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Abstract

Recent advances in named entity recognition001
(NER) have pushed the boundary of the task002
to incorporate visual signals, leading to many003
variants, including multi-modal NER (MNER)004
or grounded MNER (GMNER). A key chal-005
lenge to these tasks is that the model should be006
able to generalize to the entities unseen during007
the training, and should be able to handle the008
training samples with noisy annotations. To009
address this obstacle, we propose SCANNER010
(Span CANdidate detection and recognition for011
NER), a model capable of effectively handling012
all three NER variants. SCANNER is a two-013
stage structure; we extract entity candidates014
in the first stage and use it as a query to get015
knowledge, effectively pulling knowledge from016
various sources. We can boost our performance017
by utilizing this entity-centric extracted knowl-018
edge to address unseen entities. Furthermore,019
to tackle the challenges arising from noisy an-020
notations in NER datasets, we introduce a novel021
self-distillation method, enhancing the robust-022
ness and accuracy of our model in process-023
ing training data with inherent uncertainties.024
Our approach demonstrates competitive perfor-025
mance on the NER benchmark and surpasses026
existing methods on both MNER and GMNER027
benchmarks. Further analysis shows that the028
proposed distillation and knowledge utilization029
methods improve the performance of our model030
on various benchmarks.031

1 Introduction032

Named entity recognition (NER) is a fundamen-033

tal task in natural language processing to identify034

textual spans that correspond to named entities in035

the given text, and classify them into pre-defined036

categories, such as persons, locations, and organi-037

zations (Li et al., 2020). The extracted information038

can be utilized for various downstream tasks, in-039

cluding entity linking and relation extraction.040

The rapid growth of the amount of multi-modal041

contents on social media platforms has given rise to042

(a) NER

(b) Multimodal NER

(c) Grounded Multimodal NER
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Figure 1: Illustrations of NER, MNER, and GMNER
tasks. The NER task aims to identify named entities
from the given text. MNER extends this task to utilize
additional image informations. GMNER additionally
requires the model to predict entity bounding boxes in
the given image, if they are present.

the multi-modal variants of NER. The most promi- 043

nent example is multi-modal NER (MNER; Zhang 044

et al. (2018)) , which extends traditional NER to 045

identifying named entities in the text based on ad- 046

ditional image input paired with the text (Fig. 1b). 047

Another recent example is the grounded MNER 048

(GMNER; Yu et al. (2023)); here, one addition- 049

ally aims to predict the bounding boxes of named 050

entities appearing in the given image (Fig. 1c). 051

A major challenge in NER, MNER, and GM- 052

NER tasks is the presence of unseen entities in the 053

test datasets, which are not found in the training 054

datasets. Traditional models often struggle with 055

low performance on these unseen entities (see Ta- 056

ble 1). To tackle this problem effectively, it is im- 057

portant to use knowledge about unseen entities in a 058

way that boosts ability of the model to generalize 059

and perform well across different types of data. In 060

this paper, we introduce SCANNER, which stands 061

1



Datasets Methods Seen entities Unseen entities

CoNLL2003 BERT-base 93.78 80.90
Ours (w/o Knowledge) 96.29 89.68

Twitter-2015 BERT-base 79.81 57.81
Ours (w/o Knowledge) 87.18 73.84

Twitter-2017 BERT-base 93.81 67.76
Ours (w/o Knowledge) 95.68 82.96

Table 1: A comparison of test F1 scores for the named
entities that have appeared at least once in the training
dataset, versus the entities that have not appeared.

Text

Image

RT @TheLilKimNews : Lil Kim is set to be 
perform at Kroger during the MTV VMAs ! 
http://t.co/fb2UFNZPfG

…

Extract 
Objects

Filter and sort by CLIP model

Image Caption Object name and  
Image captionWiki

Result
GT: Organization
Baseline: Location
SCANNER (Ours) : Organization

Candidate entity result of the stage1: Kroger

Figure 2: ‘Kroger’ is an unseen entity that is hard to
recognize as an Organization or Location. By our knowl-
edge base model, it brings to successful prediction.

