
Published as a conference paper at ICLR 2022

LEARNING TRANSFERABLE MOTOR SKILLS
WITH HIERARCHICAL LATENT MIXTURE POLICIES

Dushyant Rao∗, Fereshteh Sadeghi, Leonard Hasenclever, Markus Wulfmeier,
Martina Zambelli, Giulia Vezzani, Dhruva Tirumala, Yusuf Aytar, Josh Merel†,
Nicolas Heess, & Raia Hadsell
DeepMind, London, UK

ABSTRACT

For robots operating in the real world, it is desirable to learn reusable behaviours
that can effectively be transferred and adapted to numerous tasks and scenarios.
We propose an approach to learn abstract motor skills from data using a hierar-
chical mixture latent variable model. In contrast to existing work, our method
exploits a three-level hierarchy of both discrete and continuous latent variables,
to capture a set of high-level behaviours while allowing for variance in how they
are executed. We demonstrate in manipulation domains that the method can effec-
tively cluster offline data into distinct, executable behaviours, while retaining the
flexibility of a continuous latent variable model. The resulting skills can be trans-
ferred and fine-tuned on new tasks, unseen objects, and from state to vision-based
policies, yielding better sample efficiency and asymptotic performance compared
to existing skill- and imitation-based methods. We further analyse how and when
the skills are most beneficial: they encourage directed exploration to cover large
regions of the state space relevant to the task, making them most effective in chal-
lenging sparse-reward settings.

1 INTRODUCTION

Reinforcement learning is a powerful and flexible paradigm to train embodied agents, but relies on
large amounts of agent experience, computation, and time, on each individual task. Learning each
task from scratch is inefficient: it is desirable to learn a set of skills that can efficiently be reused and
adapted to related downstream tasks. This is particularly pertinent for real-world robots, where inter-
action is expensive and data-efficiency is crucial. There are numerous existing approaches to learn
transferable embodied skills, usually formulated as a two-level hierarchy with a high-level controller
and low-level skills. These methods predominantly represent skills as being either continuous, such
as goal-conditioned (Lynch et al., 2019; Pertsch et al., 2020b) or latent space policies (Haarnoja
et al., 2018; Merel et al., 2019; Singh et al., 2021); or discrete, such as mixture or option-based
methods (Sutton et al., 1999; Daniel et al., 2012; Florensa et al., 2017; Wulfmeier et al., 2021). Our
goal is to combine these perspectives to leverage their complementary advantages.

We propose an approach to learn a three-level skill hierarchy from an offline dataset, capturing both
discrete and continuous variations at multiple levels of behavioural abstraction. The model com-
prises a low-level latent-conditioned controller that can learn motor primitives, a set of continuous
latent mid-level skills, and a discrete high-level controller that can compose and select among these
abstract mid-level behaviours. Since the mid- and high-level form a mixture, we call our method
Hierarchical Latent Mixtures of Skills (HeLMS). We demonstrate on challenging object manipula-
tion tasks that our method can decompose a dataset into distinct, intuitive, and reusable behaviours.
We show that these skills lead to improved sample efficiency and performance in numerous trans-
fer scenarios: reusing skills for new tasks, generalising across unseen objects, and transferring from
state to vision-based policies. Further analysis and ablations reveal that both continuous and discrete
components are beneficial, and that the learned hierarchical skills are most useful in sparse-reward
settings, as they encourage directed exploration of task-relevant parts of the state space.
∗Corresponding author. Email: dushyantr@deepmind.com
†Work done while at DeepMind

1

Published as a conference paper at ICLR 2022

Our main contributions are as follows:

• We propose a novel approach to learn skills at different levels of abstraction from an offline
dataset. The method captures both discrete behavioural modes and continuous variation
using a hierarchical mixture latent variable model.

• We present two techniques to reuse and adapt the learned skill hierarchy via reinforce-
ment learning in downstream tasks, and perform extensive evaluation and benchmarking in
different transfer settings: to new tasks and objects, and from state to vision-based policies.

• We present a detailed analysis to interpret the learned skills, understand when they are most
beneficial, and evaluate the utility of both continuous and discrete skill representations.

2 RELATED WORK

A long-standing challenge in reinforcement learning is the ability to learn reusable motor skills that
can be transferred efficiently to related settings. One way to learn such skills is via multi-task rein-
forcement learning (Heess et al., 2016; James et al., 2018; Hausman et al., 2018; Riedmiller et al.,
2018), with the intuition that behaviors useful for a given task should aid the learning of related tasks.
However, this often requires careful curation of the task set, where each skill represents a separate
task. Some approaches avoid this by learning skills in an unsupervised manner using intrinsic objec-
tives that often maximize the entropy of visited states while keeping skills distinguishable (Gregor
et al., 2017; Eysenbach et al., 2019; Sharma et al., 2019; Zhang et al., 2020).

A large body of work explores skills from the perspective of unsupervised segmentation of repeat-
able behaviours in temporal data (Niekum & Barto, 2011; Ranchod et al., 2015; Krüger et al., 2016;
Lioutikov et al., 2017; Shiarlis et al., 2018; Kipf et al., 2019; Tanneberg et al., 2021). Other works
investigate movement or motor primitives that can be selected or sequenced together to solve com-
plex manipulation or locomotion tasks (Mülling et al., 2013; Rueckert et al., 2015; Lioutikov et al.,
2015; Paraschos et al., 2018; Merel et al., 2020; Tosatto et al., 2021; Dalal et al., 2021). Some
of these methods also employ mixture models to jointly model low-level motion primitives and a
high-level primitive controller (Muelling et al., 2010; Colomé & Torras, 2018; Pervez & Lee, 2018);
the high-level controller can also be implicit and decentralised over the low-level primitives (Goyal
et al., 2019).

Several existing approaches employ architectures in which the policy is comprised of two (or more)
levels of hierarchy. Typically, a low-level controller represents the learned set of skills, and a
high-level policy instructs the low-level controller via a latent variable or goal. Such latent vari-
ables can be discrete (Florensa et al., 2017; Wulfmeier et al., 2020) or continuous (Nachum et al.,
2018; Haarnoja et al., 2018) and regularization of the latent space is often crucial (Tirumala et al.,
2019). The latent variable can represent the behaviour for one timestep, for a fixed number of
timesteps (Ajay et al., 2021), or options with different durations (Sutton et al., 1999; Bacon et al.,
2017; Wulfmeier et al., 2021). One such approach that is particularly relevant (Florensa et al., 2017)
learns a diverse set of skills, via a discrete latent variable that interacts multiplicatively with the state
to enable continuous variation in a Stochastic Neural Network policy; this skill space is then trans-
ferred to locomotion tasks by learning a new categorical controller. Our method differs in a few key
aspects: our proposed three-level hierarchical architecture explicitly models abstract discrete skills
while allowing for temporal dependence and lower-level latent variation in their execution, enabling
diverse object-centric behaviours in challenging manipulation tasks.

Our work is related to methods that learn robot policies from demonstrations (LfD, e.g. (Rajeswaran
et al., 2018; Shiarlis et al., 2018; Strudel et al., 2020)) or more broadly from logged data (offline
RL, e.g. (Wu et al., 2019; Kumar et al., 2020; Wang et al., 2020)). While many of these focus on
learning single-task policies, several approaches learn skills offline that can be transferred online
to new tasks (Merel et al., 2019; Lynch et al., 2019; Pertsch et al., 2020a; Ajay et al., 2021; Singh
et al., 2021). These all train a two-level hierarchical model, with a high-level encoder that maps to
a continuous latent space, and a low-level latent-conditioned controller. The high-level encoder can
encode a whole trajectory (Pertsch et al., 2020a; 2021; Ajay et al., 2021); a short look-ahead state
sequence (Merel et al., 2019); the current and final goal state (Lynch et al., 2019); or can even be
simple isotropic Gaussian noise (Singh et al., 2021) that can be flexibly transformed by a flow-based
low-level controller. At transfer time, a new high-level policy is learned from scratch: this can be
more efficient with skill priors (Pertsch et al., 2020a) or temporal abstraction (Ajay et al., 2021).

