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Abstract

This research presents a three-step causal inference framework that integrates1

correlation analysis, machine learning-based causality discovery, and LLM-driven2

interpretations to identify socioeconomic factors influencing carbon emissions3

and contributing to climate change. The approach begins with identifying cor-4

relations, progresses to causal analysis, and enhances decision making through5

LLM-generated inquiries about the context of climate change. The proposed frame-6

work offers adaptable solutions that support data-driven policy-making and strategic7

decision-making in climate-related contexts, uncovering causal relationships within8

the climate change domain.9

1 Introduction10

Why do we seek to precisely understand causality? In the realm of large-scale, high-dimensional11

datasets, is mere knowledge of correlations sufficient? Does our pursuit of causality stem from12

mere curiosity, or does it offer substantial practical benefits? Could our perceived understanding of13

causality, much like Plato’s allegory of the shadows in the cave, actually obscure the true nature of14

reality? As Ludwig Wittgenstein notes in his Philosophical Investigations, "The precise and explicit15

rules governing the logical structure of propositions often serve as a concealed backdrop within our16

medium of understanding." He further discusses the "crystalline purity of logic," highlighting its17

indispensable role not merely as an outcome of inquiry, but as a foundational necessity (Wittgenstein,18

1967, 4f,c);(Sluga and Stern, 1996, 49-50). Expanding on this framework of logic structure in19

understanding, Judea Pearl fosters the concept of "understanding" as a means to the sensation of20

control, specifically through causal inference which he associates with decision-making in intelligent21

systems Pearl (2014). He posits that a robust understanding of causality is crucial for effective22

decision-making in intelligent systems, emphasizing that such understanding goes beyond mere data23

correlation and involves the ability to manipulate and control outcomes1.24

These perspectives are particularly relevant to the development of Large Language Models (LLMs),25

where design elements like prompts are tailored to reflect human-machine interaction. The architec-26

ture of LLMs not only displays the capacity of machines to emulate complex human logical processes27

but also enables further exploration of causal relationships (Jin et al., 2024; Kiciman et al., 2024;28

Ceraolo et al., 2024). LLMs’ prompted and related design highlights the potential of machines to29

emulate human logical processes and probe into causal relationships of deep understanding.30

However, recent studies have indicated that LLMs are "weak causal parrots", merely reciting the31

causal knowledge from the training data(Zečević et al., 2023), parroting unintentional remarks. The32

primary challenges in causality research arise from the lack of a clear definition of causal statements33

1The Science of Cause and Effect: From Deep Learning to Deep Understanding, https://simons.
berkeley.edu/
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and the absence of adequate mathematical tools to address these complex questions (Pearl, 2000).34

This research confronts these challenges by comparing and integrating three approaches: correlation35

analysis, machine learning-based causality discovery, and LLM-inquiry-driven interpretations, within36

a human-machine interaction framework focused on the social context of climate change. The37

progression emphasizes not only the identification of correlations and causal factors but also leverages38

earlier stages and prior knowledge as benchmarks for advanced logical inquiries and interpretations.39

The study aims to delineate the effectiveness of above three approaches within the social science40

context of climate change, striving to deepen our understanding of causality through a comparative41

framework. By exploring and progressing through three stages, this research seeks to uncover insights42

that could lead to more informed decisions and strategies for a deeper understanding of social factors43

that influence climate change. In summary, the study’s contributions are as follows:44

• Comparative Methodological Framework: The research uses a three-step comparative45

framework that combines correlation analysis, machine learning-based causality discovery,46

and LLM-prompt-driven inquiries (See Appendix Figure 1) . This approach improves the47

study of causality and provides a structured way to assess different methods, offering a48

framework that could be replicated in future research in a similar climate change context.49

• Application to Climate Change Social Contexts: The study focuses on the social science50

aspects of climate change by exploring correlations and causations of social influences on51

climate change. The research continues to explore how LLMs can understand and help ad-52

dress these critical social issues, providing valuable insights that could shape environmental53

policies and strategies, thus improving decision making.54

2 Preliminaries: Causal Relations55

It is already known that correlation does not imply causation(Ksir and Hart, 2016; Rohrer, 2018).56

