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ABSTRACT

Sharpness-Aware Minimization (SAM) enhances generalization by minimizing
the maximum training loss within a predefined neighborhood around the parame-
ters. However, its practical implementation approximates this as gradient ascent(s)
followed by applying the gradient at the ascent point to update the current parame-
ters. Although this practice is justified as approximately optimizing the objective
by neglecting the (full) derivative of the ascent point with respect to the current
parameters, a direct and intuitive understanding of why using the gradient at the
ascent point to update the current parameters works superiorly (despite a shift in
location) is still lacking. Our work bridges this gap by proposing and justifying
a novel, intuitive interpretation: the gradient at the single-step ascent point, when
applied to the current parameters, provides a better approximation of the direction
from the current parameters towards the maximum within the local neighborhood
than the local gradient, thereby enabling a more direct escape from the maximum
within the local neighborhood. Nevertheless, our analysis further reveals that: i)
the approximation by the gradient at the single-step ascent point is often inaccu-
rate; and ii) the approximation quality may degrade as the number of ascent steps
increases (explaining the unexpectedly inferior performance of multi-step SAM).
To address these limitations, we propose in this paper eXplicit Sharpness-Aware
Minimization (XSAM), which addresses the first limitation by explicitly estimating
the direction of the maximum during training (and then updates parameters along
the opposite direction), and the second by crafting a search space that can effec-
tively leverage the information provided by the gradient at the multi-step ascent
point. XSAM features a unified formulation that applies to both single-step and
multi-step settings and only incurs negligible additional computational overhead.
Extensive experiments demonstrate the consistent superiority of XSAM against
existing counterparts across various models, datasets, and settings.

1 INTRODUCTION

The success of modern machine learning relies heavily on overparameterization. This necessitates
strong regularization, either implicit or explicit, from the training procedures (Srivastava et al., 2014
Gidel et al.,[2019; |Karakida et al.,[2023) to ensure generalization beyond the training set (Zhang et al.|
2021). In recent years, Sharpness-Aware Minimization (SAM) (Foret et al., [2020; Kwon et al., 2021}
Liu et al.l [2022b}; Kim et al., 2023; [Mordido et al., [2024) has attained significant attention for its
potential to enhance the generalization of machine learning models, in a direct optimization manner.

SAM seeks to minimize the maximum training loss within a predefined neighborhood around the
parameters, thereby promoting flatter minima and better generalization. Its effectiveness is evidenced
by empirical successes across various domains (Bahri et al.,|2021; Rangwani et al.| 2022bja}; [Fan
et al.| 2025). However, its practical implementation approximates this as: carry out one or a few steps
of gradient ascent, and then apply the gradient from the ascent point to update the current parameters.

Though being justified as approximately optimizing the objective by neglecting the Jacobian matrix of
the ascent point with respect to the current parameters (Foret et al., 2020) and a body of research (Wen
et al., 2023} Bartlett et al., [2023; |Andriushchenko et al.| 2023a; |/Andriushchenko & Flammarion, 2022
Andriushchenko et al. 2023b) have sought to demystify the underlying mechanism of SAM after
such approximations, a direct and intuitive understanding of why applying the nonlocal gradient at
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the ascent point to update the current parameter works superiorly is still lacking. This gap necessitates
a deeper investigation into SAM’s fundamental mechanisms, which motivates our work.

Common misinterpretation. A prevalent misunderstanding must be clarified before we proceed: ap-
plying the gradient at the estimated maximum point DOES NOT necessarily lead to the minimization
of the maximum loss within the local neighborhood. The key here is that there is a shift in location:
the gradient is computed at the estimated maximum point, but applied to the current parameters. The
nuisance can be clear on considering the extreme case: the gradient at a point arbitrarily distant from
the current parameters provides vanishingly little information about the local loss geometry.

To unravel the mystery of the SAM update, we commence by visualizing the local loss surface during
SAM training. As shown in Figure[Ta]and further illustrated in Appendix[A] our visualization analysis
reveals that the gradient at the single-step ascent point, when applied to the current parameters,
generally provides a better approximation of the direction from the current parameters toward the
maximum within the local neighborhood than the gradient at the current parameters. This indicates
that applying the gradient at the single-step ascent point to the current parameters enables a more
direct escape from the maximum within the local neighborhood, thereby more effectively reducing
the worst-case loss in the neighborhood and ultimately leading to better generalization.

The above interpretation rationalizes the application of the gradient at the single-step ascent point to
the current parameters. Nevertheless, our visualizations simultaneously reveal that the approximation
by the gradient at the single-step ascent point is often inaccurate (as exemplified in Figure[Ta), and
the approximation quality is unstable, exhibiting large variations during training as the local loss
landscape evolves (evidenced by further visualizations in Appendix[A)). Moreover, as illustrated by
Figure Ib| (and Figure[I0in Appendix[A]), the approximation quality may get worse as the number
of ascent steps increases, explaining the unexpectedly inferior performance of multi-step SAM.

Motivated by these observations, we propose in this paper eXplicit Sharpness-Aware Minimization
(XSAM), which addresses the approximation inaccuracy issue of the SAM gradient fundamentally
by explicitly estimating the direction from the current parameters toward the maximum via probing
the loss values in different directions at the neighborhood boundary, while ensuring its high quality
throughout the training by updating the estimation dynamically during training.

Probing the entire high-dimensional neighborhood for estimating the direction can be computationally
intractable. We therefore constrain the probe to a two-dimensional hyperplane spanned by the gradient
at the final ascent point (i.e., the point reached after £ > 1 ascent steps) and the vector from the
current parameters to that point. This definition is crucial. It ensures that the point with the highest
known loss, i.e., the one pointed to by the gradient at the final ascent point, lies within the hyperplane.
Such a definition also simultaneously addresses the inaccuracy issue of directly applying the gradient
at the multi-step ascent point to the current parameters, while fully leveraging its informational value.

We express the estimated direction in terms of the spherical interpolation factor of the two spanning
vectors, which, according to our experiments, changes slowly during training, therefore requiring only
infrequent updates and incurring negligible additional computational overhead. With this improved
estimate of the direction toward the maximum, XSAM escapes the nearby high-loss regions more
effectively, thereby achieving better generalization. Extensive experiments demonstrate that XSAM
consistently outperforms existing counterparts across various models, datasets, and settings.

The primary contributions of this work are threefold:

* We provide a novel, intuitive interpretation of the fundamental mechanism of SAM, demonstrating
that the gradient at the (single-step) ascent point offers a superior approximation of the direction
from the current parameter toward the maximum within the local neighborhood than the local
gradient, thereby enabling a more direct escape from the maximum within the local neighborhood.

¢ Qur analysis further reveals that the approximation by the gradient at the single-step ascent point
is often inaccurate, and its quality varies largely during training. Moreover, the approximation
quality may degrade as the number of ascent steps increases, explaining the inferior performance
of multi-step SAM. These collectively demonstrate the sub-optimality of the SAM gradient.

* We propose XSAM, which simultaneously addresses all these limitations of SAM by explicitly
estimating the direction from the current parameter toward the maximum, within a novel, principled
search space during training, leading to a more faithful and effective implementation of sharpness-
aware minimization. Extensive experiments demonstrate the consistent superiority of XSAM.
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(a) Visualization of single-step SAM (b) Simulation of multi-step SAM

Figure 1: (a) Visualization of the local loss surface of single-step SANﬂ)n the hyperplane spanned by
the gradient g, at the current parameter ¥ and the gradient g; at the single-step ascent point ;. ¥g
is set as the origin, the Y -axis is defined along the direction of gg, and the X -axis is aligned with the
component of g; perpendicular to go. The visualized arrows of gradients are set to have length p. We
see that g;@ (i.e., g1 applied to ¥J¢) points clearly closer to the direction from 9 toward the
maximum within the local neighborhood (which is roughly from the origin to the upper-right
corner) than gg. The loss along ¢1@Q¥%g (i.e., L(Yo + pm - 91/]|91]])) is higher than that along go
(i.e., L(Yo + pm - 90/l190)), for sufficiently large p,,. (b) A simulation of multi-step SAM on a
2D test function. The approximation quality by the SAM gradient may get worse as the number of
ascent steps increases: g#Qy inferiorly identifies the direction from 9y toward the maximum within
the local neighborhood (the upper-left high-loss region in yellow) than g;@y.

