

000 001 002 003 004 005 REVISITING SHARPNESS-AWARE MINIMIZATION: 006 A MORE FAITHFUL AND EFFECTIVE IMPLEMENTATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Sharpness-Aware Minimization (SAM) enhances generalization by minimizing the maximum training loss within a predefined neighborhood around the parameters. However, its practical implementation approximates this as gradient ascent(s) followed by applying the gradient at the ascent point to update the current parameters. **This practice can be justified as approximately optimizing the objective by neglecting the (full) derivative of the ascent point with respect to the current parameters.** Nevertheless, a direct and intuitive understanding of why using the gradient at the ascent point to update the current parameters works superiorly, despite being computed at a shifted location, is still lacking. Our work bridges this gap by proposing a novel and intuitive interpretation. We show that the gradient at the single-step ascent point, when applied to the current parameters, provides a better approximation of the direction from the current parameters toward the maximum within the local neighborhood than the local gradient. This improved approximation thereby enables a more direct escape from the maximum within the local neighborhood. Nevertheless, our analysis further reveals two issues. First, the approximation by the gradient at the single-step ascent point is often inaccurate. Second, the approximation quality may degrade as the number of ascent steps increases. To address these limitations, we propose in this paper eXplicit Sharpness-Aware Minimization (XSAM). It tackles the first by explicitly estimating the direction of the maximum during training, and addresses the second by crafting a search space that effectively leverages the gradient information at the multi-step ascent point. XSAM features a unified formulation that applies to both single-step and multi-step settings and only incurs negligible computational overhead. Extensive experiments demonstrate the consistent superiority of XSAM against existing counterparts across various models, datasets, and settings.

1 INTRODUCTION

The success of modern machine learning relies heavily on overparameterization. This necessitates strong regularization, either implicit or explicit, from the training procedures (Srivastava et al., 2014; Gidel et al., 2019; Karakida et al., 2023) to ensure generalization beyond the training set (Zhang et al., 2021). In recent years, Sharpness-Aware Minimization (SAM) (Foret et al., 2020; Kwon et al., 2021; Liu et al., 2022b; Kim et al., 2023; Mordido et al., 2024) has attained significant attention for its potential to enhance the generalization of machine learning models, *in a direct optimization manner*.

SAM seeks to minimize the maximum training loss within a predefined neighborhood around the parameters, thereby promoting flatter minima and better generalization. Its effectiveness is evidenced by empirical successes across various domains (Bahri et al., 2021; Rangwani et al., 2022b;a; Fan et al., 2025). However, its practical implementation approximates this as: carry out one or a few steps of gradient ascent, and then apply the gradient from the ascent point to update the current parameters.

Though being justified as approximately optimizing the objective by neglecting the Jacobian matrix of the ascent point with respect to the current parameters (Foret et al., 2020), **the underlying mechanism remains poorly understood.** A body of research (Wen et al., 2023; Bartlett et al., 2023; Andriushchenko et al., 2023a; Andriushchenko & Flammarion, 2022; Andriushchenko et al., 2023b) has sought to demystify SAM after such approximations. However, a direct and intuitive understanding of why applying the *nonlocal* gradient at the ascent point to update the current parameter works superiorly

054 is still lacking. This gap necessitates a deeper investigation into SAM’s fundamental mechanisms,
 055 which motivates our work.
 056

057 **Common misinterpretation.** A prevalent misunderstanding must be clarified before we proceed: applying
 058 the gradient at the estimated maximum point DOES NOT necessarily lead to the minimization
 059 of the maximum loss within the local neighborhood. *The key here is that there is a shift in location:*
 060 *the gradient is computed at the estimated maximum point, but applied to the current parameters.* The
 061 nuisance can be clear on considering the extreme case: the gradient at a point arbitrarily distant from
the current parameters provides vanishingly little information about the local loss geometry.
 062

063 To unravel the mystery of the SAM update, we commence by visualizing the local loss surface during
 064 SAM training. As shown in Figure 1a and further illustrated in Appendix A, our visualization analysis
reveals an important underlying mechanism. Specifically, the gradient at the single-step ascent point,
 065 when applied to the current parameters, generally provides a better approximation of the direction
 066 from the current parameters toward the maximum within the local neighborhood than the gradient
 067 at the current parameters. Therefore, updating the current parameters along the direction opposite to
 068 the gradient at the single-step ascent point enables a more direct escape from the maximum. It thereby
 069 more effectively reduces the worst-case loss in the neighborhood, leading to improved generalization.
 070

071 The above interpretation rationalizes the application of the gradient at the single-step ascent point to
 072 the current parameters. Nevertheless, our visualizations simultaneously reveal two limitations. First,
 073 the approximation by the gradient at the single-step ascent point is often inaccurate (as exemplified in
 074 Figure 1a). The approximation quality is also unstable, exhibiting large variations as the local loss
 075 landscape evolves (evidenced by further visualizations in Appendix A). Second, as illustrated by
 076 Figure 1b (and Figure 10 in Appendix A), the approximation quality may get worse as the number
of ascent steps increases, explaining the unexpectedly inferior performance of multi-step SAM.
 077

078 Motivated by these observations, we propose in this paper eXplicit Sharpness-Aware Minimization
 079 (XSAM), which fundamentally tackles the approximation inaccuracy issue of the SAM gradient by
 080 explicitly estimating the direction from the current parameters toward the maximum. This is achieved
 081 by probing the loss values in different directions at the neighborhood boundary. To ensure its high
quality throughout training, XSAM dynamically updates this estimation.
 082

083 Probing the entire high-dimensional neighborhood for estimating the direction can be computationally
 084 intractable. We therefore constrain the probe to a two-dimensional hyperplane spanned by the gradient
 085 at the final ascent point (i.e., the point reached after $k \geq 1$ ascent steps) and the vector from the
 086 current parameters to that point. This definition is crucial. It ensures that the point with the highest
 087 known loss, i.e., the one pointed to by the gradient at the final ascent point, lies within the hyperplane.
 088 Such a definition also simultaneously addresses the inaccuracy issue of directly applying the gradient
 089 at the multi-step ascent point to the current parameters, while fully leveraging its informational value.
 090

091 We express the estimated direction in terms of the spherical interpolation factor of the two spanning
 092 vectors, which, according to our experiments, changes slowly during training. Therefore, it requires
 093 only infrequent updates and incurs negligible computational overhead. With this improved estimate
 094 of the direction toward the maximum, XSAM escapes the nearby high-loss regions more effectively,
 095 thereby achieving better generalization. Extensive experiments demonstrate that XSAM consistently
 096 outperforms existing counterparts across various models, datasets, and settings.
 097

098 The primary contributions of this work are threefold:
 099

- 100 • We provide a novel, intuitive interpretation of the fundamental mechanism of SAM: the gradient
at the (single-step) ascent point offers a superior approximation of the direction from the current
 101 parameter toward the maximum within the local neighborhood than the local gradient; thereby, it
enables a more direct escape from the maximum within the local neighborhood.
 102
- 103 • Our analysis further reveals that the approximation by the gradient at the single-step ascent point
 104 is often inaccurate, and its quality varies largely during training. Moreover, the approximation
 105 quality may degrade as the number of ascent steps increases, explaining the inferior performance
 106 of multi-step SAM. These collectively demonstrate the sub-optimality of the SAM gradient.
 107
- 108 • We propose XSAM, which addresses these limitations of SAM by explicitly estimating the
 109 direction from the current parameter toward the maximum, within a novel, principled search space
 110 during training. This leads to a more faithful and effective implementation of sharpness-aware
 111 minimization. Extensive experiments demonstrate the consistent superiority of XSAM.
 112

Figure 1: (a) Visualization of the local loss surface of single-step SAM¹ on the hyperplane spanned by the gradient g_0 at the current parameter ϑ_0 and the gradient g_1 at the single-step ascent point ϑ_1 . ϑ_0 is set as the origin, the Y -axis is defined along the direction of g_0 , and the X -axis is aligned with the component of g_1 perpendicular to g_0 . The visualized arrows of gradients are set to have length ρ . We see that $g_1 @ \vartheta_0$ (i.e., g_1 applied to ϑ_0) points clearly closer to the direction from ϑ_0 toward the maximum within the local neighborhood than g_0 . The targeted direction is roughly from the origin to the upper-right corner in the figure. The loss along $g_1 @ \vartheta_0$ (i.e., $L(\vartheta_0 + \rho_m \cdot g_1 / \|g_1\|)$) is higher than that along g_0 (i.e., $L(\vartheta_0 + \rho_m \cdot g_0 / \|g_0\|)$), for sufficiently large ρ_m . (b) A simulation of multi-step SAM on a 2D test function. The approximation quality by the SAM gradient may get worse as the number of ascent steps increases. $g_2 @ \vartheta_0$ inferiorly identifies the direction from ϑ_0 toward the maximum within the neighborhood (the upper-left high-loss region in yellow) than $g_1 @ \vartheta_0$.

2 REVISITING SHARPNESS-AWARE MINIMIZATION

This section reviews the objective of Sharpness-Aware Minimization (SAM) and its classical approximate optimization method, followed by our novel interpretation of its underlying mechanism.

2.1 THE OBJECTIVE AND CLASSICAL APPROXIMATION OF SAM

SAM (Foret et al., 2020) aims to find parameters that minimize the maximum training loss (i.e., worst-case loss) over a predefined ρ -neighborhood around the parameters. The formal objective is:

$$\min_{\theta} \max_{\|\delta\| \leq \rho} L(\theta + \delta), \quad (1)$$

where L is the training loss, $\theta \in \mathbb{R}^n$ is the model parameters, and $\delta \in \mathbb{R}^n$ is the perturbation vector.²

Since exactly solving the inner maximization in Equation (1) is computationally expensive, SAM approximates it by performing one or a few steps of gradient ascent from the current parameters.

Assuming the procedure involves $k \geq 1$ successive gradient ascent steps, it proceeds as follows: initialize $\vartheta_0 = \theta$, and then for each step $i = 0, 1, \dots, k-1$:

- 1) Compute the gradient at the current point ϑ_i : $g_i = \nabla_{\vartheta_i} L(\vartheta_i)$;
- 2) Ascend along the direction of g_i by a distance of ρ_i : $\vartheta_{i+1} = \vartheta_i + \rho_i \frac{g_i}{\|g_i\|}$.

This formulation unifies the single-step ($k = 1$) and multi-step ($k > 1$) settings, with the constraint $\sum_{i=0}^{k-1} \rho_i \leq \rho$ ensuring the total perturbation remains within the ρ -ball. The procedure yields the final perturbed parameters directly as ϑ_k , while approximating the best perturbation δ^* as $\vartheta_k - \vartheta_0$.

After such approximation of the best perturbation, the SAM objective in Equation (1) reduces to:

$$\min_{\theta} L(\theta + \delta^*), \quad \text{or equivalently,} \quad \min_{\theta} L(\vartheta_k). \quad (2)$$

To optimize this objective efficiently, SAM employs a key approximation. It assumes $\nabla_{\theta} \delta^* = \mathbf{0}$, or equivalently, $\nabla_{\theta} \vartheta_k = I$, thereby avoiding involving expensive higher-order derivatives. Formally,

$$\nabla_{\theta} L(\theta + \delta^*) = \nabla_{\theta} L(\vartheta_k) = \nabla_{\vartheta_k} L(\vartheta_k) \cdot \underbrace{\nabla_{\theta}(\vartheta_k)}_{\text{Approximated as identity matrix } I} \approx \nabla_{\vartheta_k} L(\vartheta_k). \quad (3)$$

Approximated as identity matrix I

¹Data is collected at the first iteration of the 150th epoch in training ResNet-18 on CIFAR-100.

²For simplicity, we default all norms to ℓ_2 .

