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Abstract

Adverse drug reactions (ADRs) are a major source of concern in the development
of novel pharmaceuticals. ADRs may be identified in the late stages of development or
even after commercialization, which may lead to failure or discontinuation after spending
enormous resources on candidate molecules. Thus, predicting ADRs early in the process
could help reduce costs by avoiding future failures. However, due to the low number of
drugs approved, the amount of historical datapoints on ADRs is limited, which makes
their prediction challenging for traditional chemoinformatics methods. Interestingly, each
approved drug may have been annotated for hundreds of ADRs, which opens the door to
framing ADR prediction as a multi-task or meta-learning problem. In this work, we adopt a
meta-learning approach to ADR prediction by applying conditional neural processes (CNPs)
to the publicly available Side Effect Resource (SIDER). Our results suggest that CNPs are
competitive against single-task baselines even when trained on sparse datasets with missing
labels. Furthermore, we find that their predictions are well-calibrated. Finally, we evaluate
their performance on ADRs associated to different physiological systems and confirm good
predictions across organ classes. Our findings suggest that meta-learning strategies may be
beneficial for data-limited clinical endpoints like ADRs.
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1 Introduction

A major challenge to discovering novel therapeutics is the emergence of unexpected adverse
drug reactions (ADRs), also known as side effects, at later stages of the development pipeline.
Lead-stage ADRs can lead to the discontinuation of otherwise promising compounds after
significant resources have been invested. In addition, unexpected ADRs can lead to the
removal of drugs during postmarketing surveillance years after approval, with huge costs to
companies and immense damage to patients. Unfortunately, such occurrences are far from
rare: between 1953 and 2013, over 462 compounds were reported to be withdrawn from the
market, with the most common ADR being liver toxicity (Onakpoya et al., 2016). Being
able to predict ADRs early in the development process could significantly reduce the cost of
drug discovery by helping discard candidates that are destined to fail (Liu and Zhang, 2019).

Machine-learning (ML) models may be a helpful tool for ligand-based screening (Thomas
et al., 2022), including early ADR identification (Lee and Chen, 2019; Dey et al., 2018;
Zhang et al., 2021, 2017). If a model predicts certain ADRs are associated with a candidate
compound, medicinal chemists may be able to carry out tailored tests to confirm or disprove
them before committing valuable resources to the candidate. However, the scarcity of side-
effect labels hinders the potential applicability of data-driven methods. Only a few thousand
drugs have ever been approved, so the abundance of high-confidence ADR annotations
remains low. Furthermore, the fact that ADRs may be discovered years after a drug is
marketed suggest that adverse-effect annotations in current datasets are likely incomplete.
Stilll, even if some side effects are missing in current datasets, each approved drug may
already be associated to tens or hundreds of ADRs. This suggests that ADR prediction
may be framed as a multi-task or meta-learning problem. Such strategy may increase data
efficiency and robustness against incomplete or sparse datasets.

Neural processes (NPs) (Garnelo et al., 2018b) are a family of neural probabilistic models
for meta-learning. They can transfer information efficiently across functions in order to
make predictions based on just a few labeled datapoints. Their training procedure includes
random sampling of possibly non-overlapping observations from different functions, which
makes them naturally suited to deal with sparse datasets. Recently, their application to
molecular functions has been explored (Lee et al., 2022; Garcia-Ortegon et al., 2022; Chan
et al., 2023). In this paper, we study the utilization of conditional NPs (CNPs) for ADR
prediction. We evaluate CNPs on a dataset of historical side effects, the Side Effect Resource
(SIDER)(Kuhn et al., 2016), using either all data available or removing a fraction of labels
in order to artificially increase sparseness.

2 Methods

2.1 Conditional neural processes (CNPs)

Consider a meta-training dataset with observations of binary-valued functions f1, . . . , fn,
fi : X → {0, 1}. In this paper, fi corresponds to a particular ADR, X represents the space
of chemically feasible molecules and x ∈ X refers to a single molecule represented as a
fingerprint vector; in this way, binary labels 0 or 1 indicate whether a certain molecule x is
free from or associated with a side effect fi. Each molecular function fi is observed at a set
of Oi input points xio ∈ XOi , with known labels yio =

(
yio,1, . . . , y

i
o,Oi

)
, where yio,j = fi(x

i
o,j).
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Additionally, consider a meta-test function f , observed at a small set of C context points
(xc, yc) = ((xc,1, yc,1) , . . . , (xc,C , yc,C)). Our goal is to predict the values yt of f at a set of T
target locations xt ∈ X T as accurately and efficiently as possible, using the example context
points (xc, yc) and the observations from the example functions fi, . . . , fn.