2 REVISITING SHARPNESS-AWARE MINIMIZATION

This section reviews the objective of Sharpness-Aware Minimization (SAM) and its classical approxi-
mate optimization method, followed by our novel interpretation of its underlying mechanism.

2.1 THE OBJECTIVE AND CLASSICAL APPROXIMATION OF SAM

SAM (Foret et al, [2020) aims to find parameters that minimize the maximum training loss (i.e.,
worst-case loss) over a predefined p-neighborhood around the parameters. The formal objective is:

min max L(0 + §), 1
0 llol<e ( ) %

where L is the training loss, 8 € R" is the model parameters, and § € R" is the perturbation Vectorﬂ

Since exactly solving the inner maximization in Equation (T) is computationally expensive, SAM
approximates it by performing one or a few steps of gradient ascent from the current parameters.

Assuming the procedure involves & > 1 successive gradient ascent steps, it proceeds as follows:
initialize 99 = 6, and then for each step¢ = 0,1,...,k — 1:

1) Compute the gradient at the current point ¢;: g; = Vy, L(¢;);
2) Ascend along the direction of g; by a distance of p;: ¥;11 = 9; + Piﬁﬁ'

This formulation unifies the single-step (k = 1) and multi-step (kK > 1) settings, with the constraint

Zf;ol p; < p ensuring the total perturbation remains within the p-ball. The procedure yields the
final perturbed parameters directly as ¥y, while approximating the best perturbation 6* as 95 — 9.

After such approximation of the best perturbation, the SAM objective in Equation (] reduces to:
rnein L6+ 67), or equivalently, mein L(Vg). )

To optimize this objective efficiently, SAM employs a key approximation. It assumes Vg §* = 0, or
equivalently, Vy ¥, = I, thereby avoiding involving expensive higher-order derivatives. Formally,

VQL(Q + (5*) = VeL(ﬁk) = ngL(ﬁk) . Vg(ﬁk) ~ V@kL(ﬁk). 3)
——

Approximated as identity matrix I

'Data is collected at the first iteration of the 150th epoch in training ResNet-18 on CIFAR-100.
2For simplicity, we default all norms to £s.
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The resulting algorithm essentially applies the gradient at the final ascent point 9, to 6:

9t+1 =6, — U VﬁkL(ﬁk)~ “)

2.2 A NOVEL INTERPRETATION OF SAM’S UNDERLYING MECHANISM

Despite the key approximation in the classical SAM algorithm being justified as assuming Vg ¥y = 1,
it leads to an unusual gradient operation, applying the gradient at another point () to the current
parameters (). It is apparent that applying the gradient at an arbitrarily distant point to the current
parameters makes no sense, since it brings vanishingly little information about the local loss geometry
around the current parameters. This contradiction raises a fundamental question: How is ¥, special?
Why does applying this nonlocal gradient tend to outperform the local gradient in practice?

While a body of literature has sought to explain how SAM works after such approximation (Wen
et al.,|2023; Bartlett et al.,|2023; |/Andriushchenko et al.l 2023aib), they often attribute it to implicit
bias or regularization. None of them directly addresses our core inquiry: the underlying mechanism
that enables this specific nonlocal gradient operation to be effective, which is the focus of this work.

2.2.1 EMPIRICAL ANALYSIS THROUGH VISUALIZATIONS.

To unravel the underlying mechanism, we start by visualizing the gradients at the ascent point on the
local loss surface during SAM training. For a tractable analysis and a clear comparison between the
gradient at the ascent point and the gradient at the current parameters, we focus on the loss surface
over the hyperplane spanned by these two gradient vectors and begin with the single-step setting.

Better Approximation. As depicted in Figure [Ta] (and more visualizations in Appendix [A), the
gradient at the single-step ascent point, when applied to the current parameters, can better approximate
the direction from the current parameters toward the maximum within the local neighborhood than
the gradient at the current parameters (i.e., the local gradient). More specifically, we see in the figure
that g1@uJ points clearly closer to the high-loss region around the upper-right corner than gg, and the
loss value along g1@y is also literally higher. This phenomenon is consistently observed in practice.

Inaccuracy and Instability. Although ¢g;@9, provides a better approximation than gg, we can
clearly see in Figure[Ta| (and more in Appendix [A)) that the approximation by g1@%, can be rough
and inaccurate. In fact, according to the additional visualizations in Appendix |Al the approximation
quality by g1@1) is unstable during training, exhibiting large variations, which suggests that such an
approximation by ;@1 can not well adapt to the evolving local loss landscape.

Multi-Step Degradation. We further extend the visualization analysis to multi-step settings. To
approximate the complexity of high-dimensional landscapes, where multi-step ascent gradients
deviate from a 2D plane, we simulate the process on a suitably complex 2D test function. As shown
in Figure[Tb] the gradient at the multi-step ascent point, when applied to the current parameters, may
act as an unexpectedly poorer approximation (toward the maximum within the local neighborhood)
compared to the gradient at the single-step ascent point: g»@1J inferiorly indicates the nearby
high-loss region for ¥y than g; @1J,. Notably, g at its original position 1J5 indeed points toward the
nearby high-loss region; however, when it is applied to 9y, the resulting vector go@Qv points toward
a relatively flat region. This offers a visual explanation for why multi-step SAM does not work as
well as expected (Foret et al., 2020; |Andriushchenko & Flammarion, |[2022)). Additional simulation
results supporting this finding are included in Appendix [A]

2.2.2 THEORETICAL CONFIRMATION UNDER SECOND-ORDER APPROXIMATION.

In this section, we substantiate our core empirical observations with the following results:

Proposition 1. Let L : R™ — R be a twice continuously differentiable function that admits a
second-order approximation at o with:

» VL(8o) = go, which does not equal to 0;
* VL (190 + pug—glo = g1, which is not parallel to gy,
* Hessian H = V2L(Vy) positive definite.

Then there exists pg > 0 such that for all p,, > po:
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1) ‘ SAM better approximates the direction toward the maximum in the vicinity than SGD

. (&0 om ||§1> > L (ﬁ“ + o ||Z§||> ;

2) ‘ There exist better approximations than SAM ‘ there exists o € R such that

o g
L <19o + pm”g”) > L (190 + ngi|> . Ga =ag1 + (1 —a)go.

The first result in the proposition delivers that for any fixed distance that is sufficiently large, the
loss along the direction of the gradient at the single-step ascent point is higher than that along the
gradient at the current parameters, which confirms from the loss-value perspective that the gradient of
single-step SAM better approximates the direction toward the maximum within its local neighborhood
than that of SGD. Note that being sufficiently large is necessarily required since for a distance that is
too small, go is by definition the steepest ascent direction. A detailed proof is provided in Appendix [B]

The second result in the proposition implies that there exist better approximations than the gradient
of single-step SAM even in the two-dimensional hyperplane spanned by gq and ¢;, confirming our
observation that the approximation by the gradient at the single-step ascent point is inaccurate.

2.2.3 HEURISTIC EXPLANATION AND DEDUCTIVE ANALYSIS

To help establish a more intuitive understanding of why g,@QJ)( provides a better approximation for
the maximum within the local neighborhood, we further provide the following heuristic explanation:
Assuming the Hessian matrix of the loss function exhibits sufficiently slow variation within the local
neighborhood, i.e., the gradient field evolves smoothly. Then, if g is not parallel to gg, the directional
change from gy to g; reveals how the gradient field evolves in the surroundings. Then, considering
additional virtual ascent steps within the local region, e.g., 92 and go. The directional change from
g1 to go will tend to follow a similar trend as that from gq to g;. The same pattern persists for all
subsequent virtual ascent steps, i.e., the virtual ascent trajectory will tend to curve in a consistent
manner. Therefore, the high-loss region within the local neighborhood identified by the virtual ascent
trajectory will likely be located at a position that is further shifted from the one-step ascent point
1 along the direction g; but curves further in the evolving direction of the gradient. Its direction
relative to ¥y can thus be better captured by ¢1@Qvy when compared with gg. Nevertheless, such an
approximation is inherently inaccurate.

