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ABSTRACT

Underwater 3D reconstruction poses significant challenges due to the scarcity
of large-scale labeled datasets and the lack of foundation models specifically
designed for underwater scenarios. To overcome these limitations, we introduce
SeaVGGT, a self-supervised framework for underwater geometric estimation
that operates without reliance on annotated data or enhancement references.
SeaVGGT exploits the fundamental physical principle that underwater image
degradation inherently encodes scene depth, and captures this phenomenon
through a graph of learnable prototypes. These prototypes encapsulate a diverse
range of attenuation characteristics and are dynamically selected as context-
aware conditions to modulate visual features in a depth-sensitive manner. The
framework is trained in an end-to-end fashion using a set of physics-driven
self-supervision losses, which enforces cyclic consistency between the original
and reconstructed images based on the underwater imaging formation model.
To robustly handle the variability of water types and environmental conditions,
SeaVGGT adaptively refines prototype representations conditioned on the input
image, thereby enabling strong generalization across diverse underwater domains.
Extensive experiments on FLSea, USOD10K, and SQUID datasets demonstrate
that SeaVGGT achieves a 13.47% reduction in RMSE under unseen water
conditions compared to the VGGT baseline, underscoring its efficacy and broad
applicability.

1 INTRODUCTION

Accurate depth estimation in underwater environments is essential for a wide range of applications,
including marine robotics, ecological monitoring, and archaeological site exploration. Unlike
terrestrial scenes, underwater imaging Lee et al. (2023); Qi et al. (2025); Zhang et al. (2024a); Chang
et al. (2025); Cong et al. (2024); Guo et al. (2023); Naik et al. (2021) suffers from complex optical
degradations such as wavelength-dependent light attenuation, scattering by suspended particles, and
severe color distortions. These effects significantly degrade the visual cues that conventional depth
estimation models rely on, making underwater depth prediction a uniquely challenging problem.

Moreover, acquiring large-scale, densely annotated underwater depth datasets is technically
challenging and economically prohibitive. First, common RGB-D sensors such as structured-light
or time-of-flight cameras degrade significantly underwater due to limited effective range and severe
distortions, while sonar sensors produce sparse, low-resolution depth maps that are unsuitable
for training deep learning models. Second, state-of-the-art foundational depth estimation models
pretrained on terrestrial datasets, such as DepthAnything Yang et al. (2024b), MASt3R Leroy et al.
(2024), and VGGT Wang et al. (2025), suffer from substantial performance degradation when
directly applied to underwater imagery because of domain shifts caused by wavelength-dependent
attenuation and scattering. Third, retraining or fine-tuning these models with limited underwater
labeled data is challenging due to the scarcity of annotations and the risk of overfitting. These
challenges motivate the development of label-efficient adaptation methods that leverage pretrained
terrestrial models while effectively bridging the domain gap to enable robust underwater depth
estimation.

In this work, we propose SeaVGGT, a self-supervised framework designed to adapt pretrained depth
models to underwater environments without requiring any ground truth annotations or enhancement
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Figure 1: SeaVGGT, an efficient adaptation of the original VGGT tailored for underwater scenes,
achieves remarkable improvements in 3D structure reconstruction, boundary clarity, and multi-view
consistency with minimal additional computational cost and label requirements. Leveraging a self-
supervised learning paradigm, SeaVGGT does not rely on annotated data and achieves efficient
adaptation without any fine-tuning of the VGGT backbone or prediction heads, making it highly
practical for diverse underwater environments.

references. Our method explicitly models underwater image degradation as structured biases in
latent feature space, characterized by a set of learnable prototypes that represent diverse water types
and attenuation patterns. These prototypes are connected in a graph structure, enabling relational
reasoning through message passing that captures complex dependencies between different water
conditions.

SeaVGGT employs a lightweight token modulation mechanism conditioned on context-aware
prototype representations, facilitating depth-relevant feature adaptation while preserving the
structural priors of the underlying pretrained model, as shown in Figure 1. The entire system is
trained end-to-end with a physics-driven self-supervision loss, grounded in the underwater image
formation model, enforcing cyclic consistency between input images and their reconstructions. To
handle variability and uncertainty in water types encountered during inference, SeaVGGT further
introduces a self-evolving prototype graph that dynamically refines prototype representations based
on input image statistics. Our main contributions are:

• A prototype-guided token modulation framework that adapts a pretrained VGGT model to
diverse underwater conditions by modeling complex degradation patterns without requiring
labeled data.

• A graph-based prototype learning strategy combined with a physics-driven self-supervised
loss, enabling relational modeling among water types and accurate geometric estimation
based on underwater image formation principles.

2 RELATED WORK

Underwater Scene Geometry Understanding. Early methods focused on image enhancement
to restore underwater images using physical models of light attenuation and scattering Zhou et al.
(2023), yet struggled in turbid or variable conditions. Recent supervised deep learning approaches
estimate depth or 3D structure directly from monocular underwater images Hambarde et al. (2021),
but rely on scarce annotated data. Synthetic datasets Zhao et al. (2021); Zwilgmeyer et al. (2021)
partially alleviate this but suffer from domain gaps. Transfer learning from terrestrial pretrained
models with fine-tuning on limited underwater data Yu et al. (2023); Ebner et al. (2024) has shown
promise, using architectures like Monodepth2 Godard et al. (2019) and AdaBins Bhat et al. (2021),
yet still requires supervision and may reduce generality. Beyond monocular depth, comprehensive
underwater geometry tasks remain underexplored due to data scarcity and optical complexities.
Our work proposes a self-supervised framework that jointly models underwater degradation and
geometry without ground truth, enabling robust scene understanding across diverse conditions.