However, causation is a subset of correlation because a causal relationship inherently implies corre-57

lation (but with a cause-and-effect dynamic). Literarily and technically, when exploring causation,58

correlation represents a closer relationship between two variables than non-relation. Causation59

cannot exist without correlation, even though correlation alone is not sufficient to establish causation.60

Following this logical sequence, this research begins by understanding the desired outcome and61

then determining the necessary steps to achieve it. The study assumes that correlation analysis does62

not need to be excluded; instead, it could serve as a foundation to narrow down the selection of63

relationships.64

In complex real-world scenarios, identifying the associations between events and variables helps65

predict outcomes, make informed decisions, and understand the underlying mechanisms of systems66

(Pearl, 2000). Causal discovery involves identifying the dependent variables of an event of interest67

and understanding the physical influence relationships between events or variables. Causal structures68

imply both statistical (conditional) independence and independences to other (non-statistical) infor-69

mation measures (Peters et al., 2017), which is a common task in causal inference. In the domain of70

causal discovery, machine learning algorithms can primarily be divided into two main categories:71

• Constraint-based Algorithms: These algorithms rely on tests of statistical independence72

within the data to uncover potential causal relationships between variables. They attempt to73

construct causal graphs by analyzing the conditional independencies among variables. A74

classic method is the PC algorithm (Peter-Clark Algorithm), which iteratively examines and75

eliminates edges that do not satisfy conditional independencies, thereby inferring the causal76

structure between variables Spirtes et al. (2001).77

• Score-based Algorithms: This type of algorithm identifies the best causal graph by78

assigning scores to different causal models. The process typically involves enumerating and79

scoring various possible causal graphs, selecting the model with the highest score. Scoring80

criteria may be based on how well the data fits the model, such as the Bayesian Information81

Criterion (BIC) or the Minimum Description Length (MDL). The core idea behind these82

algorithms is that the causal model which best explains the observed data is considered83

optimal (Liu et al., 2012; Nogueira et al., 2022).84

Constraint-based algorithms are generally more efficient as they rely on statistical tests to quickly85

narrow down the search space, but they may be sensitive to noise in the data and sample size. On the86
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other hand, score-based algorithms, though theoretically capable of exploring a broader model space87

to find the optimal model, can be computationally expensive in practice due to the need to evaluate a88

large number of models. Overall, the search over causal graphs between variables is challenged by89

two distinct factors: the sheer volume of causal graphs, which increases super-exponentially with the90

addition of nodes, and the constraint of maintaining acyclicity(Cheng et al., 2024).91

To address this limitation, Rolland et al. (Rolland et al., 2022) design a novel order-based methods92

to recover causal graphs from the score of the data distribution in non-linear additive noise models93

and propose a new efficient method for approximating the score’s Jacobian, enabling to recover the94

causal graph. Specifically, they first sequentially identify leaves of the causal graph by analyzing95

its entailed observational score, and then remove the identified leaf variables. As a result, one can96

obtain a complete topological order with a time complexity linear in the number of nodes. Since the97

node in the ordering can be a parent only of the nodes appearing after it in the same ordering, once a98

topological order is fixed, the acyclicity constraint is naturally enforced, making the pruning step99

easier to solve.100

3 Correlation Analysis: Narrowing the Variable Pool101

The correlation step involves correlation analysis, using a heatmap and the Anderson-Darling k-102

sample test (anderson_ksamp) with a threshold value of 0.1 (i.e. 10%) to identify the influence of103

each variable on the target variable, carbon emissions. Variables with matching distributions between104

the training and testing data are retained. The most relevant variables are then carried forward to the105

causation analysis.106

• Correlation Matrix Calculation: First, a correlation matrix is calculated for the dataset,107

quantifying the linear relationships between each pair of variables. The matrix visually108

distinguishes positive from negative correlations, with coefficients ranging from "-1" strong109

negative correlation to "+1" strong positive correlation. The full lists of correlation map are110

presented in Appendix Figure 2.111

• Heatmap Visualization: Second, the heatmap incorporates hierarchical clustering, which112

groups variables with similar correlation patterns together. This step enhances the inter-113

pretability of the heatmap by organizing it into blocks of highly correlated variables, making114

it easier to spot clusters of factors that behave similarly.115

The resulting correlation map provides a visual summary of how different factors related116