In multi-step settings, a crucial observation is that each adjacent pair of steps (¢, 7+ 1) recapitulates the
configuration of single-step SAM. Consequently, the conclusion from the single-step analysis holds
inductively for each step. That is, g;+1@%; better approximates the direction toward the maximum
than ¢;@d;, fori € [0,...,k — 1]. However, a critical discrepancy arises in multi-step SAM: it
directly applies gj, to ¢, but it remains unclear whether g Qv stands as a better approximation of
the direction from 1 toward the maximum than g; @ (or even gg). The core difference here is that
g1 is evaluated along the ray defined by gg and 1), whereas g;, may substantially deviate from the ray
defined by go and . Because the entire multi-step trajectory can curve significantly. This renders
the direct application of g to Yo potentially suboptimal or unjustified.

As a final remark, a simple deduction reveals the inherent inaccuracy of the SAM gradient approxima-
tion: Consider SAM operating on a fixed loss surface. Regardless of how accurately g, Qv currently
approximates the direction, as long as we continuously decrease {p; } (for all i € [0, k¥ — 1]) toward 0,
gx will reduce to go. Consequently, the approximation quality of g;@vg will get reduced arbitrarily
close to that of the original gradient go. This sensitivity to the choice of {p;} also implies that, for an
arbitrary {p;}, it is typically suboptimal (even for a certain fixed loss surface). > On the other hand,
we can also tune {p;} to make it the best possible approximation, which could have played a role
in the practical effectiveness of SAM. Nevertheless, given the evolving local loss landscape during
training, the approximation with any fixed {p;} can hardly remain relatively accurate throughout.

3 EXPLICIT SHARPNESS-AWARE MINIMIZATION

As shown in the above section, the approximation (of the direction from the current parameters toward
the maximum within the local neighborhood) by the SAM gradient is often inaccurate and lacks
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Algorithm 1 XSAM Table 1: Training time comparison. Values are
presented as hours/200 epochs, SAM / XSAM.

Input: Initial parameters 6y, number of iterations
T, number of ascent steps k£ > 1, perturba-
tion radius {p; }, neighborhood radius p,, o*

CIFAR-10  CIFAR-100  Tiny-ImageNet

. VGG-11 0.93/096  0.98/1.03 2.18/2.22
update frequency T, learning rate {7; } ResNet-18 235/239  240/243 4957498

Output: Final parameters O DenseNet-121 ~ 8.02/8.08  8.05/8.07 16.50/16.55

I: fort=0to1T — 1do

2 190 == at - BestAIPha

3 fori =0tok —1do > Single-step: k =1 : S

S: Yig1 = + Piﬁ

6: end for

7 gk = Vo, L(x)

_ Yx=7Y0 _ 9k

Ul rrerry ERC Bl PR | 1.00

9: 1 = arccos(vg - v1) 075
10: if t mod T, = 0 then g
11: af = argmaxa L(% + pm - v(a)) ¢ 050
12: else o

" « c 025

13: oy =of_q ®
o endil anw in(a; ) e
15: v(ap) = - sin(w; vo + ‘Sin@)) v1 0.0 05 30 15 2.0
16: Orr1 = 0p — e - v(a™) - [|gk|
17: end for Figure 2: Slow variation of a* during training.

adaptivity to the evolving local loss landscape. Moreover, the approximation quality may degrade as
the number of ascent steps increases. To provide an integrated solution that simultaneously addresses
all these limitations, we propose in this section eXplicit Sharpness-Aware Minimization (XSAM).

XSAM addresses the inaccuracy issue through explicitly probing the location of the maximum within
the local neighborhood (which thereby gives the direction) and enhances adaptivity to the evolving
local loss landscape by dynamically performing this probe during training.

Since probing the maximum within the entire high-dimensional neighborhood can be computationally
intractable. We therefore assume the maximum is located at the neighborhood boundary, while further
constraining the probe to a two-dimensional hyperplane spanned by the gradient at the final ascent
point (i.e., the point reached after k& > 1 ascent steps) and the vector from the current parameters to
that point. Formally, the two spanning vectors are defined as:
L Sl B 2 5)
[0k — Dol gl

This definition of the two-dimensional hyperplane is crucial. It ensures that the point with the highest
known loss (the one pointed to by g, standing at V%) lies within the hyperplane. It also simultaneously
addresses the inaccuracy issue of directly applying the gradient at the multi-step ascent point to the
current parameters, while fully leveraging its informational value: we use 9J; and gy, to define a
search space that encompasses all the information they contain, instead of directly applying g to 9.
This definition further offers a unified formulation for both single-step and multi-step settings. Note
that when k& = 1, vg and v correspond to the directions of gy and g;, respectively. Normalization is
applied to separate direction from magnitude, as we intend to manage them independently.

Vo

To probe within the two-dimensional hyperplane, we generate new directions as the spherical linear
interpolation between vy and v:

sin((1 — a)y) sin(a))
sin(@) " sin(@)
where 1) = arccos(vp - v1) and « is the interpolation factor. It has ||v(a)|| = 1 for any o, v(0) = vy,

v(1) = vy, and more generally, v(«) is a unit vector that rotates from v, by an angle of « - ¢ along
the direction toward v;. It can span all possible directions in the search space.

6)

(@) =

We then determine the direction, parametrized by a*, that maximizes the loss at a predefined distance:
o = arg max. L(do + pm - v(a)), Q)

ac|0,a
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where p,, is a hyperparameter specifying the radius of the true (in contrast to the perturbation radius)
sharpness-aware neighborhood. In each dynamic search, we uniformly sample « values from [0, a].
In practice, setting a to 2 or 4 and sampling 2040 samples is typically sufficient.

Once o is identified, the model parameters are updated using —v(a*) as the descent direction. The
gradient scale, by default, is set to ||gx|| to make it consistent with SAMﬂ Formally,

Or+1=0p —m - v(a”) - [|gll, (®)
by which v(a*) steers the parameters away from the estimated maximum within the neighborhood.

Faithfulness and Effectiveness. Since we use L(Jg + pp, - v()) as a proxyﬂ the method explicitly
identifies the maximum within a neighborhood of radius p,,. Although restricted to a hyperplane, this
approximation relies only on the boundary assumption. It thus more faithfully identifies the maximum
in the local neighborhood (in contrast to directly regarding J;, as the maximum or approximating its
direction by g5 @) and consequently more effectively realizes the sharpness-aware minimization.

The Cost of Explicit Estimation. The evaluation of each « requires a forward pass. Thus, the cost
of explicit estimation scales with the number of sampled « values times the cost of a forward pass. If
performed at every iteration, this would introduce substantial overhead. Fortunately, frequent updates
of o™ are unnecessary. Our experiments show that a* remains relatively stable and varies smoothly
during training (Figure [2). By default, we adopt an epoch-wise update strategy: o* is updated at
the first iteration of each epoch and then fixed for the remainder. Runtime comparison is shown in
Table[T] indicating the additional overhead is negligible. Further details are provided in Appendix [C}

4 RELATED WORK

SAM has been extended in several distinct directions. One line of work focuses on improving
the gradient ascent (i.e., perturbation) step, addressing issues such as parameter scale dependence
(ASAM (Kwon et al.,[2021)); Fisher SAM (Kim et al.,[2022)), approximation quality (RSAM (Liu
et al., [2022b); CR-SAM (Wu et al.| 2024))), and perturbation stability (VaSSO (Li & Giannakis,
2024); FSAM (Li et al.| 2024))). These approaches are largely complementary to ours; for instance,
Appendix [E.T|demonstrates that integrating XSAM with ASAM yields additional performance gains.