Underwater Image Enhancement. Traditional physical model-based underwater image
enhancement (UIE) methods Drews Jr et al. (2013); Wang et al. (2018); Chiang & Chen (2012);
Li et al. (2016); Akkaynak & Treibitz (2019) use hand-crafted priors and parameter estimation to
invert degradation, but depth recovery remains challenging and limits robustness. CNN-based UIE
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Figure 2: Overview of SeaVGGT. Given an underwater image, visual tokens are extracted via
VGGT’s encoder and modulated by water-type-aware prototypes to adapt the features to diverse
underwater conditions. The prototype representations are refined via graph attention and selectively
integrated to guide the modulation. The entire system is trained under a self-supervised learning
paradigm leveraging physics-based constraints, enabling effective adaptation without reliance on
annotated data. The resulting modulated token features support downstream tasks such as depth
estimation and camera pose prediction.

approaches Li et al. (2017); Fabbri et al. (2018); Uplavikar et al. (2019); Li et al. (2021); Zhou
et al. (2024); Li et al. (2019) employ end-to-end or parameter estimation networks, improving speed
and generality but relying on paired or synthetic data that may not fully represent real underwater
conditions, restricting geometric understanding. Transformer-based UIE methods Dosovitskiy et al.
(2020); Liu et al. (2021); Peng et al. (2023); Tang et al. (2023); Khan et al. (2024); Peng & Bian
(2025) capture global context yet face computational costs and uneven degradation challenges;
recent modules adaptively model degradation variation to enhance regional image quality. Such
enhancement techniques increasingly serve not only preprocessing but also as supervision signals
for self-supervised underwater geometry estimation without ground truth.

3 METHOD

Underwater images exhibit complex variations due to the intertwined effects of depth and color
distortion, posing challenges for generalizable depth estimation. To tackle this, we propose a water-
prototype-aware modulation framework that leverages learned water-type prototypes to adaptively
modulate token features under a self-supervised learning paradigm guided by underwater imaging
physics. Figure 2 provides an overview of the architecture.

3.1 PROBLEM FORMULATION AND KEY CHALLENGES

We first revisit the formulation of VGGT, which serves as the foundation of our approach. Given a
set of N RGB images {Ii}Ni=1 captured from different viewpoints of the same scene, VGGT aims to
predict, for each image Ii, a per-pixel depth map Di ∈ RH×W , a point cloud map Qi ∈ RH×W×3

in the world coordinate system, and camera parameters, including the intrinsic matrix Ki ∈ R3×3

and extrinsic matrix Ti ∈ R4×4.

To this end, each image Ii is tokenized into patch tokens, which are then jointly processed by a set of
frame-wise and global self-attention layers with cross-frame interactions. The resulting K feature
tokens Xi = {xi,k ∈ RC}Kk=1 are passed through task-specific heads to infer the desired geometric
and camera outputs:

Di = fD(Xi), Qi = fQ(Xi), (Ki,Ti) = fcam(Xi), (1)

where fD, fQ, and fcam denote the prediction heads for depth, point cloud, and camera parameters,
respectively.

To facilitate the robust application of VGGT in underwater environments, which present significant
domain shifts and limited annotated data, we introduce a lightweight token modulation mechanism.
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This mechanism adaptively refines the extracted feature tokens Xi to capture underwater-specific
image characteristics, yielding modulated tokens X̃i that preserve the original feature dimensionality
and spatial organization. Crucially, these modulated tokens can be directly processed by VGGT’s
pretrained prediction heads:

D̃i = fD(X̃i), Q̃i = fQ(X̃i), (K̃i, T̃i) = fcam(X̃i). (2)

This design leverages the strong pretrained geometric reasoning of VGGT while enabling flexible
adaptation to the unique visual properties of underwater scenes. By performing modulation at
the token level, our method obviates the need for costly retraining of the backbone or prediction
heads, thereby substantially reducing computational overhead and annotation requirements. Such
an approach facilitates efficient and practical deployment of VGGT in real-world underwater
applications.

3.2 PHYSICS-GUIDED SELF-SUPERVISION FRAMEWORK

Gate Fusion

MLP

Spatial Adaptor

Context-aware
Condition

Figure 3: Illustration of prototype-guided
token modulation.

We propose a physics-guided self-supervision
framework that jointly predicts a restored image
J and a corresponding depth map D from the
modulated feature X̃. The framework consists
of two branches: an image enhancement head fJ
and a depth estimation head fD, where the former
is randomly initialized and trained from scratch,
while the latter is from the pre-trained VGGT
model with fixed parameters. We also introduce
a learnable 3-dimensional vector β that models
the attenuation coefficient in underwater imaging.
The degraded image Ideg is reconstructed via a
simplified underwater imaging model:

Ideg = J⊙ e−βD̃ +
(
1− e−βD̃

)
B = fJ(X̃)⊙ e−βfD(X̃) +

(
1− e−βfD(X̃)

)
B, (3)

where B denotes the background light, assumed to be constant and estimated from the input image
I via a 3-layer convolutional neural network fB , as illustrated in the upper-left part of Figure 2.

To regularize the self-supervised learning, we define the following self-reconstruction losses:

Lrec =λl1∥Ideg − I∥1 + λssim (1− SSIM(Ideg, I))

+ λpercep ∥ϕ(Ideg)− ϕ(I)∥1

+ λgrad

(
∥∇Idegx −∇Ix∥1 +

∥∥∥∇Idegy −∇Iy

∥∥∥
1

)
,

(4)

where ϕ(·) extracts perceptual features from a fixed VGG16 pretrained network, and ∇Ix, ∇Iy
denote spatial gradients along width and height directions.

Inspired by USUIR Fu et al. (2022), the enhanced image J is constrained to be consistent with a
mixup-augmented version Jmix via a mean squared error loss:

Lenh = ∥Jmix − J∥22 . (5)

To encourage neutral color tones in J, we penalize deviation of channel-wise means from 0.5:

Lcolor =

√
(mr − 0.5)4 + (mg − 0.5)4 + (mb − 0.5)4, (6)

where mc is the mean intensity of channel c ∈ {r, g, b}.
Since the farthest pixels in underwater scenes are minimally affected by reflected object color, the
background color B ∈ R3 is supervised by a proxy ground truth. Specifically, for each image, we
select the top 0.1% of pixels with the largest depth values and compute the average RGB value at
those locations:

Lbg =

∥∥∥∥∥∥B− 1

|P|
∑

(i,j)∈P

I(i, j, :)

∥∥∥∥∥∥
2

2

, (7)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where P = Top−0.1% (D) denotes the set of pixel locations with the top 0.1% largest depth values
in the image. To mitigate potential inaccuracies of D under domain shift, we assign this term only a
small weight, ensuring that it serves as a weak regularizer rather than a dominant supervision signal.
Therefore, the overall loss of the framework is:

Ltotal = λrecLrec + λenhLenh + λcolorLcolor + λbgLbg, (8)

where the coefficients λrec, λenh, λcolor, and λbg are loss weights, which are specified in the
experimental details.