to carbon emissions interact with each other. It reveals key drivers of carbon emissions117

and potential areas for further investigation or intervention, identifying the relationships118

within complex datasets, and facilitating deeper insights into the underlying dynamics of119

carbon emissions. Appendix Figure 3 shows the sorted correlations of features with the120

target variable, carbon emissions.121

4 Causal Effects Estimation122

The method employed in this research is adapted from existing approaches to causal modeling,123

specifically following the framework outlined by Rolland et al. (2022) (Rolland et al., 2022). In124

this approach, each variable is modeled as a function of its direct causal parents in the causal graph,125

along with an additive noise term. The data distribution is defined by these causal relationships, and126

score functions are used to identify leaf nodes within the graph. Leaf nodes are detected based on the127

variance of partial derivatives of the score function, which helps distinguish parent-child relationships128

among variables. The nodes in the graph are arranged in order by finding and removing leaf nodes129

one by one. To do this, the experiment uses the Stein gradient estimator with ridge RBF kernel130

regression to estimate the score function.131

4.1 Causal Graph Construction and Score Matching132

Take the dataset {V 2000, Y 2005} as an illustration example, which treats as 16 study variables133

X1...16 = {V 2000, Y 2005}. The study assumes the data is generated using the following model:134

Xi = fi(pai(X)) + ϵi, i ∈ {1, 2, . . . , 16},
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where pai(X) selects the coordinates of X that are direct causal variables of node i in the causal135

graph, and ϵi is an additive noise term, which might include measurement errors. The associated136

probability distributions are given by:137

p(x) =

d∏
i=1

p(xi | pai(x))

138

log p(x) =

d∑
i=1

log p(xi | pai(x))

The score function is defined as:139

s(x) ≡ ∇ log p(x)

The necessary and sufficient conditions for the j-th variable to be a leaf node are given by:140

∀x,
(
∂sj(x)

∂xj

)
= c, where c is a constant value independent of x,

141

VarX

(
∂sj(X)

∂xj

)
= 0

If the j-th variable is a leaf node, and the i-th variable is its parent node, then:142

VarX

(
∂sj(X)

∂xi

)
̸= 0

Based on this finding provided by Rolland et al., 2022, the experiment achieves topological ordering143

by sequentially identifying the leaf nodes and removing them one by one. The Jacobian of the score144

can be approximated by Stein gradient estimator with ridge RBF kernel regression (Rolland et al.,145

2022).146

Once a topological order is estimated, the causal graph becomes constrained to be a sub-graph of a147

certain fully connected graph. However, it is necessary to prune this fully connected graph to remove148

spurious edges. This study uses the CAM pruning process to complete the step.149

4.2 CAM Pruning150

The above approaches control confounding variables by retaining key confounders during variable151

selection, removing irrelevant variables through correlation analysis. This section refining the causal152

graph via CAM pruning to eliminate spurious relationships while preserving causal integrity.153

After arranging the nodes, the graph is refined by using the CAM pruning process, which removes154

unnecessary connections to reveal the actual causal structure, aligning with methods discussed by155

Rolland et al. 2022(Rolland et al., 2022). Detailed outputs are provided in the Appendix and include156

the following metrics 2:157

• Structural similarity: Evaluated using SID and SHD.158

• Predictive accuracy: Measured through precision, recall, and F1 score.159

• Overall deviation: Assessed using L2 distance.160

The graph (See Appendix Figure 4) highlights a structured approach to understanding how specific161

social factors influence carbon emissions and climate change. By focusing on the most influential vari-162

ables—access to clean fuels in rural and urban areas and managing urban population growth—strategic163

decisions and policies can be more effectively targeted.164

2It is noted that "Variable Selection" is to ensure that important confounders are included before pruning
begins, as removing key variables early can lead to residual confounding or spurious relationships. The formal
analysis of correlation removes unrelated variables—those that have no meaningful relationship with the target
variable or the other variables in the system. These variables are unlikely to act as confounders since they do not
introduce residual confounding or spurious relationships when removed.