Another line of research targets the parameter update step. WSAM (Yue et al., 2023)) and [Zhao et al.
(2022a)) derive their update rules as a linear combination of gy and g; through weighted sharpness
regularization and gradient-norm penalization, respectively. While their superior performance over
SAM is readily explained by our interpretation, this very perspective reveals a critical weakness: their
dependence on a fixed combination weight, treated as a hyperparameter, is inherently suboptimal. In
contrast, XSAM explicitly estimates the optimal interpolation factor dynamically during training and
naturally extends this principle to multi-step settings. More fundamentally, our approach is derived
from a reformulation of the sharpness-aware objective itself, rather than introducing an auxiliary
regularization term, thereby offering a more general and principled solution.

Multi-step SAM variants are discussed in Section[5.3] while additional related work on topics such as
flatness and efficiency is deferred to Appendix [G|

5 EMPIRICAL RESULTS

In this section, we empirically compare SAM and its related variants with the proposed XSAM. Due
to space limitations, detailed experimental settings are deferred to Appendix D]

5.1 2D TEST FUNCTION

Following (Yue et al., 2023} |Kim et al., [2022), we first evaluate methods on a 2D function featuring a
sharp and a flat minimum within a certain distance, serving as an ideal testbed for sharpness-aware
minimization. We compare SGD, SAM, and XSAM across different initial points and hyperparame-
ters. XSAM consistently converges to the flat minima when p,,, is sufficiently large, whereas SAM

3 Alternative gradient scaling strategies are examined in AppendixE
*Our implementation uses only the current batch, consistent with the standard SAM procedure.
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Table 2: Test accuracies on classification tasks in the single-step setting.

Dataset CIFAR-10 CIFAR-100 Tiny-ImageNet
Model VGG-11 ResNet-18  DenseNet-121 VGG-11 ResNet-18  DenseNet-121 VGG-11 ResNet-18  DenseNet-121

SGD 93194011 96.1540.05 96344011 71464017 785541020 81.7840.06 47441033 57.024042 61931010
SAM 93834006 96.59+0.06 96971002 74011005 80931011 83.8ligo2  51.964026 62.8lig09 66.3140.09
XSAM  94.25.014 96741004 97154003 74214014 81241007 83.96.010 5258038 63.821023 66.81.(.0s

45.00 77777, 82.50 S 82.50 S
—/5GD / == sam | CIFAR-100, ResNet-18, k=1 == sam | CIFAR-100, ResNet-18, k=3
— sAM / == WSAM = WSAM
35.00 | — XSAM / 81.84{ (== XSAM 81.84{|mm xsam
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o 25.0 E) E»
o 80.52 + 80.52
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Figure 3: (a) Training trajectory comparisons on 2D test function. (b)-(c) Test accuracy comparisons
of ResNet-18 trained on CIFAR-100 in single-step and multi-step (k = 3) settings with varying p.

and SGD are more prone to get trapped in the sharp minima. Representative training trajectories for
each method are shown in Figure[3a] Both SAM and XSAM are evaluated in their single-step form.

5.2 EVALUATION UNDER THE SINGLE-STEP SETTING

In this section, we evaluate the methods under the single-step setting across a variety of classification
datasets and model architectures. To stress-test the methods, we first tune SAM’s learning rate, weight
decay, and p to achieve its optimal performance on each dataset. Other methods are then tuned using
the same hyperparameters whenever feasible. To isolate the effect of different gradient directions and
eliminate the influence of gradient scaling, all methods adopt SAM’s gradient scale, i.e., || gk ||.

We evaluate the methods across diverse neural network architectures and datasets to ensure broad
applicability. The experiments cover architectures ranging from VGG-11 (Simonyan & Zisserman,
and ResNet-18 to DenseNet-121 (Huang et al.,2017), encompassing classic
models of increasing capacity, as well as datasets including CIFAR-10, CIFAR-100, and Tiny-
ImageNet, which span increasing complexities. As shown in Table[2} SAM consistently outperforms
SGD, confirming the superiority of the gradient direction of g; compared to go. Meanwhile, XSAM
consistently outperforms SAM, highlighting the benefit of explicitly estimating the direction.

To provide a more thorough comparison, we evaluate performance under varying p on CIFAR-100
using ResNet-18. For this experiment, we further include a WSAM-like baseline, which implements
our method with a fixed but tunable «, to highlight the benefit of dynamically estimating o compared
to a static choice. The best fixed o for the WSAM is determined via grid search over [—1.0, 3.0]
with a step size of 0.25. As shown in Figure [3b} the WSAM improves over SAM, while XSAM
consistently achieves further and significant improvements over the WSAM.

Having established XSAM’s potent performance under varying p, we further assess XSAM’s general-
ity on larger-scale and more diverse tasks. We conduct experiments on ImageNet with ResNet-50,
a neural machine translation task with a Transformer (Vaswani et al.| 2017), and CIFAR-100 with
ViT-Ti (Dosovitskiy et al,[2020). The results in Table [3|show that XSAM consistently outperforms
SAM, demonstrating its broad applicability across diverse tasks and models.

5.3 EVALUATION UNDER THE MULTI-STEP SETTING

We proceed to evaluate and compare methods in a multi-step setting. We use a constant perturbation
magnitude p for all steps (i.e., p; = p for all ), therefore omitting the subscript 7 for clarity. All
experiments in this section are conducted on CIFAR-100 using a ResNet-18.
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Table 3: Comparison of SAM and XSAM on  Table 4: Multi-step results on CIFAR-100 with

larger-scale and more diverse tasks. ResNet-18. p = p*/k with p* for single-step.

ImageNet Transformer ViT-Ti Methods k=1 k=2 k=4

ResNet-50  IWSLT2014  CIFAR-100 SAM 80.93+£0.11 80.91+0.10 80.65+0.26

(Accuracy) (BLEU) (Accuracy) LSAM 80.93 +0.11 80.94 +£0.09 80.74 +0.18

LSAM+ 80.61+020 80.83+0.11 80.41+0.03

SAM  77.04 £0.09 35.3040.04 67.80 4 0.22 MSAM 8093 +0.11 81.18£0.06 81.01 £0.09

MSAM+ 80.83+0.05 80.86+0.34 80.77 & 0.08

XSAM  77.22 £0.07 35.63+0.12 68.32 +0.18 XSAM 8127 +0.07 8144 +0.09 81.37 +0.24

As the first experiment, we compare XSAM with multi-step SAM variants across different values
of k. The considered methods include: MSAM (Kim et al.l 2023)), which updates parameters with
Zle gi» and LSAM (Mordido et al.,[2024), which employs Zle 9i/llgi||. To ensure a thorough
comparison, we further introduce two augmented variants that incorporate the initial gradient go:
MSAM+ (ZLO g;) and LSAM+ (25:0 9i/lgi]]). Consistent with our previous protocol, we isolate
the effect of gradient direction by readjusting all gradients to have the norm ||gx||. The perturbation
radius is set to p = p*/k, where p* is the optimal value for single-step SAM, as suggested by |[Kim
et al.|(2023); all other hyperparameters remain unchanged from the single-step setup.

As shown in Table 4] the performance of SAM tends to decline as k increases. This phenomenon can
be attributed to the growing deviation of g, from the original ascent direction go@1J, as the single
ascent step is subdivided, leading to a poorer approximation of the direction toward the maximum in
the vicinity when applied to ¥g. In contrast, XSAM is not affected by this issue and typically benefits
from more steps, demonstrating its superior ability to leverage multi-step ascent.

LSAM and MSAM, which incorporate intermediate ascent gradients (g; for 0 < ¢ < k), generally
surpass SAM. The decline in SAM’s performance with large k£ suggests substantial deviation of gy
from the ideal direction, which makes earlier, less-deviated gradients g; valuable. Notably, LSAM+,
which essentially moves away directly from the identified maximum point by multi-step ascent, even
underperforms SAM, highlighting the value of an extra explicit estimation of the direction toward the
maximum. Nevertheless, XSAM consistently outperforms all these methods across all settings.

We further evaluate SAM and XSAM under a multi-step setting 82.00
(k = 3) with a varying perturbation radius p. A multi-step
extension of WSAM, which combines the gradients g and gg
with a fixed interpolation factor, is also compared. The results
in Figure 3d]indicate that while the WSAM variant outperforms
SAM, XSAM consistently outperforms WSAM.