A neural process (NP) (Garnelo et al., 2018a,b) is a parametric model for meta-learning
that aims to describe the predictive distribution p (yt | xc, yc ;xt) (semicolon notation is used
to differentiate contexts and targets). Most NPs are designed for regression, assuming a
Gaussian predictive distribution. In this paper, we use NPs for binary classification and
assume a Bernouilli predictive distribution:

q (yt | xc, yc ;xt) =
T∏

j=1

Bern (yt,j ; µθ (xt,j)) ,

where the targets xt,j , . . . , xt,T are taken to be conditionally independent. At test time,
the predicted probability values for the targets are binarized, such that targets with a
predicted mean µθ (xt,j) <

1
2 are labeled as 0, and targets with µθ (xt,j) ≥ 1

2 are labeled as 1.
In this paper, we use the conditional NP (CNP) (Garnelo et al., 2018a), which param-

eterizes the predictive distribution for a point x in three steps. First, contexts (xc,j , yc,j)
are mapped by an encoder network hθ to a local datapoint representation rj . Second, all
context encodings rj are combined into a global function encoding r through a commutative
operation, usually the sum or the mean. Commutativity guarantees invariance to contexts’
permutations. Third, a deterministic decoder network gθ maps the function encoding r and
the input location x to the predictive’s parameters, i.e. µθ (x) in a Bernoulli.

The parameters of the CNP θ are trained by backpropagation from the predictive log-
likelihood Lθ(yt | xc, yc ;xt) = log qθ(yt | xc, yc ;xt). During meta-training, each meta-train
function fi is seen once every epoch, but not all observations

(
xio, y

i
o

)
are used at each

iteration. Rather, the Oi observations are randomly subsampled to create two disjoint sets: a
context set

(
xic, y

i
c

)
and a target set

(
xit, y

i
t

)
, with sizes Ci and Ti respectively, Ci + Ti ≤ Oi.

The predictive log-likelihood on the current targets is optimized given the current contexts.
Therefore, the final objective is

E
[ 1
n

n∑
i=1

Lθ

(
yit | xic, yic ;xit

) ]
, (1)

where the expectation is with respect to the random sampling procedure. Ci and Ti can
themselves be stochastic: in our experiments, we sample them uniformly from [20, 150) at
each iteration.

2.2 Baseline models

We assessed the performance of CNPs against two single-task classifiers: random forest (RF)
and XGBoost (XGB). RF was implemented in scikit-learn (Pedregosa et al., 2011) with
default parameters and 500 trees and XGB was implemented using the official API (XGB)
with default parameters. We also compared with a random classifier which sampled labels
from the label distribution of the training set.
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2.3 Dataset and splitting

The Side Effect Resource (SIDER) (Kuhn et al., 2016) is a dataset with information about
1556 molecules (of which 1430 are drugs), 5880 ADRs and 140064 molecule-ADR pairs. In
addition, ADRs are grouped into 27 system organ classes that categorize side effects by
associated physiological system. In the CNP formulation, we treat ADRs as functions and
molecules as datapoints. We downloaded the dataset from the SIDER website (SIDER) and
retrieved isomeric SMILES strings (Weininger, 1988) from PubChem (Kim et al., 2023).
Reported side effects were labeled as 1, and the absence of evidence for a side effect was
labeled as 0. For our exploratory experiments, we retained side effects that had at least 100
positive labels, yielding 370 side effects and an overall rate of positive labels of ∼ 19%. In all
experiments, molecules were represented as Morgan fingerprints (Morgan, 1965) of length
1024 and radius 3. We computed these using RDKit (RDKit).

The dataset was segmented randomly across functions (ADRs) and across datapoints
(compounds), with a 80/20% split for both. We refer to these splits as ftrain, ftest and
dtrain, dtest respectively (Figure 1). The CNP was meta-trained on ftrain, dtrain and
ftrain, dtest. Later, during meta-testing, we applied the CNP to each ADR in ftest,
supplying observed molecules from ftest, dtrain as contexts and evaluating on unobserved
molecules from ftest, dtest as targets. For each random seed, a single CNP was trained for
all functions. Baseline models were trained on ftest, dtrain and evaluated on ftest, dtest.
For each random seed, separate single-task baselines were trained for each function in ftest.

Figure 1: Split of SIDER across functions (ADRs) and datapoints (molecules).

To simulate learning from a sparse dataset, we performed an experiment were we randomly
removed 50% of the labels of ftrain, dtrain, of ftrain, dtest and of ftest, dtrain of every
ADR. The results of this experiment are shown in Section 3.1.

