
The Phenomenon of Policy Churn

Tom Schaul
DeepMind

London, UK

André Barreto
DeepMind

London, UK

John Quan
DeepMind

London, UK

Georg Ostrovski
DeepMind

London, UK

{tom,andrebarreto,johnquan,ostrovski}@deepmind.com

Abstract

We identify and study the phenomenon of policy churn, that is, the rapid change of
the greedy policy in value-based reinforcement learning. Policy churn operates at
a surprisingly rapid pace, changing the greedy action in a large fraction of states
within a handful of learning updates (in a typical deep RL set-up such as DQN
on Atari). We characterise the phenomenon empirically, verifying that it is not
limited to specific algorithm or environment properties. A number of ablations
help whittle down the plausible explanations on why churn occurs, the most likely
one being deep learning with high-variance updates. Finally, we hypothesise that
policy churn is a potentially beneficial but overlooked form of implicit exploration,
which casts ϵ-greedy exploration in a fresh light, namely that ϵ-noise plays a much
smaller role than expected.

1 The Phenomenon

Reinforcement learning (RL) involves agents that incrementally update their policy. This process is
driven by the objective of maximising reward, and based on experience that the agent generates via
exploration. The sequence of policies π0, . . . , πk, . . . , πT usually starts from a randomly initialised
policy π0 and aims to end at a near-optimal policy πT ≈ π∗. Ideally, steps in that sequence
(πk → πk+1) are policy improvements that increase expected reward.

This paper studies the amount of policy change that goes along with such a policy update process
(for a definition, see Section 1.1). In particular, it makes the core observation that policy change in
practice (as illustrated in some typical deep RL settings) is orders of magnitude larger than could
have been expected, and stands in contrast to various reference algorithms (Sections 1.2 and 3.3).

Key observation 1: The greedy policy changes much more rapidly than you probably think.a

aAs a coarse magnitude for the impatient reader: in a typical run of DQN on Atari, the greedy
policy changes in ≈ 10% of all states after a single gradient update (Figure 1 and Section 1.2).

We dub this phenomenon “policy churn” to highlight that most of this policy change may be
unnecessary. We study the phenomenon in depth, determining the range of deep RL scenarios it
appears in, fleshing out its properties, and in the process narrowing the space of potential causes and
mechanisms involved using a set of ablations (Section 3).

Our second key message relates the phenomenon of churn to exploration, specifically in the context
of ϵ-greedy exploration (Section 2), with some more speculative ramifications in Section 4.

Key observation 2: Policy churn is a significant driver of exploration.a

aThis holds both in the sense that reducing churn can reduce performance, and in the sense that
explicitly adding noise becomes unnecessary in the presence of churn (i.e., ϵ = 0 is viable).

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

10 2 10 1

Average policy change W per gradient update

DDQN early

DDQN late

R2D2 early

R2D2 late

Asterix
Boxing
Breakout
Freeway
Gopher
Gravitar
H.E.R.O.
Ms. Pac-Man
Pong
Q*bert
Riverraid
Seaquest
Skiing
Space Invaders
Venture

Figure 1: Average amount of policy change W (Eq. 2) per update, in two deep RL agents (DoubleDQN
and R2D2). Points are averages over 3 seeds, on one of 15 (colour-coded) Atari games. “Early”
denotes the first 25% of training, “late” denotes the final 25%; observe that churn magnitudes drop
late in training, but only for R2D2. See Figures 15 and 16 in the appendix for more fine-grained
results.

1.1 Defining policy change

A policy is a function from states s ∈ S to a distribution over actions a ∈ A, where for the purposes
of this paper A is discrete. We quantify the local, per-state policy change between policies π and π′

using the moved probability mass (i.e., the total variation distance):

W (π, π′|s) := 1

2

∑
a

|π(a|s)− π′(a|s)| , (1)

which satisfies 0 ≤ W (π, π′|s) ≤ 1. When π and π′ are greedy policies derived from a state-action-
value function—that is, π(s) ∈ argmaxa q(s, a)—then W (π, π′|s) = 1 if the argmax action in
state s changes upon replacing q by the function q′ underlying π′, and W (π, π′|s) = 0 otherwise.
Similar reasoning applies more generally when both π and π′ are deterministic policies. We can
aggregate policy change across all states, weighted by a state-distribution d:

W (π, π′) := Es∼d[W (π, π′|s)], (2)

where a reasonable choice for d is the empirical state distribution encountered during training (which
is non-stationary, but it could also be the stationary distribution of a fixed policy, or the uniform
distribution across all states, as discussed for some of the toy scenarios below). For greedy policies
(and uniform d), W (π, π′) is simply the fraction of states where an argmax switch occurred.