162 The resulting algorithm essentially applies the gradient at the final ascent point ϑ_k to θ :
 163

$$164 \quad \theta_{t+1} = \theta_t - \eta_t \cdot \nabla_{\vartheta_k} L(\vartheta_k). \quad (4)$$

166 2.2 A NOVEL INTERPRETATION OF SAM'S UNDERLYING MECHANISM
 167

168 Despite the key approximation in the classical SAM algorithm being justified as assuming $\nabla_{\theta} \vartheta_k = I$,
 169 it leads to an unusual gradient operation, applying the gradient at another point (ϑ_k) to the current
 170 parameters (θ). It is apparent that applying the gradient at an arbitrarily distant point to the current
 171 parameters makes no sense, since it brings vanishingly little information about the local loss geometry
 172 around the current parameters. This contradiction raises a fundamental question: How is ϑ_k special?
 173 Why does applying this nonlocal gradient tend to outperform the local gradient in practice?

174 While a body of literature has sought to explain how SAM works after such approximation (Wen
 175 et al., 2023; Bartlett et al., 2023; Andriushchenko et al., 2023a;b), they often attribute it to implicit
 176 bias or regularization. None of them directly addresses our core inquiry: the underlying mechanism
 177 that enables this specific nonlocal gradient operation to be effective, which is the focus of this work.
 178

179 2.2.1 EMPIRICAL ANALYSIS THROUGH VISUALIZATIONS.
 180

181 To unravel the underlying mechanism, we start by visualizing the gradients at the ascent point on the
 182 local loss surface during SAM training. For a tractable analysis and a clear comparison between the
 183 gradient at the ascent point and the gradient at the current parameters, we focus on the loss surface
 184 over the hyperplane spanned by these two gradient vectors. **We begin with the single-step setting.**

185 **Better Approximation.** As depicted in Figure 1a, the gradient at the single-step ascent point, when
 186 applied to the current parameters, can better approximate the direction toward the maximum within
 187 the local neighborhood than the gradient at the current parameters (i.e., the local gradient). More
 188 specifically, $g_1 @ \vartheta_0$ points clearly closer to the high-loss region around the upper-right corner than g_0 ,
 189 and the loss value along $g_1 @ \vartheta_0$ is also literally higher. This phenomenon is consistently observed in
 190 practice, **as shown by additional visualizations in Appendix A.**

191 **Inaccuracy and Instability.** Although $g_1 @ \vartheta_0$ provides a better approximation than g_0 , we can clearly
 192 see in Figure 1a that the approximation by $g_1 @ \vartheta_0$ can still be rough and inaccurate. In fact, according
 193 to the additional visualizations in Appendix A, the approximation quality by $g_1 @ \vartheta_0$ is also unstable,
 194 **exhibiting large variations during training. This suggests that** such an approximation by $g_1 @ \vartheta_0$ can
 195 not well adapt to the evolving local loss landscape.

196 **Multi-Step Degradation.** We further extend the visualization analysis to multi-step settings. To
 197 approximate the complexity of high-dimensional landscapes, where multi-step ascent gradients
 198 deviate from a 2D plane, we simulate the process on a suitably complex 2D test function. As shown
 199 in Figure 1b, the gradient at the multi-step ascent point, when applied to the current parameters, may
 200 act as an unexpectedly poorer approximation compared to the gradient at the single-step ascent point.
 201 **Specifically**, $g_2 @ \vartheta_0$ inferiorly indicates the nearby high-loss region for ϑ_0 than $g_1 @ \vartheta_0$. Notably, g_2
 202 at its original position ϑ_2 indeed points toward the nearby high-loss region; however, when applied to
 203 ϑ_0 , the resulting vector $g_2 @ \vartheta_0$ points toward a relatively flat region. This offers a visual explanation
 204 for why multi-step SAM does not work as well as expected (Foret et al., 2020; Andriushchenko &
 205 Flammariou, 2022). Additional simulation results supporting this finding are included in Appendix A.
 206

207 2.2.2 THEORETICAL CONFIRMATION UNDER SECOND-ORDER APPROXIMATION.
 208

209 In this section, we substantiate our core empirical observations with the following results:

210 **Proposition 1.** *Let $L : \mathbb{R}^n \rightarrow \mathbb{R}$ be a twice continuously differentiable function that admits a
 211 second-order approximation at ϑ_0 with:*

- 212 • $\nabla L(\vartheta_0) = g_0$, which does not equal to 0;
- 213 • $\nabla L\left(\vartheta_0 + \rho \frac{g_0}{\|g_0\|}\right) = g_1$, which is not parallel to g_0 ;
- 214 • **Hessian $H = \nabla^2 L(\vartheta_0)$ positive definite.**

215 *Then there exists $\rho_0 > 0$ such that for all $\rho_m > \rho_0$:*

216
2171) *SAM better approximates the direction toward the maximum in the vicinity than SGD*218
219
220

$$L\left(\vartheta_0 + \rho_m \frac{g_1}{\|g_1\|}\right) > L\left(\vartheta_0 + \rho_m \frac{g_0}{\|g_0\|}\right);$$

221
222
2232) *There exist better approximations than SAM* there exists $\alpha \in \mathbb{R}$ such that224
225
226

$$L\left(\vartheta_0 + \rho_m \frac{g_\alpha}{\|g_\alpha\|}\right) > L\left(\vartheta_0 + \rho_m \frac{g_1}{\|g_1\|}\right), \quad g_\alpha = \alpha g_1 + (1 - \alpha) g_0.$$

227
228
229
230
231
232
233
234
235

The first result in the proposition delivers that for any fixed distance that is relatively large, the loss along the direction of the gradient at the single-step ascent point is higher than that along the gradient at the current parameters. **This confirms, from the loss-value perspective, that** the gradient of single-step SAM better approximates the direction toward the maximum within its local neighborhood than that of SGD. Note that a relatively large distance is necessary for the second-order term to dominate the first-order term. For a distance that is too small, g_0 is by definition the steepest ascent direction. A detailed proof is provided in Appendix B. **We additionally compare the losses of $L(\vartheta_0 + \rho_m g_1 / \|g_1\|)$ and $L(\vartheta_0 + \rho_m g_0 / \|g_0\|)$ across different ρ and ρ_m in actual experiments. See Figure 11 and 12 in Appendix A, which provides further empirical evidence of this result.**

236
237
238
239

The second result in the proposition implies that there exist better approximations than the gradient of single-step SAM even in the two-dimensional hyperplane spanned by g_0 and g_1 . **This confirms our observation that** the approximation by the gradient at the single-step ascent point is often inaccurate.

240
241

2.2.3 HEURISTIC EXPLANATION AND DEDUCTIVE ANALYSIS

242
243
244
245
246
247
248
249
250
251
252
253

To help establish a more intuitive understanding of why $g_1 @ \vartheta_0$ provides a better approximation for the direction of the maximum, we further provide the following heuristic explanation. Assuming the Hessian matrix of the loss function exhibits sufficiently slow variation within the local neighborhood, i.e., the gradient field evolves smoothly. Then, if g_1 is not parallel to g_0 , the directional change from g_0 to g_1 reveals how the gradient field evolves in the surroundings. **Considering additional virtual ascent steps within the local region**, e.g., ϑ_2 and g_2 . The directional change from g_1 to g_2 will tend to follow a similar trend as that from g_0 to g_1 . The same pattern persists for all subsequent virtual ascent steps, i.e., the virtual ascent trajectory will tend to curve in a consistent manner. Therefore, the high-loss region identified by the virtual ascent trajectory will likely be located at a position that is further shifted from the one-step ascent point ϑ_1 , along the direction of g_1 , but curves further in the evolving direction of the gradient. Its direction relative to ϑ_0 is thus better captured by $g_1 @ \vartheta_0$ than by g_0 . Nevertheless, such an approximation is inherently inaccurate.

254
255
256
257
258
259
260
261

In multi-step settings, a crucial observation is that each adjacent pair of steps $(i, i+1)$ recapitulates the configuration of single-step SAM. Consequently, the conclusion from the single-step analysis holds inductively for each step. That is, $g_{i+1} @ \vartheta_i$ better approximates the direction toward the maximum than $g_i @ \vartheta_i$, for $i \in [0, \dots, k-1]$. However, a critical discrepancy arises in multi-step SAM: it directly applies g_k to ϑ_0 , but it remains unclear whether $g_k @ \vartheta_0$ stands as a better approximation of the direction from ϑ_0 toward the maximum than $g_1 @ \vartheta_0$ (or even g_0). The core difference here is that g_1 is evaluated along the ray defined by g_0 and ϑ_0 , whereas g_k may substantially deviate from the ray defined by g_0 and ϑ_0 . Because the entire multi-step trajectory can curve significantly. This renders the direct application of g_k to ϑ_0 potentially suboptimal or unjustified.

262
263
264
265
266
267
268
269

As a final remark, a simple deduction reveals the inherent inaccuracy of the SAM gradient approximation: Consider SAM operating on a fixed loss surface. Regardless of how accurately $g_k @ \vartheta_0$ currently approximates the direction, as long as we continuously decrease $\{\rho_i\}$ (for all $i \in [0, k-1]$) toward 0, g_k will reduce to g_0 . Consequently, the approximation quality of $g_k @ \vartheta_0$ will get reduced arbitrarily close to that of the original gradient g_0 . This sensitivity to the choice of $\{\rho_i\}$ also implies that, for an arbitrary $\{\rho_i\}$, it is typically suboptimal (even for a certain fixed loss surface). \triangleright On the other hand, we can also tune $\{\rho_i\}$ to make it the best possible approximation, which could have played a role in the practical effectiveness of SAM. Nevertheless, given the evolving local loss landscape during training, the approximation with any fixed $\{\rho_i\}$ can hardly remain relatively accurate throughout.

270 **Algorithm 1** XSAM
271
272 **Input:** Initial parameters θ_0 , number of iterations
273 T , number of ascent steps $k \geq 1$, perturba-
274 tion radius $\{\rho_i\}$, neighborhood radius ρ_m , α^*
275 update frequency T_α , learning rate $\{\eta_t\}$
276 **Output:** Final parameters θ_T
277 1: **for** $t = 0$ **to** $T - 1$ **do**
278 2: $\vartheta_0 = \theta_t$
279 3: **for** $i = 0$ **to** $k - 1$ **do** \triangleright Single-step: $k = 1$
280 4: $g_i = \nabla_{\vartheta_i} L(\vartheta_i)$
281 5: $\vartheta_{i+1} = \vartheta_i + \rho_i \frac{g_i}{\|g_i\|}$
282 6: **end for**
283 7: $g_k = \nabla_{\vartheta_k} L(\vartheta_k)$
284 8: $v_0 = \frac{\vartheta_k - \vartheta_0}{\|\vartheta_k - \vartheta_0\|}$, $v_1 = \frac{g_k}{\|g_k\|}$
285 9: $\psi = \arccos(v_0 \cdot v_1)$
286 10: **if** $t \bmod T_\alpha = 0$ **then**
287 11: $\alpha_t^* = \arg \max_\alpha L(\vartheta_0 + \rho_m \cdot v(\alpha))$,
288 12: **where** $v(\alpha) = \frac{\sin((1-\alpha)\psi)}{\sin(\psi)} v_0 + \frac{\sin(\alpha\psi)}{\sin(\psi)} v_1$
289 13: **else**
290 14: $\alpha_t^* = \alpha_{t-1}^*$
291 15: **end if**
292 16: $\theta_{t+1} = \theta_t - \eta_t \cdot v(\alpha_t^*) \cdot \|g_k\|$
293 17: **end for**

Table 1: Training time comparison. Values are presented as hours/200 epochs, SAM / XSAM.

	CIFAR-10	CIFAR-100	Tiny-ImageNet
VGG-11	0.93 / 0.96	0.98 / 1.03	2.18 / 2.22
ResNet-18	2.35 / 2.39	2.40 / 2.43	4.95 / 4.98
DenseNet-121	8.02 / 8.08	8.05 / 8.07	16.50 / 16.55

Figure 2: Slow variation of α^* during training.

3 EXPLICIT SHARPNESS-AWARE MINIMIZATION

As shown in the above section, the approximation by the SAM gradient is often inaccurate and lacks adaptivity to the evolving local loss landscape. Moreover, the approximation quality may degrade as the number of ascent steps increases. To provide an integrated solution that simultaneously addresses all these limitations, we propose in this section eXplicit Sharpness-Aware Minimization (XSAM).

XSAM addresses the inaccuracy issue by explicitly probing the location of the maximum within the local neighborhood, thereby providing a more accurate update direction. By dynamically performing this probe during training, it further enhances adaptivity to the evolving local loss landscape.

