVaR, stated in Proposition 3.2 :
Proposition 3.2. Denoting A = { z | z ∈ (κ∗,∞)}, the
calibration and refinement decomposition for CVaR is given
as:
RCVaR [z] = E [d (E [ y | g (x)] , g (x))]︸ ︷︷ ︸

average calibration error

+ E [d (E [ y | g (x)] , y)]︸ ︷︷ ︸
average refinement error

+
α

1− α
E [d (E [ y | g (x)] , g (x)) | z ∈ A ]︸ ︷︷ ︸

A conditional calibration error

+
α

1− α
E [d (E [ y | g (x)] , y) | z ∈ A ]︸ ︷︷ ︸

A conditional refinement error

− E [d (E [ y | g (x)] , g (x)) | z ∈ Ac ]︸ ︷︷ ︸
Ac conditional calibration error

− E [d (E [ y | g (x)] , y) | z ∈ Ac ]︸ ︷︷ ︸
Ac conditional refinement error

+ C (κ∗) ,

where z = d (y, g (x)), and d denotes the divergence mea-
sure. C (κ∗) is a constant.

We provide the full derivation in Appendix B. The above
decomposition agrees with the previous conclusion that
minimising CVaR leads to tail-sensitive calibration and re-
finement error. However, it provides more information on
the whole spectrum of the distribution of z. The crucial
thing is the trade-off as stated in Corollary 3.3.
Corollary 3.3. Define A = {(x, y) ∈ X×Y | ℓ (y, g (x)) ∈
(κ∗,∞)}, using RCVaR [z] improves calibration and refine-
ment for A at the cost of calibration and refinement for Ac.

The above trade-off inherently calls to consider the
cost-benefit analysis of employing CVaR as an aggregation
mechanism. Interestingly, the average calibration and the
refinement error would only get better.

4. Consequences: Fat Tails and Extreme
Events

As artificially intelligent (AI) systems become powerful and
their scope broadens in safety-critical applications, it is im-
perative to reconsider the unique challenges posed by such
applications. One such challenge is the challenge of “fat

tails” (Taleb, 2022). Many real-life critical applications con-
form to such distributional challenges: epidemiology, finan-
cial markets, cybersecurity, etc. The crucial challenge here
is the the classical statistical wisdom does not apply to “fat
tails,” for example, the law of large numbers, an implicit con-
vergence result that lends safety guarantees to the traditional
ERM framework faces convergence issues (Taleb, 2022).
Not incorporating such idiosyncrasies lead to fat-tailed rea-
soning errors. Tail-risk measures like CVaR are the emerg-
ing focus to reduce the impact of the unknown unknowns
from the fat-tails. However, our result suggests that this
does not apply broadly, and requires specific considerations.

Hallucination of Large Language Models (LLMs)
LLMs, one of the most impressive technological advance-
ments of our times, are already suffering from the fat-tailed
reasoning error. McCoy et al. (2023) show that one way
hallucination manifests in LLMs is substituting actually
low-probability events for the erroneous high-probability
events. They show that LLMs succeed on tasks that are
of high-probability in nature, with significantly sub-par
performances in low-probability situations. Scaling in
terms of data and compute have been the common force
behind the revolutionary performance of the LLMs, how-
ever, these alone cannot be guaranteed to overcome these is-
sues. Language inherently follows a power law distribution
(Chierichetti et al., 2017), and hence require novel method-
ological approaches to overcome the fat-tailed reasoning er-
rors. One promising approach could be to employ risk mea-
sures like CVaR for tail-sensitive behaviour. However, our
decomposition suggests that natively this might not be the
best approach for a general purpose system such as LLMs,
as providing tail-sensitivity would come at the cost of non-
tail performance. However, LLMs could benefit from tail-
sensitive finetuning for specific safety-critical applications.