For settings where policy performance stabilises at some point t = P of training (e.g., hitting a
performance plateau, or converging to optimal behaviour), two additional metrics may be of interest,
namely the cumulative policy change W 0:P until that point1, and the average policy change after that
point W

+
(which could be zero, e.g., if the process converges):

W 0:P :=

P−1∑
i=0

W (πi, πi+1) W
+
:= lim sup

T→∞

1

T − P
WP :T . (3)

1.2 Quantifying the phenomenon

Given an initial and a final policy, the process with the minimum amount of policy change is an
oracle that jumps from π0 to πP in a single step (P = 1). By construction, this can incur a policy
change of at most one unit, W 0:P ≤ 1. In value-based deep RL agents, a natural definition for the
sequence of policies is to use the induced greedy policies πk(s) ∈ argmaxa qθk(s, a) where θk are
the parameters of the Q-function at iteration k. In agents that use a target network (inducing π) that is
an older copy of the online network (inducing π′), it is easy to measure W (π, π′) by comparing their

1Note that the granularity of updates (e.g., batch size) determines how many intermediate policies are
considered, which in turn affects the measured magnitude of policy change in learning processes that have churn.

2

0k

5k

10k

15k

Ep
iso

di
c

re
tu

rn

Asterix

50

0

50

Boxing

0

100

200

300

Breakout

0

10

20

30

Freeway

0

2500

5000

7500

10000
Gopher

0

100

200

300

400

Ep
iso

di
c

re
tu

rn

Gravitar

0k

5k

10k

15k

20k

25k
H.E.R.O.

0k

1k

2k

3k
Ms. Pac-Man

20

10

0

10

20
Pong

0k

5k

10k

15k

20k
Q*bert

50 100 150 200
Million frames

0k

5k

10k

15k

20k

Ep
iso

di
c

re
tu

rn

Riverraid

50 100 150 200
Million frames

0k

5k

10k

15k

20k
Seaquest

50 100 150 200
Million frames

-35k

-30k

-25k

-20k

-15k

-10k
Skiing

50 100 150 200
Million frames

0k

1k

2k

3k

4k
Space Invaders

50 100 150 200
Million frames

0

200

400

600

800

Venture
both > 0 and churn
only > 0
only churn
neither

Figure 2: Impact of churn on exploration. Plots show performance of DoubleDQN on Atari, with four
variants of exploration: green is the unmodified baseline (ϵ = 0.01), gold changes ϵ = 0, blue has
reduced churn by acting with the target network, and red shows the effect of both of these changes
together (no more exploration, and a corresponding performance collapse in most games). Thin lines
depict individual seeds (3 per setting), thick lines are averages, smoothed over 10M frames.

argmax actions at the points in training where the target network lags behind by just one update.
Figure 1 shows typical values for W on a few Atari games, estimated by comparing the policies
induced by online and (one update old) target networks, on batches of experience sampled from
the agent’s replay buffer. It is worth emphasising that with such rates of average policy change, of
W ≈ 10% per update, the magnitude of whole-lifetime change becomes enormous: across training,
an agent like DQN, which performs 107 updates, changes its greedy action a million times in each
state (on average).

A second striking result is the amount of policy change in late training, when the performance of
the policy no longer changes (in the case of PONG it is arguably optimal): there is still a change of
W

+ ≈ 5% per update (Figures 1 and 14). This highlights that a lot (maybe most) of policy churn is
not directed at a policy improvement; we revisit this in Section 4.2.

Is this unexpected? We conducted an informal survey of over 50 deep RL practitioners, including
three of the inventors of DQN [27], for their estimate on how rapidly the policy changes in a typical Q-
learning based setup. The question was: For the greedy policy to change in 10% of all
states, how many learning updates does it take? (or equivalent). The median response
was 1 000 updates, with answers varying between 1 and 1 000 000 updates. This deviates by three
orders of magnitude from the empirical value of 1 update (or W ≈ 0.1, see Figure 1).

Policy change in other settings. To appreciate the large empirical magnitudes of (cumulative)
policy change we observe in deep RL, we can contrast them with a few alternative settings. For
example, classic dynamic programming techniques such as value iteration or policy iteration [44],
when applied to toy RL domains such as FourRooms, CATCH, or DeepSea [33], accumulate W 0:P ≈
1, not much more than the single-step oracle (see Appendix B.4). The two main differences from
deep RL are their tabular nature (no function approximation, FA) and non-incremental updates. It is
possible to construct tabular settings with much larger policy change, with either incremental updates
(Appendix A.3) or bootstrapping (Appendix A.4). A minimalist example with non-linear FA and
incremental updates is supervised learning on the MNIST dataset (the “policy” in this case are the
predicted label probabilities). Training a digit classifier to convergence accumulates W 0:P ≈ 10, that
is, the average input goes through 10 label switches (see Appendix B.5). None of these examples
are fully satisfying, as they are not apples-to-apples comparisons; so in Section 3.3 we construct a
spectrum of algorithmic variants that spans from tabular policy iteration (without churn), via tabular
Q-learning to an approximation of DQN (with realistic magnitudes of churn).