2

Published as a conference paper at ICLR 2022

(a) (b)

Figure 1: (a) Graphical model for HeLMS, with solid lines indicating the underlying generative
model (prior) and dashed lines indicating dependencies introduced by the inference model (poste-
rior). (b) Network architecture, showing the high-, mid-, and low-level networks from left to right,
respectively. As indicated by superscripts, different subsets of the input state x can be provided to
the high level (HL), mid level (ML), and low level (LL) (information-asymmetry).

HeLMS builds on this large body of work by explicitly modelling both discrete and continuous
behavioural structure via a three-level skill hierarchy. We use similar information asymmetry to
Neural Probabilistic Motor Primitives (NPMP) (Merel et al., 2019; 2020), conditioning the high-
level encoder on a short look-ahead trajectory. However HeLMS explicitly captures discrete modes
of behaviour via the high-level controller, and learns an additional mid-level which is able to transfer
abstract skills to downstream tasks, rather than learning a continuous latent policy from scratch.

3 METHOD

This paper examines a two-stage problem setup: an offline stage where a hierarchical skill space
is learned from a dataset, and an online stage where these skills are transferred to a reinforcement
learning setting. The dataset D comprises a set of trajectories, each a sequence of state-action pairs
{xt,at}Tt=0. The model incorporates a discrete latent variable yt ∈ {1, . . . ,K} as a high-level skill
selector (for a fixed number of skills K), and a mid-level continuous variable zt ∈ Rnz conditioned
on yt which parameterises each skill. Marginally, zt is then a latent mixture distribution represent-
ing both a discrete set of skills and the variation in their execution. A sample of zt represents an
abstract behaviour, which is then executed by a low-level controller p(at | zt,xt). The learned skill
space can then be transferred to a reinforcement learning agent π in a Markov Decision Process de-
fined by tuple {S,A, T ,R, γ}: these represent the state, action, and transition distributions, reward
function, and discount factor respectively. When transferring, we train a new high-level controller
that acts either at the level of discrete skills yt or continuous zt, and freeze lower levels of the policy.

We explain our method in detail in the following sections.

3.1 LATENT MIXTURE SKILL SPACES FROM OFFLINE DATA

Our method employs the generative model in Figure 1a. As shown, the state inputs can be different
for each level of the hierarchy, but to keep notation uncluttered, we refer to all state inputs as xt and
the specific input can be inferred from context. The joint distribution of actions and latents over a
trajectory is decomposed into a latent prior p(y0:T , z1:T) and a low-level controller p(at | zt,xt):

p(a1:T ,y0:T , z1:T |x1:T) = p(y0:T , z1:T)

T∏
t=1

p(at | zt,xt)

p(y0:T , z1:T) = p(y0)

T∏
t=1

p(yt |yt−1)p(zt |yt). (1)

Intuitively, the categorical variable yt can capture discrete modes of behaviour, and the continuous
latent zt is conditioned on this to vary the execution of each behaviour. Thus, zt follows a mixture

3

Published as a conference paper at ICLR 2022

distribution, encoding all the relevant information on desired abstract behaviour for the low-level
controller p(at | zt,xt). Since each categorical latent yt is dependent on yt−1, and zt is only depen-
dent on yt, this prior can be thought of as a Hidden Markov model over the sequence of z1:T .

To perform inference over the latent variables, we introduce the variational approximation:

q(y0:T , z1:T |x1:T) = p(y0)

T∏
t=1

q(yt |yt−1,xt)q(zt |yt,xt) (2)

Here, the selection of a skill yt ∼ q(yt |yt−1,xt) is dependent on that of the previous timestep
(allowing for temporal consistency), as well as the input. The mid-level skill is then parameterised
by zt ∼ q(zt |yt,xt) based on the chosen skill and current input. p(y0) and p(yt |yt−1) model a
skill prior and skill transition prior respectively, while p(zt |yt) represents a skill parameterisation
prior to regularise each mid-level skill. While all of these priors can be learned in practice, we only
found it necessary to learn the transition prior, with a uniform categorical for the initial skill prior
and a simple fixed N (0, I) prior for p(zt |yt).

Training via the Evidence Lower Bound The proposed model contains a number of components
with trainable parameters: the prior parameters ψ = {ψa, ψy} for the low-level controller and
categorical transition prior respectively; and posterior parameters φ = {φy, φz} for the high-level
controller and mid-level skills. For a trajectory {x1:T ,a1:T } ∼ D, we can compute the Evidence
Lower Bound for the state-conditional action distribution, ELBO ≤ p(a1:T |x1:T), as follows:

ELBO = Eqφ(y0:T ,z1:T |x1:T)

[
log pψ(a1:T ,y0:T , z1:T |x1:T)− log qφ(y0:T , z1:T |x1:T)

]

≈
T∑
t=1

[∑
yt

q(yt |x1:t)
(per-component action recon︷ ︸︸ ︷
log pψa(at | z̃

{yt}
t ,xt)−βz

per-component KL regulariser︷ ︸︸ ︷
KL(qφz (zt |yt,xt) || p(zt |yt))

)]

−βy
T∑
t=1

[∑
yt−1

q(yt−1 |x1:t−1)KL
(
qφy (yt |yt−1,xt) || pψy (yt |yt−1)

)︸ ︷︷ ︸
categorical regulariser

]
(3)

where z̃
{yt}
t ∼ q(zt |yt,xt). The coefficients βy and βz can be used to weight the KL terms,

and the cumulative component probability q(yt |x1:t) can be computed iteratively as q(yt |x1:t) =∑
yt−1

qφy (yt |yt−1,xt)q(yt−1 |x1:t−1). In other words, for each timestep t and each mixture
component, we compute the latent sample and the corresponding action log-probability, and the
KL-divergence between the component posterior and prior. This is then marginalised over all yt,
with an additional KL over the categorical transitions. For more details, see Appendix C.

Information-asymmetry As noted in previous work (Tirumala et al., 2019; Galashov et al., 2019),
hierarchical approaches often benefit from information-asymmetry, with higher levels seeing addi-
tional context or task-specific information. This ensures that the high-level remains responsible for
abstract, task-related behaviours, while the low-level executes simpler motor primitives. We employ
similar techniques in HeLMS: the low-level inputs xLL comprise the proprioceptive state of the em-
bodied agent; the mid-level inputs xML also include the poses of objects in the environment; and the
high-level xHL concatenates both object and proprioceptive state for a short number of lookahead
timesteps. The high- and low-level are similar to (Merel et al., 2019), with the low-level controller
enabling motor primitives based on proprioceptive information, and the high-level using the looka-
head information to provide additional context regarding behavioural intent when specifying which
skill to use. The key difference is the categorical high-level and the additional mid-level, with which
HeLMS can learn more object-centric skills and transfer these to downstream tasks.

Network architectures The architecture and information flow in HeLMS are shown in Figure 1b.
The high-level network contains a gated head, which uses the previous skill yt−1 to index into one of
K categorical heads, each of which specify a distribution over yt. For a given yt, the corresponding
mid-level skill network is selected and used to sample a latent action zt, which is then used as input
for the latent-conditioned low-level controller, which parameterises the action distribution. The skill
transition prior p(yt |yt−1) is also learned, and is parameterised as a linear softmax layer which
takes in a one-hot representation of yt−1 and outputs the distribution over yt. All components are
trained end-to-end via the objective in Equation 3.

4

Published as a conference paper at ICLR 2022

3.2 REINFORCEMENT LEARNING WITH RELOADED SKILLS

Once learned, we propose two methods to transfer the hierarchical skill space to downstream tasks.
Following previous work (e.g. (Merel et al., 2019; Singh et al., 2021)), we freeze the low-level
controller p(at | zt,xt), and learn a policy for either the continuous (zt) or discrete (yt) latent.