Extremile Calibration Calibrated predictions directly
translate to (optimal) decision-making through the expected
utility framework. (Refer to Appendix D to learn more)
However, algorithms cannot be assumed to be perfectly
calibrated, and hence, the interesting question is of miscal-
ibration allocation: where it can be tolerated, and where
not. Since calibration gets its usability through the asso-
ciated decision-making framework, we argue that miscali-
bration gets undesirable when the consequences of wrong
decisions is very high. In other words, for extreme events
with consequential outcomes, mis-calibration is undesirable.
Such is the case for unknown unknowns, and they will be
of critical consequences in many applications of practical
importance. However, the average notion of canonical cal-
ibration is not informative, and have a disparate impact
across different sub-groups. Hebert-Johnson et al. (2018)
argue to assert calibration in every computable sub-group,
however, it is not clear how to define the reference class of
unknown unknowns. We argue that CVaR decomposition
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Figure 1. Calibration and resulting decision-making behaviour for ERM (first row) and CVaR (second row) for a simulation on specific
extreme events scenario: Blue line going below origin denotes clinical harm; we refer the reader to Appendix E to learn more. The ERM
prediction system seems clinically helpful overall (Subfigures 1a and 1b), however it is severely mis-calibrated and actually clinically
harmful for a wide range of utility functions on the rare disease population—a population where correct actions carry the most impact
(Subfigures 1c and 1d). The bottom row show that CVaR overcomes the clinical harm on this diseased population (Subfigure 1h).

gives a tractable way to solve the reference class problem
(Hájek, 2007) for unknown unknowns in terms of the in-
volved predictor’s loss, and to certify calibration there di-
rectly through the loss minimisation principle. We call this
notion of calibration for extreme events as extremile calibra-
tion, and argue for its applicability by drawing connections
to Fisher–Tippett–Gnedenko theorem (Basrak, 2011) in ex-
treme value theory (EVT) (de Haan & Ferreira, 2006) in
Appendix C (Corollary C.4). We devise a simulation to vali-
date that learning with CVaR results in extremile calibration
characteristics, and also improve decision-making for the
extreme but significant events.

Simulation We consider an evolving rare disease affects
a significantly small portion of the population, but could
pose severe concerns to the whole population if went un-
controlled. And due to the evolving nature, it is a case of
unknown unknowns. We refer the reader to Appendix E for
the simulation setup. A medical facility utilising some risk
prediction model cannot afford wrong decision-making for
the diseased sub-group, else it would pose severe hazard.
To aid decision-making, the facility is concerned about the
calibration of the prediction model, and its role in optimal
decision making for different utility functions. Using met-
rics like net benefit and clinical utility (Vickers et al., 2016),
the medical facility concludes that the model is clinically
helpful (Subfigures 1a and 1b). However, the model is actu-
ally clinically harmful for a wide range of utility functions

for the rare disease sub-population (Subfigures 1c and 1d).
Thus, employing this model is hazardous to the population
where it matters the most, and the resulting wrong decisions
have high consequences. Due to the case of extreme events,
it is also computationally difficult to assert calibration in a
post-hoc manner, and also due to the reference class problem
(Hájek, 2007). Subfigures 1g and 1h show that minimising
CVaR asserts calibration on this sub-population, and also
overcomes the associated clinical harm. It also improves the
average calibration on the whole population.

5. Conclusions and Future Work
We extend the popular risk decomposition for proper scoring
losses into the calibration and refinement for the CVaR risk
measure—a popular measure to control “worst-case” errors
for AI safety applications. Our result states the trade-off,
thereby calling to consider involved risk management cost-
benefit analysis for its usability. We also draw connections
to fat-tails and calibration for extreme events: two related
concepts that thwart the safety of AI systems in real-world.
While tail-risk measures like CVaR are promising, but there
are considerations involved. We further argue that fat-tails
pose significant challenges to the applicability of AI systems
in real-world applications, and thus there is a need to adopt
more robust and theoretically sound methodology to miti-
gate risks associated with the rare but high-impact events.
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A. Related Work
Employing CVaR for loss aggregation is an emerging focus to instill the AI systems with safety considerations (Curi et al.,
2020; Levy et al., 2020; Wang & Zhou, 2023; Qin et al., 2023), for fairness (Williamson & Menon, 2019). Mehta et al.
(2023) and Meng & Gower (2023) propose gradient-based optimisation algoritms to minimise CVaR. However, none has
examined the resulting calibration and refinement properties. Our work provides insights to the practitioners of the involved
considerations.