3

2 The Exploration Effect

We now turn to the impact of policy churn on agent behaviour: What happens when acting according
to policies produced by a learning process that induces rapidly changing policies? In other words,
what is the effect of policy churn on exploration? While each individual greedy policy would lead to
a very narrow set of experience in a (nearly) deterministic environment like Atari, the fact that the
greedy policy changes so rapidly (in 10% of states per update, with one update every 16 environment
frames in DoubleDQN) makes for a broad data distribution. And in many circumstances this is
sufficient for good performance, even in the absence of any other form of exploration, such as
stochasticity introduced via an ϵ-greedy policy. Figure 2 shows this across a range of Atari games:
compare green (baseline) and gold (ϵ = 0) curves.2

Conversely, removing (some of the) churn in the behaviour during training, which can be done by
acting with the target network (updated only every 120 000 frames in the DoubleDQN agent) instead
of the online network, sometimes reduces performance even in the presence of ϵ-greedy exploration
(blue in Figure 2).3 Additionally, we show that performance often collapses completely when both
forms of exploration are removed (ϵ = 0 and no churn, in red). Figure 2 compares all four variants
of exploration, indicating that the two sources of exploration have different contributions in different
games.

Sufficient exploration with ϵ = 0. The perhaps unintuitive observation of successful exploration
with purely greedy policies has been made before, albeit implicitly. In particular, in the presence of
certain alternative exploration methods such as noisy nets [15], no significant additional advantage
is obtained from using ϵ > 0 [20]. Other works containing experimental variants with ϵ = 0
demonstrated successful training in this setting [35, 39], but did not highlight the result.

Consistent behaviour and Thompson sampling. In considering the potential exploration benefits
of a rapidly changing policy, it is worth qualitatively contrasting the resulting behaviour with that
of an ϵ-greedy policy with ϵ > 0. The latter generates high-frequency dithering, with uncorrelated
random action decisions at consecutive states and the effect of most exploratory actions likely undone
by the following greedy action [11]. By contrast, policy-churn-induced exploration can be expected
to generate temporally correlated, consistent exploration (necessary, though perhaps not sufficient,
to perform “deep” exploration, as in ensemble and Thompson sampling methods [45, 32]). On the
other hand, while ϵ-greedy exploration is explicitly unbiased in action space, policy churn likely
prefers exploration across near-optimal actions (with respect to the current value function). This may
be beneficial in some settings, for example when some actions are deadly, and high ϵ prevents long
episodes. It may also be detrimental in others, where ϵ > 0 helps the agent get unstuck.

3 Potential Causes

With the presence and impact of the churn phenomenon established, this section aims to provide
additional depth. First, we look at the generality of the effect in Section 3.1. Second, we conduct
investigations into the sensitivity of the phenomenon, with Section 3.2 showing ablations to the
large-scale deep RL agents (more material in Appendix A), and Section 3.3 taking the complementary
approach of interpolating between dynamic programming and a DQN approximation on a toy domain.
Finally, Section 3.4 synthesises the findings and postulates some compatible underlying mechanisms.

3.1 Breadth of prevalence and non-causes

To judge the importance of the phenomenon, we need to establish whether it is specific to a narrow
range of settings, or prevalent in a variety of domains, algorithmic variants, and hyper-parameters.
It turns out that this is easy to do, because the effect is very much not a subtle one. In fact, policy
churn is present in two very different deep RL agents, namely DoubleDQN [47] and (a variant

2In line with prior work, all our DoubleDQN experiments preserve the decaying ϵ-schedule in the first 2% of
training, it is only zero after that initial phase; R2D2 experiments have no such schedule.

3Acting with the target network also introduces latency on how fast newly learned knowledge can be exploited.
To see how specifically this latency should have a negligible effect on performance, imagine shifting the x-axis
of the blue curve by 120 000 frames to the left, which would be an oracle “target-network-of-the-future” variant.

4

Agent DoubleDQN R2D2
Input 84× 84 grayscale 210× 160 RGB
Action set minimal per game: 3 ≤ |A| ≤ 18 full: |A| = 18
Reward clipped unclipped
Neural net feed-forward, 1.7M parameters recurrent, 5.5M parameters
Q-value head regular dueling
Update 1-step double Q-learning 5-step double Q-learning
Optimiser RMSProp without momentum Adam with momentum = 0.9
Batch size 32 32× 80 = 2560
Replay, replay ratio uniform, 8 prioritised (exponent 0.9), 1
Parallel actors 1 192

Mean W per update ≈ 9% ≈ 6%

Table 1: The two agent setups considered differ in a number of properties. Given both settings result
in similar churn, none of them seem critical. See Appendix B.1 and B.2 for details.

of) R2D2 [21], both widely used for training on Atari (see Appendix B.1 and B.2 for agent and
environment specifications). Despite the large differences between the algorithms summarised in
Table 1, the magnitude of policy change is surprisingly similar, indicating that it is unlikely that
policy churn strongly depends on any of these specific choices.