Probing the maximum within the entire high-dimensional neighborhood can be computationally intractable. We therefore assume that the maximum is located at the neighborhood boundary, while further constraining the probe to a two-dimensional hyperplane. The 2D hyperplane is spanned by the gradient at the final ascent point (i.e., the point reached after $k \geq 1$ ascent steps) and the vector from the current parameters to that point. Formally, the two spanning vectors are defined as:

$$v_0 = \frac{\vartheta_k - \vartheta_0}{\|\vartheta_k - \vartheta_0\|}, \quad v_1 = \frac{g_k}{\|g_k\|}. \quad (5)$$

This definition of the two-dimensional hyperplane is crucial and provides four key advantages. First, it ensures that the point with the highest known loss (the one pointed to by g_k , standing at ϑ_k) lies within the hyperplane. Second, it avoids the inaccuracy issue of directly applying the gradient at the multi-step ascent point to the current parameters, while fully leveraging its informational value. Specifically, we use ϑ_k and g_k to define a search space that encompasses all the information they contain, instead of directly applying g_k to ϑ_0 . Third, it offers a unified formulation for both single-step and multi-step settings. Note that when $k = 1$, v_0 and v_1 correspond to the directions of g_0 and g_1 , respectively. Fourth, normalization is applied to separate direction from magnitude, allowing us to manage them independently.

To probe within the two-dimensional hyperplane, we generate new directions as the spherical linear interpolation between v_0 and v_1 :

$$v(\alpha) = \frac{\sin((1-\alpha)\psi)}{\sin(\psi)} v_0 + \frac{\sin(\alpha\psi)}{\sin(\psi)} v_1, \quad (6)$$

324 where $\psi = \arccos(v_0 \cdot v_1)$ and α is the interpolation factor. It has $\|v(\alpha)\| = 1$ for any α , $v(0) = v_0$,
 325 $v(1) = v_1$. More generally, $v(\alpha)$ is a unit vector that rotates from v_0 by an angle of $\alpha \cdot \psi$ along the
 326 direction toward v_1 . It can span all possible directions in the search space.

327 We then determine the direction, parametrized by α^* , that maximizes the loss at a predefined distance:
 328

$$329 \quad \alpha^* = \arg \max_{\alpha \in [0, a]} L(\vartheta_0 + \rho_m \cdot v(\alpha)), \quad (7)$$

331 where ρ_m is a hyperparameter specifying the radius of the *true* (in contrast to the perturbation radius)
 332 sharpness-aware neighborhood. In each dynamic search, we uniformly sample α values from $[0, a]$.
 333 In practice, setting a to 2 or 4 and sampling 20–40 samples is typically sufficient.

335 Once α^* is identified, the model parameters are updated using $-v(\alpha^*)$ as the descent direction. The
 336 gradient scale, by default, is set to $\|g_k\|$ to make it consistent with SAM³. Formally,

$$337 \quad \theta_{t+1} = \theta_t - \eta_t \cdot v(\alpha^*) \cdot \|g_k\|, \quad (8)$$

339 by which $v(\alpha^*)$ steers the parameters away from the estimated maximum within the neighborhood.
 340

341 **Faithfulness and Effectiveness.** Since we use $L(\vartheta_0 + \rho_m \cdot v(\alpha))$ as a proxy⁴, the method explicitly
 342 identifies the maximum within a neighborhood of radius ρ_m . Although restricted to a hyperplane, this
 343 approximation relies only on the boundary assumption. It thus more faithfully identifies the maximum
 344 in the local neighborhood, in contrast to directly regarding ϑ_k as the maximum or approximating its
 345 direction by $g_k @ \vartheta_0$. XSAM thereby more authentically realizes the sharpness-aware minimization.

346 **The Cost of Explicit Estimation.** The evaluation of each α requires a forward pass. Thus, the cost
 347 of explicit estimation scales with the number of sampled α values times the cost of a forward pass. If
 348 performed at every iteration, this would introduce substantial overhead. Fortunately, frequent updates
 349 of α^* are unnecessary. Our experiments show that α^* remains relatively stable and varies smoothly
 350 during training (Figure 2). By default, we adopt an epoch-wise update strategy: α^* is updated at
 351 the first iteration of each epoch and then fixed for the remainder. Runtime comparison is shown in
 352 Table 1, indicating the additional overhead is negligible. Further details are provided in Appendix C.

354 4 RELATED WORK

356 SAM has been extended in several distinct directions. One line of work focuses on improving
 357 the gradient ascent (i.e., perturbation) step, addressing issues such as parameter scale dependence
 358 (ASAM (Kwon et al., 2021); Fisher SAM (Kim et al., 2022)), approximation quality (RSAM (Liu
 359 et al., 2022b); CR-SAM (Wu et al., 2024)), and perturbation stability (VaSSO (Li & Giannakis,
 360 2024); FSAM (Li et al., 2024)). These approaches are largely complementary to ours; for instance,
 361 Appendix E.1 demonstrates that integrating XSAM with ASAM yields additional performance gains.

362 Another line of research targets the parameter update step. **GSAM** (Zhuang et al., 2022) combines the
 363 perturbed gradient with the orthogonal component of the local gradient. **GAM** (Zhang et al., 2023)
 364 simultaneously optimizes empirical loss and first-order flatness. In particular, WSAM (Yue et al.,
 365 2023) and Zhao et al. (2022a) derive their update rules as a linear combination of g_0 and g_1 through
 366 weighted sharpness regularization and gradient-norm penalization, respectively. While their superior
 367 performance over SAM is readily explained by our interpretation, this very perspective reveals a
 368 critical weakness: their dependence on a fixed combination weight, treated as a hyperparameter,
 369 is inherently suboptimal. In contrast, XSAM explicitly estimates the optimal interpolation factor
 370 dynamically during training and naturally extends this principle to multi-step settings. More funda-
 371 mentally, our approach is derived from a reformulation of the sharpness-aware objective itself, rather
 372 than introducing an auxiliary regularization term, thereby offering a more general and principled
 373 solution.

374 Multi-step SAM variants are discussed in Section 5.3, while additional related work on topics such as
 375 flatness, efficiency, and long-tail learning is deferred to Appendix G.

376 3 Alternative gradient scaling strategies are examined in Appendix F.

377 4 Our implementation uses only the current batch, consistent with the standard SAM procedure.

378
379
380
381 Table 2: Test accuracies on classification tasks in the single-step setting.
382
383
384

Dataset	CIFAR-10			CIFAR-100			Tiny-ImageNet		
Model	VGG-11	ResNet-18	DenseNet-121	VGG-11	ResNet-18	DenseNet-121	VGG-11	ResNet-18	DenseNet-121
SGD	93.19 \pm 0.11	96.15 \pm 0.05	96.34 \pm 0.11	71.46 \pm 0.17	78.55 \pm 0.20	81.78 \pm 0.06	47.44 \pm 0.33	57.02 \pm 0.42	61.93 \pm 0.10
SAM	93.83 \pm 0.06	96.59 \pm 0.06	96.97 \pm 0.02	74.01 \pm 0.05	80.93 \pm 0.11	83.81 \pm 0.02	51.96 \pm 0.26	62.81 \pm 0.09	66.31 \pm 0.09
XSAM	94.25 \pm 0.14	96.74 \pm 0.04	97.15 \pm 0.03	74.21 \pm 0.14	81.24 \pm 0.07	83.96 \pm 0.10	52.58 \pm 0.38	63.82 \pm 0.23	66.81 \pm 0.08

395
396 Figure 3: (a) Training trajectory comparisons on 2D test function. (b)-(c) Test accuracy comparisons
397 of ResNet-18 trained on CIFAR-100 in single-step and multi-step ($k = 3$) settings with varying ρ .
398399
400

5 EMPIRICAL RESULTS

401
402 In this section, we empirically compare SAM and its related variants with the proposed XSAM. Due
403 to space limitations, detailed experimental settings are deferred to Appendix D.404
405

5.1 2D TEST FUNCTION

406
407
408
409
410
411 Following (Yue et al., 2023; Kim et al., 2022), we first evaluate methods on a 2D function featuring a
412 sharp and a flat minimum within a certain distance, serving as an ideal testbed for sharpness-aware
413 minimization. We compare SGD, SAM, and XSAM across different initial points and hyperparameters.
414 XSAM consistently converges to the flat minima when ρ_m is sufficiently large, whereas SAM and SGD are more prone to get trapped in the sharp minima. Representative training trajectories for
415 each method are shown in Figure 3a. Both SAM and XSAM are evaluated in their single-step form.416
417

5.2 EVALUATION UNDER THE SINGLE-STEP SETTING

418
419 In this section, we evaluate the methods under the single-step setting across a variety of classification
420 datasets and model architectures. To stress-test the methods, we first tune SAM’s learning rate, weight
421 decay, and ρ to achieve its optimal performance on each dataset. Other methods are then tuned using
422 the same hyperparameters whenever feasible. To isolate the effect of different gradient directions and
423 eliminate the influence of gradient scaling, all methods adopt SAM’s gradient scale, i.e., $\|g_k\|$.424
425
426 We evaluate the methods across diverse neural network architectures and datasets to ensure broad
427 applicability. The experiments cover architectures ranging from VGG-11 (Simonyan & Zisserman,
428 2014) and ResNet-18 (He et al., 2016) to DenseNet-121 (Huang et al., 2017), encompassing classic
429 models of increasing capacity. The datasets include CIFAR-10, CIFAR-100, and Tiny-ImageNet,
430 which span increasing complexities. As shown in Table 2, SAM consistently outperforms SGD,
431 confirming the superiority of the gradient direction of g_1 compared to g_0 . Meanwhile, XSAM
432 consistently outperforms SAM, highlighting the benefit of explicitly estimating the direction.433
434
435 To provide a more thorough comparison, we evaluate performance under varying ρ on CIFAR-100
436 using ResNet-18. For this experiment, we further include a WSAM-like baseline, which implements
437 our method with a fixed but tunable α , to highlight the benefit of dynamically estimating α compared
438 to a static choice. The best fixed α for the WSAM is determined via grid search over $[-1.0, 3.0]$
439 with a step size of 0.25. As shown in Figure 3b, the WSAM improves over SAM, while XSAM
440 consistently achieves further and significant improvements over the WSAM.

Having established XSAM’s potent performance under varying ρ , we further assess XSAM’s generality on larger-scale and more diverse tasks. We conduct experiments on ImageNet with ResNet-50, a neural machine translation task with a Transformer (Vaswani et al., 2017), and CIFAR-100 with ViT-Ti (Dosovitskiy et al., 2020). The results in Table 3 show that XSAM consistently outperforms SAM, demonstrating its broad applicability across diverse tasks and models.

Table 3: Comparison of SAM and XSAM on larger-scale and more diverse tasks.

	ImageNet ResNet-50 (Accuracy)	Transformer IWSLT2014 (BLEU)	ViT-Ti CIFAR-100 (Accuracy)
SAM	77.04 ± 0.09	35.30 ± 0.04	67.80 ± 0.22
XSAM	77.22 ± 0.07	35.63 ± 0.12	68.32 ± 0.18

Table 4: Multi-step results on CIFAR-100 with ResNet-18. $\rho = \rho^*/k$ with ρ^* for single-step.

Methods	$k = 1$	$k = 2$	$k = 4$
SAM	80.93 ± 0.11	80.91 ± 0.10	80.65 ± 0.26
LSAM	80.93 ± 0.11	80.94 ± 0.09	80.74 ± 0.18
LSAM+	80.61 ± 0.20	80.83 ± 0.11	80.41 ± 0.03
MSAM	80.93 ± 0.11	81.18 ± 0.06	81.01 ± 0.09
MSAM+	80.83 ± 0.05	80.86 ± 0.34	80.77 ± 0.08
XSAM	81.27 ± 0.07	81.44 ± 0.09	81.37 ± 0.24

5.3 EVALUATION UNDER THE MULTI-STEP SETTING

We proceed to evaluate and compare methods in a multi-step setting. We use a constant perturbation magnitude ρ for all steps (i.e., $\rho_i = \rho$ for all i), therefore omitting the subscript i for clarity. All experiments in this section are conducted on CIFAR-100 using a ResNet-18.