B. Complete Characterization and Derivation
We follow from the Rockafellar fundamental risk quadrangle (Rockafellar & Uryasev, 2013) to express RCVaR [z] as
RCVaR [z] = E [z] + D [z], where D [z] is the associated deviation measure. Denoting z+ = max{0, z} and z− =

max{0,−z}, the error measure for CVaR is E [z] = E
[

α
1−αz+ + z−

]
. As stated in the main text, the statistic κ∗ associated

with CVaR is the α-quantile value, where α is pre-specified. Following Theorem 3.1, the deviation measure D [z] can be
written as D [z] = E

[
α

1−α (z− κ∗)+ + (z− κ∗)−

]
. Thus,

RCVaR [z] = E [z] + E
[

α

1− α
(z− κ∗)+ + (z− κ∗)−

]
= E [z] + E

[
α

1− α
max{0, z− κ∗}+max 0, κ∗ − z

]
= E [z] +

α

1− α
E
[
I(κ∗,∞) [z] (z− κ∗)

]
+ E

[
I (−∞,κ∗) [z] (κ

∗ − z)
]

= E [z] +
α

1− α
E [ (z− κ∗) | z ∈ (κ∗,∞)] + E [ (κ∗ − z) | z ∈ (−∞, κ∗)] .

Denoting A = {z | z ∈ (κ∗,∞)}, the RCVaR [z] is expanded into three terms: one overall E [z], A conditional term and
the Ac conditional one. We already know the calibration and refinement decomposition result for E [z]. We further use
the linearity of expectation to use the conditional version of the same result on the other two terms, resulting the final
decomposition in Proposition 3.2.

C. Connections to Extreme Value Theory
Extreme Value Theory (EVT) (de Haan & Ferreira, 2006) concerns with the asymptotic distribution of max{x1,x2, . . . ,xN}
as N → ∞ where each xi is sampled in an i.i.d. fashion from some distribution. The theory is inspired from the classical
central limit theorem (CLT) that gives a tractable asymptotic behaviour for the x1 + x2 + . . .+ xN in terms of the standard
normal distribution. Similar to the CLT where the asymptotics are given in terms of the normal distributions, EVT define the
asymptotic distribution for the extreme in terms of the extreme value distributions

Theorem C.1. (Extreme Value Distribution). (de Haan & Ferreira, 2006; Fisher & Tippett, 1928; Gnedenko, 1992). The
class of extreme value distribution functions is Gγ (x) (ax+ b) with a > 0, b ∈ R defined as

Gγ (x) = exp{− ( 1 + γx)
−1/γ}, 1 + γx > 0,

where γ ∈ R, is called as the extreme value index. For γ = 0, the Gγ (x) is taken as exp{−e−x}.

Elucidating on EVT in not our focus, however, EVT states that the extreme value(s) in a sample would asymptotically follow
some form of the extreme value distribution whose nature will be defined by the extreme value index γ. EVT is attractive as
it allows one to use this result to fit models to extrapolate for the nature of extreme events for safety assurances. One can
further characterise different distributions depending on the value of the extreme value index γ, as below:

Proposition C.2. (de Haan & Ferreira, 2006). The extreme value index γ can be used to characterise different class of
distributions:

1. γ > 0: Gγ (x) < 1 for all x, i.e. the distribution extends to infinity. Also x → ∞ implies 1−Gγ (x) ∼ γ−1/γx−1/γ ,
i.e. the distribution has a rather heavy right tail; or the moments of order greater than or equal to 1/γ do not exist.
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2. γ = 0: the distribution again extends to infinity. However, the distribution is light-tailed as 1 − G0 (x) ∼ e−x as
x → ∞. And all moments exist.