80.56 A~ XSAM Accuracy

Figure ] shows the robustness of XSAM to the o* update fre- e
quencies. We observe no consistent pattern in performance 80.20°
when varying the update frequency of a*. Additional ablation

results are presented in Appendix [E.3] Appendix [E.4]further vi- Figure 4: XSAM robustness to the
sualizes the loss surface at convergence, illustrating that XSAM a* up dat.e frequency.

finds flatter minima than SAM.

CIFAR-100, ResNet-18, k=1

81.641

81.281

i

80.921

Test Accuracy

102 10° 104
Update period of best a

6 CONCLUSION

We have studied in this paper the underlying mechanism of SAM, providing a novel, intuitive explana-
tion of why it is valid and effective to apply the gradient at the ascent point to the current parameters.
We have shown that the SAM gradient in its single-step version can provably better approximate
the direction from the current parameters toward the maximum within the local neighborhood than
that of SGD; however, such an approximation can be inaccurate, lacks adaptivity to the evolving
local loss landscape during training, and may degrade as the number of ascent steps increases. We
have proposed XSAM that explicitly estimates the direction (from the current parameters) toward
the maximum within the local neighborhood dynamically during training, thereby more faithfully
and effectively moving the current parameters away from it. Extensive experiments across various
models, datasets, tasks, and settings have demonstrated the effectiveness of XSAM.
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REPRODUCIBILITY STATEMENT

We have provided the code as supplementary material, along with detailed instructions for reproducing
our experiments. The experimental settings and hyperparameters are described in the Appendix [D]
The datasets used in this paper are publicly available and can be downloaded online. Detailed proofs
of the proposed proposition are included in the Appendix [B]
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APPENDIX

A VISUALIZATION OF LOSS SURFACE DURING TRAINING
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Figure 5: Visualization of loss surface during training: VGG-11 trained on CIFAR-100.
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Figure 6: Visualization of loss surface during training: ResNet-18 trained on CIFAR-100.

55 Value

1@% 3 5o
020 000 020 020 000 020 020 000 0.20
X x X

(a) Epoch 50 (b) Epoch 100 (c) Epoch 150 (d) Epoch 200

Figure 7: Visualization of loss surface during training: ViT-Ti trained on CIFAR-100.
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Figure 8: Visualization of loss surface during training: ResNet-18 trained on CIFAR-10.
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Figure 9: Visualization of loss surface during training: DenseNet-121 trained on CIFAR-10.

In this section, we provide more visualizations of the loss surfaces of different datasets and models
during SAM training. The results are shown in Figure[5} [6] [7} 8] [0} and[I0} The gradient of the ascent

14
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(a) Visualization of single-step SAM (b) Simulation of multi-step SAM

Figure 10: (a) Visualization of the local loss surface of single-step SAM. The visualization procedure
follows the same steps as in Figure [Ta] Data is collected at the first iteration of the 100th epoch
in training ResNet-18 on CIFAR-100. We see that g,;@ (i.e., g1 applied to () points clearly
closer to the direction from 9 toward the maximum within the local neighborhood (which
is roughly from the origin to the upper-right corner) than go. The loss along ¢:@Q9J (i.e.,
LYo+ pm - ¢1/]|91]])) is higher than that along go (i.e., L(%0 + pm - 90/l 90l|)), for sufficiently large
Pm- (b) A simulation of multi-step SAM on a test function. The gradient at the multi-step ascent
point, when applied to the current parameters, may be an inferior approximation of the direction
toward the maximum.

point better approximates the direction toward the maximum within the neighborhood than the local
gradient. However, the approximation can often be inaccurate and unstable during training.

B PROOFS

Proposition 1. Let L : R™ — R be a twice continuously differentiable function that admits a
second-order approximation at Vo with:

» VL(99) = go, which does not equal to 0;
« VL (190 + pHg—g”> = g1, which is not parallel to go;

e Hessian H = V2L(Vy) positive definite.
Then there exists po > 0 such that for all p,, > pg:

1) ‘ SAM better approximates the direction toward the maximum in the vicinity than SGD

L (190 +pm—gl ) > L (190 +pm—go ) )
llgull llgoll

2) ‘ There exist better approximations than SAM ‘ there exists o € R such that

B.1 PROOF OF THE FIRST CONCLUSION

Proof.

1. Since L admits a second-order approximation at 6:

T 2 T
g1 9o 91 . Pm 91 Hg1 9
L9+ m———)::Lq? + pp 2L | P +o(p2),
(0 Prfigy) = L0+ o g o)

P 90 Hgo
2 gol?

L (190 + pmg—o) — L(00) + pm 0]l + +o(p2).

||90||
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2. For sufficiently large p,,, the p2, term dominates. Thus, we need to show:

gl Hgi _ g4 Hgo
llg1ll? llgoll?

3. Expand ¢; as the gradient of L (which admits a second-order approximation) at ¥ + ,OHZ—EH:

91 = g0+ pH-2 1 o(p).

g0l

4. Compute the numerator and denominator to the second order:

.
g Hg1 = (go +pH- 9 4 0(p)> H (90 +pH I 4 0(0))

||90|| ||90||
TH2 THB
— g9 Hgo +2p%0 =90 1 290 290 4 %),
HQOH ||90H
2 T T 172
0 H 0 H 0
mm2=\%+pﬂ‘7-+dm — Jlgol® + 2p20 290 4 IO T I0 (2,
llgoll llgoll llgoll

4. Ignoring higher-order terms o(p?), the inequality becomes:

T g0 H?g0 299 H?go
90 Hgo + 2075 + 7755 99 Hgo

TH TH2 2 -
||90H2+209T‘g0ﬁ0 +p2gt‘)|go”2go HQOH

5. Multiply both sides by the positive denominators (since H is positive definite):

T 172 T 173 T T 172
90 H g0 90 H” g0 90 Hgo 90 Hgo
(gJHgo+2p : + P )Ilgo||2>goTHgo (Ilgo||2+2p 02 4?2 )
llgoll llgoll llgoll llgoll

6. Cancel common terms and divide by p > 0:

. ) T T 72
g Hgo . 90 Hgogo H* g0
> ool 20 — S ) p (g g0 — ST ) o

7. Term verification:

e First term:
llgoll*g0 H?g0 — (99 Hgo)* > 0.

This follows from the strict Cauchy-Schwarz inequality for the inner product, since go and H gg
are not parallel by assumption.

* Second term:
lgoll*g0 H*g0 — g0 Hgogo H?go = 0.
LetH=5% ", A\;v;v, be the spectral decomposition with \; > 0. Expressing gy = S g

loolPo§ Hog0 — o Honad H2g0 = (3_0?) (oAb ) = (3o ne?) (3o A%a?).
The nonnegativity follows from Chebyshev’s sum inequality applied to the series {\;} and {\?}.
8. Conclusion:
Since both terms are non-negative and the first is strictly positive, the inequality holds.

For sufficiently large p,,, the p2, term dominates the Taylor expansion.
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That is, 3pg > 0 such that Vp,,, > po:

L (190 +pm91) > L (190 +pmg°> .
||91|| HQOH

Remark. If p,, is too small, the first-order term will dominate. The first-order term has

T
9o 91
=5 = [lgoll cos(¢) < llgoll,
g1l
T
where cos ¢ = m < 1 since go and g1 do not parallel. Thus, if p,, is too small, it will have

L (190 +pm91) <L <190 +pmg°> .
g1l llgoll

From another perspective, this must hold because gq indicates the steepest ascent direction at .

Remark. p,, needs to be large only to ensure that the difference in the second-order term outweighs
the first-order term, not intended to be too large to become impractical in real-world applications.

B.2 PROOF OF THE SECOND CONCLUSION

Proof.