For validation, after CAM pruning, the causal structure is validated using domain expertise to ensure the
robustness of the inferred causal graph. CAM pruning is not a substitute for confounding control methods. It is
suggested to be used in combination with other techniques to ensure the validity of causal inferences. This is
also the rationale for incorporating LLMs with expertise knowledge for further exploration.
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5 Validation: From Correlations to Causation via LLM Inquiries165

In the specific context of climate change, do LLMs offer better causal inference? To address the166

request involving the exploration of causality factors for carbon emissions using the World Bank167

variables ("EG.CFT.ACCS.RU.ZS", "EG.CFT.ACCS.UR.ZS", "SP.URB.TOTL.IN.ZS") as the piror168

benchmark, the study categorizes questions into five main types for LLMs prompts (See Taxonomy169

of Causality).170

This study follows (Ceraolo et al., 2024)’s CausalQuest database focusing more on the economy and171

climate change background. The study follows (Ceraolo et al., 2024)’s CausalQuest database, but172

focuses more on the economic and climate change context. Similarly, the study adopts Pearl’s Causal173

Hierarchy (PCH) framework ((Pearl and Mackenzie, 2018; Bareinboim et al., 2022)), and defines a174

causal question as one that meets the following criteria: a question is considered causal if it involves,175

or if its solution process includes, any inquiry into the effects given a specific cause, and the causes176

given a specific effect, or the causal relationship between the given variables.177

5.1 Taxonomy of Causality178

The causal taxonomy-"Direct, Preventative, Facilitative, Resultative, and Influential"-describes179

various types of causal relationships that verbs can imply. This approach controls for confounding180

variables during LLM inquiries by leveraging a structured causal taxonomy to identify, classify, and181

account for different types of causal relationships(Liang et al., 2023; Cui et al., 2024).182

The taxonomy classifies causal relationships into "Direct, Preventative, Facilitative, Resultative, and183

Influential" categories, ensuring that the LLMs recognize the nature of relationships between variables.184

By explicitly categorizing verbs that describe causal interactions, it helps avoid misinterpretation185

of ambiguous or indirect relationships, which could otherwise lead to confounding. In the case of186

carbon emissions: A variable like access to clean technology might be classified as Facilitative (like187

"facilitates a reduction in emissions") rather than Direct (like "directly reduces emissions"), ensuring188

proper distinction. Urbanization, classified as Influential (like "influences emissions through energy189

use patterns"), ensures its role as a broader contextual factor is not conflated with a direct cause.190

"The direct" refers to actions or driven forces that have a straightforward and immediate impact on an191

outcome. In this condition, the cause directly influences the effect without intermediary steps. For192

example, "increase" or "trigger" are direct causal verbs because they indicate a direct cause-effect193

relationship(Girju and Moldovan, 2002; Kozareva, 2012; Riaz and Girju, 2014; Nazaruka, 2020).194

Example: "Urban access to clean fuels directly reduces carbon emissions."195

"The preventative" involves actions or causes that prevent or reduce the likelihood of a particular196

outcome. These verbs imply that the cause acts as a barrier to a negative effect. Common verbs include197

"prevent", "reduce" and "inhibit"(Allen, 2005). Example: "Improved access to clean technologies198

prevents an increase in carbon emissions."199

"The facilitative" includes causes that make it easier or more likely for an effect to occur but do not200

directly cause the effect themselves. Facilitative causes provide support or create conditions that201

enable the outcome. Verbs like "enable", "allow", or "support" are examples(Harvey et al., 2002;202

Wolff, 2003). Example: "Access to urban clean fuels facilitates a reduction in carbon emissions."203

"The resultative" describes causes that lead to specific outcomes, often emphasizing the result or204

consequence of an action. These verbs focus on the outcome rather than the action itself. Verbs like205

"lead to", "result in" or "cause" fit into this category(Boas, 2000; Pena Cervel, 2015). Example: "The206

urban population increase results in higher carbon emissions."207

"The influential" includes actions or factors that exert an influence on the effect but might not208

completely determine it. These causes often affect the likelihood or intensity of the effect indirectly.209

Verbs like "influence", "impact" or "affect" are often used(Yee, 1996; Slovic et al., 2007, 2013).210

Example: "Urbanization influences carbon emissions through changes in energy use patterns."211

6 Results of Causal Relationship and Interpretations212

Based on data of carbon emissions and social impacts (266 countries/regions, 70 socio-economic213

indicators, 20 years), the analysis identifies that Access to Clean Fuels and Technologies for Cooking214
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(percent of Rural Population)("EG.CFT.ACCS.RU.ZS"), Access to Clean Fuels and Technologies for215