The effect is also not specific to any environment: we measure similar magnitudes of policy change
across a range of Atari games that vary in many dimensions, such as action space, reward scale and
sparsity, deadliness, etc. Furthermore, it is present in all stages of training (see Figures 1 and 15).
Unsurprisingly it is highest in early learning, but it remains high during training and even after
evaluation performance converges or stabilises. 4

3.2 Ablations

Redundant actions. A simple factor that could explain policy churn are redundant actions, i.e.,
when nominally different actions have the same outcome (in all, or a large fraction of state space). This
property varies widely by environment (see also [31]), but we observe similar levels of policy change
across them (Figures 1 and 15). Also, when exposing the full Atari action set in all games, creating
explicit global redundancy, the churn magnitudes are not affected much (Figure 16). Appendix A.2
looks at the fine-grained aspect of which actions tend to be swapped for which others, and finds
no structure easily related to the (known) equivalence relations (Figure 10). In other words, most
argmax changes are not happening between equivalent actions.

Small action gaps. Another potential factor for large policy churn with greedy policies can be the
interplay between FA and small action gaps (difference between largest and second-largest action
values): small approximation error can suffice for sub-optimal actions to overtake optimal ones. This
hypothesis predicts that value learning methods inducing larger action gaps (e.g., Advantage Learning
(AL, [3]) which artificially lowers the values of sub-optimal actions) could reduce policy churn.
Figure 3 (right) shows that indeed policy churn is decreased substantially by AL, correlating with an
increase of action gaps (which consistently grows under AL, see Figure 17). Curiously, this does
not seem to severely diminish the remaining policy churn’s effectiveness for exploration: Figure 18
shows successful training of an AL-DQN with ϵ = 0.

Non-stationary state distribution. Another explanatory hypothesis for the observed large magni-
tude of policy churn relates it to the non-stationary data distribution caused by the policy generating
the data, which is evolving. Even when the agent converges to near-optimal performance, like in
PONG, it may happen that the policy keeps changing on states where actions are inconsequential
(where multiple actions have near-equal value), causing non-stationarity in the data distribution and
thereby driving further policy churn. To test this, we utilize the “forked tandem” setting from [34], in
which a high-performing policy is trained on the stationary data distribution generated by its initial

4Given the high churn in (preliminary) experiments on DM-Lab [1], as shown in Figure 25, we also consider
it unlikely that the phenomenon is specific to the Atari setting.

5

10 2 10 1

Average policy change W

Baseline

Stationary inputs

Stationary inputs and targets

All but 3 top layers frozen

All but 2 top layers frozen

All but top layer frozen (linear)

10 2 10 1

Average policy change W

10 3

10 2

10 1

Ad
va

nt
ag

e
ga

p
(b

tw
. t

op
 2

 a
ct

io
ns

)

Advantage learning
Double Q-learning

Figure 3: Left: Ablations in the “forked” DoubleDQN setting (5 games, 3 seeds each). Training
progresses as normal until 50M frames, after which either the data distribution is fixed (“stationary”),
or part of the neural network is frozen; “stationary targets” denotes regression onto Monte-Carlo
returns. The only large effect on policy change is when switching from deep learning to linear FA
(red). For more detail see Figures 19, 20, and 22. Right: Relation between policy change and
advantage gaps. Different points correspond to different games, seeds and stages of learning. This
shows that the action-gap-increasing algorithm (purple) reduces policy change; and also how, given
an algorithm, advantage gaps correlate with churn. For more detail see Figures 17 and 18.

snapshot (see below for more details). As can be seen in Figures 3 (left) and 19, the high level of
policy churn is still preserved in this stationary-data regime, ruling out data non-stationarity as the
main driver of the phenomenon.

Non-stationary targets. Temporal difference (TD) learning can give rise to another form of non-
stationarity, as the bootstrap targets change at the pace of the target value function, an aspect that is
preserved even in the forked tandem setting. To sidestep this, a simple control experiment uses the
same setup but with Monte-Carlo returns as learning targets, turning it into pure policy evaluation
via supervised regression (with noisy targets). The results (Figures 3, left, and 20) show a similar
level of churn to the Q-learning updates, indicating that the phenomenon is not specific to TD-based
algorithms.

Decoupled acting and target networks. To assess how much policy churn is beneficial for explo-
ration, we devise the following setup: A greedy policy based on the agent’s target network drives
behaviour, and we vary the frequency with which it is synchronized to the online network. To avoid
conflation with an adverse effect on learning stability, we keep the regular target network update
frequency constant, while using an additional acting network, periodically copied from the online
network, for behaviour generation alone. Figure 21 shows that an acting network updated more than
every ≈ 1 000 gradient updates achieves most of the exploration benefits of acting with the online
network, though in some games higher frequencies yield further benefit. This implies that the amount
of policy change needed for exploration is much smaller than what is generated by DQN’s learning
process (otherwise the observed collapse would happen at much smaller update intervals).