1. Since L admits a second-order approximation at 6:

T 2 T
Jo 90 9o | Pm 9o HYo 2
L9+ pm) = L(Yo) + pm + = + o(pZ,),
( gl lgall ~ 2 [lgall®

T 2 T
g 9o 91 Pm 91 Hon 9
L19+m>:L19 + pm 4 fm +0(p2,).
(“ Pl ) = HO F T g T o)

2. Define the quadratic ratio:

flo) = ottt
llgall®
At boundary points:
_ QJHQO
lgoll* -

-
g1 Hg
)= ., f(0)
9112
3. The derivative is:
vy 2091 = 90) "Hga - [l9al1? — 2(94 Hga) (91 — 90) " ga
fla)= IAE |

Ata =1:
2

~ lgal®

4. Using g1 = go + pH 12y + o(p):

£(1) (91— 90) "Hg1 - |91 ] — (91 Hg1)(g1 — 90) " o] -

9o
g1 — 9o = pH ===+ o(p).
[

Substituting into f’(1):

2p
(1) = m [90TH291 lgul* = (ngHgl)(goTHgl)] + o(p).
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5. Further substituting g; = go + pH H‘Z—gu + o(p) in:

2
90 . 290 H?go

912 = oo + o 2 4 o) = o2 + 2p%0 0 4 290 o002y
H || ll90]| 90l
90 H?g1|g1|?
90 H3go 90 Hyo 90 H?go
( T H2go + p20 90 4 o 0)) (g0l + 2p%0 100 1 290 o0 2y
llgoll 90l 9ol
90 H?go - g9 Hgo
gUH%m%n+p(20 R ool Ho g
+ (goTHQQO 90 H?go L ZQOTHSQO 90 Hgo) +o(p?)
||90||2 H90H2
(g;—Hgl)(g(—)ngl)
THZ THS TH2
= (g0 Hgo + 202090 1 200 4 op2) ) (g9 Hgo + p%2=—2 4 0(p)
llgoll llg0l| llgoll
o Hao - g0 H?g g0 H3go - g9 Hg (90 H?go)?
_ T 2 0" Y0 0 2 0 0 0 0 0 0 2
= (90 Hao) *p(S 90l * 9ol ez ) T

6. Combining terms:

90 H2g1llg111> = (91 Hg1) (99 Hg1) = (90 Hgollgoll* — (90 Hgo)?)
90 Hygo - 99 H?go
+p (IlgollgoTH?’go -2 ! >
llg0]|
90 H3g0 - 99 Hgo — (99 H?g0)*
a Tk

) +o(p”).
7. Sign analysis:

s Zero-order term gy H2go||gol|? — (g9 Hgo)?: Strictly positive by Cauchy-Schwarz inequality since
H is positive definite and gg and H gy are not parallel.

* First-order term ||go |29 H>g0 — g4 Hgo - 90 H?go: Non-negative by Chebyshev’s sum inequality
for the sequences {)\;} and {\?} Where H =Y \vwv,.

* Second-order term gJ H3go - g0 Hgo — (99 H?go)*: Non-negative by Chebyshev’s sum inequality.

8. Conclusion:

The term is strictly positive, which means f’(1) > 0. So, there exists & > 1 such that f(«) > f(1).
For sufficiently large p,,,, where the second-order term dominates, this further implies:

L ongleg) > 1 (ko)

Remark. The p,, threshold exists only to ensure the second-order term dominates the first-order
term. In practice, moderate values suffice to observe XSAM’s advantage over SAM.

Remark. Practically, the loss surface may not admit a second-order approximation, and the maxi-

mum does not necessarily lie around o = 1. So we search a relatively large range of o, e.g., in [0, 2],
to make it more generally applicable. Additionally, we use spherical linear combination instead, for
a more uniform distribution of searched directions and better coverage.
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C COMPUTATIONAL OVERHEAD

The evaluation of each « will involve a forward pass of the neural network for calculating L(Jg +
v(a) - pm)- So, the cost of the dynamic search of a* roughly equals the number of samples of « times
the cost of a forward pass. Typically, we use 20 ~ 40 samples to search for o*. If this were required at
every iteration, it would incur a considerable computational burden. Fortunately, frequent updates of
«* are unnecessary. According to our experiments, o* is fairly stable and changes smoothly during
training, as depicted in Figure 2]and Figure [TT] In experiments, we by default adopt an epoch-wise
update strategy: «* is updated at the first iteration of each epoch and then kept fixed for the rest. Each
epoch typically contains over 400 iterations. SAM requires k + 1 forward and k£ + 1 backward passes
per iteration. So, the computational overhead of XSAM is roughly 40/(400 - 2 - (k + 1)) < 0.025,
i.e., the increased cost is typically no more than 2.5% when compared to SAM, which is negligible.
A straightforward comparison of runtimes is presented in Table[I} The runtime of XSAM is nearly
identical to that of SAM, indicating that the additional computational overhead is negligible.

D ADDITIONAL EXPERIMENTAL DETAILS FOR RESULTS IN SECTIONS

D.1 DETAILS ABOUT THE 2D TEST FUNCTION
The test function used is defined by:

L(6) = L{p,0) = — log (0.7¢~ Km0/ 1 g ge= Kol 127) ©)
where K (1, o) is the KL divergence between two univariate Gaussian distributions,

I

Ki(p,0) =log — + 207 5 (10)

o
o

with (p1,01) = (20,30) and (ug,02) = (—20,10). It features a sharp minimum at around

(—16.8,12.8) with a value of 0.28 and a flat minimum at around (19.8, 29.9) with a value of 0.36.

The visualized training trajectories in Figure 3a|share the same start point (—6.0, 10.0) and run for
400 steps. The learning rate is 5 (the gradient scale is small), momentum is 0.9, p is 6.0, and p,,, is
18.0. The points passed at each step were recorded to plot the trajectories.

D.2 EXPERIMENT SETUP

CIFAR-10, CIFAR-100, and Tint-ImageNet. We use RandomCrop and CutOut (DeVries, |[2017)
augmentations for CIFAR-10 and CIFAR-100 while using RandomResizedCrop and RandomFErasing
(Zhong et al., 2020) augmentations for Tiny-ImageNet since we believe improvements over strong
augmentations can be more valuable. We use a batch size of 125 for all the datasets, such that the
sample size of each dataset is divisible by the batch size, while near the typical choice of 128. We
adopt the typical choice, SGD with a momentum of 0.9, as the base optimizer, which carries the true
gradient descent to 6. All models are trained for 200 epochs, while the cosine annealing learning rate
schedule is adopted in all settings.

We run each experiment 5 times with different random seeds and calculate the mean and standard
deviation. Each experiment was conducted using a single NVIDIA Tesla V100 GPU.

ResNet50 on ImageNet. We evaluate our method on the larger dataset, ImageNet. Standard data
augmentation techniques are applied, including resizing, cropping, random horizontal flipping, and
normalization. We take SGD as base optimizer with a cosine learning rate decay.

IWSLT2014. We conduct experiments on the Neural Machine Translation (NMT) task, specifically
German-English translation on the IWSLT2014 dataset (Cettolo et al.|[2014), using the Transformer
architecture following the FAIRSEQ (Ott et al.| [2019). We use AdamW as the base optimizer due to
its better performance on the transformer.