for Span CANdidate detection and recognition for062

Named Entity Recognition. Our approach is de-063

signed to effectively use knowledge about unseen064

entities, addressing NER, MNER, and GMNER065

tasks with improved robustness. SCANNER adopts066

a two-stage structure, comprising a span candidate067

detection module and entity recognition module.068

The span candidate detection module identifies069

named entity candidates within sentences. Follow-070

ing this, the entity recognition module uses these071

candidates as queries to extract relevant knowledge072

from various sources, effectively recognizing the073

class of the entity candidate. To our knowledge,074

this entity-centric knowledge extract method repre-075

sents the first attempt in this field. As illustrated in076

Fig. 2, we were able to accurately identify ‘Kroger’077

as an ‘organization’ by utilizing object knowledge.078

SCANNER effectively gathers and uses knowledge079

from various sources, boosting its performance in080

the challenging NER, MNER, and GMNER bench-081

marks. Notably, the GMNER challenge involves082

the intricate process of identifying entities and de-083

termining their bounding boxes within images. The084

architecture of SCANNER, leveraging its compre-085

hensive knowledge, is effective in addressing the086

GMNER task. The effectiveness of SCANNER in087

the GMNER task is highlighted by establishing a088

new baseline that is over 12 points higher than the089

previous standard, as measured by the F1 score. Ad-090

ditionally, we introduce the novel self-distillation091

Text Dataset

[The [Oval]ORG]ORG CoNLL2003

[The [World Cup]MISC]MISC Twitter2015

[Taste of [Toronto]LOC]MISC Twitter2015

[Mrs. [Brozik]PER]PER Twitter2017

[[Robert Downey ]PER Jr]PER Twitter2017

Table 2: Examples of gold annotation and potential
alternatives. The gold annotations are marked in blue
[*], whereas the alternative annotations are in red [*].

method, called as Trust Your Teacher. The NER 092

task faces challenges with noisy annotations (Wang 093

et al., 2019; Zhu and Li, 2022), particularly at entity 094

boundaries where exact span matching is crucial 095

and ambiguity often leads to increased noise (see 096

Table 2). Our distillation method, which softly uti- 097

lizes both the prediction of the teacher model and 098

ground truth (GT) logit, addresses the challenges 099

of noisy annotations. 100

Our approach demonstrates competitive perfor- 101

mance on NER and surpasses existing methods on 102

both MNER and GMNER. Further analysis shows 103

that the proposed distillation and knowledge uti- 104

lization methods improve the performance of our 105

model on various benchmarks. 106

The contributions of SCANNER are summarized 107

in three key aspects: 108

• We propose a new distillation method that 109

softly blends the predictions of the teacher 110

model with ground truth annotations to en- 111

hance data quality and model training. 112

• We develop SCANNER, a two-stage struc- 113

tured model that effectively utilizes knowl- 114

edge to improve performance, particularly in 115

recognizing unseen entities. 116

• The SCANNER model shows competitive per- 117

formance in NER benchmarks and demon- 118

strates higher performance than existing meth- 119

ods in MNER and GMNER benchmarks. 120

2 Related work 121

Prior works on MNER typically operates by first 122

extracting the NER-related features from the im- 123

age, and then combining these features with text 124

features to recognize name entities. Roughly, ex- 125

isting works fall into two categories according to 126

how they extract image features. 127

Textual features. Several works extract the textual 128

metadata from the given image and utilize them as 129
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features for the subsequent NER task (Wang et al.,130

2022b,a; Li et al., 2023b). For instance, ITA (Wang131

et al., 2022b) extracts object tags, image captions,132

and OCR results from the given image. Similarly,133

Li et al. (2023b); Chen and Feng (2023) also ex-134

tracts image captions, but additionally utilizes large135

language model as an implicit knowledge source136

to further refine the features. MoRe (Wang et al.,137

2022a) takes a slightly different approach, using138

an image-based retrieval system to retrieve textual139

descriptions of the closest images in the database.140

Visual encoders. Another line of work attempts to141

extract the image features using a visual encoder,142

such as pre-trained ResNets, ViTs, or CLIP vision143

encoder (Wang et al., 2022d; Zhang et al., 2023;144

Chen et al., 2023). The extracted features are then145

combined with the text features extracted from a146

separate text encoder, which often involves addi-147

tional alignment via cross-modal attention (Chen148

et al., 2022; Lu et al., 2022; Wang et al., 2022d;149

Zhang et al., 2023; Chen et al., 2023). Notably,150

PromptMNER (Wang et al., 2022c) calculates the151

similarity between visual features and various text152

prompts to extract visual cues that are loosely re-153

lated to the input text.154

In this paper, we take a different path and extract155

the image features conditioned on the information156

extracted from the given text. Up to our knowledge,157

it is the first such attempt in the context of MNER.158

In addition, a new task has been introduced,159

which not only incorporates image inputs but also160

actively addresses the task of grounding entity lo-161

cations within images (Yu et al., 2023).162

3 Method163

In this section, we first introduce the architecture164

of the proposed method, which comprises the span165

candidate detection module and the named entity166

recognition module (Sec. 3.1). Then, we describe167

the named entity recognition module, which per-168

forms entity recognition and visual grounding in169

the image for each entity candidate (Sec. 3.2).170

Finally, we explain a novel distillation method,171

named Trust Your Teacher, which is designed to172

robustly train our model even in the presence of173

noisy dataset annotations (Sec. 3.3).174

3.1 SCANNER Architecture175

The primary focus of this paper is to perform176

MNER using both knowledge extracted from177

within images and external knowledge, even for en-178

Entity
Recognition

ModuleInput sentence

Entity candidate

Object Knowledge
Extractor

Wiki Knowledge
Extractor

Image Captioner

Span
Candidate
Detection
Module

STAGE1 STAGE2

input Im
age

Figure 3: The overall architecture of the proposed
SCANNER method. The two-stage structure allows
for efficient extraction and utilization of knowledge, as
knowledge is extracted only for those entity candidates
that were filtered through in stage 1.