Categorical agent One simple and effective technique is to additionally freeze the mid-level com-
ponents q(zt |yt,xt), and learn a categorical high-level controller π(yt |xt) for the downstream
task. The learning objective is given by:

J = Eπ

[∑
t

γt (rt − ηyKL(π(yt |xt) ||π0(yt |xt)))

]
, (4)

where the standard discounted return objective in RL is augmented by an additional term performing
KL-regularisation to some prior π0 scaled by coefficient ηy . This could be any categorical distribu-
tion such as the previously learned transition prior p(yt |yt−1), but in this paper we regularise to the
uniform categorical prior to encourage diversity. While any RL algorithm could be used to optimize
π(yt |xt), in this paper we use MPO (Abdolmaleki et al., 2018) with a categorical action distribu-
tion (see Appendix B for details). We hypothesise that this method improves sample efficiency by
converting a continuous control problem into a discrete abstract action space, which may also aid in
credit assignment. However, since both the mid-level components and low-level are frozen, it can
limit flexibility and plasticity, and also requires that all of the mid- and low-level input states are
available in the downstream task. We call this method HeLMS-cat.

Mixture agent A more flexible method of transfer is to train a latent mixture policy, π(zt |xt) =∑
yt
π(yt |xt)π(zt |yt,xt). In this case, the learning objective is given by:

J = Eπ

[∑
t

γt
(
rt − ηyKL(π(yt |xt) ||π0(yt |xt))− ηz

∑
yt

KL(π(zt |yt,xt) ||π0(zt |yt,xt))

)]
, (5)

where in addition to the categorical prior, we also regularise each mid-level skill to a corresponding
prior π0(zt |yt,xt). While the priors could be any policies, we set them to be the skill posteri-
ors q(zt |yt,xt) learned offline, to ensure the mixture components remain close to the pre-learned
skills. This is related to (Tirumala et al., 2019), which also applies KL-regularisation at multiple
levels of a hierarchy. While the high-level controller π(yt |xt) is learned from scratch, the mixture
components can also be initialised to q(zt |yt,xt), to allow for initial exploration over the space
of skills. Alternatively, the mixture components can use different inputs, such as vision: this setup
allows vision-based skills to be learned efficiently by regularising to state-based skills learned of-
fline. We optimise this using RHPO (Wulfmeier et al., 2020), which employs a similar underlying
optimisation to MPO for mixture policies (see Appendix B for details). We call this HeLMS-mix.

4 EXPERIMENTS

Our experiments focus on the following questions: (1) Can we learn a hierarchical latent mixture
skill space of distinct, interpretable behaviours? (2) How do we best reuse this skill space to improve
sample efficiency and performance on downstream tasks? (3) Can the learned skills transfer effec-
tively to multiple downstream scenarios: (i) different objects; (ii) different tasks; and (iii) different
modalities such as vision-based policies? (4) How exactly do these skills aid learning of downstream
manipulation tasks? Do they aid exploration? Are they useful in sparse or dense reward scenarios?

4.1 EXPERIMENTAL SETUP

Environment and Tasks We focus on manipulation tasks, using a MuJoCo-based environment
with a single Sawyer arm, and three objects coloured red, green, and blue. We follow the challenging
object stacking benchmark of Lee et al. (2021), which specifies five object sets (Figure 2), carefully
designed to have diverse geometries and present different challenges for a stacking agent. These
range from simple rectangular objects (object set 4), to geometries such as slanted faces (sets 1
and 2) that make grasping or stacking the objects more challenging. This environment allows us

5

Published as a conference paper at ICLR 2022

(a) Set 1 (b) Set 2 (c) Set 3 (d) Set 4 (e) Set 5

Figure 2: The object sets (triplets) used for our experiments, introduced by (Lee et al., 2021).

(a) (b) (c)

Figure 3: (a) Image sequences showing example rollouts when fixing the discrete skill (different for
each row) and running the mid- and low-level controllers in the environment. Each skill executes
a different behaviour, such as lifting (top row), reach-to-red (middle row), or grasping (bottom) (b)
The learned skill transition prior p(yt |yt−1). (c) Histogram showing the use of different skills.

to systematically evaluate generalisation of manipulation behaviours for different tasks interacting
with geometrically different objects. For further information, we refer the reader to Appendix D.1 or
to (Lee et al., 2021). Details of the rewards for the different tasks are also provided in Appendix F.

Datasets To evaluate our approach and baselines in the manipulation settings, we use two datasets:

• red_on_blue_stacking: this data is collected by an agent trained to stack the red
object on the blue object and ignore the green one, for the simplest object set, set4.
• all_pairs_stacking: similar to the previous case, but with all six pairwise stacking

combinations of {red, green, blue}, and covering all of the five object sets.

Baselines For evaluation in transfer scenarios, we compare HeLMS with a number of baselines:

• From scratch: We learn the task from scratch with MPO, without an offline learning phase.
• NPMP+KL: We compare against NPMP (Merel et al., 2019), which is the most simi-

lar skill-based approach in terms of information-asymmetry and policy conditioning. We
make some small changes to the originally proposed method, and also apply additional
KL-regularisation to the latent prior: we found this to improve performance significantly
in our experiments. For more details and an ablation, see Appendix A.2.

• Behaviour Cloning (BC): We apply behaviour cloning to the dataset, and fine-tune this
policy via MPO on the downstream task. While the actor is initialised to the solution
obtained via BC, the critic still needs to be learned from scratch.

• Hierarchical BC: We evaluate a hierarchical variant of BC with a similar latent space z
to NPMP using a latent Gaussian high-level controller. However, rather than freezing the
low-level and learning just a high-level policy, Hierarchical BC fine-tunes the entire model.

• Asymmetric actor-critic: For state-to-vision transfer, HeLMS uses prior skills that depend
on object states to learn a purely vision-based policy. Thus, we also compare against a
variant of MPO with an asymmetric actor-critic (Pinto et al., 2017) setup, which uses object
states differently: to speed up learning of the critic, while still learning a vision-based actor.

4.2 LEARNING SKILLS FROM OFFLINE DATA

We first aim to understand whether we can learn a set of distinct and interpretable skills from data
(question (1)). For this, we train HeLMS on the red_on_blue_stacking dataset with 5 skills.

6

Published as a conference paper at ICLR 2022

(a) Set 1 (b) Set 2 (c) Set 3 (d) Set 5

Figure 4: Performance when transferring to the red-on-blue stacking task using staged sparse reward
with every unseen object set.

(a) (b)

Figure 5: (a) Performance on pyramid task; and (b)
image sequence showing episode rollout from a learned
solution on this task (left-to-right, top-to-bottom).

Figure 6: Performance for
vision-based stacking.

Figure 3a shows some example episode rollouts when the learned hierarchical agent is executed in
the environment, holding the high-level categorical skill constant for an episode. Each row rep-
resents a different skill component, and the resulting behaviours are both distinct and diverse: for
example, a lifting skill (row 1) where the gripper closes and rises up, a reaching skill (row 2) where
the gripper moves to the red object, or a grasping skill (row 3) where the gripper lowers and closes its
fingers. Furthermore, without explicitly encouraging this, the emergent skills capture temporal con-
sistency: Figure 3b shows the learned prior p(yt |yt−1) (visualised as a transition matrix) assigns
high probability along the diagonal (remaining in the same skill). Finally, Figure 3c demonstrates
that all skills are used, without degeneracy.

4.3 TRANSFER TO DOWNSTREAM TASKS

Generalising to different objects We next evaluate whether the previously learned skills (i.e.
trained on the simple objects in set 4) can effectively transfer to more challenging object interaction
scenarios: the other four object sets proposed by (Lee et al., 2021). The task uses a sparse staged
reward, with reward incrementally given after completing each sub-goal of the stacking task. As
shown in Figure 4, both variants of HeLMS learn significantly faster than baselines on the different
object sets. Compared to the strongest baseline (NPMP), HeLMS reaches better average asymptotic
performance (and much lower variance) on two object sets (1 and 3), performs similarly on set 5,
and does poorer on object set 2. The performance on object set 2 potentially highlights a trade-off
between incorporating higher-level abstract behaviours and maintaining low-level flexibility: this
object set often requires a reorientation of the bottom object due to its slanted faces, a behaviour that
is not common in the offline dataset, which might require greater adaptation of mid- and low-level
skills. This is an interesting investigation we leave for future work.