ViT-Ti. We further use a lightweight Vision Transformer (ViT-Ti) model on CIFAR-100 to evaluate
our method. Note that following (Zhao et al.| 2022a), we do not use Cutout augmentation for
CIFAR-100 when trained by ViT-Ti. We use AdamW as the base optimizer.
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D.3 HYPERPARAMETER DETAILS

Table 5: Hyperparameter details for Results in Table

| CIFAR-10 | CIFAR-100 | Tiny-ImageNet
VGG-11 | SGD SAM WSAM XSAM | SGD SAM WSAM XSAM | SGD SAM WSAM XSAM
Epoch 200 200 200
Batch size 125 125 125
Initial learning rate 0.05 0.05 0.05
Momentum 0.9 0.9 0.9
Weight decay 1x1073 1x1073 1x1073
P - 0.15 0.15 0.15 - 0.15 0.15 0.15 - 0.20 0.20 0.20
Pm - - - 0.30 - - - 0.30 - - - 1.20
« 0.0 1.0 0.75 - 0.0 1.0 1.0 - 0.0 1.0 1.0 -
ResNet-18 ‘ SGD SAM WSAM XSAM ‘ SGD SAM WSAM XSAM ‘ SGD SAM WSAM XSAM
Epoch 200 200 200
Batch size 125 125 125
Initial learning rate 0.05 0.05 0.05
Momentum 0.9 0.9 0.9
Weight decay 1x1073 1x1073 1x1073
p - 0.15 0.15 0.15 - 0.15 0.15 0.15 - 0.20 0.20 0.20
Pm - - - 0.25 - - - 0.30 - - - 0.25
a 0.0 1.0 0.5 - 0.0 1.0 1.25 - 0.0 1.0 1.0 -
DenseNet-121 ‘ SGD SAM WSAM XSAM ‘ SGD SAM WSAM XSAM ‘ SGD SAM WSAM XSAM
Epoch 200 200 200
Batch size 125 125 125
Initial learning rate 0.05 0.05 0.05
Momentum 0.9 0.9 0.9
Weight decay 1x1073 1x1073 1x1073
p - 0.05 0.05 0.05 - 0.10 0.10 0.10 - 0.20 0.20 0.20
Pm - - - 0.10 - - - 0.20 - - - 0.20
a 0.00 1.0 1.25 - 0.0 1.0 0.75 - 0.0 1.0 0.75 -

Table 6: Hyperparameter details for Results in Figure [3b, Note that, in this experiment, o for WSAM
adopts the average value of the dynamic o* in the corresponding XSAM. We see from the results that
such WSAM already clearly outperforms SAM.

| p=0.10 | p=0.20 | p=0.30

| SAM WSAM XSAM | SAM WSAM XSAM | SAM WSAM XSAM
Epoch 200 200 200
Batch size 125 125 125
Initial learning rate 0.05 0.05 0.05
Momentum 0.9 0.9 0.9
Weight decay 1x1073 1x1073 1x1073
Pm - - 0.30 - - 0.30 - - 0.30
e’ 1.0 1.57 - 1.0 1.15 - 1.0 0.92 -

Table 7: Hyperparameter details for Results in Figure and Note that the basic hyperparameters
are provided here, while the other hyperparameters are clearly illustrated in the respective figures.

| Figure E] |  Figure

| SAM  XSAM | SAM XSAM

Epoch 200 200
Batch size 125 125
Initial learning rate 0.05 0.05
Momentum 0.9 0.9
Weight decay 1x1073 1x1073
p 0.15 0.15
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Table 8: Hyperparameter details for Results in Figure [3c| Note that, in this experiment, o for WSAM
adopts the average value of the dynamic a* in the corresponding XSAM. We see from the results that
such WSAM already clearly outperforms SAM.

| p=0.04 | p=0.08 | p=0.12

| SAM WSAM XSAM | SAM WSAM XSAM | SAM WSAM XSAM
Epoch 200 200 200
Batch size 125 125 125
Initial learning rate 0.05 0.05 0.05
Momentum 0.9 0.9 0.9
Weight decay 1x1073 1x1073 1x1073
Pm, - - 0.30 - - 0.25 - - 0.20
! 1.0 1.72 - 1.0 1.15 - 1.0 0.41 -

Table 9: Hyperparameters for SAM and XSAM on ImageNet/ResNet-50, Transformer/IWSLT2014,
and ViT-Ti/CIFAR-100 in Table 3}

‘ImageNet/ResNet—SO Transformer/IWSLT2014 | CIFAR-100/ViT-Ti

SAM XSAM SAM XSAM SAM XSAM

Epoch 90 300 300
Batch size / Max Token 512 4096 256
Initial learning rate 0.2 5x 1074 0.001
Momentum 0.9 (0.9,0.98) (0.9,0.999)
Weight decay 1x 1074 0.3 0.3
Label smooth 0.0 0.1 0.1

p 0.05 0.15 0.9

Pm - 0.3 - 0.45 - 0.9
« 1.0 - 1.0 - 1.0 -

E ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

E.1 EVALUATION OF XSAM COMBINED WITH OTHER SAM VARIANTS

In this section, we further evaluate the performance of SAM variants and their combinations with
XSAM. As discussed in SectionE], some SAM variants, such as ASAM, FSAM, and VaSSO, target
aspects of SAM that are largely orthogonal to those addressed by our method, making them potentially
compatible for integration. Given the large number of such orthogonal approaches, we focus here on
combining XSAM with ASAM and evaluating their performance on CIFAR-100 using ResNet-18.
The results in Table[T0]indicate that XSAM outperforms both SAM and ASAM individually, and
that integrating XSAM with ASAM leads to further improvement, demonstrating the effectiveness of
XSAM in combination with other SAM variants.

Table 10: Test accuracy of SAM variants and their combinations with XSAM.

SAM ASAM XSAM XSAM+ASAM
Test Accuracy 80.93 £0.11 81.11+£0.06 81.24+0.07 81.68 £ 0.11

E.2 ADDITIONAL EXPERIMENTS OF MULTI-STEP SAM

In this experiment, we focus on the performance of multi-step SAM, its variants, and XSAM under
varying p.

As we see in Table all of these variants, especially LSAM and MSAM+, which involve interme-
diate gradients rather than merely using the last gradient g, managed to get consistently superior
results than SAM. The performance of SAM constantly decreases as p gets large, which, from our
perspective, suggests the deviations of gy, from ¥ are too large. Under such circumstances, the earlier
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g; must have less deviation, so combining it with earlier gradients would help. Besides, we see no
clear trend for LSAM, LSAM+, MSAM, and MSAM+ as p gets large. Although MSAM+ can be
viewed as LSAM+ with weights of gradients changed from 1/]|g;|| to simply 1, the performance gap
between them is obvious. This demonstrates that the weighting of gradients at different steps affects
performance, and a more appropriate weighting scheme can lead to higher accuracy. Regardless,
XSAM consistently outperforms all these methods in all cases.

Table 11: Results on CIFAR-100 using ResNet-18 in multi-step (k = 3) setting.

Method p=0.04 p=0.08 p=0.12

SAM 80791041 807540027 79.724033
LSAM  81.005091 81201024 81.161004
LSAM+ 80.5640.200 80.77+0.04 80.214¢.97
MSAM  81.04:006 81.124017 80.934011
MSAM+ 80.7240.16 81.164005 81.16 1905
XSAM 81.23.006 81.36100s 81.29.0.06

E.3 INNER PROPERTIES OF XSAM

In this section, we present investigations into the internal properties of XSAM.

—— Best Alpha

— = Best Alpha — = Best Alpha
@ Start Point

@ Start Point
@ End Point =130

@ End Point

var

s §§§ A
SO SR
MY Y
BN 20 WY T2
g \s§§$§§s EoL ‘QN E
Wi i Ni: -
c oz \\\\: 160 & < 160 S g
: 15 20 o0 0s ;" 15 20
(a) CIFAR-10, ResNet-18 (b) CIFAR-100, ResNet-18 (c) Tiny-ImageNet, ResNet-18
= = Best Alpha - = Best Alpha == Best Alpha
@ Start Point @ Start Point @ Start Point
@ End Point @ End Point a*=b o @ End Point
r :
§
N
N
N
1.00 0 1.00 ~§ 0
c( 2.0 s ;0 15 20
(d) CIFAR-10, DenseNet-121 (e) CIFAR-100, DenseNet-121 (f) Tiny-ImageNet, DenseNet-121

Figure 11: More visualizations of the dynamic estimations of a.

We first visualize the dynamic evaluations of « in a training instance in Figure 2] and in Figure[TT]
where loss values are normalized for better visibility. As we can see, for every dynamic evaluation of
«, there is a clear optimal «v. With the epoch-wise evaluation of «, we still see that the change of o*
during training is very smooth, which supports our choice of less frequently updating o* for reducing
computational overhead. On the other hand, we do see that o™ is changing during training, which
validates our argument that a fixed o may not be optimum.
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We further study how p,, influences the final performance. As results presented in Figure[I2a] while
pm does impact performance to some extent, XSAM is able to outperform SAM in a fairly large
range of p,,, from p to 3p. So, we consider that XSAM is not sensitive to p,,. The counterpart, as to
how p influences when fixing the p,,, is actually demonstrated in Figure [3b] where we have used a
fixed p,,, = 0.3 by intention. It seems fairly robust to p.