As the first experiment, we compare XSAM with multi-step SAM variants across different values of k . The considered methods include: MSAM (Kim et al., 2023), which updates parameters with $\sum_{i=1}^k g_i$, and LSAM (Mordido et al., 2024), which employs $\sum_{i=1}^k g_i / \|g_i\|$. To ensure a thorough comparison, we further introduce two augmented variants that incorporate the initial gradient g_0 : MSAM+ ($\sum_{i=0}^k g_i$) and LSAM+ ($\sum_{i=0}^k g_i / \|g_i\|$). Consistent with our previous protocol, we isolate the effect of gradient direction by readjusting all gradients to have the norm $\|g_k\|$. The perturbation radius is set to $\rho = \rho^*/k$, where ρ^* is the optimal value for single-step SAM, as suggested by Kim et al. (2023); all other hyperparameters remain unchanged from the single-step setup.

As shown in Table 4, the performance of SAM tends to decline as k increases. This phenomenon can be attributed to the growing deviation of g_k from the original ascent direction $g_0 @ \vartheta_0$ as the single ascent step is subdivided. As a result, when applied to ϑ_0 , it leads to a poorer approximation of the direction toward the maximum in the vicinity. In contrast, XSAM is not affected by this issue and typically benefits from more steps, demonstrating its superior ability to leverage multi-step ascent.

LSAM and MSAM, which incorporate intermediate ascent gradients (g_i for $0 \leq i \leq k$), generally surpass SAM. The decline in SAM’s performance with large k suggests substantial deviation of g_k from the ideal direction, which makes earlier, less-deviated gradients g_i valuable. Notably, LSAM+, which essentially moves away directly from the identified maximum point by multi-step ascent, even underperforms SAM. This highlights the value of an extra explicit estimation of the direction toward the maximum. Nevertheless, XSAM consistently outperforms all these methods across all settings.

We further evaluate SAM and XSAM under a multi-step setting ($k = 3$) with a varying perturbation radius ρ . A multi-step extension of WSAM, which combines the gradients g_k and g_0 with a fixed interpolation factor, is also compared. The results in Figure 3c indicate that while the WSAM variant outperforms SAM, XSAM consistently outperforms WSAM.

Figure 4 shows the robustness of XSAM to the α^* update frequencies. We observe no consistent pattern in performance when varying the update frequency of α^* . Additional ablation results are presented in Appendix E.4. Appendix E.5 further visualizes the loss surface at convergence, illustrating that XSAM finds **flatter minima** than SAM.

Figure 4: XSAM robustness to the α^* update frequency.

486

6 CONCLUSION

488 In this paper, we have studied the underlying mechanism of SAM and provided a novel, intuitive
 489 explanation of why it is valid and effective to apply the gradient at the ascent point to the current
 490 parameters. We have shown that the SAM gradient in its single-step version can provably better
 491 approximate the direction of the maximum within the local neighborhood than that of SGD. **We have**
 492 **further demonstrated that such an approximation can be inaccurate**, lacks adaptivity to the evolving
 493 local loss landscape, and may degrade as the number of ascent steps increases. To address these
 494 limitations, we have proposed XSAM that explicitly and dynamically estimates the direction of
 495 the maximum within the local neighborhood during training. **XSAM thereby more faithfully and**
 496 **effectively moves the current parameters away from high-loss regions**. Extensive experiments across
 497 various models, datasets, tasks, and settings have demonstrated the effectiveness of XSAM.

498

500 REPRODUCIBILITY STATEMENT

501 We have provided the code as supplementary material, along with detailed instructions for reproducing
 502 our experiments. The experimental settings and hyperparameters are described in the Appendix D.
 503 The datasets used in this paper are publicly available and can be downloaded online. Detailed proofs
 504 of the proposed proposition are included in the Appendix B.

505

506 REFERENCES

508 Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
 509 mization. In *International Conference on Machine Learning*, pp. 639–668. PMLR, 2022.

510 Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, and Nicolas Flammarion. Sharpness-aware
 511 minimization leads to low-rank features. *Advances in Neural Information Processing Systems*, 36:
 512 47032–47051, 2023a.

514 Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas Flam-
 515 marion. A modern look at the relationship between sharpness and generalization, 2023b. URL
 516 <https://arxiv.org/abs/2302.07011>.

517 Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization improves language model
 518 generalization. *arXiv preprint arXiv:2110.08529*, 2021.

520 Peter L Bartlett, Philip M Long, and Olivier Bousquet. The dynamics of sharpness-aware minimiza-
 521 tion: Bouncing across ravines and drifting towards wide minima. *Journal of Machine Learning
 522 Research*, 24(316):1–36, 2023.

524 Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico. Report on
 525 the 11th iwslt evaluation campaign. In *Proceedings of the 11th International Workshop on Spoken
 526 Language Translation: Evaluation Campaign*, pp. 2–17, 2014.

527 Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian Borgs,
 528 Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient descent
 529 into wide valleys, 2017. URL <https://arxiv.org/abs/1611.01838>.

531 Terrance DeVries. Improved regularization of convolutional neural networks with cutout. *arXiv
 532 preprint arXiv:1708.04552*, 2017.

533 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 534 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
 535 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint
 536 arXiv:2010.11929*, 2020.

538 Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
 539 Vincent YF Tan. Efficient sharpness-aware minimization for improved training of neural networks.
arXiv preprint arXiv:2110.03141, 2021.

540 Chongyu Fan, Jinghan Jia, Yihua Zhang, Anil Ramakrishna, Mingyi Hong, and Sijia Liu. Towards
 541 llm unlearning resilient to relearning attacks: A sharpness-aware minimization perspective and
 542 beyond, 2025. URL <https://arxiv.org/abs/2502.05374>.

543

544 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
 545 for efficiently improving generalization. In *International Conference on Learning Representations*,
 546 2020.

547 Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
 548 via hessian eigenvalue density. In *International Conference on Machine Learning*, pp. 2232–2241.
 549 PMLR, 2019.

550 Gauthier Gidel, Francis Bach, and Simon Lacoste-Julien. Implicit regularization of discrete gradient
 551 dynamics in linear neural networks. *Advances in Neural Information Processing Systems*, 32,
 552 2019.

553

554 Shreyank N Gowda and David A Clifton. Cc-sam: Sam with cross-feature attention and context
 555 for ultrasound image segmentation. In *European Conference on Computer Vision*, pp. 108–124.
 556 Springer, 2024.

557 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 558 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 559 pp. 770–778, 2016.

560 Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by discovering flat minima.
 561 *Advances in neural information processing systems*, 7, 1994.

562

563 Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. *Neural computation*, 9(1):1–42, 1997.

564 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
 565 convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern
 566 recognition*, pp. 4700–4708, 2017.

567

568 Pavel Izmailov, Dmitrii Podoprikin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Av-
 569 eraging weights leads to wider optima and better generalization. *arXiv preprint arXiv:1803.05407*,
 570 2018.

571 Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun
 572 Cho, and Krzysztof Geras. The break-even point on optimization trajectories of deep neural
 573 networks, 2020. URL <https://arxiv.org/abs/2002.09572>.

574

575 Weisen Jiang, Hansi Yang, Yu Zhang, and James Kwok. An adaptive policy to employ sharpness-
 576 aware minimization. *arXiv preprint arXiv:2304.14647*, 2023.

577 Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
 578 generalization measures and where to find them. *arXiv preprint arXiv:1912.02178*, 2019.

579

580 Ryo Karakida, Tomoumi Takase, Tomohiro Hayase, and Kazuki Osawa. Understanding gradient
 581 regularization in deep learning: Efficient finite-difference computation and implicit bias. In
 582 *International Conference on Machine Learning*, pp. 15809–15827. PMLR, 2023.

583

584 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
 585 Tang. On large-batch training for deep learning: Generalization gap and sharp minima. *arXiv
 preprint arXiv:1609.04836*, 2016.

586

587 Hoki Kim, Jinseong Park, Yujin Choi, Woojin Lee, and Jaewook Lee. Exploring the effect of
 588 multi-step ascent in sharpness-aware minimization. *arXiv preprint arXiv:2302.10181*, 2023.

589

590 Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher sam: Information geometry
 591 and sharpness aware minimisation. In *International Conference on Machine Learning*, pp. 11148–
 592 11161. PMLR, 2022.

593

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware
 minimization for scale-invariant learning of deep neural networks. In *International Conference on
 Machine Learning*, pp. 5905–5914. PMLR, 2021.

594 Bingcong Li and Georgios Giannakis. Enhancing sharpness-aware optimization through variance
 595 suppression. *Advances in Neural Information Processing Systems*, 36, 2024.
 596

597 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
 598 of neural nets. *Advances in neural information processing systems*, 31, 2018.

599 Sicong Li, Qianqian Xu, Zhiyong Yang, Zitai Wang, Linchao Zhang, Xiaochun Cao, and Qingming
 600 Huang. Focal-sam: Focal sharpness-aware minimization for long-tailed classification. *arXiv*
 601 *preprint arXiv:2505.01660*, 2025.
 602

603 Tao Li, Pan Zhou, Zhengbao He, Xinwen Cheng, and Xiaolin Huang. Friendly sharpness-aware
 604 minimization. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 605 *recognition*, pp. 5631–5640, 2024.

606 Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
 607 sharpness-aware minimization. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 608 *and Pattern Recognition*, pp. 12360–12370, 2022a.
 609

610 Yong Liu, Siqi Mai, Minhao Cheng, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Random
 611 sharpness-aware minimization. *Advances in Neural Information Processing Systems*, 35:24543–
 612 24556, 2022b.
 613

614 Chao Ma and Lexing Ying. On linear stability of sgd and input-smoothness of neural networks.
 615 *Advances in Neural Information Processing Systems*, 34:16805–16817, 2021.
 616

617 David A McAllester. Pac-bayesian model averaging. In *Proceedings of the twelfth annual conference*
 618 *on Computational learning theory*, pp. 164–170, 1999.

619 Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai Sun, Rongrong Ji, and Dacheng Tao. Make
 620 sharpness-aware minimization stronger: A sparsified perturbation approach. *Advances in Neural*
 621 *Information Processing Systems*, 35:30950–30962, 2022.
 622

623 Gonçalo Mordido, Pranshu Malviya, Aristide Baratin, and Sarath Chandar. Lookbehind-sam: k steps
 624 back, 1 step forward, 2024. URL <https://arxiv.org/abs/2307.16704>.
 625

626 Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generaliza-
 627 tion in deep learning. *Advances in neural information processing systems*, 30, 2017.
 628

629 Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
 630 and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In *Proceedings of*
 631 *NAACL-HLT 2019: Demonstrations*, 2019.

632 Harsh Rangwani, Sumukh K Aithal, Mayank Mishra, Arihant Jain, and Venkatesh Babu Radhakrish-
 633 nan. A closer look at smoothness in domain adversarial training. In *International conference on*
 634 *machine learning*, pp. 18378–18399. PMLR, 2022a.
 635

636 Harsh Rangwani, Sumukh K Aithal, Mayank Mishra, et al. Escaping saddle points for effective
 637 generalization on class-imbalanced data. *Advances in Neural Information Processing Systems*, 35:
 638 22791–22805, 2022b.
 639

640 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 641 recognition. *arXiv preprint arXiv:1409.1556*, 2014.
 642

643 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 644 Dropout: a simple way to prevent neural networks from overfitting. *The journal of machine*
 645 *learning research*, 15(1):1929–1958, 2014.

646 Behrooz Tahmasebi, Ashkan Soleymani, Dara Bahri, Stefanie Jegelka, and Patrick Jaillet. A universal
 647 class of sharpness-aware minimization algorithms. *arXiv preprint arXiv:2406.03682*, 2024.
 648

649 Chengli Tan, Jiangshe Zhang, Junmin Liu, Yicheng Wang, and Yunda Hao. Stabilizing sharpness-
 650 aware minimization through a simple renormalization strategy. *Journal of Machine Learning*
 651 *Research*, 26(68):1–35, 2025.

648 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 649 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing*
 650 *systems*, 30, 2017.