Compositional reuse of skills To evaluate whether the learned skills are composable for new
tasks, we train HeLMS on the all_pairs_stacking dataset with 10 skills, and transfer to a
pyramid task. In this setting, the agent has to place the red object adjacent to the green object, and
stack the blue object on top to construct a pyramid. The task is specified via a sparse staged reward

7

Published as a conference paper at ICLR 2022

(a) Dense reward (b) Sparse staged reward (c) Sparse reward

Figure 7: Transfer performance on a stacking task with different reward sparsities. Left: dense
reward, Centre: staged sparse reward, Right: sparse reward

for each stage or sub-task: reaching, grasping, lifting, and placing the red object, and subsequently
the blue object. In Figure 5(a), we plot the performance of both variants of our approach, as well as
NPMP and MPO; we omit the BC baselines as this involves transferring to a fundamentally different
task. Both HeLMS-mix and HeLMS-cat reach a higher asymptotic performance than both NPMP
and MPO, indicating that the learned skills can be better transferred to a different task. We show an
episode rollout in Figure 5(b) in which the learned agent can successfully solve the task.

From state to vision-based policies While our method learns skills from proprioception and ob-
ject state, we evaluate whether these skills can be used to more efficiently learn a vision-based policy.
This is invaluable for practical real-world scenarios, since the agent acts from pure visual observa-
tion at test time without requiring privileged and often difficult-to-obtain object state information.

We use the HeLMS-mix variant to transfer skills to a vision-based policy, by reusing the low-level
controller, initialising a new high-level controller and mid-level latent skills (with vision and pro-
prioception as input), and KL-regularising these to the previously learned state-based skills. While
the learned policy is vision-based, this KL-regularisation still assumes access to object states during
training. For a fair comparison, we additionally compare our approach with a version of MPO using
an asymmetric critic (Pinto et al., 2017), which exploits object state information instead of vision in
the critic, and also use this for HeLMS. As shown in Figure 6, learning a vision-based policy with
MPO from scratch is very slow and computationally intensive, but an asymmetric critic significantly
speeds up learning, supporting the empirical findings of Pinto et al. (2017). However, HeLMS once
again demonstrates better sample efficiency, and reaches slightly better asymptotic performance. We
note that this uses the same offline model as for the object generalisation experiments, showing that
the same state-based skill space can be reused in numerous settings, even for vision-based tasks.

4.4 WHERE AND HOW CAN HIERARCHICAL SKILL REUSE BE EFFECTIVE?

Sparse reward tasks We first investigate how HeLMS performs for different rewards: a dense
shaped reward, the sparse staged reward from the object generalisation experiments, and a fully
sparse reward that is only provided after the agent stacks the object. For this experiment, we use the
skill space trained on red_on_blue_stacking and transfer it to the same RL task of stacking
on object set 4. The results are shown in Figure 7. With a dense reward (and no object transfer
required), all of the approaches can successfully learn the task. With the sparse staged reward, the
baselines all plateau at a lower performance, with the exception of NPMP, as previously discussed.
However, for the challenging fully-sparse scenario, HeLMS is the only method that achieves non-
zero reward. This neatly illustrates the benefit of the proposed hierarchy of skills: it allows for
directed exploration which ensures that even sparse rewards can be encountered. This is consistent
with observations from prior work in hierarchical reinforcement learning (Florensa et al., 2017;
Nachum et al., 2019), and we next investigate this claim in more depth for our manipulation setting.

Exploration To measure whether the proposed approach leads to more directed exploration, we
record the average coverage in state space at the start of RL (i.e. zero-shot transfer). This is com-
puted as the variance (over an episode) of the state xt, separated into three interpretable groups:

8

Published as a conference paper at ICLR 2022

Method Reward State coverage (×10−2)
Dense Staged Joints Grasp Objects

MPO 3.16 0.0 8.72 0.004 1.21
NPMP 3.67 0.0 3.43 0.0 1.45

BC 31.68 0.004 4.22 0.05 1.52
Hier. BC 16.42 0.004 2.61 0.04 1.31
HeLMS 20.46 0.05 2.98 1.10 1.61

Table 1: Analysis of zero-shot exploration at the start
of RL, in terms of reward and state coverage (vari-
ance over an episode of different subsets of the agent’s
state). Results are averaged over 1000 episodes.

(a) (b)

Figure 8: Ablation for continuous and dis-
crete components during offline learning,
when transferring to the (a) easy case (ob-
ject set 4) and (b) hard case (object set 3).

joints (angles and velocity), grasp (a simulated grasp sensor), and object poses. We also record the
total reward (dense and sparse staged). The results are reported in Table 1. While all approaches
achieve some zero-shot dense reward (with BC the most effective), HeLMS1 receives a sparse staged
reward an order of magnitude greater. Further, in this experiment we found it was able to achieve
the fully sparse reward (stacked) in one episode. Analysing the state coverage results, while other
methods are able to cover the joint space more (e.g. by randomly moving the joints), HeLMS is
nearly two orders of magnitude higher for grasp states. This indicates the utility of hierarchical
skills: by acting over the space of abstract skills rather than low-level actions, HeLMS performs
directed exploration and targets particular states of interest, such as grasping an object.

4.5 ABLATION STUDIES

Capturing continuous and discrete structure To evaluate the benefit of both continuous and dis-
crete components, we train our method with a fixed variance of zero for each latent component (i.e.
‘discrete-only’) and transfer to the stacking task with sparse staged reward in an easy case (object set
4) and hard case (object set 3), as shown in Figure 8(a) and (b). We also evaluate the ‘continuous-
only’ case with just a single Gaussian to represent the high- and mid-level skills: this is equivalent
to the NPMP+KL baseline. We observe the the discrete component alone leads to improved sam-
ple efficiency in both cases, but modelling both discrete and continuous latent behaviours makes a
significant difference in the hard case. In other words, when adapting to challenging objects, it is
important to capture discrete skills, but allow for latent variation in how they are executed.

KL-regularisation We also perform an ablation for KL-regularisation during the offline phase
(via βz) and online RL (via ηz), to gauge the impact on transfer; see Appendix A.1 for details.

5 CONCLUSION

We present HeLMS, an approach to learn transferable and reusable skills from offline data using a
hierarchical mixture latent variable model. We analyse the learned skills to show that they effectively
cluster data into distinct, interpretable behaviours. We demonstrate that the learned skills can be
flexibly transferred to different tasks, unseen objects, and to different modalities (such as from state
to vision). Ablation studies indicate that it is beneficial to model both discrete modes and continuous
variation in behaviour, and highlight the importance of KL-regularisation when transferring to RL
and fine-tuning the entire mixture of skills. We also perform extensive analysis to understand where
and how the proposed skill hierarchy can be most useful: we find that it is particularly invaluable in
sparse reward settings due to its ability to perform directed exploration.

There are a number of interesting avenues for future work. While our model demonstrated temporal
consistency, it would be useful to more actively encourage and exploit this for sample-efficient
transfer. It would also be useful to extend this work to better fine-tune lower level behaviours, to
allow for flexibility while exploiting high-level behavioural abstractions.

1Note that HeLMS-cat and HeLMS-mix are identical for this analysis: at the start of reinforcement learning,
both variants transfer the mid-level skills while initialising a new high-level controller.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

The authors would like to thank Coline Devin for detailed comments on the paper and for generating
the all_pairs_stacking dataset. We would also like to thank Alex X. Lee and Konstantinos
Bousmalis for help with setting up manipulation experiments. We are also grateful to reviewers for
their feedback.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
tin Riedmiller. Maximum a posteriori policy optimisation. In International Conference on Learn-
ing Representations, 2018.

Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. OPAL: Offline
primitive discovery for accelerating offline reinforcement learning. In International Conference
on Learning Representations, 2021.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Adrià Colomé and Carme Torras. Dimensionality reduction in learning gaussian mixture models
of movement primitives for contextualized action selection and adaptation. IEEE Robotics and
Automation Letters, 3(4):3922–3929, 2018.

Murtaza Dalal, Deepak Pathak, and Ruslan Salakhutdinov. Accelerating robotic reinforcement
learning via parameterized action primitives. In Thirty-Fifth Conference on Neural Information
Processing Systems, 2021.

Christian Daniel, Gerhard Neumann, and Jan Peters. Hierarchical relative entropy policy search. In
Artificial Intelligence and Statistics, pp. 273–281. PMLR, 2012.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions (ICLR), 2019.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical rein-
forcement learning. arXiv preprint arXiv:1704.03012, 2017.

Alexandre Galashov, Siddhant Jayakumar, Leonard Hasenclever, Dhruva Tirumala, Jonathan
Schwarz, Guillaume Desjardins, Wojtek M Czarnecki, Yee Whye Teh, Razvan Pascanu, and
Nicolas Heess. Information asymmetry in KL-regularized RL. In International Conference on
Learning Representations, 2019.

Anirudh Goyal, Shagun Sodhani, Jonathan Binas, Xue Bin Peng, Sergey Levine, and Yoshua Ben-
gio. Reinforcement learning with competitive ensembles of information-constrained primitives.
In International Conference on Learning Representations, 2019.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. In Inter-
national Conference on Learning Representations, 2017.

Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. Latent space policies
for hierarchical reinforcement learning. In International Conference on Machine Learning, pp.
1851–1860, 2018.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on Learn-
ing Representations (ICLR), 2018.

Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Riedmiller, and David Silver.
Learning and transfer of modulated locomotor controllers. arXiv preprint arXiv:1610. 05182,
2016.

Stephen James, Michael Bloesch, and Andrew J Davison. Task-Embedded control networks for
Few-Shot imitation learning. In Conference on Robot Learning (CoRL), 2018.

10

Published as a conference paper at ICLR 2022

Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Alvaro Sanchez-Gonzalez, Edward Grefen-
stette, Pushmeet Kohli, and Peter Battaglia. Compile: Compositional imitation learning and
execution. In International Conference on Machine Learning, pp. 3418–3428. PMLR, 2019.

Björn Krüger, Anna Vögele, Tobias Willig, Angela Yao, Reinhard Klein, and Andreas Weber. Effi-
cient unsupervised temporal segmentation of motion data. IEEE Transactions on Multimedia, 19
(4):797–812, 2016.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. arXiv preprint arXiv:2006.04779, 2020.

Alex X. Lee, Coline Manon Devin, Yuxiang Zhou, Thomas Lampe, Jost Tobias Springenberg, Kon-
stantinos Bousmalis, Arunkumar Byravan, Abbas Abdolmaleki, Nimrod Gileadi, David Khosid,
Claudio Fantacci, Jose Enrique Chen, Akhil Raju, Rae Jeong, Michael Neunert, Antoine Laurens,
Stefano Saliceti, Federico Casarini, Martin Riedmiller, Raia Hadsell, and Francesco Nori. Beyond
pick-and-place: Tackling robotic stacking of diverse shapes. In 5th Annual Conference on Robot
Learning, 2021.

Rudolf Lioutikov, Gerhard Neumann, Guilherme Maeda, and Jan Peters. Probabilistic segmentation
applied to an assembly task. In 2015 IEEE-RAS 15th International Conference on Humanoid
Robots (Humanoids), pp. 533–540. IEEE, 2015.

Rudolf Lioutikov, Gerhard Neumann, Guilherme Maeda, and Jan Peters. Learning movement primi-
tive libraries through probabilistic segmentation. The International Journal of Robotics Research,
36(8):879–894, 2017.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In Conference on Robot Learning (CoRL),
2019.

Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg Wayne,
Yee Whye Teh, and Nicolas Heess. Neural probabilistic motor primitives for humanoid control.
In International Conference on Learning Representations (ICLR), 2019.

Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasenclever, Vu Pham,
Tom Erez, Greg Wayne, and Nicolas Heess. Catch & carry: Reusable neural controllers for
vision-guided Whole-Body tasks. In SIGGRAPH 2020, 2020.

Katharina Muelling, Jens Kober, and Jan Peters. Learning table tennis with a mixture of motor
primitives. In 2010 10th IEEE-RAS International Conference on Humanoid Robots, pp. 411–416.
IEEE, 2010.

Katharina Mülling, Jens Kober, Oliver Kroemer, and Jan Peters. Learning to select and generalize
striking movements in robot table tennis. The International Journal of Robotics Research, 32(3):
263–279, 2013.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforce-
ment learning. In NeurIPS, 2018.

Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and Sergey Levine. Why does
hierarchy (sometimes) work so well in reinforcement learning? arXiv preprint arXiv:1909.10618,
2019.

Scott Niekum and Andrew G Barto. Clustering via dirichlet process mixture models for portable
skill discovery. In Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence,
2011.

Alexandros Paraschos, Christian Daniel, Jan Peters, and Gerhard Neumann. Using probabilistic
movement primitives in robotics. Autonomous Robots, 42(3):529–551, 2018.

Karl Pertsch, Youngwoon Lee, and Joseph J Lim. Accelerating reinforcement learning with learned
skill priors. arXiv preprint arXiv:2010.11944, 2020a.

11

Published as a conference paper at ICLR 2022

Karl Pertsch, Oleh Rybkin, Frederik Ebert, Shenghao Zhou, Dinesh Jayaraman, Chelsea Finn, and
Sergey Levine. Long-horizon visual planning with goal-conditioned hierarchical predictors. Ad-
vances in Neural Information Processing Systems, 33, 2020b.

Karl Pertsch, Youngwoon Lee, Yue Wu, and Joseph J Lim. Demonstration-Guided reinforcement
learning with learned skills. July 2021.

Affan Pervez and Dongheui Lee. Learning task-parameterized dynamic movement primitives using
mixture of gmms. Intelligent Service Robotics, 11(1):61–78, 2018.

Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel. Asym-
metric actor critic for image-based robot learning. arXiv preprint arXiv:1710.06542, 2017.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. In Robotics: Science and Systems XIV. Robotics: Science and
Systems Foundation, June 2018.

Pravesh Ranchod, Benjamin Rosman, and George Konidaris. Nonparametric bayesian reward seg-
mentation for skill discovery using inverse reinforcement learning. In 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 471–477. IEEE, 2015.

Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom van de
Wiele, Vlad Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by playing solving
sparse reward tasks from scratch. In Proceedings of the 35th International Conference on Machine
Learning, pp. 4344–4353, 2018.

Elmar Rueckert, Jan Mundo, Alexandros Paraschos, Jan Peters, and Gerhard Neumann. Extracting
low-dimensional control variables for movement primitives. In 2015 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 1511–1518. IEEE, 2015.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. arXiv preprint arXiv:1907. 01657, 2019.

Kyriacos Shiarlis, Markus Wulfmeier, Sasha Salter, Shimon Whiteson, and Ingmar Posner. Taco:
Learning task decomposition via temporal alignment for control. In International Conference on
Machine Learning, pp. 4654–4663. PMLR, 2018.

Avi Singh, Huihan Liu, Gaoyue Zhou, Albert Yu, Nicholas Rhinehart, and Sergey Levine. Par-
rot: Data-Driven behavioral priors for reinforcement learning. In International Conference on
Learning Representations, 2021.

Robin A M Strudel, Alexander Pashevich, Igor Kalevatykh, Ivan Laptev, Josef Sivic, and Cordelia
Schmid. Learning to combine primitive skills: A step towards versatile robotic manipulation. In
International Conference on Robotics and Automation (ICRA), 2020.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Daniel Tanneberg, Kai Ploeger, Elmar Rueckert, and Jan Peters. Skid raw: Skill discovery from raw
trajectories. IEEE Robotics and Automation Letters, 6(3):4696–4703, 2021.