Self-correction and the tandem effect. In [34] a phenomenon dubbed the “tandem effect” was
observed: the failure of a deep RL agent to adequately learn from the training data generated by a
different instance of the same agent, highlighting the importance of self-correction by interactively
generated data from the policy being trained. One of their settings, the “forked tandem”, starts with a
copy of a high-performing policy and uses data sampled from its stationary distribution to continue
training; even this apparently benign scenario leads to instability and potential collapse of the trained
policy. Policy churn may provide a partial mechanistic explanation for the origin of the instability,
showing that rapid policy change can be expected at all stages of training. The observation that the
trained policy changes on a significant proportion of states at every update (performed on a negligibly
small sample, a single minibatch of 32 state transitions) supports the hypothesis from [34] that
erroneous extrapolation or over-generalization may play a key role in causing deviation and instability
and producing the tandem effect in the absence of corrective training signal from self-generated data.
Analogously to results in [34] we observe that the magnitude of policy churn is highly correlated
with the depth of the trained function approximator, further supporting this hypothesis; see Figures 3
(left) and 22, which show specifically how policy change drops dramatically in a linear FA regime.

6

10 2 10 1 100 101 102

Cumulative policy change
until convergence W1 : P

Value iteration
Tabular Q-learning

Q-learning with 1 layer MLP
Regression on q * with 1 layer MLP

Q-learning with 3 layer MLP
DQN-like with RMSProp

DQN-like with SGD
DQN-like with Adam

10 6 10 4 10 2

Average policy change
after convergence W +

100 102 104

Convergence step P

Figure 4: Ablations of what aspects drive policy change in CATCH. Unless specified each FA
variant uses the SGD optimiser. Here “DQN-like” is “Q-learning with 3 layer MLP” with replay and
mini-batches. Error bars denote the interquartile range over 100 seeds.

3.3 Detailed case study: CATCH

CATCH is a toy environment where the total number of states is small enough to be amenable to
ground-truth dynamic programming approaches using the explicit matrix of transition probabilities,
while providing an observation space that requires non-linear FA to represent the optimal value
function. We construct a spectrum of settings that all learn the optimal policy after some P iterations.
For each we measure cumulative policy change W 0:P and average change after convergence W

+

(Eq. 3). Main results are shown in Figure 4. Sitting at one end of the spectrum, exact value iteration
converges after P = 10 steps with W 0:P = 0.09 (because the initial policy is random, and the optimal
policy has ties in most states). The next simplest setting is tabular Q-learning with incremental updates
(here and elsewhere, hyperparameters like the learning rate are tuned for fast convergence to optimal
performance, see Appendix B.3 for details). The next steps add in non-linear FA (shallow with 1
hidden layers, then deep, with 3). At the other end of the spectrum is an approximation to DQN
which includes experience replay, mini-batches, a deep neural network, and an advanced optimiser
(RMSProp [46]). Figure 4 also shows intermediate variations such as supervised regression to q∗, and
different optimisers (e.g., Adam [23]); additional results in Appendix A.1. Overall, the experiments
in this section show that, among the factors we considered, the presence of function approximation is
by far the aspect that correlates the most with the occurrence of the phenomenon of policy churn.

3.4 Mechanistic hypothesis

In an attempt to synthesise all the evidence presented so far, we propose that the observed policy
churn is primarily a result of two components that need to be present jointly:

1. Non-linear, global function approximation (such as deep neural networks), where each update
can affect all states and all actions.

2. A learning process with a high amount of noise. This could have multiple sources: stochastic
optimisation (e.g. small batch sizes, large learning rates), noisy learning targets, non-stationary
data (or targets, as with bootstrapping), an imbalanced data distribution (e.g., seeing some
actions more often than others).

In other words, the rapid policy change dubbed churn is the symptom of high-variance updates to a
global function approximator, and neither aspect in isolation is enough to promote it.5

5A compounding effect could be a mismatch between the regression loss in value space that drives the
learning process, and policy space, which is what matters for performance and for exploration (and is measured
here). While supervised learning does not have this mismatch, it could conceivably have large “policy change”
too. An in-depth treatment exceeds the scope for this paper, but preliminary results on MNIST (Appendix B.5)
indicate no large churn in the supervised setting.

7

4 Where do we go from here?

4.1 Learning at the edge of chaos

Deep learning has a well-known trade-off between speed of learning and stability that incentivises
tuning the learning dynamics to be near the edge of chaos6 [10]. The presence of policy churn
could enrich this picture in two ways for the case of deep RL. First, to the extent that rapid policy
change helps drive exploration (Section 2), this is an additional incentive to keep learning dynamics
sufficiently noisy. Second, to the extent that value-based learning relies on self-correction [34], that is,
the actions to be corrected need to be picked by a greedy policy, this also encourages a large amount
of policy change. Circumstantial evidence for these is that value-based RL tends to require additional
stabilisation mechanisms (e.g., target networks), less common in policy-based RL.