3.3 WATER-PROTOTYPE GRAPH CONSTRUCTION

To model appearance variations across water types, we construct a water-prototype graph G =
(V, E), where each node represents a learnable prototype wi associated with an RGB color vector
Ai ∈ R3 indicating typical underwater color and scattering behavior. The color matrix A ∈ RP×3

is initialized from prior waterbody samples and optimized during training.

Graph Edges. Edges E are established between visually similar prototypes based on color
distance:

dij = ∥Ai −Aj∥2, Eadj[i, j] = I[dij < τ ], (9)

with threshold τ = 0.3. This restricts message passing to perceptually similar water types.

(a) Initial colors of water exemplars

(b) Water-exemplar graph after training

Figure 4: Visualization of water exemplars
before and after training. (a) Initial colors
of the exemplar nodes, selected to cover
a range of typical water body appearances.
(b) Exemplar representations after training,
where node colors are automatically adjusted
to better reflect the actual water colors
encountered, and edges represent graph
connectivity. After training, the exemplars
tend to be darker and more similar, reflecting
the predominantly dimmer and closer hues
of real underwater scenes compared to the
diverse initial palette in (a).

GAT Input. Each node wi is further conditioned
on the predicted global background color B ∈ R3.
We concatenate Ai and B to form the input to the
graph attention network:

Hi = [Ai ∥B] ∈ R6, (10)

resulting in the full input matrix H ∈ RP×6.
This concatenation allows the GAT to refine each
prototype in a context-aware manner, adapting node
features according to how relevant each water type
is to the current input image.

Prototype Feature Update via GAT. Each
prototype node is refined using a single-layer graph
attention, which incorporates context from visually
similar water types. Given the input feature matrix
H ∈ RP×6, each node is first linearly projected to
a hidden space with learnable parameters W:

Zi = WHi, W ∈ R6×d, (11)

and the attention coefficients between node i and j
are computed as:

eij =

{
ϕ
(
a⊤ [Zi ∥Zj ]

)
, if (i, j) ∈ E ,

−∞, otherwise,
(12)

where a ∈ R2d is a learnable parameter and ϕ(·)
denotes the LeakyReLU activation.

Then, the normalized attention weight αij is
obtained by applying softmax over neighbors of node i, i.e., N (i). The updated node feature is
then computed as:

w̃i = MLP

 ∑
j∈N (i)

αij · Zj

 ∈ RC , (13)

where MLP(·) is a shared projection module that maps hidden features to the token feature
dimension C.

5
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Image MDepth2 AdaBins UDepth TRUDepth DAv2 VGGT Ours GT

Figure 5: Comparison of depth predictions in terms of object-level shape accuracy (first 3 rows) and
scene-level structural realism (last 3 rows). Regions with noticeable differences across predictions
are highlighted with red bounding boxes.
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Figure 6: Foreground object shape comparison
on USOD10K. Top: samples with irregular or
complex object shapes. Bottom: samples with
less accurate dataset-provided GTs, which may
not fully reflect the actual scene structure.

Figure 7: Qualitative point cloud comparison
with VGGT and MASt3R. SeaVGGT exhibits
more geometrically accurate 3D structures than
VGGT and MASt3R.

3.4 PROTOTYPE-GUIDED TOKEN MODULATION

Context-Aware Prototype Selection. To respond to the current underwater condition, we first
compute the similarity between the predicted global water color B and each prototype color Ai:

si = exp
(
−γ ∥B−Ai∥2

)
, (14)

where γ is a temperature hyperparameter (empirically set to 10). We identify the top-k most similar
prototypes, indexed by K, and normalize their scores via softmax: ωi = si∑

j∈K sj
, i ∈ K. The

selected top-k prototypes serve as context-aware conditions, providing a soft representation of the
scene’s water type. Each context-aware prototype w̃i (refined by GAT) conditions a dedicated token
modulation branch.

Conditional Token Modulation. Let input features be X = {xk ∈ RC}Kk=1, where K is the
number of tokens. Given a selected condition prototype w̃i, we apply hybrid modulation (see
Figure 3) as follows:

1) Global Modulation. We interpolate between a global learnable prototype wglobal and the selected
prototype w̃i to produce a global modulation vector:

g = σ(θ) · w̃i + (1− σ(θ)) ·wglobal, (15)

θ =
1

C

〈
wglobal, w̃i

〉
(16)

6
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Table 1: Depth estimation metrics across different underwater scenes in the FLSea dataset. Recent
works Yang et al. (2024a); Zhang et al. (2024b) are closely related for comparison, but since
their depth estimation codes are not publicly available and they did not conduct experiments on
FLSea, we are unable to report their results. The methods are grouped into three categories:
terrestrial pretrained models fine-tuned with underwater data , underwater pretrained models , and

foundation models performing zero-shot prediction . The complete quantitative results are
provided in Table 10.