Cooking (percent of Urban Population)("EG.CFT.ACCS.UR.ZS"), and Urban Population (percent of216

Total Population)("SP.URB.TOTL.IN.ZS") have strong causal effects on carbon emissions per capita.217

These findings are consistent with previous research, which has verified the significant influence of218

these variables in the context of climate change and energy transitions219

Access to clean fuels and technologies for cooking, rural("EG.CFT.ACCS.RU.ZS"): This variable220

is highly influential in the context of climate change as it directly affects carbon emissions through221

the use of clean versus polluting energy sources in rural areas. A higher score indicates that rural222

access to clean fuels significantly reduces carbon emissions, highlighting its critical role in mitigating223

climate change impacts in less urbanized social context (Nathaniel and Adeleye, 2021; Verma et al.,224

2021).225

Access to clean fuels and technologies for cooking, urban("EG.CFT.ACCS.UR.ZS"): Similar to the226

rural access variable, this factor measures the availability of clean cooking technologies in urban areas.227

Urban access is crucial since densely populated regions can contribute substantially to emissions.228

Improving clean energy access in urban areas can lead to a significant reduction in overall emissions,229

making it a key target for policy interventions (Naeem et al., 2023).230

Urban population as a percentage of total population("SP.URB.TOTL.IN.ZS"): This variable captures231

the influence of urbanization on carbon emissions. As urban populations grow, the demand for232

energy, transportation, and industrial activity increases, contributing to higher emissions(Hankey233

and Marshall, 2010; Madlener and Sunak, 2011; Li and Lin, 2015). The score associated with this234

variable indicates that urbanization plays a major role in driving climate change, necessitating targeted235

strategies to manage urban growth sustainably.236

7 Conclusion: Evaluations and Integrations237

The three-step causal inference framework for data-driven decision-making in climate change context238

integrates correlation analysis, machine Learning, and LLM-interpretations. In this framework,239

correlation analysis helps narrow down and identify connections, causality provides a stricter and240

more precise understanding of these relationships, and LLMs interpret the results within specific241

scenarios.242

Correlation provides a preliminary view of the relationships by highlighting mutual associations243

among variables and measures that indicate the extent to which two or more variables paired with each244

other. It narrows the scope of investigation by identifying potential connections between variables,245

but they do not provide insights into the nature of these connections.246

Causality involves understanding the directional influence from one variable to another. In this re-247

search, causality goes a step beyond correlation by aiming to establish a cause-and-effect relationship248

between variables. Exploring and understanding causality is more stringent and complex because it249

requires not just observing that two variables occur together but also demonstrating that one variable250

produces an effect on another.251

LLMs could not handle causality explicitly and could not differentiate between mere correlations and252

true causal relationships ((Zečević et al., 2023; Liu et al., 2024). However, in interpreting results,253

LLMs can offer insights that are conditioned on their training data and the scenarios they are designed254

to understand. This means that while LLMs can be adept at identifying patterns and generating255

responses based on correlations, their ability to correctly interpret causal relationships could be256

improved by leveraging a structured causal taxonomy.257
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A Three-step Framework for Causal Analysis389

This research proposes a three-step framework for causal inference that progresses from understanding390

correlations to establishing causality, and finally to interpreting these relationships via LLMs. This391

approach leverages the different methods and exploits their distinctive advances to align with the392

understanding of climate change issues. This structured approach helps to systematically explore393

and analyze the causality factors associated with carbon emissions, translates data patterns into394

LLM-inquiry-driven interpretations, which aids in gaining deeper insights and more interpretable395

policymaking.396

Figure 1: Three-steps Framework for Causal Analysis

B Setup and Main Results397

• Data Availability The data and code that support the findings of this study are available at398

https://github.com/shanshanfy/climate-change399

• Developer Environment Availability The author’s environment ‘ClimateChangePack-400

ages.yaml’ file for Conda open-source package management system is provided through:401
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https://github.com/shanshanfy/climate-change. It allows for isolated environments to man-402

age packages without interference. The file contains the configuration of the project’s Python403

environment, including channels, dependencies, and library versions.404

B.1 Data Processing405

The research identifies the socioeconomic factors that influence and contribute to carbon emissions and406

climate change. The data is available at https://www.climatewatchdata.org/ghg-emissions.407