4.2 Policy null-spaces

Policy change is necessary for policy improvement, but does not necessarily imply change in
performance. We define the space of policies that have the same value as a reference policy π (in all
states) as its null space Null(π). One way to quantify it is the diameter

|Null(π)| := max
π′,π′′∈Null(π)

W (π′, π′′)

as the largest policy change possible between any pair of policies within it. Typical scenarios with
large null spaces have states in which actions have no effect (e.g., move actions while falling),
multiple actions with the same effect (globally, or locally in part of state space), or multiple paths
leading to the same outcome (e.g., up-then-left vs. left-then-up). These scenarios are common among
the environments typically studied in deep RL. Appreciating that policy null spaces can be large
makes the policy churn phenomenon more palatable, helping us reconcile that agents changing their
mind a million times about the best action (on average in each state) can have excellent performance.
A particularly interesting null space is the one around the optimal policy Null(π∗): when it is large,
there are many “safe” ways to keep changing the policy (possibly by a lot) after converging to
maximal performance, which is what we observe on, e.g., PONG (see Figure 14), at least when ϵ > 0.

4.3 Off-policy corrections in the presence of churn

Most types of off-policy correction are based on the gap between the data-generating behaviour policy
µ, and a target policy π. When doing multi-step updates, conservative methods truncate trajectories
to bootstrap early compared to on-policy experience [25]. To obtain the benefit of multi-step value
propagation, the average truncation length cannot be too short, and thus a silent assumption is that µ
and π do not differ too frequently. Empirically however, multi-step back-ups without any off-policy
correction can be surprisingly effective [20]. We can now re-interpret these findings through the lens
of policy churn: as the greedy policy changes much faster than expected, even a slight latency (a few
updates) between the parameters of the data-generating policy and the current target policy leads to
massive truncation effect. If consecutive greedy policies are (approximately) within the null-space of
each other, the benefits of an uncorrected multi-step update may outweigh its cost. It also suggests
the possibility of new off-policy algorithms that exploit the knowledge of the churn phenomenon, by
truncating in a less aggressive fashion, motivated by the intuition that majority of rapidly changing
policies lie within an (approximate) null space of each other (see Appendix A.5).

4.4 The social dynamics of research

If policy churn is indeed a hidden form of exploration, how did it come about? It seems unlikely that
a useful mechanism emerges completely by chance. An intriguing possibility is that policy churn
is the effect of a gradual process of natural selection [12]. The hypothesis is that, if policy churn
provides benefits, algorithms that display some level of it would be favoured over their counterparts
in the inevitable engineering work surrounding the design of large-scale agents. In this view, RL
practitioners play the role of “nature” exerting a selective pressure that shapes algorithms across time.
This process could be completely unconscious to the researchers involved: agents under-performing

6As epitomised in the heuristic to tune the learning rate to the largest value that does not explode.

8

due to weak exploration would be discarded in favour of agents that explored better using some
form of (hidden) policy churn. Over time, the multiple degrees of freedom of large-scale agents
(hyper-parameters, network architecture, etc.) would be tuned to reflect just the right amount of churn:
enough to help in exploration, but not too much to make the overall learning process unstable.

As appealing as the above hypothesis may be, as of now we do not have any evidence to support
it. Still, it is worth considering, as it raises many interesting questions. Are there other hidden
effects that have been selected for over the years? How many good design choices got discarded
because they happened not to promote policy churn (or other similarly hidden effects)? Is the AI
research community narrowly focused on a handful of design templates that happen to induce some
ill-understood dynamics? This sort of question did not arise in the past, when agents were simple
enough that we could keep track of their functioning at the finest level of detail. Now that deep RL
agents have reached a certain level of complexity, any design choice may have a cascade effect whose
consequences we do not anticipate. This creates the perfect environment for the sort of selective
process described above. Acknowledging this possibility and being aware of it may be an important
step toward unveiling hidden effects, and perhaps turning them into more purposeful design.

5 Related work

A phenomenon in the literature that is related to policy churn, but not equivalent to it, is that of policy
oscillation or chattering [16, 4, 48]. Bertsekas and Tsitsiklis [4] define the greedy region of a function
q ∈ Q as the set of functions in Q that induce the same greedy policy as q. Each greedy region
has an associated “fixed point”: the value function of the greedy policy induced by the functions
in it. Conversely, every value function is the fixed point of a greedy region. It is well known that
the only value function that belongs to its own greedy region is the optimal value function q∗ [4].
However, when function approximation is used, projecting value functions onto the FA space may
create cycles that repeat indefinitely, a phenomenon known as policy oscillation. We do not think
policy oscillation is a likely explanation for policy churn, because the approximators used in our
experiments should have the capacity to approximate any value function to a reasonable level of
accuracy. This is corroborated by Figures 3 and 4 and Appendix A.1, which show neural networks
with more or wider layers exhibit more churn. We believe it is more instructive to think of each
update of the approximator as moving the value function across the boundaries of greedy regions. As
discussed, in many cases this has no effect on the agent’s performance, since the policies associated
with neighbouring greedy regions may belong to each other’s null space (Section 4.2).

Another body of related work is the literature on stochastic gradient descent, and how a relatively high
amount of stochasticity can be beneficial to optimisation by overcoming local optima and converging
to flatter optima with better generalisation properties [22, 37, 24]; this is such a prominent effect
that in some cases it is even beneficial to inject additional noise with Langevin dynamics [50]. More
loosely related are studies of learning in animals, exhibiting large drift in synaptic or representation
space [30, 38, 26, 13, 42], as well as evidence for highly variable behaviour policies that can get
consolidated through salient dopamine events [9].