D Tirumala, H Noh, A Galashov, L Hasenclever, and others. Exploiting hierarchy for learning and
transfer in kl-regularized rl. arXiv preprint arXiv, 2019.

Samuele Tosatto, Georgia Chalvatzaki, and Jan Peters. Contextual latent-movements off-policy
optimization for robotic manipulation skills. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pp. 10815–10821. IEEE, 2021.

Ziyu Wang, Alexander Novikov, Konrad Zolna, Josh S Merel, Jost Tobias Springenberg, Scott E
Reed, Bobak Shahriari, Noah Siegel, Caglar Gulcehre, Nicolas Heess, et al. Critic regularized
regression. Advances in Neural Information Processing Systems, 33, 2020.

12

Published as a conference paper at ICLR 2022

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Markus Wulfmeier, Abbas Abdolmaleki, Roland Hafner, Jost Tobias Springenberg, Michael Ne-
unert, Tim Hertweck, Thomas Lampe, Noah Siegel, Nicolas Heess, and Martin A Riedmiller.
Compositional transfer in hierarchical reinforcement learning. In Robotics: Science and Systems,
2020.

Markus Wulfmeier, Dushyant Rao, Roland Hafner, Thomas Lampe, Abbas Abdolmaleki, Tim Her-
tweck, Michael Neunert, Dhruva Tirumala, Noah Siegel, Nicolas Heess, et al. Data-efficient hind-
sight off-policy option learning. In International Conference on Machine Learning, pp. 11340–
11350. PMLR, 2021.

Jesse Zhang, Haonan Yu, and Wei Xu. Hierarchical reinforcement learning by discovering intrinsic
options. In International Conference on Learning Representations, 2020.

13

Published as a conference paper at ICLR 2022

APPENDIX

A ADDITIONAL EXPERIMENTS

A.1 ABLATIONS FOR KL-REGULARISATION

In these experiments, we investigate the effect of KL-regularisation on the mid-level components,
both for the offline learning phase (regularising each component to p(zt |yt) = N (0, I) via coeffi-
cient βz), and the online reinforcement learning stage via HeLMS-mix (regularising each component
to the mid-level skills learned offline, via coefficient ηz)). The results are reported in Figure 9, where
each plot represents a different setting for offline KL-regularisation (either regularisation toN (0, I)
with βz = 0.01, or no regularisation with βz = 0) and a different transfer case (the easy case of
transferring to object set 4, or the hard case of transferring to object set 3). Each plot shows the
downstream performance when varying the strength of KL-regularisation during RL via coefficient
ηz . The HeLMS-cat approach represents the extreme case where the skills are entirely frozen (i.e.
full regularisation).

The results suggest some interesting properties of the latent skill space based on regularisation.
When regularising the mid-level components to the N (0, I) prior, it is important to regularise dur-
ing online RL; this is especially true for the hard transfer case, where HeLMS-cat performs much
better, and the performance degrades significantly with lower regularisation values. However, when
removing mid-level regularisation during offline learning, the method is insensitive to regularisation
during RL over the entire range evaluated, from 0.01 to 100.0. We conjecture that with mid-level
skills regularised to N (0, I), the different mid-level skills are drawn closer together and occupy a
more compact region in latent space, such that KL-regularisation is necessary during RL for a skill
to avoid drifting and overlapping with the latent distribution of other skills (i.e. skill degeneracy). In
contrast, without offline KL-regularisation, the skills are free to expand and occupy more distant re-
gions of the latent space, rendering further regularisation unnecessary during RL. Such latent space
properties could be further analysed to improve learning and transfer of skills; we leave this as an
interesting direction for future work.

(a) βz = 0.01, easy (b) βz = 0.01, hard (c) βz = 0, easy (d) βz = 0, hard

Figure 9: Ablations for KL-regularisation, showing downstream performance with different degrees
of online KL-regularisation. Performance is evaluated for easy (object set 4) and hard (object set
3) transfer cases, with sparse staged rewards; when using different offline regularisation coefficient
(βz) values for the mid-level components.

A.2 NPMP ABLATION

The Neural Probabilistic Motor Primitives (NPMP) work (Merel et al., 2019) presents a strong base-
line approach to learning transferable motor behaviours, and we run ablations to ensure a fair com-
parison to the strongest possible result. As discussed in the main text, NPMP employs a Gaussian
high-level latent encoder with a AR(1) prior in the latent space. We also try a fixed N(0, I) prior
(this is equivalent to an AR(1) prior with a coefficient of 0, so can be considered a hyperparameter
choice). Since our method benefits from KL-regularisation during RL, we apply this to NPMP as
well.

14

Published as a conference paper at ICLR 2022

As shown in Figure 10, we find that both changes lead to substantial improvements in the manipu-
lation domain, on all five object sets. Consequently, in our main experiments, we report results with
the best variant, using a N(0, I) prior with KL-regularisation during RL.

(a) Object set 1 (b) Object set 2 (c) Object set 3

(d) Object set 4 (e) Object set 5

Figure 10: Ablation for NPMP (Merel et al., 2019) using staged sparse reward, with all object sets.
We find that using N(0, I) prior with KL-regularisation performs much better in the manipulation
domain compared to the original AR(1) prior, so we use this modified baseline.

B REINFORCEMENT LEARNING WITH MPO AND RHPO

As discussed in Section 3.2, the hierarchy of skills are transferred to RL in two ways: HeLMS-
cat, which learns a new high-level categorical policy π(yt |xt) via MPO (Abdolmaleki et al.,
2018); or HeLMS-mix, which learns a mixture policy π(zt |xt) =

∑
yt
π(yt |xt)π(zt |yt,xt) via

RHPO (Wulfmeier et al., 2020). We describe the optimisation for both of these cases in the follow-
ing subsections. For clarity of notation, we omit the additional KL-regularisation terms introduced
in Section 3.2 and describe just the base methods of MPO and RHPO when applied to the RL setting
in this paper. These KL-terms are incorporated as additional loss terms in the policy improvement
stage.

B.1 HELMS-CAT VIA MPO

Maximum a posteriori Policy Optimisation (MPO) is an Expectation-Maximisation-based algorithm
that performs off-policy updates in three steps: (1) updating the critic; (2) creating a non-parametric
intermediate policy by weighting sampled actions using the critic; and (3) updating the parametric
policy to fit the critic-reweighted non-parametric policy, with trust region constraints to improve
stability. We detail each of these steps below. Note that while the original MPO operates in the
environment’s action space, we use it here for the high-level controller, to set the categorical variable
yt.

Policy evaluation First, the critic is updated via a TD(0) objective as:

min
θ
L(θ) = Ext,yt∼B

[(
QT −Qφ(xt,yt))2

]
, (6)

Here, QT = rt + γExt+1,yt+1
[Q′(st+1,yt+1)] is the 1-step target with the state transition

(xt,yt,xt+1) returned from the replay buffer B, and next action sampled from yt+1 ∼ π′(·|xt+1).
π′ and Q′ are target networks for the policy and the critic, used to stabilise learning.

15

Published as a conference paper at ICLR 2022

Policy improvement Next, we proceed with the first step of policy improvement by constructing
an intermediate non-parametric policy q(yt|xt), and optimising the following constrained objective:

max
q
J(q) = Eyt∼q,xt∼B

[
Qφ(xt,yt)

]
, s.t. Ext∼B

[
KL
(
q(·|xt)‖πθk(·|xt)

)]
≤ εE , (7)

where εE defines a bound on the KL divergence between the non-parametric and parametric policies
at the current learning step k. This constrained optimisation problem has the following closed-form
solution:

q(yt |xt) ∝ πθk(yt |xt) exp (Qφ(xt,yt)/η) . (8)

In other words, this step constructs an intermediate policy which reweights samples from the pre-
vious policy using exponentiated temperature-scaled critic values. The temperature parameter η is
derived based on the dual of the Lagrangian; for futher details please refer to (Abdolmaleki et al.,
2018).