Total carbon emissions are measured as carbon emissions per capita. The complete carbon emission408

dataset are collected from 265 countries and includes 100 variables related to carbon emissions for the409

years 2000, 2005, 2010, 2015, and 2020. Emissions data are sourced from Climate Watch Historical410

GHG Emissions (1990-2020). 2023. Washington, DC: World Resources Institute.411
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Figure 2: Clustered Correlation Heatmap of Social Factors Influencing Carbon Emissions This
heatmap illustrates the correlations between various social factors and carbon emissions, highlighting
key relationships. The clustering visually groups factors with similar correlation patterns, aiding
in identifying which socioeconomic indicators most strongly influence carbon emissions, thereby
providing insights into the complex interplay between social behavior and climate impact. The
dendrogram, shown as lines on the top and left of the heatmap, represents hierarchical clustering. It
groups variables based on similarity of correlation or distance, with shorter line heights indicating
higher similarity. Variables in the rows and columns are grouped to identify clusters with closely
related pairwise relationships.
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C.1 Ordered Feature Correlation with Carbon Emissions413

Figure 3: Ordered Feature Correlation with Carbon Emissions. This figure shows the correlation
between various social and economic factors and carbon emissions per capita, highlighting key
influences such as energy use, GDP, urban population, and access to clean technologies.
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D Causal Analysis414

D.1 Data Descriptions415

Given the substantial amount of missing data, the experiment eliminated columns with a416

missing ratio greater than 40%, as well as some columns with data that are difficult to417

observe. The results have identified 15 studied variables related to the carbon emission418

variable, including "EG.CFT.ACCS.ZS", "EG.CFT.ACCS.RU.ZS", "EG.CFT.ACCS.UR.ZS",419

"EG.ELC.ACCS.UR.ZS", "EG.ELC.ACCS.ZS", "SP.URB.TOTL", "SP.URB.TOTL.IN.ZS",420

"SP.URB.GROW", "SE.SEC.DURS", "EG.FEC.RNEW.ZS", "SP.RUR.TOTL.ZS", "SP.RUR.TOTL",421

"AG.LND.FRST.ZS", "ER.FSH.CAPT.MT".The description of these variables is shown in Table 1.422

Subsequently, the study treats the data into a numerical matrix V t ∈ R134×15 and denote423

’EN.ATM.CO2E.PC’ by Y t ∈ R134×1, where t ∈ {2000, 2005, 2010, 2015, 2020} denotes the424

year in which the data was collected. We then normalize and standardize each column of data. Finally,425

using a five-year interval as a step, the study investigates the causal relationship between X and Y .426

The integrated observational data is as follows:427

D = {(V 2000, Y 2005), (V 2005, Y 2010), (V 2010, Y 2015), (V 2015, Y 2020)},

Table 1: Description of the Studied Variables for Causal Analysis

Variable Description
EG.CFT.ACCS.ZS Access to clean fuels and technologies for cooking (% of population)
EG.CFT.ACCS.RU.ZS Access to clean fuels and technologies for cooking, rural (% of rural

population)
EG.CFT.ACCS.UR.ZS Access to clean fuels and technologies for cooking, urban (% of urban

population)
EG.ELC.ACCS.UR.ZS Access to electricity, urban (% of urban population)
EG.ELC.ACCS.ZS Access to electricity (% of population)
SP.URB.TOTL Urban population
SP.URB.TOTL.IN.ZS Urban population (% of total population)
SP.URB.GROW Urban population growth (annual %)
SE.SEC.DURS Secondary education, duration (years)
EG.FEC.RNEW.ZS Renewable energy consumption (% of total final energy consumption)
SP.RUR.TOTL.ZS Rural population (% of total population)
SP.RUR.TOTL Rural population
AG.LND.FRST.ZS Forest area (% of land area)
ER.FSH.CAPT.MT Capture fisheries production (metric tons)
EN.ATM.CO2E.PC CO2 emissions (metric tons per capita)
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D.2 Scoring Matching Output: Causal Relationships Among Social Factors and Carbon428

Emissions429
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Figure 4: Causal Relationships Among Social Factors and Carbon Emissions. This scoring
map illustrates the causal relationships between various social factors and carbon emissions,
highlighting key variables: access to clean fuels and technologies for cooking in rural and ur-
ban areas (EG.CFT.ACCS.RU.ZS and EG.CFT.ACCS.UR.ZS) and urban population percentage
(SP.URB.TOTL.IN.ZS). These factors show strong causal effects on carbon emissions per capita,
emphasizing the interconnectedness of urbanization, energy use, and climate change.