tities not encountered during training. To achieve 179

this, as illustrated in Fig. 3, we propose a two-stage 180

architecture, known for its efficiency in extracting 181

and searching for knowledge from various sources. 182

In the first stage, we extract named entity candi- 183

dates, and in the second stage, we efficiently search 184

and extract only knowledge relevant to these candi- 185

dates. This acquired knowledge is then utilized for 186

entity recognition. 187

Stage 1: Span Candidate Detection Module. In 188

the first stage of SCANNER, the transformer en- 189

coder (Liu et al., 2019) is employed to detect entity 190

candidates from the input text. During this phase, 191

we utilizes BIO (Beginning, Inside, Outside) tag- 192

ging to classify each token in the input text, de- 193

termining whether it corresponds to the beginning, 194

inside, or outside of an entity span. The classifica- 195

tion process is guided by cross-entropy loss. 196

Stage 2: Entity Recognition Module. In Stage 2, 197

SCANNER performs named entity recognition and 198

visual grounding for each entity candidate detected 199

in Stage 1. It utilizes each entity candidate as a 200

query to extract and leverage the necessary knowl- 201

edge for the tasks. During this process, SCAN- 202

NER efficiently searches and extracts knowledge 203

by focusing on the initially detected entity candi- 204

dates rather than the entire input text. SCANNER 205

utilizes both internal (image-based) and external 206

(e.g., Wikipedia) knowledge sources to perform 207

MNER on unseen entities, not encountered in train- 208

ing. Detailed information about these modules will 209

be provided in Section 3.2. 210

3.2 Entity Recognition Module 211

For each entity candidate identified by the span 212

candidate detection module, the entity recogni- 213
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Object detector &
captioning model

An Image of Steve Kerr

American basketball
 player and coach (born 1965)

search
Wikipedia 

Entity candidate: Steve Kerr

captioning model

two basketball players talking
to each other on the court.

CLIP

Object knowledge extractor

Image Input

object knowledge 2 : object man, caption "person is listed or ranked 2 on the list the greatest spurs players of all time."

object knowledge 1 : object head, caption "person is listed or ranked 4 on the list the best hairstyles for bald men."

object knowledge 3 : object hair, caption "an older man with a white beard standing in front of a crowd."

head

hair

man

The entity is [mask] for {entity} in this sentence.{original sentence} {Wikipedia knowledge} {image caption} [obj] {object knowledge 1} [obj] {object knowledge 2} ...

RoBERTa

INPUT embedding : mask obj 1 obj 2

Model output

Entity is People Overlap score 0.2 Overlap score 0.8

CLIP scores

Arrange object order based on CLIP score
Image captionerWikipedia knowledge extractor

object regions, classes, captions

Figure 4: An illustration of the entity recognition module (stage 2). Based on the entity candidates (extracted in
stage 1), SCANNER utilizes various knowledge sources such as Wikipedia, image captioner, and object knowledge
extractor. The knowledge collected from these sources are then processed by RoBERTa to give the final prediction.