Scene Metric MDepth2 AdaBins UDepth TRUDepth DAv2 VGGT Ours

Big Dice Loop MAE↓ 0.6715 0.7243 0.9177 1.0717 0.8519 0.4383 0.3623
RMSE↓ 1.0719 1.1848 1.4395 1.4857 1.4292 0.8107 0.7703

Coral Table Loop MAE↓ 0.6378 0.7560 0.6565 1.0159 0.6313 0.6602 0.5013
RMSE↓ 0.8715 0.9710 0.8807 1.3396 0.8755 0.9459 0.7219

Cross Pyramid Loop MAE↓ 0.4705 0.6007 0.5585 0.8491 0.4927 0.4040 0.2607
RMSE↓ 0.6121 0.7537 0.7269 1.0809 0.6669 0.5157 0.3768

Dice Path MAE↓ 0.4738 0.5721 0.7376 0.8140 0.6464 0.3742 0.3162
RMSE↓ 0.6150 0.7240 0.9663 1.0212 0.8930 0.5505 0.4906

Northeast Path MAE↓ 0.6804 0.8736 1.1590 1.2501 1.1241 0.6681 0.5877
RMSE↓ 1.0253 1.1667 1.5714 1.6532 1.6157 0.9699 0.9197

Pier Path MAE↓ 0.6384 0.5493 0.7328 0.9908 0.6553 0.3531 0.2823
RMSE↓ 0.8656 0.7494 1.0166 1.2629 0.9421 0.5359 0.4692

Sub Pier MAE↓ 0.5370 0.5440 0.6679 0.8937 0.6295 0.4174 0.3538
RMSE↓ 0.8209 0.7825 0.9887 1.2396 0.9747 0.6503 0.5603

Table 2: Depth estimation results on USOD10K and SQUID. ↑: higher is better, ↓: lower is better.

Metric USOD10K (mono) SQUID (stereo)
MDepth2 AdaBins UDepth TRUDepth DAv2 VGGT Ours VGGT Ours

MAE ↓ 1.7220 1.8727 2.0539 1.7055 2.1052 1.5248 1.3414 0.1213 0.0968
RMSE ↓ 2.0938 2.2826 2.4070 2.0349 2.4789 1.8534 1.6595 0.1774 0.1403
REL ↓ 1.0300 1.1484 0.5464 1.4269 0.7031 1.2582 1.1415 0.2452 0.1949
δ1 ↑ 0.3450 0.3361 0.2616 0.3634 0.3088 0.4319 0.4835 0.5238 0.7013
δ2 ↑ 0.5933 0.5742 0.5141 0.6436 0.5690 0.6792 0.7249 0.8407 0.9102
δ3 ↑ 0.7423 0.7190 0.7200 0.7957 0.7526 0.8021 0.8272 0.9654 0.9651
si-RMSE ↓ 0.6842 0.7236 0.4348 0.7185 0.5107 0.6619 0.6253 0.2232 0.1935

Each token is then modulated via channel-wise multiplication: xk ← xk ⊙ g.

2) Local Modulation. A local prototype matrix Wlocal ∈ RK×C is used to capture token-level
variation. For each token, a query vector qk is extracted and used to compute local modulation via
attention:

bk =

K∑
i=1

softmax
(
q⊤
k wlocal,i√

C

)
·wlocal,i (17)

3) Spatial Fusion. A two-layer CNN generates per-token weights αk ∈ [0, 1] to fuse global and
local outputs:

x̃k = αk · (xk ⊙ g) + (1− αk) · bk (18)

The modulated tokens X̃ = {x̃k}Kk=1 are passed to the decoder for prediction.

Prototype-Conditioned Physical Prediction. Each condition prototype also predicts a sample-
specific physical parameter βi via an MLP. The final estimate aggregates top-K predictions by
similarity-weighted averaging: βfinal =

∑
i∈K

si∑
j∈K sj

· βi.

Discussion on Modulation and Prototype Graph. Our water-prototype guided modulation
operates hierarchically, combining global water-type-aware scaling with local fine-grained
adjustment. Global modulation adapts feature representations to overall environmental conditions,
while local modulation ensures spatially precise adaptation based on local content. This design

7
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Table 3: Inference time
(Single A6000 GPU)
and parameter count.

Method Time (ms) Params

VGGT 2.06 1.26B
Ours 2.39 1.34B

Table 4: Ablation on loss functions.

Lrec Lenh Lcolor Lbg / E[I] MAE↓ RMSE↓

✓ Lbg 1.6484 2.0471
✓ ✓ Lbg 1.5241 1.8335
✓ ✓ ✓ Lbg 1.3414 1.6595
✓ ✓ ✓ E[I] 1.5776 1.9114
✓ ✓ ✓ 1.7442 2.4329

Table 5: Analysis of depth
supervision under noisy
conditions.

Metric 5% 10% 20% 30%

MAE 1.3753 1.3740 1.4293 1.8256
RMSE 1.6781 1.7108 1.7571 2.6844

Table 6: Ablation on
initialization strategies.

Initialization Training Steps MAE RMSE

Prior 20000 1.3414 1.6595
Random #1 20000 1.4879 1.8012
Random #1 50000 1.3660 1.7011
Random #2 50000 1.3353 1.6818

Table 7: Ablation on color
distance thresholds.

τ MAE RMSE

0.1 1.3641 1.6986
0.3 1.3414 1.6595
0.6 1.3577 1.8915
1.0 1.4823 2.1089

Table 8: Ablation on prototype
interaction strategies.

Interaction #Layers MAE RMSE

Graph Attention 1 1.3414 1.6595
Nearest Neighbor 0 1.4602 1.8057

Triplet Loss 0 1.5027 1.8734
+ Weighted Sum

effectively bridges high-level priors and low-level details, supporting robust and generalizable
geometric estimation across diverse underwater scenes, and is applied without retraining the VGGT
backbone or prediction heads, enabling efficient adaptation.

The effectiveness of this modulation is reinforced by the learned prototype graph (Figure 4).
Visualization of the prototypes and their adjacency matrix shows structured and meaningful
connections, indicating that the model organizes representative water appearance patterns through
prototype interactions. This structured graph supports the hierarchical modulation by providing
interpretable priors that guide both global and local feature adaptation, thereby enhancing depth
prediction quality and maintaining physical consistency in challenging underwater environments.