651

652 Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How does sharpness-aware minimization minimize
 653 sharpness?, 2023. URL <https://arxiv.org/abs/2211.05729>.

654 Tao Wu, Tie Luo, and Donald C Wunsch II. Cr-sam: Curvature regularized sharpness-aware
 655 minimization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp.
 656 6144–6152, 2024.

657

658 Yun Yue, Jiadi Jiang, Zhiling Ye, Ning Gao, Yongchao Liu, and Ke Zhang. Sharpness-aware
 659 minimization revisited: Weighted sharpness as a regularization term. In *Proceedings of the 29th*
 660 *ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 3185–3194, 2023.

661 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
 662 learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):107–115,
 663 2021.

664

665 Xingxuan Zhang, Renzhe Xu, Han Yu, Hao Zou, and Peng Cui. Gradient norm aware minimization
 666 seeks first-order flatness and improves generalization. In *Proceedings of the IEEE/CVF Conference*
 667 *on Computer Vision and Pattern Recognition*, pp. 20247–20257, 2023.

668

669 Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradient norm for efficiently improving
 670 generalization in deep learning. In *International conference on machine learning*, pp. 26982–
 26992. PMLR, 2022a.

671

672 Yang Zhao, Hao Zhang, and Xiuyuan Hu. Randomized sharpness-aware training for boosting
 673 computational efficiency in deep learning. *arXiv preprint arXiv:2203.09962*, 2022b.

674

675 Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data augmentation.
 676 In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pp. 13001–13008,
 2020.

677

678 Yixuan Zhou, Yi Qu, Xing Xu, and Hengtao Shen. Imbsam: A closer look at sharpness-aware
 679 minimization in class-imbalanced recognition. In *Proceedings of the IEEE/CVF International*
 680 *Conference on Computer Vision*, pp. 11345–11355, 2023.

681

682 Zhanpeng Zhou, Mingze Wang, Yuchen Mao, Bingrui Li, and Junchi Yan. Sharpness-aware mini-
 683 mization efficiently selects flatter minima late in training, 2025. URL <https://arxiv.org/abs/2410.10373>.

684

685 Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar
 686 Tatikonda, James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware
 687 training. *arXiv preprint arXiv:2203.08065*, 2022.

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX

A VISUALIZATION OF LOSS SURFACE DURING TRAINING

Figure 5: Visualization of loss surface during training: VGG-11 trained on CIFAR-100.

Figure 6: Visualization of loss surface during training: ResNet-18 trained on CIFAR-100.

Figure 7: Visualization of loss surface during training: ViT-Ti trained on CIFAR-100.

Figure 8: Visualization of loss surface during training: ResNet-18 trained on CIFAR-10.

Figure 9: Visualization of loss surface during training: DenseNet-121 trained on CIFAR-10.

In this section, we provide more visualizations of the loss surfaces of different datasets and models during SAM training. The results are shown in Figure 5, 6, 7, 8, 9, and 10. The gradient of the ascent

756
757
758
759
760
761
762
763
764
765

(a) Visualization of single-step SAM

(b) Simulation of multi-step SAM

Figure 10: (a) Visualization of the local loss surface of single-step SAM. The visualization procedure follows the same steps as in Figure 1a. Data is collected at the first iteration of the 100th epoch in training ResNet-18 on CIFAR-100. **We see that $g_1 @ \vartheta_0$ (i.e., g_1 applied to ϑ_0) points clearly closer to the direction from ϑ_0 toward the maximum within the local neighborhood than g_0 .** The targeted direction is roughly from the origin to the upper-right corner in the figure. The loss along $g_1 @ \vartheta_0$ (i.e., $L(\vartheta_0 + \rho_m \cdot g_1 / \|g_1\|)$) is higher than that along g_0 (i.e., $L(\vartheta_0 + \rho_m \cdot g_0 / \|g_0\|)$), for sufficiently large ρ_m . (b) A simulation of multi-step SAM on a test function. The gradient at the multi-step ascent point, when applied to the current parameters, may be an inferior approximation of the direction toward the maximum.

point better approximates the direction toward the maximum within the neighborhood than the local gradient. However, the approximation can often be inaccurate and unstable during training.

Figure 11: Visualization of $L(\vartheta_0 + \rho_m g_1 / \|g_1\|) - L(\vartheta_0 + \rho_m g_0 / \|g_0\|)$ during training.Figure 12: Visualization of $L(\vartheta_0 + \rho_m g_1 / \|g_1\|) - L(\vartheta_0 + \rho_m g_0 / \|g_0\|)$ during training.

We compare $L(\vartheta_0 + \rho_m g_1 / \|g_1\|)$ and $L(\vartheta_0 + \rho_m g_0 / \|g_0\|)$ across different ρ and ρ_m in Figure 11 and 12. We gradually increase ρ_m for each ρ , while keeping ϑ_0 and g_0 fixed. As can be seen, $L(\vartheta_0 + \rho_m g_1 / \|g_1\|)$ becomes larger than $L(\vartheta_0 + \rho_m g_0 / \|g_0\|)$ when ρ_m is relatively large. This provides further evidence for our claim that along g_1 one can find a higher loss than along g_0 for ϑ_0 .

B PROOFS

Proposition 1. *Let $L : \mathbb{R}^n \rightarrow \mathbb{R}$ be a twice continuously differentiable function that admits a second-order approximation at ϑ_0 with:*

810 • $\nabla L(\vartheta_0) = g_0$, which does not equal to 0;
 811 • $\nabla L\left(\vartheta_0 + \rho \frac{g_0}{\|g_0\|}\right) = g_1$, which is not parallel to g_0 ;
 812 • Hessian $H = \nabla^2 L(\vartheta_0)$ positive definite.

813 Then there exists $\rho_0 > 0$ such that for all $\rho_m > \rho_0$:

814 1) SAM better approximates the direction toward the maximum in the vicinity than SGD

$$815 \quad L\left(\vartheta_0 + \rho_m \frac{g_1}{\|g_1\|}\right) > L\left(\vartheta_0 + \rho_m \frac{g_0}{\|g_0\|}\right);$$

816 2) There exist better approximations than SAM there exists $\alpha \in \mathbb{R}$ such that

$$817 \quad L\left(\vartheta_0 + \rho_m \frac{g_\alpha}{\|g_\alpha\|}\right) > L\left(\vartheta_0 + \rho_m \frac{g_1}{\|g_1\|}\right), \quad g_\alpha = \alpha g_1 + (1 - \alpha) g_0.$$

818 B.1 PROOF OF THE FIRST CONCLUSION

819 *Proof.*

820 1. Since L admits a second-order approximation at ϑ_0 :

$$821 \quad L\left(\vartheta_0 + \rho_m \frac{g_1}{\|g_1\|}\right) = L(\vartheta_0) + \rho_m \frac{g_0^\top g_1}{\|g_1\|} + \frac{\rho_m^2}{2} \frac{g_1^\top H g_1}{\|g_1\|^2} + o(\rho_m^2),$$

$$822 \quad L\left(\vartheta_0 + \rho_m \frac{g_0}{\|g_0\|}\right) = L(\vartheta_0) + \rho_m \|g_0\| + \frac{\rho_m^2}{2} \frac{g_0^\top H g_0}{\|g_0\|^2} + o(\rho_m^2).$$

823 2. For sufficiently large ρ_m , the ρ_m^2 term dominates. Thus, we need to show:

$$824 \quad \frac{g_1^\top H g_1}{\|g_1\|^2} > \frac{g_0^\top H g_0}{\|g_0\|^2}.$$

825 3. Expand g_1 as the gradient of L (which admits a second-order approximation) at $\vartheta_0 + \rho \frac{g_0}{\|g_0\|}$:

$$826 \quad g_1 = g_0 + \rho H \frac{g_0}{\|g_0\|} + o(\rho).$$

827 4. Compute the numerator and denominator to the second order:

$$828 \quad g_1^\top H g_1 = \left(g_0 + \rho H \frac{g_0}{\|g_0\|} + o(\rho) \right)^\top H \left(g_0 + \rho H \frac{g_0}{\|g_0\|} + o(\rho) \right)$$

$$829 \quad = g_0^\top H g_0 + 2\rho \frac{g_0^\top H^2 g_0}{\|g_0\|} + \rho^2 \frac{g_0^\top H^3 g_0}{\|g_0\|^2} + o(\rho^2),$$

$$830 \quad \|g_1\|^2 = \left\| g_0 + \rho H \frac{g_0}{\|g_0\|} + o(\rho) \right\|^2 = \|g_0\|^2 + 2\rho \frac{g_0^\top H g_0}{\|g_0\|} + \rho^2 \frac{g_0^\top H^2 g_0}{\|g_0\|^2} + o(\rho^2).$$

831 4. Ignoring higher-order terms $o(\rho^2)$, the inequality becomes:

$$832 \quad \frac{g_0^\top H g_0 + 2\rho \frac{g_0^\top H^2 g_0}{\|g_0\|} + \rho^2 \frac{g_0^\top H^3 g_0}{\|g_0\|^2}}{\|g_0\|^2 + 2\rho \frac{g_0^\top H g_0}{\|g_0\|} + \rho^2 \frac{g_0^\top H^2 g_0}{\|g_0\|^2}} > \frac{g_0^\top H g_0}{\|g_0\|^2}.$$

864 5. Multiply both sides by the positive denominators (since H is positive definite):
 865

$$866 \left(g_0^\top H g_0 + 2\rho \frac{g_0^\top H^2 g_0}{\|g_0\|} + \rho^2 \frac{g_0^\top H^3 g_0}{\|g_0\|^2} \right) \|g_0\|^2 > g_0^\top H g_0 \left(\|g_0\|^2 + 2\rho \frac{g_0^\top H g_0}{\|g_0\|} + \rho^2 \frac{g_0^\top H^2 g_0}{\|g_0\|^2} \right).$$

869 6. Cancel common terms and divide by $\rho > 0$:
 870

$$871 2 \left(\|g_0\| g_0^\top H^2 g_0 - \frac{(g_0^\top H g_0)^2}{\|g_0\|} \right) + \rho \left(g_0^\top H^3 g_0 - \frac{g_0^\top H g_0 g_0^\top H^2 g_0}{\|g_0\|^2} \right) > 0.$$

874 7. Term verification:
 875

- 877 • First term:

$$878 \|g_0\|^2 g_0^\top H^2 g_0 - (g_0^\top H g_0)^2 > 0.$$

879 This follows from the strict Cauchy-Schwarz inequality for the inner product, since g_0 and Hg_0
 880 are not parallel by assumption.
 881

- 882 • Second term:

$$883 \|g_0\|^2 g_0^\top H^3 g_0 - g_0^\top H g_0 g_0^\top H^2 g_0 \geq 0.$$

884 Let $H = \sum_{i=1}^n \lambda_i v_i v_i^\top$ be the spectral decomposition with $\lambda_i > 0$. Expressing $g_0 = \sum_{i=1}^n \alpha_i v_i$:
 885

$$886 887 \|g_0\|^2 g_0^\top H^3 g_0 - g_0^\top H g_0 g_0^\top H^2 g_0 = \left(\sum \alpha_i^2 \right) \left(\sum \lambda_i^3 \alpha_i^2 \right) - \left(\sum \lambda_i \alpha_i \right) \left(\sum \lambda_i^2 \alpha_i^2 \right).$$

888 The nonnegativity follows from Chebyshev's sum inequality applied to the series $\{\lambda_i\}$ and $\{\lambda_i^2\}$.
 889

890 8. Conclusion:
 891

893 Since both terms are non-negative and the first is strictly positive, the inequality holds.
 894

895 For sufficiently large ρ_m , the ρ_m^2 term dominates the Taylor expansion.
 896

897 That is, $\exists \rho_0 > 0$ such that $\forall \rho_m > \rho_0$:

$$898 899 900 L \left(\vartheta_0 + \rho_m \frac{g_1}{\|g_1\|} \right) > L \left(\vartheta_0 + \rho_m \frac{g_0}{\|g_0\|} \right).$$

901 \square
 902

903 904 **Remark.** If ρ_m is too small, the first-order term will dominate. The first-order term has
 905

$$906 907 908 \frac{g_0^\top g_1}{\|g_1\|} = \|g_0\| \cos(\phi) < \|g_0\|,$$

909 where $\cos \phi = \frac{g_0^\top g_1}{\|g_0\| \|g_1\|} < 1$ since g_0 and g_1 do not parallel. Thus, if ρ_m is too small, it will have
 910

$$911 912 913 L \left(\vartheta_0 + \rho_m \frac{g_1}{\|g_1\|} \right) < L \left(\vartheta_0 + \rho_m \frac{g_0}{\|g_0\|} \right).$$

914 From another perspective, this must hold because g_0 indicates the steepest ascent direction at ϑ_0 .
 915

916 917 **Remark.** ρ_m needs to be large only to ensure that the difference in the second-order term outweighs
 918 the first-order term, not intended to be too large to become impractical in real-world applications.