tion module processes a text prompt that includes214

both the entity candidate and associated knowl-215

edge. This knowledge, extracted from images and216

external knowledge sources, allows for performing217

MNER on unseen entities that were not encoun-218

tered during training. Our methodology involves219

extracting this knowledge from a variety of sources,220

utilizing the identified entity candidates as the basis221

for the extraction process. Then, this module classi-222

fies the class of each entity candidate and performs223

grounding to determine which object in the image224

corresponds to the entity. A detailed illustration is225

shown in Fig. 4.226

3.2.1 Prompt construction with knowledge227

The entity recognition module extracts and utilizes228

useful knowledge from various sources when con-229

structing the text prompt corresponding to the in-230

put. The knowledge applied for constructing text231

prompts in our method includes the following.232

Wikipedia knowledge. Initially, information is233

searched using the entity candidate as a query in234

external knowledge source, which is Wikipedia.235

This information can be valuable for classifying236

the type of entity for each candidate and, more-237

over, enables the model to classify unseen entities238

that were not encountered during training. As il-239

lustrated in Fig. 4, for entity candidates like ‘Steve240

Kerr’, it enhances entity recognition performance241

by providing valuable information for classification242

as an American basketball player and coach.243

Image caption. To effectively utilize visual infor- 244

mation, image captioning results are also used. We 245

use the BLIP-2 (Li et al., 2023a) to extract synthetic 246

captions for the whole image. 247

Object knowledge. In addition to global informa- 248

tion about the image, object-level information is 249

also beneficial for entity recognition. To achieve 250

this, results obtained from the object detector are 251

employed as knowledge. Initially, object classes 252

are converted into text format and used as knowl- 253

edge. Then, synthetic captions for each object 254

region are also utilized in conjunction with class 255

names. This information is structured as details 256

corresponding to each object, along with a special 257

token denoted as [obj], as shown in Fig. 4. Addi- 258

tionally, during this process, the visual-language 259

similarity between each object and entity candidate 260

is calculated, and objects are arranged in order of 261

high similarity, which is then included in the text 262

prompt. One of the problems with existing meth- 263

ods for the MNER task is that the model sometimes 264

references objects in the image that are irrelevant 265

to the entity, leading to incorrect recognition. By 266

arranging the object details in the text prompt ac- 267

cording to the visual-language similarity order with 268

the entity, our model can focus more on the object 269

regions that are highly related to the entity. In this 270

paper, CLIP (Radford et al., 2021) is employed for 271

visual-language similarity, specifically calculating 272

the similarity between the text representation of the 273

entity candidate and the visual representation of 274
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each Region of Interest (RoI).275

All such knowledge mentioned above is con-276

verted into a textual format and integrated with277

the text prompt for entity recognition and visual278

grounding.279

The text prompt, structured to include entity can-280

didates, the entire input text sentence, and extracted281

knowledge, is presented as "The entity is [mask]282

for {entity} in this sentence. {original sentence}283

{Wikipedia} {image caption} [obj] {object 1} [obj]284

{object 2} ...".285

3.2.2 Encoder and Objective286

The prompts constructed for each entity candidate287

are input into a transformer encoder model (Liu288

et al., 2019). For entity recognition, the output289

token representation of the [mask] token in the text290

prompt xi for the i-th entity candidate is fed into a291

linear layer to predict the probability distribution292

ŷi. Given the ground truth y, the objective function293

is to minimize the cross-entropy loss between the294

predicted entity class distribution and the ground295

truth logit:296

Lc = −
N∑
i=1

yi log ŷi, (1)297

where N is the total number of the entity candi-298

dates.299

Additionally, the visual grounding is performed300

by feeding the output token representation of the301

j-th [obj] token from the text prompt xi into a lin-302

ear layer. This is followed by a sigmoid function,303

which aids in predicting the overlap score ôij be-304

tween the ground truth image region grounding305

entity candidate i and object j. The objective func-306

tion of visual grounding is calculated based on the307

binary cross-entropy loss between the overlap score308

and the ground truth Intersection over Union (IoU):309

Lg = −
N∑
i=1

∑
j

oij log ôij

+ (1− oij) log(1− ôij),

(2)310

where oij is the ground truth IoU between the311

ground truth image region of the entity i and object312

region j.313

In training stage, we combine two losses as the314

final loss of our model:315

L = Lc + λLg, (3)316

where λ is the weighting coefficient, we set λ to 317

1 for the GMNER task and to 0 for the NER and 318

MNER tasks in this paper. 319

3.3 Trust Your Teacher 320

We introduce the novel self-distillation method, 321

called as Trust Your Teacher (TYT). Our distil- 322

lation method, which softly utilizes both the pre- 323

diction of the teacher model and ground truth (GT) 324

logit, addresses the challenges of noisy annotations. 325

First, we train the teacher model using equation 1, 326

and then train the final student model using both 327

the predictions of the teacher model and the ground 328

truth labels. The most significant feature of our 329

proposed method is that it assesses the reliability 330

of each sample by utilizing the prediction of the 331

teacher model to determine if it is trustworthy or 332

noisy. Based on this assessment, the method sets 333

the weights between the model prediction and the 334

gt label, which are then reflected in the loss calcula- 335

tion. The objective of the our proposed distillation 336

method composes a cross-entropy loss with ground 337

truth and Kullback-Leibler Divergence (KLD) loss 338

with teacher predictions: 339

LTY T =
∑
i

ai LCE

(
yi, S(xi, θS)

)
+ (1− ai)LKLD

(
S(xi, θS), T (xi, θT )

)
,

(4) 340

where xi is the input sample, θS and θT are the 341

model parameters of the student and teacher, S and 342

T are the prediction distributions of the student and 343

teacher and ai is a balancing factor proposed in 344

this paper. In detail, ai determines whether to trust 345

the teacher model prediction or the ground truth, 346

and it represents the prediction score of the teacher 347

model for the ground truth class index, which is 348

T (xi, θT )[yi]. This implies that since the teacher 349

model is well-trained, if the score for the ground 350

truth class is high, then the sample is considered re- 351

liable and more weight is given to the cross-entropy 352

with the ground truth label. Conversely, if the score 353

is low, the sample is assumed to be an unreliable, 354

noisy sample, and more weight is placed on the 355

KLD loss with the prediction of the teacher model, 356

rather than the ground truth label. 357

To demonstrate the significant impact of our 358

TYT approach, we have carried out some experi- 359

ments. Fig. 5 illustrates our experiments on a text 360

classification task in MNLI dataset. We extracted 361

about 30% of the train set for experimental effi- 362

ciency and intentionally added label noise at rates 363
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Figure 5: Experiments of text classification task in
MNLI datasets. ‘matched’ is in-domain, and ‘mis-
matched‘ is out-domain.