4 EXPERIMENTS

Datasets. We evaluate SeaVGGT on three underwater datasets: FLSea Randall (2023) (22,451
RGB images with metric depth in shallow water, featuring light attenuation, turbidity, and specular
reflections), USOD10K Hong et al. (2023) (10,255 images of 70 salient object classes across 12
scenes; evaluation on 3,077 test images without using training data), and SQUID Berman et al.
(2021) (57 stereo pairs from four sites in Israel, covering coral reefs, a shipwreck, and rocky reefs
at 3–30m depth).

Experimental Configurations. We adopt a lightweight training strategy with only three sets of
trainable parameters: (1) 24 learnable water prototypes along with their corresponding modulation
parameters, (2) a lightweight CNN designed for background light estimation, and (3) an image
enhancement head (DPT head Ranftl et al. (2021)), which is used solely during training and
removed at inference time. All models are optimized using the Adam optimizer with a learning
rate of 1 × 10−4 and trained on a single NVIDIA A6000 GPU with a batch size of 1. In the
prototype interaction module, the top-k selection is set to k = 4. We evaluate using standard
metrics commonly adopted in depth estimation, and perform scale alignment between the predicted
depth and the ground-truth depth for each method. The training set consists of 11,400 unlabeled
underwater images from the MVK Dataset Du et al. (2024). To enhance generalization, we apply
standard data augmentation techniques, including random horizontal and vertical flipping, as well
as color jittering. The overall training loss is formulated as a weighted sum of four components:
the reconstruction loss and the enhancement loss (both with weight 1.0), the color consistency
loss (weight 0.05), and the background prediction loss (weight 0.1). Among the enhancement loss
components, the weights for the L1 loss, SSIM loss, perceptual loss, and gradient loss are set to 1,
0.1, 0.1, and 0.1, respectively.

4.1 MAIN RESULTS

In the underwater depth prediction experiments, we conducted comprehensive comparisons with a
range of existing methods grouped into three categories: 1) terrestrial pretrained models fine-tuned
on FLSea underwater images and depth labels (MDepth2 Godard et al. (2019), AdaBins Bhat et al.
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I B D = fD(X) D̃ = fD(X̃) T = e−βD̃ J Ideg

Figure 8: Visualization of intermediate variables in the water-prototype guided modulation pipeline.
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Figure 9: Ablation study on the number of graph nodes.
(2021)); 2) underwater pretrained models specifically trained on underwater depth data (UDepth Yu
et al. (2022), TRUDepth Ebner et al. (2024)); and 3) foundation models evaluated in a zero-shot
manner on underwater scenes without any underwater depth annotations (DAv2 Yang et al. (2024b),
VGGT). Our method belongs to this last category, leveraging foundation models for zero-shot depth
prediction without relying on depth supervision. This grouping emphasizes the differing levels of
prior knowledge and supervision among the compared approaches and positions our method in the
context of generalizable, annotation-free underwater depth estimation.

Table 1 presents the results of monocular depth estimation methods evaluated on multiple scenes
from the FLSea dataset. Our method achieves the best performance across all metrics, significantly
outperforming VGGT by a substantial margin.

Table 2 demonstrates that our method achieves state-of-the-art performance in underwater depth
estimation on the challenging USOD10K dataset, outperforming VGGT across multiple evaluation
metrics. To further validate the effectiveness of our approach, we present qualitative 3D
visualizations comparing our predicted point clouds with those from competing methods (e.g.,
MASt3R Leroy et al. (2024)) in Figure 7. These visualizations clearly highlight our method’s
superior capability to recover accurate and coherent 3D scene structures in complex underwater
environments. Moreover, Table 2 shows that our approach achieves significant improvements
over VGGT on stereo settings in the SQUID dataset, despite not being trained under multi-view
conditions, thereby demonstrating the generality and effectiveness of our token modulation strategy.

Computational Complexity. Table 3 shows that our full model incorporates two lightweight
modules on top of VGGT: the modulation part with 75.8 million parameters and a compact
background light CNN containing only 33K parameters, resulting in a total of approximately 1.34
billion parameters. Despite this increase, the inference time remains efficient, with only a modest
rise from 2.06 ms for VGGT to 2.39 ms for our model.

Visualization and Analysis of Intermediate Variables. Figure 8 visualizes key intermediate
outputs. The initial VGGT depth D is noisy, whereas the modulated depth D̃ shows clearer
boundaries and stronger geometric consistency. The transmission map T models depth-dependent
attenuation, enabling realistic degraded images Ideg, and the reconstructed clean image J exhibits
improved contrast. These results illustrate our self-supervised feedback mechanism: modulation
adjusts tokens X̃ so that the frozen depth head produces D̃ consistent with J. Reconstruction losses
are minimized only when the two align, indicating that the modulation is effective, physics-guided,
and improves depth quality through cross-modal consistency.

4.2 ABLATION STUDY

Effect of the Number of Graph Nodes. We conduct an ablation study to investigate how
the number of graph nodes (i.e., water prototypes) affects geometric estimation. As shown in
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Figure 9, increasing the number of graph nodes improves performance up to a certain point, with
diminishing returns beyond 24 nodes. Notably, our method consistently outperforms VGGT across
all configurations, demonstrating the robustness and generalization benefit of our water-prototype
modulation.

Effect of the Loss Design and Weight. We conduct an ablation study to assess the contribution of
each loss component (Table 4). Using only the reconstruction loss Lrec yields higher errors, while
adding the enhancement loss Lenh noticeably improves results. Incorporating the color consistency
lossLcolor provides further gains by enforcing realistic underwater color priors. Replacing the naive
background estimate E[I] with our background loss Lbg reduces error, confirming its effectiveness.
We additionally varied the weight of each loss term while keeping others fixed. As shown in
Figure 10, performance remains stable across a broad range of weight values, demonstrating that
our improvements are robust rather than the outcome of a specific hyperparameter setting.

Sensitivity to Noise from Imperfect Depth Maps. We further evaluate robustness by injecting
proportional noise into D during training (Table 5). While very large noise (e.g., σ = 30%) slightly
degrades B estimation and final depth accuracy, performance remains stable under realistic noise
levels (σ ≤ 20%), indicating that the proxy depth supervision is reasonably robust.
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Figure 10: Sensitivity of
Depth Prediction to Loss
Weight (USOD10K).