3. γ > 0: the right endpoint of the distribution is −1/γ, and hence a short tail.

Thus, in terms of the unknown unkowns, distributions that approach extreme value distributions with the extreme value
index in γ ∈ [0,∞) pose challenges with further challenges posed by γ ∈ (0,∞) due to the heavy-tailed nature. Due to the
moments not existing beyond 1/γ further poses significant challenges to the standard statistical machinery, and Taleb (2022)
refers to this class of distributions as the Extremistan. This is also the class that carry the maximum impact, and covers
many crucial safety-critical applications like finance and wealth, epidemiology, natural disasters and environmental risks. In
terms of risk and mis-calibration allocation, wrong or sub-optimal decisions here carry the severe consequences. It turns out
employing tail-risk measures like CVaR can natively consider this allocation. This directly follows from the convergence
result from Mehta et al. (2023), restated below for completion:

Proposition C.3. (Mehta et al., 2023). Given z1, z2, . . . , zN realizations from the associated loss distribution with
distribution function Fz, then the empirical version of the spectral risk measure R̂σ[D] =

∑N
i=1 σi · z(i) for the spectrum

function σ(q), q ∈ (0, 1), and its population counterpart Rσ[Fz], and assume that E|z|p < ∞ for some p > 2, and
||σ||∞ = supσ∈(0,1) |σ (q) | < ∞, then the following convergence holds true:

E|R̂σ[D]−Rσ[Fz]|2 ≤
2||σ||2∞

(
p

p−2

)2

E[|z|p] 2p
N

.

The above convergence result states that, under the assumption of “tame” tails: E|z|p < ∞ for some p > 2 and the finiteness
of the assumed spectrum function (in terms of the supremum norm), the finite sample version of the risk estimator and the
population version converge as N → ∞. The next corollary establishes the notion of “tame” tails with the extreme value
distribution for a range of extremistan distributions.

Corollary C.4. L-estimators of the form in Equation 5 with risk measures with finite spectrum function in terms of the
supremum norm covers a sub-class of heavy-tailed distributions with extreme value index γ ∈ [0, 0.5).

Thus, tail-risk measures like CVaR form a suitable aggregators for risk managment for some class of extremistan problems.
While CVaR is motivated to control “worst-case” errors in the machine learning literature, the above result strengthens
their use for some mild cases of heavy-tailed critical applications. The proposed risk management further lends to provide
calibration allocation to control for sub-optimal actions in such applications. We are not aware of this discussion appearing
in other contemporary machine learning works. In the future, it is interesting to use results from the EVT to further expand
the range of covered extreme tail index γ.

D. Calibration and Decision Making
In this section, we elaborate on the connection between calibration and decision-making. Following the notation from
before, we also have some (finite) action space A and a utility function u : A × Y → R+ that assigns the utility
for the action a ∈ A when the outcome is y. Under the expected utility framework, the optimal action for x = x is
a∗ = argmaxa∈A Ey∼p∗(x)[u(a, y)], i.e. the action that maximizes the expected utility under p∗(x) = P (y | x = x). Thus,
to be able to take the optimal action, one needs access to p∗ (x). However, it is generally unavailable due to computational
and statistical estimation issues. The question is that if one can use the calibrated predictor g (x), instead, for decision-
making. It is now widely (Dwork et al., 2021; Zhao et al., 2021; Grünwald, 2016) known that one certainly can for any
arbitrary utility function. For completion, we state the result from Noarov & Roth (2024):

Proposition D.1. (Calibration and Decision-making). (Noarov & Roth, 2024). Assume g (x) is canonically calibrated.
Then for any agent with some utility function u, the expected utility decision policy â = argmaxa∈A Ey∼g(x) [u (y, a)], is
the optimal policy among all the decision policies from predictions to actions.