Methods
Twitter-2015 Twitter-2017

Pre. Rec. F1. Pre. Rec. F1
Base 83.28 87.68 85.43 90.96 93.23 92.08
Half 83.36 87.69 85.47 90.31 92.92 91.60
Full 83.63 87.72 85.63 90.53 92.95 91.72
TYT 83.59 87.98 85.73 90.94 93.28 92.09

Table 3: Ablation study on the MNER dataset in first
stage. ‘Half’ is when ai is 0.5 and ‘Full’ is 0. In ‘TYT’,
ai is adjusted through the trust your teacher method.

of 10% and 20% to this subset. We then com-364

pared the performance of the model trained with365

our TYT method on the train set with added label366

noise, against the baseline that does not use distilla-367

tion. Fig. 5 indicates that using TYT demonstrates368

relatively robust performance under moderate noise369

conditions. Additionally, we compare our method370

with the conventional soft distillation methods that371

do not dynamically vary the ai parameter in the372

entity detection task, stage 1 of MNER. Table 3373

shows that our method has better performance on374

MNER benchmarks, and adaptively varying the ai375

is more effective than keeping it fixed.376

We apply the TYT to both stages 1 and 2. But in377

NER, we only use it in stage 1. The loss from the378

TYT is applied only to the classification loss and379

not to the loss for visual grounding.380

4 Experiment381

4.1 Dataset382

Our methodology’s efficacy was assessed using383

widely used datasets for each task. We utilize384

CoNLL2003 (Tjong Kim Sang and De Meulder,385

2003) for NER, Twitter-2015 (Zhang et al., 2018)386

and Twitter-2017 (Lu et al., 2018) for MNER, and387

Twitter-GMNER (Yu et al., 2023) for GMNER.388

Details are in appendix B.389

4.2 Experimental Setups 390

Evaluation metrics. To evaluate our method, we 391

use Entity-wise F1, precision, and recall scores for 392

NER and MNER tasks. For the GMNER task, there 393

is an additional evaluation of the visual grounding. 394

For instances, where the visual grounding is un- 395

groundable, a prediction is correct if it is classified 396

as ‘None.’ For others, correctness hinges on the 397

IoU metric. A prediction is considered correct if 398

the IoU score between the predicted visual region 399

and the ground truth bounding boxes exceeds a 400

threshold of 0.5. We use F1, precision, and recall 401

scores, which are calculated based on the aggregate 402

correctness across entity, type, and visual region 403

predictions. Our primary focus is on the F1 score 404

in line with numerous preceding studies. 405

Implementation details. Following most re- 406

cent works, we implement our model utiliz- 407

ing RoBERTa-large in NER, XLM-RoBERTa- 408

large (Conneau et al., 2020) for MNER, GMNER 409

both in stage 1 and stage 2. For the object detec- 410

tor, we use VinVL (Zhang et al., 2021b) following 411

the settings with ITA (Wang et al., 2022b). To 412

address the requirements of visual-language sim- 413

ilarity and image caption, we use each of them 414

CLIP 1 and BLIP-2 2 models respectively. Detailed 415

hyper-parameter settings are shown in appendix A. 416

All experiments were done on a single GeForce 417

RTX 4090 GPU or NVIDIA H100 GPU, and we 418

report the average score from 5 runs with different 419

random seeds for each setting. 420

Also we applied several minor methods to en- 421

hance performance. In the second stage, we incor- 422

porated a ‘non-entity’ label to account for instances 423

where the model erroneously predicts entity can- 424

didates not present in the dataset. That allowed 425

for more accurate handling of such cases. We aug- 426

mented it with non-entity data by dividing the train- 427

ing set into four folds in stage 1 and validating each 428

fold. Secondly, we employed adversarial weight 429

perturbation (AWP) (Wu et al., 2020) in stage 1 , 430

which enhances the robustness and generalization 431

capabilities of the model. We initiated AWP from 432

an intermediate stage of our training process. 433

4.3 Experimental results in various NER tasks 434

Experimental results in NER. To evaluate the 435

effectiveness of our approach in NER, we primarily 436

compared our model against the existing methods 437

1openai/clip-vit-large-patch14
2Salesforce/blip2-opt-2.7b
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Methods
Twitter-2015 Twitter-2017

Single Type(F1) Overall Single Type(F1) Overall
PER LOC ORG OTH. Pre. Rec. F1 PER LOC ORG OTH. Pre. Rec. F1