D.3 CAM Pruning430

• Structural similarity (via SID and SHD). • Predictive accuracy (via precision, recall, and F1 score).431

• Overall deviation (via L2 distance).432

D.3.1 Function Definition: BackRE433

The backRE function calculates several metrics to evaluate the accuracy of a predicted Directed434

Acyclic Graph (DAG) against the target DAG. Below is the Python implementation:435

def backRE(tar_DAG, P_KCI):436

sid_val = SID(tar_DAG, P_KCI)437

shd_val = SHD(tar_DAG, P_KCI)438

precision, recall, f1 = f1_score(tar_DAG, P_KCI)439

distance = l2_distance(tar_DAG, P_KCI)440

return [sid_val, shd_val, precision, recall, f1, distance]441

The function computes:442

• SID: Structural Intervention Distance.443

• SHD: Structural Hamming Distance.444

• Precision, Recall, and F1-score to evaluate edge predictions.445

• L2 Distance to measure overall deviation between the target DAG and the predicted DAG.446

14



D.3.2 L2 Distance Formula447

The L2 Distance is calculated using the formula:448

L2 Distance =

√∑
i,j

(Atrue[i, j]−Apred[i, j])
2

where:449

• Atrue[i, j]: Entry in the adjacency matrix of the true DAG.450

• Apred[i, j]: Entry in the adjacency matrix of the predicted DAG.451

This metric provides a scalar measure of the overall deviation between the true and predicted graphs.452

E LLM Inquires453

E.1 Related Works454

As public use of LLMs for tasks, various resources and tools have emerged to aid in prompt455

engineering and discovery3. Instruction Categories provide different strategies for prompt engineering,456

and this study employs the following methods. Zero-shot Evaluation Instruction and Zero-shot-CoT457

Instruction are similar, with the latter explicitly incorporating "chain of thought" reasoning Brown458

et al. (2020); Zhou et al. (2022); Srivastava et al. (2022). Both approaches assess the model’s ability459

to apply its training to new, unseen tasks without prior specific examples. Few-shot Evaluation460

Instruction and Resample Instruction involve adaptive learning from a small set of examples or461

feedback, iteratively refining the prompts. Forward Generation predicts subsequent content based on462

the preceding context, commonly used in natural language generation.463

However, there is a lack of a comprehensive collection of causal questions in previous research464

Ceraolo et al. (2024). While related databases such as Google (Kwiatkowski et al., 2019), Bing465

(Nguyen et al., 2016), and questions posed to LLMs (H-to-LLM) from sources like ShareGPT and466

WildChat (Zhao et al., 2024) exist, none specifically focus on new sources of natural-causal questions,467

particularly causal questions directly asked to LLMs (Ouyang et al., 2022; Jin et al., 2024). Moreover,468

there is no dedicated database that addresses the context of climate change.469

E.2 LLM-Generated Mixed Questions470

Understanding Variables471

• Direct: What does EG.CFT.ACCS.RU.ZS represent in the context of global carbon emis-472

sions?473

• Influential: How might urban access to clean fuels (EG.CFT.ACCS.UR.ZS) impact carbon474

emissions?475

• Facilitative: What is the significance of SP.URB.TOTL.IN.ZS in studying urbanization476

effects on the environment?477

• Influential: How do these variables interact to influence overall carbon emissions?478

Historical Data Analysis479

• Resultative: What trends are observable in EG.CFT.ACCS.RU.ZS over the last decade?480

