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Abstract

Saving sequences of data to a point in a continuous space makes it difficult to
retrieve them via random sampling. Mapping the input to a volume makes
it easier, which is the strategy followed by Variational Autoencoders. How-
ever optimizing for prediction and for smoothness, forces them to trade-off
between the two. We analyze the ability of standard deep learning tech-
niques to generate sentences through representation sampling. We propose
AriEL, an entropic coding method to construct volumes without the need
for extra loss terms, and compare those standard learning techniques with
its use of the latent space. We benchmark on a toy grammar, to auto-
matically evaluate the language learned and generated, and find where it
is stored in the latent space. Then, we benchmark on a dataset of human
dialogues and using GPT-2 inside AriEL. Our results indicate that the ran-
dom access to stored information can be improved, since AriEL is able to
generate a wider variety of correct language by randomly sampling the la-
tent space. This supports the hypothesis that encoding information into
volumes, improves retrieval of learned information with random sampling.

1 Introduction

Representation regularization, through the normalization and bounding of data, representa-
tions and gradients, is fundamental to fast deep learning training (Ioffe and Szegedy, 2015;
Kingma and Welling, 2014; He et al., 2015; Perez et al., 2018). However, it seldom offers
guarantees for boundedness, only encouraging it through initial conditions and loss sum-
mands. The final conditions, i.e. the representations learned, can be empirically explored
through the sampling of the latent space. This exercise reveals how often the data not seen
during training has no bounded representation, which can be regarded as undesirable if we
want architectures that can quickly generalize outside the training bias for successful trans-
fer learning. However it is difficult to find the learned patterns through latent sampling,
since typically neural networks map an input to a point in Rd (Hochreiter and Schmidhuber,
1997; Vaswani et al., 2017; LeCun et al., 1989).

Some models do map inputs to volumes, to ease retrieval through random sampling. Vari-
ational Autoencoders (Kingma and Welling, 2014; Bowman et al., 2016; Chen et al., 2018)
encourage volume representations: by encoding an input into a probability distribution that
is sampled before decoding, neighbouring points in Rd can end up representing one input.
However, it requires two loss summands, a log-prior and a log-likelihood, that fight for
two different causes. A smooth and volumetric representation, encouraged by the log-prior
regularization, can worsen performance, encouraged by the log-likelihood.

By giving partially up on smoothness, we propose AriEL, a method to construct volumes,
without a loss to encourage them. It maps sentences to volumes in Rd for efficient retrieval
with random sampling, or a network that operates in its continuous space. It fuses arithmetic
coding (AC) (Elias and Abramson, 1963) and k-d trees (KdT) (Bentley, 1975), so we name it
Arithmetic coding and k-d trEes for Language (AriEL). For simplicity we focus on dialogue
language, even if AriEL works with any variable length sequence of symbols. AriEL can
be used as a benchmark to understand natural language processing and generation models
use of latent space. It fills completely the latent space with the language learned, using
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information theory, and bounding its representations within [0, 1]d. Its language model
splits the latent space in volumes, guided by the probability assigned to the next symbol
in a sentence. It can provide an agent with a simpler interface with a pretrained language
model, e.g. a GPT-2 (Radford et al., 2019; Wolf et al., 2020), where the agent could choose
the optimal d. We prove how such a volume representation eases the retrieval of stored
learned patterns and how to use it to set references for other models.

Our contributions are therefore:

• AriEL, a novel unsupervised volume representation based on arithmetic coding and
k-d trees (Section 3.1), to retrieve learned patterns with random sampling;

• the HouseQ dataset, consisting of a large context-free grammar and a random bias
(Section 3.3), to automatically generate and evaluate sentences generated by trained
models, and find them in their latent space;

• the notion that explicit volume coding (Section 4) can be a useful technique in tasks
that involve the generation of sequences of discrete symbols, such as sentences;

• the observation that conventional learned codes like AE, VAE or Transformer, do
not use the latent space effectively (Section 4), in the AriEL entropic coding sense.

2 Related Work

Volume codes: We define a volume code as two functions, an encoder and a decoder func-
tions, where the encoder maps an input x into a set that contains compact and connected
sets of Rd (Munkres, 2018), and the decoder maps every point within that set back to x.
It is a distributed representation (Hinton et al., 1984) since the input x is represented by
at least one Rd point. We call the volume code implicit, when the volumes are encour-
aged through a loss term (Bengio et al., 2013; Ng and Jordan, 2002; Kingma and Welling,
2014; Jebara, 2012) and explicit, when the volumes are constructed through the model’s
operations, independently from any loss and optimizer choice.