918 B.2 PROOF OF THE SECOND CONCLUSION
919920 *Proof.*
921922 1. Since L admits a second-order approximation at θ_0 :
923

924
$$L\left(\vartheta_0 + \rho_m \frac{g_\alpha}{\|g_\alpha\|}\right) = L(\vartheta_0) + \rho_m \frac{g_0^\top g_\alpha}{\|g_\alpha\|} + \frac{\rho_m^2}{2} \frac{g_\alpha^\top H g_\alpha}{\|g_\alpha\|^2} + o(\rho_m^2),$$

925
926
$$L\left(\vartheta_0 + \rho_m \frac{g_1}{\|g_1\|}\right) = L(\vartheta_0) + \rho_m \frac{g_0^\top g_1}{\|g_1\|} + \frac{\rho_m^2}{2} \frac{g_1^\top H g_1}{\|g_1\|^2} + o(\rho_m^2).$$

927
928

929 2. Define the quadratic ratio:
930

931
$$f(\alpha) = \frac{g_\alpha^\top H g_\alpha}{\|g_\alpha\|^2}.$$

932

933 At boundary points:
934

935
$$f(1) = \frac{g_1^\top H g_1}{\|g_1\|^2}, \quad f(0) = \frac{g_0^\top H g_0}{\|g_0\|^2}.$$

936

937 3. The derivative is:
938

939
$$f'(\alpha) = \frac{2(g_1 - g_0)^\top H g_\alpha \cdot \|g_\alpha\|^2 - 2(g_\alpha^\top H g_\alpha)(g_1 - g_0)^\top g_\alpha}{\|g_\alpha\|^4}.$$

940

941 At $\alpha = 1$:
942

943
$$f'(1) = \frac{2}{\|g_1\|^4} [(g_1 - g_0)^\top H g_1 \cdot \|g_1\|^2 - (g_1^\top H g_1)(g_1 - g_0)^\top g_1].$$

944

945 4. Using $g_1 = g_0 + \rho H \frac{g_0}{\|g_0\|} + o(\rho)$:
946

947
$$g_1 - g_0 = \rho H \frac{g_0}{\|g_0\|} + o(\rho).$$

948

949 Substituting into $f'(1)$:
950

951
$$f'(1) = \frac{2\rho}{\|g_1\|^4 \|g_0\|} [g_0^\top H^2 g_1 \cdot \|g_1\|^2 - (g_1^\top H g_1)(g_0^\top H g_1)] + o(\rho).$$

952

953 5. Further substituting $g_1 = g_0 + \rho H \frac{g_0}{\|g_0\|} + o(\rho)$ in:
954

955
$$\|g_1\|^2 = \left\| g_0 + \rho H \frac{g_0}{\|g_0\|} + o(\rho) \right\|^2 = \|g_0\|^2 + 2\rho \frac{g_0^\top H g_0}{\|g_0\|} + \rho^2 \frac{g_0^\top H^2 g_0}{\|g_0\|^2} + o(\rho^2),$$

956

957
$$\begin{aligned} & g_0^\top H^2 g_1 \|g_1\|^2 \\ &= \left(g_0^\top H^2 g_0 + \rho \frac{g_0^\top H^3 g_0}{\|g_0\|} + o(\rho) \right) \left(\|g_0\|^2 + 2\rho \frac{g_0^\top H g_0}{\|g_0\|} + \rho^2 \frac{g_0^\top H^2 g_0}{\|g_0\|^2} + o(\rho^2) \right) \\ &= g_0^\top H^2 g_0 \|g_0\|^2 + \rho \left(2 \frac{g_0^\top H^2 g_0 \cdot g_0^\top H g_0}{\|g_0\|} + \|g_0\| g_0^\top H^3 g_0 \right) \\ & \quad + \rho^2 \left(\frac{g_0^\top H^2 g_0 \cdot g_0^\top H^2 g_0}{\|g_0\|^2} + 2 \frac{g_0^\top H^3 g_0 \cdot g_0^\top H g_0}{\|g_0\|^2} \right) + o(\rho^2), \end{aligned}$$

958

959
$$\begin{aligned} & (g_1^\top H g_1)(g_0^\top H g_1) \\ &= \left(g_0^\top H g_0 + 2\rho \frac{g_0^\top H^2 g_0}{\|g_0\|} + \rho^2 \frac{g_0^\top H^3 g_0}{\|g_0\|^2} + o(\rho^2) \right) \left(g_0^\top H g_0 + \rho \frac{g_0^\top H^2 g_0}{\|g_0\|} + o(\rho) \right) \\ &= (g_0^\top H g_0)^2 + \rho \left(3 \frac{g_0^\top H g_0 \cdot g_0^\top H^2 g_0}{\|g_0\|} \right) + \rho^2 \left(\frac{g_0^\top H^3 g_0 \cdot g_0^\top H g_0}{\|g_0\|^2} + 2 \frac{(g_0^\top H^2 g_0)^2}{\|g_0\|^2} \right) + o(\rho^2). \end{aligned}$$

960

972 6. Combining terms:

$$\begin{aligned}
 973 \quad g_0^\top H^2 g_1 \|g_1\|^2 - (g_1^\top H g_1)(g_0^\top H g_1) &= (g_0^\top H^2 g_0 \|g_0\|^2 - (g_0^\top H g_0)^2) \\
 974 \quad &\quad + \rho \left(\|g_0\| g_0^\top H^3 g_0 - \frac{g_0^\top H g_0 \cdot g_0^\top H^2 g_0}{\|g_0\|} \right) \\
 975 \quad &\quad + \rho^2 \left(\frac{g_0^\top H^3 g_0 \cdot g_0^\top H g_0 - (g_0^\top H^2 g_0)^2}{\|g_0\|^2} \right) + o(\rho^2).
 976 \\
 977
 978
 979
 \end{aligned}$$

980 7. Sign analysis:

981

- 982 • Zero-order term $g_0^\top H^2 g_0 \|g_0\|^2 - (g_0^\top H g_0)^2$: Strictly positive by Cauchy-Schwarz inequality since
983 H is positive definite and g_0 and Hg_0 are not parallel.
- 984 • First-order term $\|g_0\|^2 g_0^\top H^3 g_0 - g_0^\top H g_0 \cdot g_0^\top H^2 g_0$: Non-negative by Chebyshev's sum inequality
985 for the sequences $\{\lambda_i\}$ and $\{\lambda_i^2\}$ where $H = \sum \lambda_i v_i v_i^\top$.
- 986 • Second-order term $g_0^\top H^3 g_0 \cdot g_0^\top H g_0 - (g_0^\top H^2 g_0)^2$: Non-negative by Chebyshev's sum inequality.

987 8. Conclusion:

988 The term is strictly positive, which means $f'(1) > 0$. So, there exists $\alpha > 1$ such that $f(\alpha) > f(1)$.
989 For sufficiently large ρ_m , where the second-order term dominates, this further implies:

$$990 \quad L \left(\vartheta_0 + \rho_m \frac{g_\alpha}{\|g_\alpha\|} \right) > L \left(\vartheta_0 + \rho_m \frac{g_1}{\|g_1\|} \right).$$

991 \square

992 **Remark.** The ρ_m threshold exists only to ensure the second-order term dominates the first-order
993 term. In practice, moderate values suffice to observe XSAM's advantage over SAM.

1000 **Remark.** Practically, the loss surface may not admit a second-order approximation, and the maxi-
1001 mum does not necessarily lie around $\alpha = 1$. So we search a relatively large range of α , e.g., in $[0, 2]$,
1002 to make it more generally applicable. Additionally, we use spherical linear combination instead, for
1003 a more uniform distribution of searched directions and better coverage.

1005 C COMPUTATIONAL OVERHEAD

1008 The evaluation of each α will involve a forward pass of the neural network for calculating $L(\vartheta_0 +$
1009 $v(\alpha) \cdot \rho_m)$. So, the cost of the dynamic search of α^* roughly equals the number of samples of α times
1010 the cost of a forward pass. Typically, we use $20 \sim 40$ samples to search for α^* . If this were required at
1011 every iteration, it would incur a considerable computational burden. Fortunately, frequent updates of
1012 α^* are unnecessary. According to our experiments, α^* is fairly stable and changes smoothly during
1013 training, as depicted in Figure 2 and Figure 13. In experiments, we by default adopt an epoch-wise
1014 update strategy: α^* is updated at the first iteration of each epoch and then kept fixed for the rest. Each
1015 epoch typically contains over 400 iterations. SAM requires $k + 1$ forward and $k + 1$ backward passes
1016 per iteration. So, the computational overhead of XSAM is roughly $40/(400 \cdot 2 \cdot (k + 1)) \leq 0.025$,
1017 i.e., the increased cost is typically no more than 2.5% when compared to SAM, which is negligible.
1018 A straightforward comparison of runtimes is presented in Table 1. The runtime of XSAM is nearly
1019 identical to that of SAM, indicating that the additional computational overhead is negligible.

1020 D ADDITIONAL EXPERIMENTAL DETAILS FOR RESULTS IN SECTIONS 5

1021 D.1 DETAILS ABOUT THE 2D TEST FUNCTION

1022 The test function used is defined by:

$$1023 \quad L(\theta) = L(\mu, \sigma) = -\log \left(0.7e^{-K_1(\mu, \sigma)/1.8^2} + 0.3e^{-K_2(\mu, \sigma)/1.2^2} \right), \quad (9)$$

1026 where $K_i(\mu, \sigma)$ is the KL divergence between two univariate Gaussian distributions,
 1027

$$1028 \quad K_i(\mu, \sigma) = \log \frac{\sigma_i}{\sigma} + \frac{\sigma^2 + (\mu - \mu_i)^2}{2\sigma_i^2} - \frac{1}{2}. \quad (10)$$

1030 with $(\mu_1, \sigma_1) = (20, 30)$ and $(\mu_2, \sigma_2) = (-20, 10)$. It features a sharp minimum at around
 1031 $(-16.8, 12.8)$ with a value of 0.28 and a flat minimum at around $(19.8, 29.9)$ with a value of 0.36.

1032 The visualized training trajectories in Figure 3a share the same start point $(-6.0, 10.0)$ and run for
 1033 400 steps. The learning rate is 5 (the gradient scale is small), momentum is 0.9, ρ is 6.0, and ρ_m is
 1034 18.0. The points passed at each step were recorded to plot the trajectories.

1036 D.2 EXPERIMENT SETUP

1038 **CIFAR-10, CIFAR-100, and Tiny-ImageNet.** We use RandomCrop and CutOut (DeVries, 2017)
 1039 augmentations for CIFAR-10 and CIFAR-100 while using RandomResizedCrop and RandomErasing
 1040 (Zhong et al., 2020) augmentations for Tiny-ImageNet, since we believe improvements over strong
 1041 augmentations can be more valuable. We use a batch size of 125 for all the datasets, such that the
 1042 sample size of each dataset is divisible by the batch size, while near the typical choice of 128. We
 1043 adopt the typical choice, SGD with a momentum of 0.9, as the base optimizer, which carries the true
 1044 gradient descent to θ . All models are trained for 200 epochs, while the cosine annealing learning rate
 1045 schedule is adopted in all settings.

1046 We run each experiment 5 times with different random seeds and calculate the mean and standard
 1047 deviation. Each experiment was conducted using a single NVIDIA Tesla V100 GPU.