• Resultative: Has there been a significant change in EG.CFT.ACCS.UR.ZS data in major481

industrial countries?482

• Resultative: How has the urban population percentage (SP.URB.TOTL.IN.ZS) changed in483

emerging economies?484

3https://platform.openai.com/docs/guides/prompt-engineering
https://huggingface.co/spaces/Gustavosta/MagicPrompt-Stable-Diffusion
https://promptomania.com/stable-diffusion-prompt-builder/
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• Influential: What historical events have significantly impacted these variables?485

Predictive Modeling486

• Resultative: Can we predict future trends in EG.CFT.ACCS.RU.ZS using past data?487

• Influential: How might changes in EG.CFT.ACCS.UR.ZS predict shifts in urban carbon488

emissions?489

• Facilitative: What models can forecast the growth of urban populations490

(SP.URB.TOTL.IN.ZS)?491

• Preventative: What are the potential future scenarios for these variables under different492

policy implementations?493

Policy Impact Evaluation494

• Influential: How have recent policies affected rural access to clean technologies495

(EG.CFT.ACCS.RU.ZS)?496

• Resultative: What are the environmental impacts of improved urban access to clean fuels497

(EG.CFT.ACCS.UR.ZS)?498

• Influential: How does urbanization measured by SP.URB.TOTL.IN.ZS correlate with499

national carbon emission policies?500

• Preventative: What policy measures could potentially alter the trends in these variables501

most effectively?502

E.3 LLM-Generated Why Questions503

Understanding Variables504

• Direct: Why does EG.CFT.ACCS.RU.ZS matter in the context of global carbon emissions?505

• Influential: Why might urban access to clean fuels (EG.CFT.ACCS.UR.ZS) influence506

carbon emissions?507

• Facilitative: Why is SP.URB.TOTL.IN.ZS significant when studying the effects of urban-508

ization on the environment?509

• Influential: Why do these variables interact to influence overall carbon emissions?510

Historical Data Analysis511

• Resultative: Why are there observable trends in EG.CFT.ACCS.RU.ZS over the last decade?512

• Resultative: Why has there been a significant change in EG.CFT.ACCS.UR.ZS data in513

major industrial countries?514

• Resultative: Why has the urban population percentage (SP.URB.TOTL.IN.ZS) changed in515

emerging economies?516

• Influential: Why have certain historical events significantly impacted these variables?517

Predictive Modeling518

• Resultative: Why can past data on EG.CFT.ACCS.RU.ZS be used to predict future trends?519

• Influential: Why might changes in EG.CFT.ACCS.UR.ZS predict shifts in urban carbon520

emissions?521

• Facilitative: Why are certain models effective at forecasting the growth of urban populations522

(SP.URB.TOTL.IN.ZS)?523

• Preventative: Why could potential future scenarios for these variables differ under various524

policy implementations?525

Policy Impact Evaluation526
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• Influential: Why have recent policies affected rural access to clean technologies527

(EG.CFT.ACCS.RU.ZS)?528

• Resultative: Why do improved urban access to clean fuels (EG.CFT.ACCS.UR.ZS) have529

environmental impacts?530

• Influential: Why does urbanization, as measured by SP.URB.TOTL.IN.ZS, correlate with531

national carbon emission policies?532

• Preventative: Why might certain policy measures most effectively alter the trends in these533

variables?534

F Limitations and Discussions535

The study knocks on the door of causal and inference and evaluates the LLM-inquiry performance.536

However, understanding how to question causality within LLMs also involves recognizing the social537

norms embedded in human-machine interactions, as well as the social and moral dynamics present538

in language (Van Hee et al., 2015; Wang et al., 2018; Forbes et al., 2020; Cui et al., 2024). These539

aspects are far more complex than simple data patterns.540

Technically, three limitations exist. First, for data dependency, the accuracy and reliability of the541

causal inferences drawn from this framework depend heavily on the quality and completeness of the542

underlying data. Poor data quality or gaps can lead to incorrect conclusions, potentially misguiding543

important policy decisions. Second, for model assumptions, the three-step framework relies on544

the global carbon emissions and climate change assumptions that may need to be supported across545

different scenarios or contexts, particularly in the complex, multifactorial climate change domain.546

Third, for generalizability, findings derived from this framework are context-specific and may not547

apply to different settings or scenarios without adjustments.548

In future research, with more data and a deeper grounding in real-world societal settings, studies549

on vertical domains could be expanded on a larger scale and have a more profound impact on550

policymaking.551
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