Text

BERT-CRF† 85.37 81.82 63.26 44.13 75.56 73.88 74.71 90.66 84.89 83.71 66.86 86.10 83.85 84.96
BERT-SPAN† (Yamada et al., 2020) 85.35 81.88 62.06 43.23 75.52 73.83 74.76 90.84 85.55 81.99 69.77 85.68 84.60 85.14
RoBERTa-SPAN† (Yamada et al., 2020) 87.20 83.58 66.33 50.66 77.48 77.43 77.45 94.27 86.23 87.22 74.94 88.71 89.44 89.06

Text+Image

UMT (Yu et al., 2020) 85.24 81.58 63.03 39.45 71.67 75.23 73.41 91.56 84.73 82.24 70.10 85.28 85.34 85.31
UMGF (Zhang et al., 2021a) 84.26 83.17 62.45 42.42 74.49 75.21 74.85 91.92 85.22 83.13 69.83 86.54 84.50 85.51
MNER-QG (Jia et al., 2023) 85.68 81.42 63.62 41.53 77.76 72.31 74.94 93.17 86.02 84.64 71.83 88.57 85.96 87.25
R-GCN (Zhao et al., 2022) 86.36 82.08 60.78 41.56 73.95 76.18 75.00 92.86 86.10 84.05 72.38 86.72 87.53 87.11
ITA (Wang et al., 2022b) - - - - - - 78.03 - - - - - - 89.75
PromptMNER (Wang et al., 2022c) - - - - 78.03 79.17 78.60 - - - - 89.93 90.60 90.27
CAT-MNER (Wang et al., 2022d) 88.04 84.70 68.04 52.33 78.75 78.69 78.72 94.61 88.40 88.14 80.50 90.27 90.67 90.47
MoRe (Wang et al., 2022a) - - - - - - 79.21 - - - - - - 90.67
PGIM ‡ (Li et al., 2023b) 88.34 84.22 70.15 52.34 79.21 79.45 79.33 96.46 89.89 89.03 79.62 90.86 92.01 91.43
SCANNER(Ours) 88.24 85.16 69.86 52.23 79.72 79.03 79.38 95.18 88.52 88.45 79.71 90.40 90.67 90.54

± 0.27 ± 0.22 ± 0.31 ± 1.39 ± 0.56 ± 0.64 ± 0.14 ± 0.23 ± 0.26 ± 0.66 ± 2.98 ± 0.19 ± 0.53 ± 0.32

Table 4: Experiment results on the Twitter-15 and Twitter-17. The results for methods marked with † are from Wang
et al. (2022d). The methods marked with ‡ denotes that they utilize LLMs (of ChatGPT scale) as knowledge sources.

Methods
CoNLL2003

Pre. Rec. F1.

W2NER (Li et al., 2022) 92.71 93.44 93.07
DiffusionNER (Shen et al., 2023a) 92.99 92.56 92.78
PromptNER (Shen et al., 2023b) 92.96 93.18 93.08
SCANNER (Ours) 93.07 93.44 93.26

± 0.20 ± 0.23 ± 0.21

Table 5: Experiment results on the CoNLL2003.

in Table 5. It shows that SCANNER exhibits a438

competitive performance compared to the existing439

NER methods.440

Experimental results in MNER. In assessing the441

effectiveness of SCANNER in MNER, we con-442

ducted comparative analyses against various lead-443

ing models in this task. The results, detailed in444

Table 4, reveal that our model achieves superior445

performance in Twitter-2015 and exhibits markedly446

impressive results in Twitter-2017. Notably, while447

PGIM shows outstanding performance on Twitter-448

2017, it utilizes large language models (LLM) like449

ChatGPT, which incurs API costs, a notable draw-450

back. In contrast, our model does not rely on LLM451

knowledge, freeing it from such disadvantages and452

demonstrating better performance on Twitter-2015.453

Experimental results in GMNER. To show our454

effectiveness in GMNER, we make broad compar-455

isons with all existing methods. Text-only models456

made to predict the visual groundings all ‘None’.457

The Table 6 shows that our model achieves signifi-458

cant performance improvements over prior research459

and establishes a new powerful baseline for future460

GMNER studies.461

Methods
Twitter-GMNER

Pre. Rec. F1.

Text

HBiLSTM-CRF-None (Lu et al., 2018) 43.56 40.69 42.07
BERT-None (Devlin et al., 2019) 42.18 43.76 42.96
BERT-CRF-None 42.73 44.88 43.78
BARTNER-None (Yan et al., 2021a) 44.61 45.04 44.82

Text+Image

GVATT-RCNN-EVG (Lu et al., 2018) 49.36 47.80 48.57
UMT-RCNN-EVG (Yu et al., 2020) 49.16 51.48 50.29
UMT-VinVL-EVG (Yu et al., 2020) 50.15 52.52 51.31
UMGF-VinVL-EVG (Zhang et al., 2021a) 51.62 51.72 51.67
ITA-VinVL-EVG (Wang et al., 2022b) 52.37 50.77 51.56
BARTMNER-VinVL-EVG (Yu et al., 2023) 52.47 52.43 52.45
H-Index (Yu et al., 2023) 56.16 56.67 56.41
SCANNER (Ours) 68.09 68.96 68.52

± 0.73 ± 0.61 ± 0.67

Table 6: Experiment results on the Twitter-GMNER.
The reported figures for the baseline models are taken
from Yu et al. (2023).