Sentence generation through random sampling: Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014) map random samples to a learned generation through a
2-players game procedure. Yu et al. (2017); Kusner and Hernández-Lobato (2016); Scialom
et al. (2020) significantly improved GAN performance in text generation. Random sampling
the latent space is used as well by Variational Autoencoders (VAE) (Kingma and Welling,
2014), to smooth their representations. Bowman et al. (2016); Yang et al. (2017); Li et al.
(2021), and others, have refined their performance for text representation. AriEL can be
used as a generator or a discriminator in a GAN, or as an encoder or a decoder in an
autoencoder. However it differs from them in the explicit procedure to construct volumes.
It fills the entire latent space with the learned patterns, to ease retrieval by uniform sampling.

Arithmetic coding and neural networks: AC is one of the most efficient lossless data
compression techniques (Elias and Abramson, 1963; Witten et al., 1987). AC assigns a
sequence to a segment in [0, 1] with length proportional to its frequency. When converted
into bits, frequent symbols take less bits than unfrequent. AC is used for neural network
compression (Wiedemann et al., 2019) and neural networks are used in AC to perform
prediction based compression (Jiang et al., 1993; Pasero and Montuori, 2003; Tatwawadi,
2018). We generalize AC to Rd, to combine its properties with the properties of high-
dimensional spaces, neural networks domain.

K-d trees and neural networks: KdT (Bentley, 1975) is a data structure for storage that
can handle different types of queries efficiently. It is typically used as a fast approximation
to k-nearest neighbours in low dimensions (Friedman et al., 1977). It gives a binary label
to the data with respect to its median. It moves through the k dimensions of the data and
repeats the process. Neural networks are typically used in conjuction with KdT to reduce
the dimensionality of the search space, for KdT to be able to perform queries efficiently
(Woodbridge et al., 2018; Yin et al., 2017; Vasudevan et al., 2009). We use KdT to make
sure that the multidimensional AC uses all the space available.
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3 Methodology

3.1 AriEL: volume coding of language in continuous spaces
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Figure 1: Arithmetic coding and
AriEL. In this illustrative example, the
generating context-free grammar (CFG)
is S → a|b|aa|ab|ac|bc|abc|bcc, and the
bar plot on top indicates the frequency
of those sentences in the dataset, as an
extra bias to the language. Arithmetic
Coding (middle) encodes any sequence of
this CFG over a single dimension within
[0, 1], and the frequency of the sentence
determines the length assigned on that
segment. AriEL (bottom) is a multidi-
mensional extension of AC (here in 2D),
where the frequency information is pre-
served in the volumes. The Language
Model provides the boundaries where the
next symbols are to be found. For a 2D
latent space, d = 2, the axis to split to
find symbol st is dt = t mod d. dt = 0, 1
represent the horizontal and vertical axis.

AriEL maps the sequence/sentence (s1, · · · , sn) = (st)
n
t=1 of length n, to a d-dimensional

volume of size P ((s1, · · · , sn)) = Πn
t=1P (st|(st′)t′<t) in the [0, 1]d hypercube. When the

symbol is used as a random variable we refer to it as s, s′, while st represents the observed
sample at time step t. The words belong to a finite vocabulary s ∈ {1, · · · , Vsize}, Vsize ∈ N.

To adapt KdT to more splits than binary, we split axis dt = t mod d, into Vsize segments, one
for each possible st. The segment has length proportional to st probability. Then we turn
to the following axis dt+1, and continue the process of splitting and turning (figure 1 and
algorithm 1). In figure 1, st ∈ {a, b, c, }. The initial token s1 = a is given a portion on d1 of
length P (a), larger than the portion given to s1 = b or s1 = c, since there are less sentences
that start with b than with a, and there is none that starts with c: P (a) > P (b) > P (c) = 0.
Then, we split d2 according to the probability of the next symbol s2. In this case the second
most likely symbol after symbol s1 = a is s2 = c, so ac ends with a larger volume than
aa, ab and a . For sentences longer than d, next symbol is assigned an axis d3 previously
split, but only the volume selected up to t− 1 is further split. So, the sentence abc takes a
portion of ab equal to P (c|(ab)), while ‘ab ’ takes a portion equal to P ( |(ab)). We estimate
language statistics with a Language Model (LM), PLM (st|(st′)t′<t). This will approximate
the frequency information that makes AC entropically efficient.

The sentence is finally encoded as the center of the volume bounded by those segments
for simplicity, and any point within it is decoded to the same sentence. The extension to
a larger [a, b]d hypercube is straightforward, and could provide higher precision, but we
restrict ourselves to [0, 1]d.

AriEL has a computational complexity of O(nD2Vsize) for encoding and decoding (algorithm
1), where n is the length of the sequence, D is the dimensionality of the LM latent space,
and Vsize the vocabulary size. AriEL has a minimum number of sequential operations of
O(n) for both encoding and decoding, on par with conventional seq2seq recurrent networks.