6 Conclusions and Future Work

Revisiting interpretations. Nine years after the introduction of DQN [27], there are still phenomena
in value-based deep RL that remain to be understood, with this paper putting the spotlight on one of
them that lies at the intersection of learning and exploration dynamics. In particular, we hope that an
awareness of the churn phenomenon will make researchers revisit some good ideas that may have
been prematurely disregarded or under-valued, either because their promised exploration effect was
too entangled with learning dynamics and the resulting churn, or because they improved the stability
of learning dynamics at the expense of reduced exploration that undid the overall gains.

Churn beyond value-based RL. An obvious follow-up question is whether policy churn is also
an important effect beyond value-based algorithms. We could imagine that actor-critic algorithms
incur much less policy change, because stochastic policies change more smoothly, or because various
penalty terms keep the updated policy from deviating too much from its precursor. If that were the
case, it would indicate that exploration in these agents differs as well, possibly with complementary
advantages and disadvantages. Similarly, various instances of model-based RL [29, 43] may have

9

less policy change, because the planning process could mitigate some of the function approximation
effects. We leave these investigations to future work, but include one preliminary result (Figure 26)
that seems to hint at churn being high in some actor-critic agents as well.

Explicit and controllable churn. If policy churn is indeed a valuable and non-trivial exploration
mechanism, then it may be costly to deliberately abandon it, especially if its effect turns out to be
complementary to simpler noise-based exploration mechanisms. Ideally we would want an explicit
and controllable mechanism that produces the same kind of consistent, non-harmful exploration
behaviour, but without such a tight entanglement with the learning dynamics. The core benefit of
such a division of labour would be that practitioners could study, change or tune the learning and
exploration processes separately, without having to make arbitrary trade-offs (e.g., around stability,
diversity, representations) that inevitably arise when they are considered in combination.

Acknowledgments

The ideas presented here were refined in discussion with numerous of our DeepMind colleagues.
Will Dabney, Joseph Modayil and Matteo Hessel helped improve the paper with detailed feedback,
and we thank David Silver, Diana Borsa, Miruna Pîslar, Claudia Clopath, Vlad Mnih, Iurii Kemaev,
Junhyuk Oh, Bilal Piot, Greg Farquhar, Dan Calian, Hado van Hasselt and Alex Pritzel for their input.
We also thank the anonymous NeurIPS reviewers for their suggestions, as well as the many RLDM
and ICML attendees whom we put our guesstimate survey question to.

References

[1] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Küttler, A. Lefrancq,
S. Green, V. Valdés, A. Sadik, et al. Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.

[2] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

[3] M. G. Bellemare, G. Ostrovski, A. Guez, P. Thomas, and R. Munos. Increasing the action gap:
New operators for reinforcement learning. Proceedings of the AAAI Conference on Artificial
Intelligence, 30(1), Feb. 2016.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific, 1996.

[5] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018.

[6] D. Budden, M. Hessel, I. Kemaev, S. Spencer, and F. Viola. Chex: Testing made fun, in JAX!,
2020.

[7] D. Budden, M. Hessel, J. Quan, S. Kapturowski, K. Baumli, S. Bhupatiraju, A. Guy, and
M. King. RLax: Reinforcement Learning in JAX, 2020.

[8] A. Cassirer, G. Barth-Maron, T. Sottiaux, M. Kroiss, and E. Brevdo. Reverb: An efficient data
storage and transport system for ML research, 2020.

[9] C. Clopath, L. Ziegler, E. Vasilaki, L. Büsing, and W. Gerstner. Tag-trigger-consolidation: a
model of early and late long-term-potentiation and depression. PLoS computational biology,
4(12):e1000248, 2008.

[10] J. M. Cohen, S. Kaur, Y. Li, J. Z. Kolter, and A. Talwalkar. Gradient descent on neural networks
typically occurs at the edge of stability. arXiv preprint arXiv:2103.00065, 2021.

[11] W. Dabney, G. Ostrovski, and A. Barreto. Temporally-extended ϵ-greedy exploration. In 9th
International Conference on Learning Representations (ICLR’21), 2021.

[12] C. Darwin. The origin of species by means of natural selection. John Murray, 1859.

[13] D. Deitch, A. Rubin, and Y. Ziv. Representational drift in the mouse visual cortex. bioRxiv,
2020.

10

[14] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al. IMPALA: Scalable distributed Deep-RL with importance weighted actor-
learner architectures. arXiv preprint arXiv:1802.01561, 2018.

[15] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos,
D. Hassabis, O. Pietquin, C. Blundell, and S. Legg. Noisy networks for exploration. arXiv
preprint arXiv:2107.02385, 2017.

[16] G. J. Gordon. Stable function approximation in dynamic programming. In Machine Learning
Proceedings 1995, pages 261–268. Elsevier, 1995.