4.4 Ablation study 462

We conduct ablation experiments on the MNER 463

task to evaluate the effectiveness of the proposed 464

method. These results are shown in Table 7. We ob- 465

serve that removing the Trust Your Teacher method 466

led to a decrease in performance. Our proposed 467

distillation method effectively alleviates the dataset 468

noise issue, making our model more robust to learn- 469

ing from noisy dataset. Additionally, to verify the 470

effectiveness of the various types of knowledge 471

used in our study, we compare the results with 472

experiments where each type of knowledge was 473

removed. We confirm that the object knowledge, 474

Wikipedia knowledge, and image caption knowl- 475

edge used in our paper all contribute to the perfor- 476

mance improvement of the MNER task. 477

As shown in Fig. 6, all three types of knowledge 478
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Text

Image

RT @TheLilKimNews : Lil Kim is set to be 
perform at Kroger during the MTV VMAs ! 
http://t.co/fb2UFNZPfG

…

Extract 
Objects

Filter and sort by CLIP model

Result
GT: Organization
Baseline: Location
SCANNER (w/o wiki) : Organization
SCANNER (w/o Object) : Organization
SCANNER (Ours) : Organization

Candidate entity result of the stage1: Kroger

kroger tweets about the queen 
lil kim will be performing at 

kroger during the

Logo. the kroger logo on a 
white background

… 

American 
retail 

company

Wiki

Image caption Object name. 
Image caption

Text

Image

RT @That70sLife : Kelso is my fav 
http://t.co/hK90z0PnVX

…

Extract 
Objects

Filter and sort by CLIP model

Result
GT: Person
Baseline: Organization
SCANNER (w/o wiki) : Person
SCANNER (w/o Object) : Organization 
SCANNER (Ours) : Person

Candidate entity result of the stage1: Kelso

underneath this cool exterior, 
there is a sad human being 

being

Hair. person is listed or ranked 
2 on the list famous people 

born in august
… 

No wiki
Wiki

Image caption Object name. 
Image caption

…

Text

Image

RT @ThatDudeMCFLY : Ask Siri what 0 
divided by 0 is and watch her put you in 
your place . http://t.co/qN1KX8YTVp

…

Extract 
Objects

Filter and sort by CLIP model

Result
GT: Miscellaneous
Baseline: Person
SCANNER (w/o wiki) : Person 
SCANNER (w/o Object) : Miscellaneous
SCANNER (Ours) : Miscellaneous

Candidate entity result of the stage1: Siri

a close up of a man with no 
shirt on

Lip. a close up of a man's face 
with his mouth open

… 

Software-based 
personal 

assistant from 
Apple Inc.

Wiki

Image caption Object name. 
Image caption

…

Figure 6: Visualization results showing how various types of knowledge are brought in and utilized differently to
perform the MNER task. Knowledge highlighted in blue positively influences correct predictions.

Methods
Twitter-2015 Twitter-2017

Pre. Rec. F1. Pre. Rec. F1

SCANNER 79.72 79.03 79.38 90.40 90.67 90.54
- TYT -0.26 -0.17 -0.21 -0.24 -0.11 -0.18
- OBK +0.11 -0.60 -0.26 -0.23 -0.22 -0.22
- WKK -1.12 -0.14 -0.64 -0.51 -0.44 -0.48
- ICK -0.08 -0.54 -0.31 -0.29 -0.31 -0.29

Table 7: Ablation studies on MNER datasets. ‘-TYT’
is without trust your teacher method. ‘-OBK’ is with-
out object knowledge. ‘-WKK’ is without Wikipedia
knowledge.‘-ICK’ is without image caption knowledge.

can be utilized as useful information for named479

entity recognition. In the case of the first image,480

knowledge from Wikipedia such as "American re-481

tail company" and object knowledge containing the482

logo information of "Kroger" both help in predict-483

ing the "Kroger" entity as an organization. For the484

image on the bottom left, image caption and ob-485

ject knowledge aided in named entity recognition.486

Moreover, in the image on the bottom right, vision487

information like image caption and object knowl-488

edge led to incorrect entity recognition results, but489

it was corrected through external knowledge from490

Wikipedia. Thus, the three types of knowledge491

proposed in this paper complement each other, en-492

abling accurate MNER performance.493

Table 8 shows the effectiveness of knowledge494

in unseen entities. As SCANNER utilizes various495

Datasets
w/o Knowledge w/ Knowledge
Seen Unseen Seen Unseen

CoNLL2003 96.29 89.68 96.35 89.70
Twitter-2015 87.18 73.84 87.50 75.45
Twitter-2017 95.68 82.96 95.90 83.71