Finally, we can fit a parametric policy to the non-parametric distribution q(yt |xt) by minimising
their KL-divergence, subject to a trust-region constraint on the parametric policy:

θk+1 = argmin
θ

Ext∼B

[
KL(q(yt |xt) ||πθ(yt|xt))

]
,

s.t. Ext∼B

[
KL
(
πθk+1

(yt |xt) ||πθk(yt |xt)
)]
≤ εM . (9)

This optimisation problem can be solved via Lagrangian relaxation, with the Lagrangian multiplier
εM modulating the strength of the trust-region constraint. For further details and full derivations,
please refer to (Abdolmaleki et al., 2018).

B.2 HELMS-MIX VIA RHPO

RHPO (Wulfmeier et al., 2020) follows a similar optimisation procedure as MPO, but ex-
tends it to mixture policies and multi-task settings. We do not exploit the multi-task capabil-
ity in this work, but utilise RHPO to optimise the mixture policy in latent space, π(zt |xt) =∑

yt
π(yt |xt)π(zt |yt,xt). The Q-function Qφ(xt, zt) and parametric policy πθk(zt |xt) use the

continuous latents zt as actions instead of the categorical yt. This is also in contrast to the original
formulation of RHPO, which uses the environment’s action space. Compared to MPO, the policy
improvement stage of the non-parametric policy is minimally adapted to take into account the new
mixture policy. The key difference is in the parametric policy update step, which optimises the
following:

θk+1 = argmin
θ

Ext∼B

[
KL(q(zt |xt) ||πθ(zt|xt))

]
,

s.t. Ext∼B

[
KL
(
πθk+1

(yt |xt) ||πθk(yt |xt)
)

+
∑
yt

KL
(
πθk+1

(zt |yt,xt) ||πθk(zt |yt,xt)
)]
≤ εM . (10)

In other words, separate trust-region constraints are applied to a sum of KL-divergences: for the
high-level categorical and for each of the mixture components. Following the original RHPO, we
separate the single constraint into decoupled constraints that set a different ε for the means, covari-
ances, and categorical (εµ, εσ , and εcat, respectively). This allows the optimiser to independently
modulate how much the categorical distribution, component means, and component variances can
change. For further details and full derivations, please refer to (Wulfmeier et al., 2020).

16

Published as a conference paper at ICLR 2022

C ELBO DERIVATION AND INTUITIONS

We can compute the Evidence Lower Bound for the state-conditional action distribution,
p(a1:T |x1:T) ≥ ELBO, as follows:

ELBO = p(a1:T |x1:T)− KL(q(y0:T , z1:T |x1:T) || p(y0:T , z1:T |x1:T))

= Eq(y0:T ,z1:T |x1:T)

[
log p(a1:T ,y0:T , z1:T |x1:T)− log q(y0:T , z1:T |x1:T)

]
= Eq1:T

[
T∑
t=1

log p(at | zt,xt) + log p(zt |yt) + log p(yt |yt−1)

− log q(zt |yt,xt)− log q(yt |yt−1,x)

]

=

T∑
t=1

Eq1:T

[
log p(at | zt,xt)− KL(q(zt |yt,xt) || p(zt |yt))

−KL(q(yt |yt−1,xt) || p(yt |yt−1))

]
(11)

We note that the first two terms in the expectation depend only on timestep t, so we can simplify and
marginalise exactly over all discrete {y1:T }\yt. For the final term, we note that the KL at timestep
t is constant with respect to yt (as it already marginalises over the whole distribution), and only
depends on yt−1. Lastly, we will use sampling to approximate the expectation over zt. This yields
the following:

ELBO =

T∑
t=1

Eq(zt |yt,xt)

[∑
y0:T

q(y0:T |x1:T)
(
log p(at | zt,xt)− KL(q(zt |yt,xt) || p(zt |yt))

−KL(q(yt |yt−1,xt) || p(yt |yt−1))
)]

ELBO ≈
T∑
t=1

[∑
yt

q(yt |x1:t)
(per-component recon loss︷ ︸︸ ︷
log p(at | z̃{yt}t ,xt)−βz

per-component KL regulariser︷ ︸︸ ︷
KL(q(zt |yt,xt) || p(zt |yt))

)]

−βy
T∑
t=1

[∑
yt−1

q(yt−1 |x1:t−1)KL(q(yt |yt−1,xt) || p(yt |yt−1))︸ ︷︷ ︸
discrete regulariser

]
(12)

where z̃{yt}t ∼ q(zt |yt,xt), the coefficients βy and βz can be used to weight the KL terms, and the
cumulative component probability q(yt |x1:t) can be computed iteratively as:

q(yt |x1:t) =
∑
yt−1

q(yt |yt−1,xt)q(yt−1 |x1:t−1) (13)

In other words, for each timestep t and each mixture component, we compute the latent sample
and the corresponding action log-probability, and the KL-divergence between the component pos-
terior and prior. This is then marginalised over all yt, with an additional KL over the categorical
transitions.

Structuring the graphical model and ELBO in this form has a number of useful properties. First, the
ELBO terms include an action reconstruction loss and KL term for each mixture component, scaled
by the posterior probability of each component given the history. For a given state, this pressures
the model to assign higher posterior probability to components that have low reconstruction cost or
KL, which allows different components to specialise for different parts of the state space. Second,
the categorical KL between posterior and prior categorical transition distributions is scaled by the

17

Published as a conference paper at ICLR 2022

posterior probability of the previous component given history q(yt−1 |x1:t−1): this allows the rel-
ative probabilities of past skill transitions along a trajectory to be considered when regularising the
current skill distribution. Finally, this formulation does not require any sampling or backpropagation
through the categorical variable: starting from t = 0, the terms for each timestep can be efficiently
computed by recursively updating the posterior over components given history (q(yt |x1:t)), and
summing over all possible categorical values at each timestep.

D ENVIRONMENT PARAMETERS

As discussed earlier in the paper, all experiments take place in a MuJoCo-based object manipulation
environment using a Sawyer robot manipulator and three objects: red, green, and blue. The state
variables in the Sawyer environment are shown in Table 3. All state variables are stacked for 3 frames
for all agents. The object states are only provided to the mid-level and high-level for HeLMS runs,
and the camera images are only used by the high- and mid-level controller in the vision transfer
experiments (without object states).

The action space is also shown in Table 4. Since the action dimensions vary significantly in range,
they are normalised to be between [−1, 1] for all methods during learning.

When learning via RL, we apply domain randomisation to physics (but not visual randomisation),
and a randomly sampled action delay of 0-2 timesteps. This is applied for all approaches, and
ensures that we can learn a policy that is robust to small changes in the environment.

Proprioception
State Dims

Joint angles 7
Joint velocities 7

Joint torque 7
TCP pose 7

TCP velocity 6
Wrist angle 1

Wrist velocity 1
Wrist force 3

Wrist torque 3
Binary grasp sensor 1

Object states
State Dims

Absolute pose (red) 7
Absolute pose (green) 7
Absolute pose (blue) 7

Distance to pinch (red) 7
Distance to pinch (green) 7
Distance to pinch (blue) 7

Vision
State Dims

Camera images 64× 64× 3

Table 3: Details of state variables used by the agent.

Action Dims Range
Gripper translational velocity (x-y-z) 3 [−0.07, 0.07] m/s

Wrist rotation velocity 1 [−1, 1] rad/s
Finger speed 1 [−255, 255] tics/s

Table 4: Action space details for the Sawyer environment.

18

Published as a conference paper at ICLR 2022

Figure 11: The five object sets (triplets) used in the paper. This image has been taken directly from
(Lee et al., 2021) for clarity.

D.1 OBJECT SETS

As discussed in the main paper, we use the object sets defined by Lee et al. (2021), which are care-
fully designed to cover different object geometries and affordances, presenting different challenges
for object interaction tasks. The object sets are shown in Figure 11 (the image has been taken directly
from (Lee et al., 2021) for clarity), and feature both simulated and real-world versions; in this paper
we focus on the simulated versions. As discussed in detail by (Lee et al., 2021), each object set has
a different degree of difficulty and presents a different challenge to the task of stacking red-on-blue:

• In object set 1, the red object has slanted surfaces that make it difficult to grasp, while the
blue object is an octagonal prism that can roll.