[17] T. Hennigan, T. Cai, T. Norman, and I. Babuschkin. Haiku: Sonnet for JAX, 2020.
[18] M. Hessel, D. Budden, F. Viola, M. Rosca, E. Sezener, and T. Hennigan. Optax: Composable

gradient transformation and optimisation, in JAX!, 2020.
[19] M. Hessel, M. Kroiss, A. Clark, I. Kemaev, J. Quan, T. Keck, F. Viola, and H. van Hasselt.

Podracer architectures for scalable reinforcement learning. arXiv preprint arXiv:2104.06272,
2021.

[20] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning. In
Thirty-second AAAI conference on artificial intelligence, 2018.

[21] S. Kapturowski, G. Ostrovski, W. Dabney, J. Quan, and R. Munos. Recurrent experience replay
in distributed reinforcement learning. In International Conference on Learning Representations,
2019.

[22] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P. Tang. On large-batch train-
ing for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836,
2016.

[23] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[24] B. Kleinberg, Y. Li, and Y. Yuan. An alternative view: When does sgd escape local minima? In
International Conference on Machine Learning, pages 2698–2707. PMLR, 2018.

[25] T. Kozuno, Y. Tang, M. Rowland, R. Munos, S. Kapturowski, W. Dabney, M. Valko, and D. Abel.
Revisiting peng’s q (λ) for modern reinforcement learning. In International Conference on
Machine Learning, pages 5794–5804. PMLR, 2021.

[26] T. D. Marks and M. J. Goard. Stimulus-dependent representational drift in primary visual cortex.
bioRxiv, 2020.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[29] T. M. Moerland, J. Broekens, and C. M. Jonker. Model-based reinforcement learning: A survey.
arXiv preprint arXiv:2006.16712, 2020.

[30] G. Mongillo, S. Rumpel, and Y. Loewenstein. Intrinsic volatility of synaptic connections a
challenge to the synaptic trace theory of memory. Current Opinion in Neurobiology, 46:7–13,
2017. Computational Neuroscience.

[31] M. J. Nelson. Estimates for the branching factors of Atari games. arXiv preprint
arXiv:2107.02385, 2021.

[32] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped DQN.
In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[33] I. Osband, Y. Doron, M. Hessel, J. Aslanides, E. Sezener, A. Saraiva, K. McKinney, T. Lattimore,
C. Szepesvari, S. Singh, et al. Behaviour suite for reinforcement learning. arXiv preprint
arXiv:1908.03568, 2019.

[34] G. Ostrovski, P. S. Castro, and W. Dabney. The difficulty of passive learning in deep reinforce-
ment learning. arXiv preprint arXiv:2110.14020, 2021.

11

[35] M. Pîslar, D. Szepesvari, G. Ostrovski, D. Borsa, and T. Schaul. When should agents explore?
In International Conference on Learning Representations (ICLR), 2022.

[36] J. Quan and G. Ostrovski. DQN Zoo: Reference implementations of DQN-based agents, 2020.
[37] S. Ruder. An overview of gradient descent optimization algorithms. arXiv preprint

arXiv:1609.04747, 2016.
[38] M. E. Rule and T. O’Leary. Self-healing neural codes. bioRxiv, 2021.
[39] T. Schaul, D. Borsa, D. Ding, D. Szepesvari, G. Ostrovski, W. Dabney, and S. Osindero.

Adapting behaviour for learning progress. arXiv preprint arXiv:1912.06910, 2019.
[40] T. Schaul, G. Ostrovski, I. Kemaev, and D. Borsa. Return-based scaling: Yet another normalisa-

tion trick for deep RL. arXiv preprint arXiv:2105.05347, 2021.
[41] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. In International

Conference on Learning Representations (ICLR), 2016.
[42] C. E. Schoonover, S. N. Ohashi, R. Axel, and A. J. P. Fink. Representational drift in primary

olfactory cortex. Nature, 594(7864):541–546, 2021.
[43] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez, E. Lock-

hart, D. Hassabis, T. Graepel, et al. Mastering Atari, Go, Chess and Shogi by planning with a
learned model. Nature, 588(7839):604–609, 2020.

[44] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
[45] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of

the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.
[46] T. Tieleman, G. Hinton, et al. RMSProp: Divide the gradient by a running average of its recent

magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.
[47] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double Q-learning.

In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.
[48] P. Wagner. Policy oscillation is overshooting. Neural Networks, 52:43–61, 2014.
[49] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas. Dueling network

architectures for deep reinforcement learning. In Proceedings of The 33rd International
Conference on Machine Learning, volume 48, 2016.

[50] M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688. Citeseer, 2011.

12

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Section 3 discusses the generality

and applicability, Section 4 the ramifications.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] Section 4.4

is specifically about the impact on the social dynamics of research.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] Our implemen-
tation relies on some proprietary code.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix B.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Many of our experiments have 3 seeds across 15 games
which is enough to draw meaningful conclusions. We report either error bars, show
box-plots, or show all seeds individually.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix B.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [Yes] Nobody was paid.

13