3 Experiments

3.1 Binary classification of ADRs in complete and sparse SIDER

In our first experiment, we evaluated the capability of CNPs to predict ADRs in a complete
and sparse dataset. Given an ADR function and test molecules, models were required to
predict a positive (1, presence of ADR) or negative (0, absence of ADR) label for each
test molecule. We compared the CNP to a random classifier that predicted classes with
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probabilities according to their representation in the training set, to a random forest (RF) and
to XGBoost (XGB) 2.2. Each model was trained 4 times with different random initializations.
Table 1 shows the mean and standard error across all repetitions and across all ftest ADRs.

Our results suggest that the CNP beat single-task baselines in both the complete and the
sparse datasets. Interestingly, the performance of single-task models degraded in the sparse
version of SIDER, while CNPs maintained their original performance. This may be due to
the ability of CNPs to transfer information across different functions, even if their datapoints
do not fully overlap as is the case here. Performing well in datasets with missing labels may
be relevant in practice because many negative labels in real ADR datasets actually missing
data, in the sense that they signify a lack of evidence rather than concrete evidence of no
adverse reaction.

Table 1: Classification metrics of baseline models and CNP on ftest, dtest

Trained on complete dataset
Precision Recall ROC-AUC Phi

Random 0.18 (0.02) 0.18 (0.02) 0.50 (0.00) -0.01 (0.01)
RF 0.59 (0.02) 0.21 (0.02) 0.69 (0.01) 0.25 (0.01)
XGB 0.49 (0.02) 0.25 (0.02) 0.66 (0.01) 0.23 (0.01)
CNP 0.67 (0.03) 0.31 (0.02) 0.83 (0.01) 0.37 (0.02)

Trained on 50%-sparse dataset
Precision Recall ROC-AUC Phi

Random 0.18 (0.02) 0.18 (0.02) 0.50 (0.00) -0.00 (0.01)
RF 0.59 (0.03) 0.15 (0.02) 0.65 (0.01) 0.19 (0.01)
XGB 0.44 (0.02) 0.21 (0.02) 0.63 (0.01) 0.18 (0.01)
CNP 0.64 (0.02) 0.35 (0.02) 0.83 (0.01) 0.39 (0.02)

3.2 Calibration of predicted probabilities

A binary classification model is said to be well calibrated if, when the model predicts a
probability p for a certain datapoint, the true label of the datapoint turns out to be 1 a
fraction p of times. Following Niculescu-Mizil and Caruana (2005), in order to estimate
calibration we collected each model’s predictions for every molecule in ftest, dtest (i.e. we
pooled all 76 test functions). Then, we binned molecules according to their predicted
probabilities. Within each bin, we computed the average predicted probability and the
fraction of molecules in the bin with true label 1, and plotted one against the other (Figure 2).
The CNP and RF exhibited reasonable calibration, closely adhering to the ideal diagonal
line. This is interesting because neither of these models was trained explicitly to optimize
calibration; in particular, the CNP optimized a maximum predictive likelihood objective
(Equation 1). In contrast, XGB showed poor calibration, with a tendency to underestimate
the probability of true positives.
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Figure 2: Calibration curve of CNP and baselines.

3.3 Performance across system organ classes

In our final experiment, we verified that the CNP produced accurate predictions for ADRs
associated to any physiological system in SIDER. Achieving accurate ADR prediction across
all organ classes is a desirable trait that would increase the usefulness of a model during
medicinal development. Figure 3 shows the average balanced accuracy within different organ
classes, evaluated on the functions and molecules in ftest, dtest. We included in our analysis
every organ class represented by 3 or more ftest functions. As it can be seen, the CNP
remains superior to baselines across all physiological systems.
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Figure 3: Balanced accuracy within physiological systems in SIDER. A classifier that always
predicts the same class or one that predicts classes at random (blue bars) achieves a balanced
accuracy 0.5.

4 Discussion

Our study suggests that a meta-learning approach to ADR prediction could bring significant
benefits relative to single-task models typical in traditional chemoinformatic research. CNPs
on molecular fingerprints showed more accurate and better calibrated classification of side
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effects than XGBoost or random forests on the same representations. We observed such
improvements across a range of physiological systems.

It is worth noting that the exploratory evaluation presented in this work is limited
to binary labels from SIDER, which neglects many complex features important for ADR
such as severity, frequency, stratification of susceptible patient populations, dosage or drug
interactions. These factors, which are clearly relevant for ADRs in the real world, are not
always available in public datasets: for example, SIDER only has frequency information for
39.9% of its labels, and lacks details about any of the other aspects cited (Kuhn et al., 2016).
Nonetheless, our study makes a compelling case for framing prediction of sparse ADR datasets
as meta-learning. Further research is needed to explore the full potential of NPs in this
area, as well as to perform more strict benchmarks against a transfer learning or multi-task
approaches, in order to pave the way for their practical deployment in decision-making for
medicinal chemists.

Reproducibility statement

The SIDER dataset employed in this study can be accessed on http://sideeffects.embl.
de/.
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