1048 **ResNet50 on ImageNet.** We evaluate our method on the larger dataset, ImageNet. Standard data
 1049 augmentation techniques are applied, including resizing, cropping, random horizontal flipping, and
 1050 normalization. We take SGD as the base optimizer with a cosine learning rate decay.

1051 **IWSLT2014.** We conduct experiments on the Neural Machine Translation (NMT) task, specifically
 1052 German–English translation on the IWSLT2014 dataset (Cettolo et al., 2014), using the Transformer
 1053 architecture following the FAIRSEQ (Ott et al., 2019). We use AdamW as the base optimizer due to
 1054 its better performance on the transformer.

1055 **ViT-Ti.** We further use a lightweight Vision Transformer (ViT-Ti) model on CIFAR-100 to evaluate
 1056 our method. Note that following (Zhao et al., 2022a), we do not use Cutout augmentation for
 1057 CIFAR-100 when trained by ViT-Ti. We use AdamW as the base optimizer.

1059 D.3 HYPERPARAMETER DETAILS

1061 Table 5: Hyperparameter details for Results in Table 2.

	CIFAR-10				CIFAR-100				Tiny-ImageNet				
	SGD	SAM	WSAM	XSAM	SGD	SAM	WSAM	XSAM	SGD	SAM	WSAM	XSAM	
VGG-11													
Epoch		200				200				200			
Batch size		125				125				125			
Initial learning rate		0.05				0.05				0.05			
Momentum		0.9				0.9				0.9			
Weight decay		1×10^{-3}				1×10^{-3}				1×10^{-3}			
ρ	–	0.15	0.15	0.15	–	0.15	0.15	0.15	–	0.20	0.20	0.20	
ρ_m	–	–	–	0.30	–	–	–	0.30	–	–	–	1.20	
α	0.0	1.0	0.75	–	0.0	1.0	1.0	–	0.0	1.0	1.0	–	
ResNet-18		SGD	SAM	WSAM	XSAM	SGD	SAM	WSAM	XSAM	SGD	SAM	WSAM	XSAM
Epoch		200				200				200			
Batch size		125				125				125			
Initial learning rate		0.05				0.05				0.05			
Momentum		0.9				0.9				0.9			
Weight decay		1×10^{-3}				1×10^{-3}				1×10^{-3}			
ρ	–	0.15	0.15	0.15	–	0.15	0.15	0.15	–	0.20	0.20	0.20	
ρ_m	–	–	–	0.25	–	–	–	0.30	–	–	–	0.25	
α	0.0	1.0	0.5	–	0.0	1.0	1.25	–	0.0	1.0	1.0	–	
DenseNet-121		SGD	SAM	WSAM	XSAM	SGD	SAM	WSAM	XSAM	SGD	SAM	WSAM	XSAM
Epoch		200				200				200			
Batch size		125				125				125			
Initial learning rate		0.05				0.05				0.05			
Momentum		0.9				0.9				0.9			
Weight decay		1×10^{-3}				1×10^{-3}				1×10^{-3}			
ρ	–	0.05	0.05	0.05	–	0.10	0.10	0.10	–	0.20	0.20	0.20	
ρ_m	–	–	–	0.10	–	–	–	0.20	–	–	–	0.20	
α	0.00	1.0	1.25	–	0.0	1.0	0.75	–	0.0	1.0	0.75	–	

1080 Table 6: Hyperparameter details for Results in Figure 3b. Note that, in this experiment, α for WSAM
 1081 adopts the average value of the dynamic α^* in the corresponding XSAM. We see from the results that
 1082 such WSAM already clearly outperforms SAM.

1083

1084

	$\rho=0.10$			$\rho=0.20$			$\rho=0.30$		
	SAM	WSAM	XSAM	SAM	WSAM	XSAM	SAM	WSAM	XSAM
Epoch	200			200			200		
Batch size	125			125			125		
Initial learning rate	0.05			0.05			0.05		
Momentum	0.9			0.9			0.9		
Weight decay	1×10^{-3}			1×10^{-3}			1×10^{-3}		
ρ_m	—	—	0.30	—	—	0.30	—	—	0.30
α	1.0	1.57	—	1.0	1.15	—	1.0	0.92	—

1093

1094

1095 Table 7: Hyperparameter details for Results in Figure 4 and 14a. Note that the basic hyperparameters
 1096 are provided here, while the other hyperparameters are clearly illustrated in the respective figures.

1097

	Figure 4		Figure 14a	
	SAM	XSAM	SAM	XSAM
Epoch	200		200	
Batch size	125		125	
Initial learning rate	0.05		0.05	
Momentum	0.9		0.9	
Weight decay	1×10^{-3}		1×10^{-3}	
ρ	0.15		0.15	

1106

1107

1108 Table 8: Hyperparameter details for Results in Figure 3c. Note that, in this experiment, α for WSAM
 1109 adopts the average value of the dynamic α^* in the corresponding XSAM. We see from the results that
 1110 such WSAM already clearly outperforms SAM.

1111

1112

	$\rho=0.04$			$\rho=0.08$			$\rho=0.12$		
	SAM	WSAM	XSAM	SAM	WSAM	XSAM	SAM	WSAM	XSAM
Epoch	200			200			200		
Batch size	125			125			125		
Initial learning rate	0.05			0.05			0.05		
Momentum	0.9			0.9			0.9		
Weight decay	1×10^{-3}			1×10^{-3}			1×10^{-3}		
ρ_m	—	—	0.30	—	—	0.25	—	—	0.20
α	1.0	1.72	—	1.0	1.15	—	1.0	0.41	—

1121

1122

1123 Table 9: Hyperparameters for SAM and XSAM on ImageNet/ResNet-50, Transformer/IWSLT2014,
 1124 and ViT-Ti/CIFAR-100 in Table 3.

1125

1126

	ImageNet/ResNet-50		Transformer/IWSLT2014		CIFAR-100/ViT-Ti	
	SAM	XSAM	SAM	XSAM	SAM	XSAM
Epoch	90		300		300	
Batch size / Max Token	512		4096		256	
Initial learning rate	0.2		5×10^{-4}		0.001	
Momentum	0.9		(0.9,0.98)		(0.9,0.999)	
Weight decay	1×10^{-4}		0.3		0.3	
Label smooth	0.0		0.1		0.1	
ρ	0.05		0.15		0.9	
ρ_m	—	0.3	0.45	—	—	0.9
α	1.0	—	1.0	—	1.0	—

1134 E ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS
11351136 E.1 EVALUATION OF XSAM WITH OTHER SAM VARIANTS
1137

1138 In this section, we further evaluate the performance of SAM variants and their combinations with
1139 XSAM. As discussed in Section 4, some SAM variants, such as ASAM, FSAM, and VaSSO, target
1140 aspects of SAM that are largely orthogonal to those addressed by our method, making them potentially
1141 compatible for integration. Given the large number of such orthogonal approaches, we focus here
1142 on combining XSAM with ASAM and evaluating their performance on CIFAR-100 using ResNet-
1143 18. The results in Table 10 indicate that XSAM outperforms both SAM and ASAM individually.
1144 Furthermore, integrating XSAM with ASAM leads to further improvement, demonstrating the
1145 effectiveness of XSAM in combination with other SAM variants.
1146

1147 Table 10: Test accuracy of SAM variants and their combinations with XSAM.
1148

	SAM	ASAM	XSAM	XSAM+ASAM
Test Accuracy	80.93 ± 0.11	81.11 ± 0.06	81.24 ± 0.07	81.68 ± 0.11

1153 We have additionally compared XSAM with ASAM, VaSSO, and WSAM on CIFAR-100 using both
1154 ResNet-18 and DenseNet-121. As shown in the Table 11, XSAM achieves the highest accuracy
1155 across both architectures, further demonstrating its effectiveness.
1156

1158 Table 11: Comparison on CIFAR-100 with ResNet-18 and DenseNet-121. All baseline methods are
1159 carefully tuned for optimal performance. XSAM uses the same ρ as SAM, as in the paper.
1160

Method	ResNet-18	DenseNet-121
SAM	80.93 ± 0.11	83.81 ± 0.02
ASAM	81.11 ± 0.06	83.99 ± 0.25
VaSSO	80.84 ± 0.15	83.78 ± 0.25
WSAM	80.95 ± 0.19	83.91 ± 0.15
XSAM	81.24 ± 0.07	83.96 ± 0.10
XSAM + ASAM	81.68 ± 0.11	84.06 ± 0.21

1171 E.2 ADDITIONAL EXPERIMENTS OF MULTI-STEP SAM
1172

1173 We additionally compare multi-step SAM variants and XSAM under varying ρ . As we see in Table
1174 12, all of these variants, especially LSAM and MSAM+, which involve intermediate gradients rather
1175 than merely using the last gradient g_k , managed to get consistently superior results than SAM. The
1176 performance of SAM constantly decreases as ρ gets large, which, from our perspective, suggests
1177 the deviations of g_k from ϑ_0 are too large. Under such circumstances, the earlier g_i must have less
1178 deviation, so combining it with earlier gradients would help. Besides, we see no clear trend for
1179 LSAM, LSAM+, MSAM, and MSAM+ as ρ gets large.
1180

1181 Although MSAM+ can be viewed as LSAM+ with weights of gradients changed from $1/\|g_i\|$ to
1182 simply 1, the performance gap between them is obvious. This demonstrates that the weighting of
1183 gradients at different steps affects performance, and a more appropriate weighting scheme can lead to
1184 higher accuracy. Regardless, XSAM consistently outperforms all these methods in all cases.
1185

1186 We further compare XSAM with MSAM and LSAM under $k = 1, 2, 4$ on DenseNet-121 using
1187 CIFAR-100 and on ResNet-18 using CIFAR-10. As shown in Tables 13 and 14, XSAM consistently
1188 attains high accuracy while maintaining strong robustness. In contrast, existing multi-step SAM
1189 variants may even underperform their single-step counterparts.
1190

1188 Table 12: Results on CIFAR-100 using ResNet-18 in multi-step ($k = 3$) setting.
1189

Method	$\rho = 0.04$	$\rho = 0.08$	$\rho = 0.12$
SAM	80.79 ± 0.41	80.75 ± 0.27	79.72 ± 0.33
LSAM	81.00 ± 0.21	81.20 ± 0.24	81.16 ± 0.04
LSAM+	80.56 ± 0.20	80.77 ± 0.04	80.21 ± 0.27
MSAM	81.04 ± 0.06	81.12 ± 0.17	80.93 ± 0.11
MSAM+	80.72 ± 0.16	81.16 ± 0.05	81.16 ± 0.05
XSAM	81.23 ± 0.06	81.36 ± 0.08	81.29 ± 0.06

1199 Table 13: Results on DenseNet-121 with CIFAR-100 with different k . $\rho = \rho^*/k$ with ρ^* for single-
1200 step.
1201

Method	$k = 1$	$k = 2$	$k = 4$
LSAM	83.81 ± 0.02	83.82 ± 0.28	83.40 ± 0.17
MSAM	83.81 ± 0.02	83.67 ± 0.23	83.74 ± 0.18
XSAM	83.96 ± 0.10	84.05 ± 0.04	84.02 ± 0.31

1208 Table 14: Results on ResNet-18 with CIFAR-10 with different k . $\rho = \rho^*/k$ with ρ^* for single-step.
1209

Method	$k = 1$	$k = 2$	$k = 4$
LSAM	96.59 ± 0.06	96.66 ± 0.03	96.72 ± 0.07
MSAM	96.59 ± 0.06	96.78 ± 0.05	96.80 ± 0.07
XSAM	96.74 ± 0.04	96.81 ± 0.06	96.81 ± 0.11

1216 E.3 ADDITIONAL EXPERIMENTS ON CORRUPTED DATASETS

1217 We have conducted additional experiments on CIFAR-10-C and CIFAR-100-C using ResNet-18 and
1218 DenseNet-121. Specifically, we consider 19 types of corruptions, each applied at five severity levels,
1219 and group them into four categories: noise, blur, weather, and digital.
12201221 We report the mean accuracy as the evaluation metric, with higher values indicating better performance.
1222 The results, as shown in the Table 15, indicate that XSAM consistently achieves high performance
1223 and demonstrates robustness across all settings.
1224

1225 Table 15: Performance on CIFAR-10-C/CIFAR-100-C with ResNet-18 and DenseNet-121.

(a) CIFAR-100-C, ResNet-18					(b) CIFAR-10-C, ResNet-18						
Method	Noise	Blur	Weather	Digital	Overall	Method	Noise	Blur	Weather	Digital	Overall
SGD	22.36	47.47	55.44	60.03	48.07	SGD	51.14	71.85	85.23	85.85	74.76
SAM	25.58	51.14	58.82	63.30	51.45	SAM	53.65	75.91	85.23	86.48	76.59
XSAM	25.44	52.65	59.83	63.54	52.07	XSAM	55.13	75.94	85.76	85.99	76.81
(c) CIFAR-100-C, DenseNet-121					(d) CIFAR-10-C, DenseNet-121						
Method	Noise	Blur	Weather	Digital	Overall	Method	Noise	Blur	Weather	Digital	Overall
SGD	26.07	51.12	59.93	63.78	51.90	SGD	49.50	73.51	85.17	85.88	74.85
SAM	29.78	55.22	63.58	67.26	55.62	SAM	54.75	77.52	87.30	87.85	78.08
XSAM	31.02	56.73	64.15	67.25	56.37	XSAM	55.94	77.05	87.60	87.72	78.20

1240 E.4 INNER PROPERTIES OF XSAM

1241 In this section, we present investigations into the internal properties of XSAM.

Figure 13: More visualizations of the dynamic estimations of α .