Effect of Prototype Graph Initialization. To assess sensitivity to
initialization, we conducted an ablation study comparing the prior-
based initialization with two independent random initializations,
denoted as Random #1 and Random #2. The results are shown
in Table 6, indicating that random initialization can lead to
slower convergence. However, after sufficient training steps, the
final performance recovers to a level comparable with prior-based
initialization, demonstrating the model’s robustness to the choice
of initial prototype colors. Furthermore, we visualized the learned
prototype graphs and adjacency matrices for the two random
initializations (see Figure 14). Despite starting from random colors,
the converged prototype graph still exhibits clear structural regularities, and the adjacency matrix
reveals consistent connectivity patterns among graph nodes.

Sensitivity to Color Distance Threshold. To evaluate sensitivity to this hyperparameter, we varied
τ and report the results in Table 7. The model performs best at τ = 0.3, which is used in our main
experiments. Smaller values slightly weaken graph connectivity, while larger values may introduce
less relevant edges; however, the impact in both cases is limited because edge weights mitigate noise.
Overall, the model shows low sensitivity to the choice of τ .

Effect of the GNN. To evaluate the ability to model higher-order interactions among prototypes,
we implemented a metric-learning based baseline that operates at the image level. Since we do
not have ground-truth prototype assignments, we follow unsupervised metric learning practices
and treat the nearest prototype as a pseudo-positive, and the others as pseudo-negatives: Lmetric =
max(0, d(z, p+) − d(z, p−) +m), where p+ is the closest prototype for the current image and p−
is sampled from the remaining prototypes. After training, scattering parameters are estimated as
a convex combination

∑
k αk pk =

∑
k

exp(−d(z,pk))∑
j exp(−d(z,pj))

pk. Table 7 compares several prototype
interaction strategies, supporting our design rationale: GNNs capture structured inter-prototype
relationships and propagate information, leading to more stable and accurate depth predictions.
In contrast, metric learning ignores these relationships, and nearest-neighbor methods cannot
generalize to unseen water types.

5 CONCLUSION

This paper introduces SeaVGGT, a lightweight and effective adaptation of the VGGT framework
for underwater scenarios. Without relying on labeled data or modifying the VGGT backbone
and prediction heads, SeaVGGT leverages a self-supervised strategy to achieve robust domain
adaptation. Our method yields clear improvements in 3D structure recovery, object boundary
delineation, and multi-view consistency, all while maintaining low computational cost. These
advantages make SeaVGGT a practical solution for a wide range of real-world underwater
applications.
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René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 12179–12188,
2021.

Yi Tang, Hiroshi Kawasaki, and Takafumi Iwaguchi. Underwater image enhancement by
transformer-based diffusion model with non-uniform sampling for skip strategy. In ACM MM,
pp. 5419–5427, 2023.

Pritish M Uplavikar, Zhenyu Wu, and Zhangyang Wang. All-in-one underwater image enhancement
using domain-adversarial learning. In CVPR Workshops, pp. 1–8, 2019.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
Novotny. Vggt: Visual geometry grounded transformer. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pp. 5294–5306, 2025.

Yi Wang, Hui Liu, and Lap-Pui Chau. Single underwater image restoration using adaptive
attenuation-curve prior. IEEE Trans. Circuits. Syst. I. Regul. Pap., 65(3):992–1002, 2018. doi:
10.1109/TCSI.2017.2751671.

Jinghe Yang, Mingming Gong, and Ye Pu. Physics-informed knowledge transfer for underwater
monocular depth estimation. In European Conference on Computer Vision, pp. 449–465.
Springer, 2024a.

Lihe Yang, Bingyi Kang, Zilong Huang, Zhen Zhao, Xiaogang Xu, Jiashi Feng, and Hengshuang
Zhao. Depth anything v2. Advances in Neural Information Processing Systems, 37:21875–21911,
2024b.

Boxiao Yu, Jiayi Wu, and Md Jahidul Islam. Udepth: Fast monocular depth estimation for visually-
guided underwater robots. arXiv preprint arXiv:2209.12358, 2022.

Boxiao Yu, Jiayi Wu, and Md Jahidul Islam. Udepth: Fast monocular depth estimation for visually-
guided underwater robots, 2023.

Dehuan Zhang, Jingchun Zhou, Chunle Guo, Weishi Zhang, and Chongyi Li. Synergistic multiscale
detail refinement via intrinsic supervision for underwater image enhancement. In Proceedings of
the AAAI conference on artificial intelligence, volume 38, pp. 7033–7041, 2024a.

Fan Zhang, Shaodi You, Yu Li, and Ying Fu. Atlantis: Enabling underwater depth estimation with
stable diffusion. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11852–11861, 2024b.

Qi Zhao, Ziqiang Zheng, Huimin Zeng, Zhibin Yu, Haiyong Zheng, and Bing Zheng. The synthesis
of unpaired underwater images for monocular underwater depth prediction. Frontiers in Marine
Science, 8:690962, 2021.

Jingchun Zhou, Tongyu Yang, and Weishi Zhang. Underwater vision enhancement technologies:
A comprehensive review, challenges, and recent trends. Applied Intelligence, 53(3):3594–3621,
2023.

Jingchun Zhou, Jiaming Sun, Chongyi Li, Qiuping Jiang, Man Zhou, Kin-Man Lam, Weishi Zhang,
and Xianping Fu. Hclr-net: Hybrid contrastive learning regularization with locally randomized
perturbation for underwater image enhancement. International Journal of Computer Vision, 132
(10):4132–4156, 2024.

Peder Georg Olofsson Zwilgmeyer, Mauhing Yip, Andreas Langeland Teigen, Rudolf Mester, and
Annette Stahl. The varos synthetic underwater data set: Towards realistic multi-sensor underwater
data with ground truth. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 3722–3730, 2021.

A APPENDIX

A.1 EFFECT OF THE LOSS WEIGHT.