• In object set 2, the blue object has slanted surfaces, such that the red object will likely slide
off unless the blue object is first reoriented.

• In object set 3, the red object is long and narrow, requiring a precise grasp and careful
placement.

• Object set 4 is the easiest case with rectangular prisms for both red and blue.
• Object set 5 is also relatively easy, but the blue object has ten faces, meaning limited surface

area for stacking.

For more details about the object sets and the rationale behind their design, we refer the reader to
(Lee et al., 2021).

E NETWORK ARCHITECTURES AND HYPERPARAMETERS

The network architecture details and hyperparameters for HeLMS are shown in Table 5. Parameter
sweeps were performed for the β coefficients during offline learning and the η coefficients during
RL. Small sweeps were also performed for the RHPO ε parameters (refer to (Wulfmeier et al., 2020)
for details), but these were found to be fairly insensitive. All other parameters were kept fixed, and
used for all methods except where highlighted in the following subsections. All RL experiments
were run with 3 seeds to capture variation in each method.

For network architectures, all experiments except for vision used simple 2-layer MLPs for the high-
and low-level controllers, and for each mid-level mixture component. An input representation net-
work was used to encode the inputs before passing them to the networks that were learned from
scratch: i.e. the high-level for state-based experiments, and both high- and mid-level for vision (re-

19

Published as a conference paper at ICLR 2022

call that while the state-based experiments can reuse the mid-level components conditioned on object
state, the vision-based policy learned them from scratch and KL-regularised to the offline mid-level
skills). The critic network was a 3-layer MLP, applied to the output of another input representation
network (separate to the actor, but with the same architecture) with concatenated action.

Offline learning parameters
Name Value

Latent space dimension 8
Number of mid-level components, K 5 for red_on_blue data, 10 for all_pairs data

Low-level network 2-hidden layer MLP, {256, 256} units
Low-level head Gaussian, tanh-on-mean, fixed σ = 0.1

Mid-level network 2-hidden layer MLP for each component, {256, 256} units
Mid-level head Gaussian, learned σ ∈ [0.01, 1.0]

High-level network 2-hidden layer MLP, {256, 256} units
High-level head K-way softmax

Activation function elu
Encoder look-ahead duration 5 timesteps

βy 1.0
βz 0.1, 0.0 (object generalisation)

Batch size 128
Learning rate 10−4

Dataset trajectory length 25

Online RL parameters
Name Value

Number of seeds 3 (all experiments)

Input representation network (state)
Input normalizer layer (linear layer with 256 units,

layer-norm, and tanh-on-output)

High-level network (state) 2-hidden layer MLP, {256, 256} units

Input representation network (vision)
MLP on proprio and ResNet with three layers of {2, 2, 2} blocks

corresponding to {32, 64, 128} channels

High-level network (vision) 2-hidden layer MLP, {256, 256} units
Mid-level network (vision) 2-hidden layer MLP for each component, {256, 256} units

Critic network 3-hidden layer MLP, {256, 256, 256} units with RNN
Activation function elu

ηy 0.1 (vision), 0.01
ηz 0.1 (pyramid and vision), 0.01 (object generalisation)

Number of actors 1500
Batch size 512

Trajectory length 10
Learning rate 2× 10−4

Number of action samples 20
RHPO categorical constraint εcat 1.0

RHPO mean constraint εµ 5× 10−3

RHPO covariance constraint εσ 10−4

Table 5: Hyperparameters and architecture details for HeLMS, for both offline training and RL.

F REWARDS

Throughout the experiments, we employ different reward functions for different tasks and to study
the efficacy of our method in sparse versus dense reward scenarios.

Reward stages and primitive functions The reward functions for stacking and pyramid tasks use
various reward primitives and staged rewards for completing sub-tasks. Each of these rewards are
within the range of [0, 1]

These include:

20

Published as a conference paper at ICLR 2022

• reach(obj): a shaped distance reward to bring the TCP to within a certain tolerance of
obj.
• grasp(): a binary reward for triggering the gripper’s grasp sensor.
• close_fingers(): a shaped distance reward to bring the fingers inwards.
• lift(obj): shaped reward for lifting the gripper sufficiently high above obj.
• hover(obj1,obj2): shaped reward for holding obj1 above obj2.
• stack(obj1,obj2): a sparse reward, only provided if obj1 is on top of obj2 to

within both a horizontal and vertical tolerance.
• above(obj,dist): shaped reward for being dist above obj, but anywhere horizon-

tally.
• pyramid(obj1,obj2,obj3): a sparse reward, only provided if obj3 is on top of the

point midway between obj1 and obj2, to within both a horizontal and vertical tolerance.
• place_near(obj1,obj2): sparse reward provided if obj1 is sufficiently near obj2.

Dense stacking reward The dense stacking reward contains a number of stages, where each stage
represents a sub-task and has a maximum reward of 1. The stages are:

• reach(red) AND grasp(): Reach and grasp the red object.
• lift(red) AND grasp(): Lift the red object.
• hover(red,blue): Hover with the red object above the blue object.
• stack(red,blue): Place the red object on top of the blue one.
• stack(red,blue) AND above(red): Move the gripper above after a completed

stack.

At each timestep, the latest stage to receive non-zero reward is considered to be the current stage,
and all previous stages are assigned a reward of 1. The reward for this timestep is then obtained by
summing rewards for all stages, and scaling by the number of stages, to ensure the highest possible
reward on any timestep is 1.

Sparse staged stacking reward The sparse staged stacking reward is similar to the dense reward
variant, but each stage is sparsified by only providing the reward for the stage once it exceeds a value
of 0.95.

This scenario emulates an important real-world problem: that it may be difficult in certain cases to
specify carefully shaped meaningful rewards, and it can often be easier to specify (sparsely) whether
a condition (such as stacking) has been met.

Sparse stacking reward This fully sparse reward uses the stack(red,blue) function to pro-
vide reward only when conditions for stacking red on blue have been met.

Pyramid reward The pyramid-building reward uses a staged sparse reward, where each stage
represents a sub-task and has a maximum reward of 1. If a stage has dense reward, it is sparsified by
only providing the reward once it exceeds a value of 0.95. The stages are:

• reach(red) AND grasp(): Reach and grasp the red object.
• lift(red) AND grasp(): Lift the red object.
• hover(red,green): Hover with the red object above the green object (with a larger

horizontal tolerance, as it does not need to be directly above).
• place_near(red,green): Place the red object sufficiently close to the green object.
• reach(blue) AND grasp(): Reach and grasp the blue object.
• lift(blue) AND grasp(): Lift the blue object.
• hover(blue,green) AND hover(blue,red): Hover with the blue object above

the central position between red and green objects.
• pyramid(blue,red,green): Place the blue object on top to make a pyramid.
• pyramid(blue,red,green) AND above(blue): Move the gripper above after a

completed stack.

21

Published as a conference paper at ICLR 2022

At each timestep, the latest stage to receive non-zero reward is considered to be the current stage,
and all previous stages are assigned a reward of 1. The reward for this timestep is then obtained by
summing rewards for all stages, and scaling by the number of stages, to ensure the highest possible
reward on any timestep is 1.

22

	Introduction
	Related work
	Method
	Latent Mixture Skill Spaces from Offline Data
	Reinforcement learning with reloaded skills

	Experiments
	Experimental setup
	Learning skills from offline data
	Transfer to downstream tasks
	Where and how can hierarchical skill reuse be effective?
	Ablation Studies

	Conclusion
	Additional experiments
	Ablations for KL-regularisation
	NPMP ablation

	Reinforcement learning with MPO and RHPO
	HeLMS-cat via MPO
	HeLMS-mix via RHPO

	ELBO derivation and intuitions
	Environment parameters
	Object sets

	Network architectures and hyperparameters
	Rewards