We first visualize the dynamic evaluations of α in a training instance in Figure 2 and in Figure 13, where loss values are normalized for better visibility. As we can see, for every dynamic evaluation of α , there is a clear optimal α . With the epoch-wise evaluation of α , we still see that the change of α^* during training is very smooth, which supports our choice of less frequently updating α^* for reducing computational overhead. On the other hand, we do see that α^* is changing during training, which validates our argument that a fixed α may not be optimum.

Figure 14: (a) Robustness analysis of XSAM with respect to ρ_m . (b) Training statistics of XSAM. (c) The norms of g_i during training.

We further study how ρ_m influences the final performance. As results presented in Figure 14a, while ρ_m does impact performance to some extent, XSAM is able to outperform SAM in a fairly large range of ρ_m , from ρ to 3ρ . So, we consider that XSAM is not sensitive to ρ_m . The counterpart, as to how ρ influences when fixing the ρ_m , is actually demonstrated in Figure 3b, where we have used a fixed $\rho_m = 0.3$ by intention. It seems fairly robust to ρ .

In our experiments, we also see that α^* has a decreasing tendency during training. In fact, the angle ψ between v_0 and v_1 has an increasing tendency during training. We visualize such changes along with the offset angle $\alpha^* \cdot \psi$ from v_0 to the direction of the local maximum in Figure 14b. We see that

1296 the offset angle $\alpha^* \cdot \psi$ tends to increase. This may be because it converges to a lower position in a
 1297 minima region as the learning rate decreases. Nevertheless, XSAM is able to help it away from the
 1298 maximum within the local neighborhood in any case, as evident by the test accuracy results.
 1299

1300 We show in Figure 14c an instance of norm change of g_i during training in multi-step settings.
 1301
 1302

1303 E.5 THE FLATNESS/SHARPNESS OF RESULTING MODELS

1304
 1305 **Hessian spectrum.** To demonstrate that XSAM converges to flatter minima (more precisely, success-
 1306 fully shifts to a region where the maximum within the local neighborhood is lower), we calculate the
 1307 Hessian eigenvalues of ResNet-18 trained for 200 epochs on CIFAR-10 with SGD, SAM, and XSAM.
 1308 Following (Foret et al., 2020; Jastrzebski et al., 2020; Mi et al., 2022), we adopt two metrics: the
 1309 largest eigenvalue (i.e., λ_1) and the ratio of the largest eigenvalue to the fifth largest one (i.e., λ_1/λ_5).
 1310 To avoid the expensive computation cost of exact Hessian spectrum calculation, we approximate
 1311 eigenvalues using the Lanczos algorithm (Ghorbani et al., 2019). The results, shown in **Table 16**,
 1312 indicate that XSAM yields the smallest hessian spectrum, suggesting that it converges to flatter
 1313 minima than SAM and SGD.
 1314

1315 Table 16: Hessian spectrum of ResNet-18 using SGD, SAM, and XSAM on CIFAR-10.
 1316

	SGD	SAM	XSAM
λ_1	78.79	36.15	33.92
λ_1/λ_5	2.26	1.89	1.59

1317
 1318 **Visualization of loss landscape.** We visualize the loss landscape of ResNet-18 trained on CIFAR-10
 1319 with SGD, SAM, and XSAM to further compare the flatness of the minimum. Using the visualization
 1320 procedure in (Li et al., 2018), we randomly choose orthogonal normalization directions (i.e., X axis
 1321 and Y axis) and then sample 50×50 points in the range of $[-1,1]$ from these two directions. As
 1322 shown in Figure 15, XSAM has a flatter loss landscape than SAM and SGD.
 1323

1324 Figure 15: Loss landscape visualizations of ResNet-18 on CIFAR-10 with SGD, SAM, and XSAM.
 1325

1326
 1327 **Average sharpness.** We further visualize the average sharpness of the loss landscape at the
 1328 convergence point. Specifically, following (Foret et al., 2020), we define the sharpness as the difference
 1329 between the loss of the perturbation point and the loss of the convergence point. The average sharp-
 1330 ness is then computed as the mean sharpness over multiple perturbations under the same perturbation
 1331 radius. Then, we sample multiple random directions (e.g., 10, 50, 250, 1250) and continue this
 1332 process until the average sharpness loss curve stabilizes, which provides a more representative char-
 1333 acterization of the loss behavior around the convergence point. Based on our experiments, sampling 250
 1334 random directions is sufficient to achieve stable results. In addition, for the perturbation method, we
 1335 adopt filter-wise and element-wise perturbation following (Li et al., 2018) to ensure a fair comparison
 1336 between different optimizers (i.e., SGD, SAM, and XSAM). As shown in Figure 16, SAM exhibits
 1337 smaller average sharpness compared to SGD, while XSAM further reduces the average sharpness.
 1338

Figure 16: Visualization of the average sharpness of the loss landscape at the convergence point.

F STRATEGIES FOR GRADIENT SCALE

Our default gradient scale strategy is using $\|g_k\|$ to match the scale with SAM. In this section, we empirically study a set of different ways for setting the gradient scale, which includes: typical choices like $\|g_k\|$ and $\|g_0\|$, simple extensions like $\sum_{i=0}^k \|g_i\|/(k+1)$ and $\max_{i=0}^k \|g_i\|$. Besides, we further explored two slope-based strategies:

$$\text{slope}_k := \frac{L(\vartheta_k) - L(\vartheta_0)}{\|\vartheta_k - \vartheta_0\|},$$

$$\text{slope}_m := \frac{L(\vartheta_0 + v(\alpha) \cdot \rho_m) - L(\vartheta_0)}{\rho_m},$$

which is the averaged slope from ϑ_0 to ϑ_k and from ϑ_0 to the approximated maximum, respectively.

Note that since our direction is away from the approximated maximum, it can be an interesting combination when using the slope from ϑ_0 to the approximated maximum as the gradient scale, which shares the same intrinsic core as stochastic gradient descent. However, it would require an extra forward pass to evaluate $L(\vartheta_0 + v(\alpha) \cdot \rho_m)$.

Figure 17: Comparison of various gradient scale strategies.

The results are shown in Figure 17. As we can see, the gradient scale seems to be something that is even more mysterious than the gradient direction. It is hard to draw a direct conclusion on which might be the best choice among such a reasonably large group. Nevertheless, some choices appear to be good in most circumstances, which may include $\|g_0\|$, $\|g_k\|$, and slope_m . These primary results are included for completeness. Notably, the work (Tan et al., 2025) argues that rescaling the gradient using $\|g_0\|$ is more stable than using $\|g_1\|$. In our experiments, however, we do not observe a noticeable stability advantage. We would leave further investigation into this as future work.

1404 **G ADDITIONAL RELATED WORK**

1405
 1406 The connection between flatness/sharpness and generalization was realized early on (Hochreiter &
 1407 Schmidhuber, 1994) and further explored in subsequent works (Hochreiter & Schmidhuber, 1997;
 1408 McAllester, 1999; Neyshabur et al., 2017; Jiang et al., 2019), motivating efforts toward finding flatter
 1409 solutions. While SGD is believed to favor flat minima implicitly (Keskar et al., 2016; Ma & Ying,
 1410 2021), more explicit methods are preferred and developed. Typical instances include Entropy-SGD
 1411 (Chaudhari et al., 2017) that employs entropy regularization, SWA (Izmailov et al., 2018) that seeks
 1412 flatness by averaging model parameters, and SAM (Foret et al., 2020) that optimizes sharpness.

1413 There are some variants that focus on improving the performance of multi-step SAM. Vanilla multi-
 1414 step SAM (Foret et al., 2020) updates the model using the gradient at the last step. MSAM (Kim et al.,
 1415 2023) suggests averaging all gradients except the first gradient at the original location. Lookbehind-
 1416 SAM (LSAM) (Mordido et al., 2024) suggests another way that utilizes all gradients but excludes the
 1417 first. In comparison, in multi-step settings, our method leverages all gradients ($\{g_i\}_{i=0}^{k-1}$ in v_0 , and g_k
 1418 in v_1) in a dynamic interpolation manner and explicitly approximates the direction of the maximum.

1419 There are also some works that seek to reduce the computational overhead of SAM. For instance,
 1420 ESAM (Du et al., 2021) achieves this via stochastic weight perturbation and sharpness-sensitive data
 1421 selection. SSAM (Mi et al., 2022) accelerates SAM with a sparse perturbation. LookSAM (Liu et al.,
 1422 2022a) reduces computational overhead by computing SAM’s gradient only periodically and relying
 1423 on an approximate gradient for most of the training time. RST (Zhao et al., 2022b) and AE-SAM
 1424 (Jiang et al., 2023) suggest alternating between SGD and SAM in randomized and adaptive ways,
 1425 respectively.

1426 Another important line of research on SAM focuses on understanding its underlying mechanism. For
 1427 instance, (Wen et al., 2023) finds that the gradient of SAM aligns with the top eigenvector of the
 1428 Hessian in the late phase of training. This phenomenon is also concurrently found by (Bartlett et al.,
 1429 2023). (Andriushchenko et al., 2023a) argues that SAM leads to low-rank features. In addition, an
 1430 interesting fact observed by (Andriushchenko & Flammarion, 2022) is that training with SAM only
 1431 in the late phase of training can achieve an improvement similar to that of full training with SAM.
 1432 A recent work (Zhou et al., 2025) further analyzes and theoretically shows the learning dynamics
 1433 of applying SAM late in training. (Tahmasebi et al., 2024) introduces a universal class of sharpness
 1434 measures, in which SAM, known for its bias toward minimizing the maximum eigenvalue of the
 1435 Hessian matrix, can be regarded as a special case. Our work is orthogonal to these works, providing a
 1436 new perspective for understanding a fundamental question of why applying the gradient from the
 1437 ascent point to the current parameters is valid. At the same time, we propose XSAM as a better
 1438 alternative.

1439 **In addition, SAM achieves extraordinary performance on various tasks. For instance, it has proven**
 1440 **particularly effective in long-tail learning (Rangwani et al., 2022b). ImbSAM (Zhou et al., 2023)**
 1441 **applies SAM only to the tail classes to improve their generalization. Further, CC-SAM (Gowda**
 1442 **& Clifton, 2024) generates class-specific perturbations for each class, although this comes at an**
 1443 **increased computational cost. Focal-SAM (Li et al., 2025) aims to achieve fine-grained sharpness**
 1444 **control for each class while maintaining efficiency. These SAM variants are specialized in long-tail**
 1445 **learning and differ from our work.**

1446 **H USE OF LARGE LANGUAGE MODELS**

1447 We used a large language model (LLM) only for language polishing (grammar, wording, and clarity)
 1448 of drafts written by the authors. The model did not generate research ideas, methods, analyses, results,
 1449 or figures, and it did not write any sections from scratch.

1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457