To investigate the impact of different loss weights on depth prediction, we performed an ablation
study by varying the weights of four loss components: Background Loss (Lbg), Color Loss
(Lcolor), Reconstruction Loss (Lrec), and Enhancement Loss (Lenh). The evaluation metric is
RMSE on the USOD10K dataset.

The results in Figure 10, Figure 11, and Table 9 show that the model performs consistently well
across a wide range of loss weights. While moderate weights generally yield slightly better RMSE,
the overall performance is not highly sensitive to the exact values of each loss coefficient. This
indicates that our method is robust and does not require careful tuning of individual loss weights to
achieve stable depth estimation.
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Table 9: RMSE values under different loss weights for USOD10K

Background Loss

λbg RMSE
0.001 2.15
0.01 1.73
0.05 1.85
0.1 1.66
0.2 1.80
0.5 1.85
1.0 2.28

Color Loss

λcolor RMSE
0.001 2.03
0.01 1.80
0.05 1.78
0.1 1.66
0.2 1.75
0.5 2.23

Reconstruction Loss

λrec RMSE
0.5 1.90
1.0 1.66
2.0 1.80
5.0 2.13

Enhancement Loss

λenh RMSE
0.5 1.68
1.0 1.66
2.0 1.84
5.0 1.97

A.2 MORE VISUALIZATION ANALYSIS OF VARIABLES
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Figure 11: Sensitivity of Depth Prediction to
Loss Weight (USOD10K).

To further elucidate the effectiveness of our
proposed modulation mechanism and its
alignment with underwater image formation
principles, we provide a detailed analysis of
key intermediate variables visualized along the
processing pipeline in Figure 12. These variables
include the initial (D) and refined depth maps D̃,
transmission map T, degraded image synthesis
Ideg , and reconstructed clean image J. The
relationships among these variables are grounded
in the physical model of underwater imaging and
play a critical role in enabling self-supervised
learning. Below, we explain each component in
detail and describe how they interact.

Initial Depth Map D = fD(X). The variable D represents the initial dense depth prediction
produced by the pretrained foundational model VGGT Wang et al. (2025). This depth is inferred
directly from the tokens X of the input underwater image I, which is typically affected by scattering,
wavelength-dependent attenuation, and reduced visibility.

Refined Depth Map D̃ = fD(X̃). The variable D̃ denotes the refined depth output after
applying the proposed prototype-guided token modulation mechanism. This step is context-aware
and leverages a water-prototype graph to adaptively condition token features based on water color
and scattering characteristics, resulting in improved depth predictions under different underwater
conditions.

Transmission Map T. The transmission map T is computed from the refined depth D̃ using an
underwater attenuation model:

T = e−βD̃, (19)

where β is an attenuation coefficient specific to the wavelength (or water type), and x indexes the
pixel location. The transmission map models how much light from the scene reaches the camera
after traveling through the water column, and it is depth-dependent.

Reconstructed Clean Image J. The clean image J is reconstructed by inverting the underwater
image formation model, using the estimated refined depth map D̃ and background color B:

J =
I−B⊙ (1−T)

T+ ϵ
, (20)

where T = e−βD̃ is the transmission map derived from depth, and ϵ is a small constant to
avoid division by zero. The reconstructed J represents an estimate of the visibility-restored scene,
compensating for both depth-dependent attenuation and color cast caused by scattering.
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Table 10: Depth estimation metrics on different underwater scenes in FLSea.

Scene Metric MDepth2 AdaBins UDepth TRUDepth DAv2 VGGT Ours

Big Dice Loop

MAE↓ 0.6715 0.7243 0.9177 1.0717 0.8519 0.4383 0.3623
RMSE↓ 1.0719 1.1848 1.4395 1.4857 1.4292 0.8107 0.7703
REL↓ 0.2132 0.2409 0.2895 0.3073 0.2442 0.1295 0.0880
si-RMSE↓ 0.1750 0.1885 0.5546 0.3583 0.3723 0.1077 0.0997

Coral Table Loop

MAE↓ 0.6378 0.7560 0.6565 1.0159 0.6313 0.6602 0.5013
RMSE↓ 0.8715 0.9710 0.8807 1.3396 0.8755 0.9459 0.7219
REL↓ 0.2214 0.2775 0.2423 0.3691 0.2110 0.2107 0.1592
si-RMSE↓ 0.2075 0.2446 0.4094 0.3931 0.2856 0.2078 0.1522

Cross Pyramid Loop

MAE↓ 0.4705 0.6007 0.5585 0.8491 0.4927 0.4040 0.2607
RMSE↓ 0.6121 0.7537 0.7269 1.0809 0.6669 0.5157 0.3768
REL↓ 0.2067 0.2882 0.2624 0.3932 0.2135 0.1789 0.1028
si-RMSE↓ 0.1905 0.2508 0.4524 0.4062 0.3073 0.1592 0.1056

Dice Path

MAE↓ 0.4738 0.5721 0.7376 0.8140 0.6464 0.3742 0.3162
RMSE↓ 0.6150 0.7240 0.9663 1.0212 0.8930 0.5505 0.4906
REL↓ 0.1874 0.2262 0.2899 0.3156 0.2348 0.1415 0.1121
si-RMSE↓ 0.1740 0.1870 0.5056 0.3278 0.3776 0.1170 0.1106

Northeast Path

MAE↓ 0.6804 0.8736 1.1590 1.2501 1.1241 0.6681 0.5877
RMSE↓ 1.0253 1.1667 1.5714 1.6532 1.6157 0.9699 0.9197
REL↓ 0.1629 0.2632 0.3131 0.3323 0.2824 0.1900 0.1433
si-RMSE↓ 0.1509 0.1973 0.5216 0.3518 0.3601 0.1578 0.1416

Pier Path

MAE↓ 0.6384 0.5493 0.7328 0.9908 0.6553 0.3531 0.2823
RMSE↓ 0.8656 0.7494 1.0166 1.2629 0.9421 0.5359 0.4692
REL↓ 0.2227 0.2003 0.2521 0.3532 0.2133 0.1113 0.0868
si-RMSE↓ 0.2185 0.1788 0.4564 0.3604 0.3632 0.1056 0.0957