Table 8: The result comparing the test F1 scores in
unseen entities of knowledge extracted and baseline.

knowledge in MNER, it greatly increases perfor- 496

mance in unseen entities. In NER, lack of vari- 497

ous knowledge causes there to be no image, which 498

slightly improves the performance. 499

5 Conclusions 500

We introduce SCANNER, a novel approach for per- 501

forming NER tasks by utilizing knowledge from 502

various sources. To efficiently fetch diverse knowl- 503

edge, SCANNER employs a two-stage structure, 504

which detects entity candidates first, and performs 505

named entity recognition and visual grounding on 506

these candidates. Additionally, we propose the 507

novel distillation method, which robustly trains the 508

model against dataset noise, demonstrating supe- 509

rior performance in various NER benchmarks. We 510

believe that our method can be easily extended to 511

utilize knowledge from multiple sources that were 512

not covered in this paper. 513
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Limitations514

In this study, we extract knowledge from various515

sources and utilize it to perform MNER tasks. By516

leveraging several vision experts such as CLIP, and517

also fetching external knowledge, our method takes518

relatively longer inference time compared to ap-519

proaches that do not use knowledge. However, the520

use of vision experts and knowledge is essential for521

a MNER model that functions well even with un-522

seen entities, and we efficiently extract information523

through a two-stage structure.524

Additionally, the aspect of combining the ex-525

tracted knowledge with Large Language Models526

(LLMs) is not been explored in this paper. LLMs527

themselves are massive models containing a wealth528

of information. Therefore, similar to the other529

sources of knowledge used in the paper, the LLM530

response results for entity candidates can be effec-531

tively utilized for entity recognition. We leave the532

utilization of LLMs as future work and will release533

our implementation to facilitate future research.534

Ethics statement535

All experimental results we provide in this paper536

is based on publicly available datasets and open-537

source models.538
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A Hyper-parameter settings663

Datasets
Stage1

epochs batch size lr weight decay

CoNLL2003 5 8 5 ×10−6 1
Twitter-2015 10 4 1 ×10−5 2
Twitter-2017 10 8 1 ×10−5 2
Twitter-GMNER 10 8 1 ×10−5 2

Table 9: Hyper-parameter settings in Stage 1 were used
in the experiments for NER, MNER, and GMNER.

Datasets
Stage2

epochs batch size lr weight decay max objects

CoNLL2003 20 8 3 ×10−6 0.01 -
Twitter-2015 5 8 1 ×10−5 0.01 15
Twitter-2017 7 8 5 ×10−6 0.01 15
Twitter-GMNER 5 8 5 ×10−6 2 15

Table 10: Hyper-parameter settings in Stage2 were used
in the experiments for NER, MNER, and GMNER.

We conducted our experiments with hyper-664

parameter settings as outlined in the follow-665

ing Table 9 and Table 10, and we utilize666

AdamW (Loshchilov. and Hutter, 2019) optimizer667

for all tasks. ‘max objects’ refers to the maximum668

number of object knowledge inputs. We performed669

a grid search for the learning rate within the range670

of [5× 10−6, 1× 10−5]. We tested batch sizes of671

4, 8, and 16 to determine the optimal value, and we672

explored weight decay within a range of [0.01, 2].673

B Detailed dataset statistics674

To demonstrate the superiority of our method for675

various NER tasks, we conduct experiments on a676

range of datasets. The overall dataset statistics are677

shown in Table 11, and each task description is in678

below.679

NER dataset. CoNLL2003 (Tjong Kim Sang and680

De Meulder, 2003), a dataset with four named en-681

tities: PER, LOC, ORG, and MISC. We follow682

the standard setting (Peters et al., 2017; Yan et al.,683

2021b; Shen et al., 2023a): use both the train set684

and dev set for training and evaluate with the test685

set686

MNER dataset. Twitter2015 (Zhang et al., 2018)687

and Twitter2017 (Lu et al., 2018); collected from688

social network service posts. Like CoNLL2003, it689

consists of the same four named entity types. We690

operate a train set for training and hyper-parameter691

tuning using a dev set and evaluate it with the test692

set.693

Text Image Total

#Total #Train #Dev #Test #Groundable Entity

CoNLL2003 20,744 17,291 - 3,453 -
Twitter-2015 8,257 4,000 1,000 3,257 -
Twitter-2017 4819 3373 723 723 -
Twitter-GMNER 10,000 7,000 1,500 1,500 6,716

Table 11: Dataset Statistics of NER, MNER, and GM-
NER benchmarks

GMNER dataset. Twitter-GMNER (Yu et al., 694

2023), a dataset collected by extracting some of 695

the data from Twitter2015 and Twitter2017, and 696

employ bounding box annotation. We operate same 697

validate strategy as MNER. 698
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