Thus, having a calibrated predictor is desirable as one can employ it to make correct actions, when p∗ (x) is not available.

E. Simulation Setup
We describe the setup for the simulation study in the main text.
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Figure 2. Density plot for the simulated data for the simulation study. Y = 1 denotes diseased sub-population and Y = 0 denotes the
non-diseased sub-population.

Data In order to have control over the tails, we chose to work with the synthetic data. We consider the setup for a rare
evolving disease that is currently prevalent in a small portion of the population. We set the base rate of this disease to be
20%. We sample features for the diseased sub-population from the standard t-distribution with 3 degrees of freedom. For the
healthy sub-population, the features are drawn from the log-normal distribution with µ = 0 and σ = 0.25. We draw 5000
samples in total, with the density plot shown in Figure 2. Since the diseased sub-population forms a case of the unknown
unknowns, the density for the diseased population features Y = 1 has richer tail behaviour. We split this simulated dataset
into 80− 20% training-test split. We verify the marginal properties of the model on the test split of the dataset. We further
sample from the diseased population distribution to verify the sub-population property on it.

Model We fit a regular Logistic regression model to this dataset. The resulting predictor has the AUC-ROC score of 0.90
which denotes good discriminativeness property. For fitting CVaR, we use α = 0.30 and use the off-the-shelf optimisation
framework: sqwash2 (Laguel et al., 2021), and the resulting predictor has the AUC-ROC score of 0.95. Thus, by accounting
for the extreme errors, the CVaR minimisation improves the discriminativeness of the predictor as well as the resulting
calibration (as shown in Subfigures 1a and 1e).

Metrics While AUC-ROC informs the decision-makers about the discriminativeness of the resulting predictor, it does not
consider the connection with the involved utility function a decision-maker has in mind, and the consequences involved.
A medical facility could be working with a range of utility functions, hence, the usability of the risk predictor is studied
with respect to the clinical utility (Vickers et al., 2016) for a range of utility functions. When the action space A is binary,
the decision-making behaviour reduces to thresholding the predicted risk based on some threshold that depends on the
utility structure. Since utility functions are arbitrary, the clinical utility of a predictor is determined by its usability for
all the thresholds t ∈ [0, 1]—the risk prediction model is clinically helpful if it has positive clinical utility for all the
decision-making utility considerations. In Subfigures 1b, 1d, 1f, 1h, the x-axis denotes different thresholds that correspond
to different utility function structure. Roughly, the lower the threshold, the more risk-averse the decision-maker is, and
vice-versa. Net Benefit (Vickers et al., 2016) is a metric that considers the consequences of using a certain risk prediction
algorithm in real-world. The metric inherently considers how many false positives a decision-maker is willing to tolerate to
reach one true positive, with a more risk-averse individual willing to handle more false-positives for one true positive. For a
threshold t ∈ [0, 1], the net benefit is defined as

Net Benefit =
True Positives

N
− False Positives

N
· t

1− t
.

An even more risk-averse individual can choose to treat (or take favourable action) for all the individuals, and this is referred
to as the all baseline. A risk prediction algorithm is referred to as useful if the net benefit of using it exceed the all baseline,
with clinical utility for a threshold t defined as:

Clinical utility(t) = Net Benefit(t) − Net Benefit(All Baseline).

2https://github.com/krishnap25/sqwash

https://github.com/krishnap25/sqwash
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A model is called clinically helpful if the clinically utility is positive for all thresholds t, which means the model can safely
be used in the real-world for a range of arbitrary utility functions. We refer the reader to (Vickers et al., 2016) to learn more.
It is also shown that mis-calibration affects the clinical utility of the risk prediction algorithm (Calster & Vickers, 2015),
which our simulation also confirms.