Sub Pier

MAE↓ 0.5370 0.5440 0.6679 0.8937 0.6295 0.4174 0.3538
RMSE↓ 0.8209 0.7825 0.9887 1.2396 0.9747 0.6503 0.5603
REL↓ 0.2382 0.2727 0.2999 0.4275 0.2650 0.1928 0.1474
si-RMSE↓ 0.2145 0.2127 0.4823 0.3853 0.3641 0.1594 0.1325

Importantly, this reconstruction process is only valid under the assumption that the estimated depth
D̃ and background color B are accurate. If either component is unreliable, the resulting J will
contain artifacts or unrealistic content. Conversely, when D̃ captures the true scene geometry and B
correctly models ambient water color, the forward synthesis of the degraded image Ideg, computed
from J and T, will closely match the original observation I. This consistency underpins the self-
supervised learning objective and reinforces physically grounded depth estimation.

A.3 FURTHER RESULTS AND COMPARISONS

Monocular Point Cloud Comparison Figure 15 presents qualitative comparisons of 3D point
clouds reconstructed from monocular images, using VGGT, MASt3R, and our method. This
visualization offers an intuitive perspective on the geometric structure captured by each method. As
shown, both VGGT Wang et al. (2025) and MASt3R Leroy et al. (2024) produce noisy and spatially
fragmented point clouds when applied directly to underwater images, reflecting their difficulty in
generalizing across severe underwater degradations. These reconstructions often exhibit distorted
object shapes, surface discontinuities, and depth inconsistency, particularly in regions affected by
scattering or color cast.

In contrast, our method yields significantly more coherent and physically plausible 3D structures.
The resulting point clouds exhibit sharper object boundaries, smoother surfaces, and more accurate
spatial layouts. This improvement highlights the effectiveness of our water-aware modulation
mechanism and self-supervised learning framework in promoting geometrically consistent depth
estimation, even without access to ground-truth depth or labels. Such improvements are critical
for downstream tasks like underwater mapping, navigation, or manipulation in real-world marine
environments.
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I B D = fD(X) D̃ = fD(X̃) T = e−βD̃ J Ideg

Figure 12: Visualization of intermediate variables in the water-prototype guided modulation
pipeline.

Image VGGT Ours GT Image VGGT Ours GT

Figure 13: Foreground object shape comparison on USOD10K. Our method produces clearer object
shapes and more realistic background depth.

Stereo Point Cloud Comparison. Figure 16 illustrates qualitative comparisons of 3D point clouds
reconstructed from stereo depth predictions using VGGT, MASt3R, and our proposed method. In
this setting, stereo pairs are provided as input, allowing models to leverage binocular cues in addition
to monocular priors.

While VGGT and MASt3R benefit from stereo input, their reconstructions still suffer from notable
geometric artifacts in underwater scenes. Specifically, their point clouds tend to exhibit depth noise,
surface distortions, and poor alignment with object boundaries—especially in regions affected by
turbidity, color shift, or low texture. This reflects their limited robustness to underwater degradations
even in the presence of stereo cues.

In contrast, our method consistently produces sharper and more structurally faithful point clouds.
Surfaces are smoother, object boundaries are more distinct, and the overall spatial layout
better preserves real-world scene geometry. This suggests that our water-aware modulation and
unsupervised learning framework not only adapts well in monocular settings, but also complements
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Figure 14: Effect of randomly initialized colors for the water exemplars. Despite the random
initialization, the prototype graph learned after model convergence still exhibits clear structural
regularities, and the adjacency matrix reveals the connectivity patterns among graph nodes.

Figure 15: Qualitative monocular point cloud comparison with VGGT and MASt3R.

stereo-based depth estimation by enhancing feature reliability and enforcing better geometric
consistency.

Multi-view Point Cloud Comparison. Figure 17 presents a qualitative comparison of multi-view
reconstructed point clouds using our method versus VGGT.

This multi-view scenario emphasizes the importance of depth consistency across frames. As shown,
the point clouds produced by VGGT often exhibit misalignments and accumulated clutter, resulting
in fragmented or overlapping structures when multiple views are fused. These inconsistencies arise
from per-frame prediction noise and are particularly pronounced in scattering-dominated underwater
environments.

In contrast, our method produces cleaner and more structurally consistent point clouds under
multi-view fusion. The alignment across frames is visibly more stable, with fewer redundant
or misregistered points. This demonstrates that our water-prototype modulation contributes to
improved temporal coherence, making the resulting 3D reconstruction more reliable for downstream
applications such as underwater mapping, SLAM, or structure-from-motion.

Multi-view 2D Point Tracking. Figure 18 visualizes multi-view 2D point tracking results by
reprojecting 3D points across frames using the predicted depths and known camera poses. This
visualization serves as an indirect measure of inter-frame geometric consistency.

While tracking in underwater scenes is inherently challenging due to scattering, low texture, and
depth ambiguity, our method shows more stable tracking trajectories compared to VGGT in several
regions. In particular, the tracked points exhibit smoother motion across views and fewer abrupt
jumps, suggesting improved depth continuity and cross-frame consistency.

Although some residual drift remains, especially in regions with limited visual cues, these results
indicate that the proposed water-prototype modulation contributes to more coherent geometry over
time, which may benefit applications such as structure-from-motion or feature-level association
under water.
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Figure 16: Qualitative stereo point cloud comparison with VGGT and MASt3R.
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We have taken care to avoid any biases or discriminatory outcomes in our research process.
No personally identifiable information was used, and no experiments were conducted that could
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Additionally, datasets used in the paper are publicly available, ensuring consistent and reproducible
evaluation results.

We believe these measures will enable other researchers to reproduce our work and further advance
the field.
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Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
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Figure 17: Qualitative multi-view point cloud comparison with VGGT.

clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.
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Figure 18: Qualitative multi-view point tracking with VGGT.
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