In our experiments, we also see that o has a decreasing tendency during training. In fact, the angle
1) between vy and v; has an increasing tendency during training. We visualize such changes along
with the offset angle o* - ¢ from vy to the direction of the local maximum in Figure [I2b] We see that
the offset angle o* - 1) tends to increase. This may be because it converges to a lower position in a
minima region as the learning rate decreases. Nevertheless, XSAM is able to help it away from the
maximum within the local neighborhood in any case, as evident by the test accuracy results.
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Figure 12: (a) Robustness analysis of XSAM with respect to p,,,. (b)Training statistics of XSAM. (c¢)
The norms of g; during training.

We show in Figure an instance of norm change of g; during training in multi-step settings.

E.4 THE FLATNESS/SHARPNESS OF RESULTING MODELS

Hessian spectrum. To demonstrate that XSAM converges to flatter minima (more precisely, success-
fully shifts to a region where the maximum within the local neighborhood is lower), we calculate the
Hessian eigenvalues of ResNet-18 trained for 200 epochs on CIFAR-10 with SGD, SAM, and XSAM.
Following (Foret et al.,[2020; Jastrzebski et al., 2020; Mi et al.| [2022)), we adopt two metrics: the
largest eigenvalue (i.e., A1) and the ratio of the largest eigenvalue to the fifth largest one (i.e., A1 /A5).
To avoid the expensive computation cost of exact Hessian spectrum calculation, we approximate
eigenvalues using the Lanczos algorithm (Ghorbani et al., 2019). The results, shown in Table [12]
indicate that XSAM yields the smallest hessian spectrum, suggesting that it converges to flatter
minima than SAM and SGD.

Table 12: Hessian spectrum of ResNet-18 using SGD, SAM, and XSAM on CIFAR-10.

SGD SAM XSAM

A1 78.79 36.15 33.92
A1/As 226 1.89 1.59

Visualization of loss landscape. We visualize the loss landscape of ResNet-18 trained on CIFAR-10
with SGD, SAM, and XSAM to further compare the flatness of the minimum. Using the visualization
procedure in (Li et al.| 2018)), we randomly choose orthogonal normalization directions (i.e., X axis
and Y axis) and then sample 50 x 50 points in the range of [-1,1] from these two directions. As
shown in Figure[I3] XSAM has a flatter loss landscape than SAM and SGD.

Average sharpness. We further visualize the average sharpness of the loss landscape at the conver-
gence point. Specifically, following (Foret et al.| [2020), we define the sharpness as the difference
between the loss of the perturbation point and the loss of the convergence point. The average sharp-
ness is then computed as the mean sharpness over multiple perturbations under the same perturbation
radius. Then, we sample multiple random directions (e.g., 10, 50, 250, 1250) and continue this
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Figure 13: Loss landscape visualizations of ResNet-18 on CIFAR-10 with SGD, SAM, and XSAM.

process until the average sharpness loss curve stabilizes, which provides a more representative charac-
terization of the loss behavior around the convergence point. Based on our experiments, sampling 250
random directions is sufficient to achieve stable results. In addition, for the perturbation method, we
adopt filter-wise and element-wise perturbation following (Li et al., 2018)) to ensure a fair comparison
between different optimizers (i.e., SGD, SAM, and XSAM). As shown in FigurelEI, SAM exhibits
smaller average sharpness compared to SGD, while XSAM further reduces the average sharpness.
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Figure 14: Visualization of the average sharpness of the loss landscape at the convergence point.

F STRATEGIES FOR GRADIENT SCALE

Our default gradient scale strategy is using ||gx|| to match the scale with SAM. In this section, we
empirically study a set of different ways for setting the gradient scale, which includes: typical choices
like ||gx || and ||go||, simple extensions like Zf:o lg:ll/(k+1) and max”_ ||g;||. Besides, we further
explored two slope-based strategies:
L(Vx) = L(¥o)
[0k = Joll
L9 “pm) — LV
gope, - LA +(0) ) ~ L)
Pm
which is the averaged slope from ¥ to ¥4 and from 7 to the approximated maximum, respectively.

slope;, :=

Note that since our direction is away from the approximated maximum, it can be an interesting
combination when using the slope from 1, to the approximated maximum as the gradient scale,
which shares the same intrinsic core as stochastic gradient descent. However, it would require an
extra forward pass to evaluate L(¢g + v(@) - pp)-

The results are shown in Figure[T3] As we can see, the gradient scale seems to be something that is
even more mysterious than the gradient direction. It is hard to draw a direct conclusion on which
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Figure 15: Comparison of various gradient scale strategies.

might be the best choice among such a reasonably large group. Nevertheless, some choices appear to
be good in most circumstances, which may include ||go||, ||gx||, and slope,,,. These primary results
are included for completeness. We would leave further investigation into this as future work.

G ADDITIONAL RELATED WORK

The connection between flatness/sharpness and generalization was realized early on (Hochreiter &
Schmidhuber, ) and further explored in subsequent works (Hochreiter & Schmidhuber, [1997;
McAllester, [1999; Neyshabur et al} 2017} Jiang et al.} 2019), motivating efforts toward finding flatter
solutions. While SGD is believed to favor flat minima implicitly (Keskar et al.,[2016;[Ma & Ying,
, more explicit methods are preferred and developed. Typical instances include Entropy-SGD
(Chaudhari et al.|, 2017) that employs entropy regularization, SWA (Izmailov et al.,[2018)) that seeks
flatness by averaging model parameters, and SAM that optimizes sharpness.

There are some variants that focus on improving the performance of multi-step SAM. Vanilla multi-

step SAM (Foret et al.,|2020) updates the model using the gradient at the last step. MSAM (Kim et al.|

suggests averaging all gradients except the first gradient at the original location. Lookbehind-
SAM (LSAM) (Mordido et al., 2024) suggests another way that utilizes all gradients but excludes the
first. In comparison, in multi-step settings, our method leverages all gradients ({g; } f;ol in vg, and g
in v1) in a dynamic interpolation manner and explicitly approximates the direction of the maximum.

There are also some works that seek to reduce the computational overhead of SAM. For instance,
ESAM (Du et al}, 2021)) achieves this via stochastic weight perturbation and sharpness-sensitive data
selection. SSAM (M1 et al .| accelerates SAM with a sparse perturbation. LookSAM
[2022a) reduces computational overhead by computing SAM’s gradient only periodically and relying
on an approximate gradient for most of the training time. RST (Zhao et al.,[2022b) and AE-SAM

(Jiang et al.,|2023) suggest alternating between SGD and SAM in randomized and adaptive ways,
respectively.

Another important line of research on SAM focuses on understanding its underlying mechanism. For
instance, finds that the gradient of SAM aligns with the top eigenvector of the
Hessian in the late phase of training. This phenomenon is also concurrently found by
2023). (Andriushchenko et al., 2023a)) argues that SAM leads to low-rank features. In addition, an
interesting fact observed by (Andriushchenko & Flammarion, [2022) is that training with SAM only
in the late phase of training can achieve an improvement similar to that of full training with SAM.
A recent work further analyzes and theoretically shows the learning dynamics
of applying SAM late in training. (Tahmasebi et al} [2024) introduces a universal class of sharpness
measures, in which SAM, known for its bias toward minimizing the maximum eigenvalue of the
Hessian matrix, can be regarded as a special case. Our work is orthogonal to these works, providing a
new perspective for understanding a fundamental question of why applying the gradient from the
ascent point to the current parameters is valid, while at the same time, proposing XSAM as a better
alternative.
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H USE OF LARGE LANGUAGE MODELS

We used a large language model (LLM) only for language polishing (grammar, wording, and clarity)
of drafts written by the authors. The model did not generate research ideas, methods, analyses, results,
or figures, and it did not write any sections from scratch.
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