3.2 Neural Networks: models and experimental conditions

We compare AriEL to standard approaches to map variable length discrete spaces to fixed
length continuous spaces. These are the sequence to sequence recurrent autoencoders (AE)
(Sutskever et al., 2014), their variational version (VAE) (Bowman et al., 2016) and Tran-
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Algorithm 1 AriEL encoder and decoder Bup and Blow stand for the upper and lower
bounds that define AriEL volumes, main differences between encoder and decoder in blue.
The PLM cumulative distributions (cup, clow) define the volume’s limits and size (a). s and
s′ represent the vector of words in the vocabulary, and st the observed value at time t. (Left)
AriEL Encoding: from sentence to continuous space. The volumes are represented by their
central point z for simplicity. (Right) AriEL decoding: from continuous space to sentence. z
is used to identify which volume has to be picked next. Operation find is defined in SM10.

AriEL Encoding

Input: sentence: S = (st)
n
t=1

Output: z represents S in [0, 1]d

1: function AriEL encode(S)
2: d = latent space dimension
3: Blow = zeros(d)
4: Bup = ones(d)
5: n = length(S)

6: for t = 0, · · · , n− 1 do
. choose dimension to split

7: dt = t mod d
8: Pnext(s) = PLM (s|(st′)t′<t)
9: clow(s) =

∑
s>s′ Pnext(s

′)
10: cup(s) =

∑
s>s′−1 Pnext(s

′)
11: a = Bup(dt)−Blow(dt)

. update volume bounds
12: Bup(dt) = Blow(dt) + a · cup(st)
13: Blow(dt) = Blow(dt)+a·clow(st)
14: end for

. represent the volume by its center
15: z = (Blow + Bup)/2
16: return z
17: end function

AriEL Decoding

Input: z represents S in [0, 1]d

Output: sentence: S = (st)
n
t=1

1: function AriEL decode(z)
2: d = dimension(z)
3: Blow = zeros(d)
4: Bup = ones(d)

5: S = 〈START 〉
6: for t = 0, · · · , nmax − 1 do

. choose dimension to unsplit
7: dt = t mod d
8: Pnext(s) = PLM (s|S)
9: clow(s) =

∑
s>s′ Pnext(s

′)
10: cup(s) =

∑
s>s′−1 Pnext(s

′)
11: a = Bup(dt)−Blow(dt)

. update volume bounds
12: Bsup(s) = Bup(di) + a · cup(s)
13: Bslow(s) = Blow(dt)+a ·clow(s)

. any point in the volume is assigned
the symbol st

14: st = finds

(
Bslow(s) < z(dt) < Bsup(s)

)
15: Bup(dt) = Bsup(st)
16: Blow(dt) = Bslow(st)
17: S = S.append(st)
18: end for
19: return S
20: end function

former (Vaswani et al., 2017). We trained them for next word prediction, over the biased
train set (section 3.3). All can be split into an encoder and a decoder that map the sentences
to Rd and back. More training details in SM7.

In this work, AriEL’s language model neural network PLM consists of a word embedding of
size 64, a 140-unit LSTM, a feedforward layer and a softmax. At test time the argmax is
not applied directly to the softmax, but the latent space is used as the deterministic pointer
that chooses the st, as shown in find definition in SM10. However the LM is trained for
next time step prediction through cross-entropy. For AE and VAE, we stack two GRU layers
(Cho et al., 2014) with 128 units at both, the encoder and the decoder. The last encoder
layer has either d = 16 units or d = 512 for all methods. The decoder outputs a softmax.

Transformer (Vaswani et al., 2017) is the state-of-the-art in many S2S problems (Dai et al.,
2019; Radford et al., 2018). Since at the word level it is a fixed-length representation and
it is variable-length at the sentence level, we padded all sentences to the maximum length
in the dataset to be able to compare its latent space capacity to the other models. We take
as its latent dimension the connection between the encoder and decoder, with dmodel size,
that will take a value of 16 or 512. We choose most parameters as in the original work: the
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number of attention heads nhead = 8, the key and value dimension dkey = dvalue = 64, a
dropout regularization of 0.1. We change the stack of identical decoders and encoders to
nlayers = 2, and the dimension of the inner feed-forward network to dff = 256 to have a
number of parameters similar to the other methods. On the GuessWhat?! dataset (De Vries
et al., 2017) we tested nlayers = 20 to have an amount of parameters comparable for d = 16
to the other methods, but performed worse than nlayers = 2, so we report the smaller one.

All architectures are tested either for next time-step prediction or sampled from the latent
space, and all of them are constrained to a small latent space. All of them are 2-layers of
encoder and decoder, except for AriEL, since they improved performance compared to when
they had only one layer. All of them have about the same number of parameters. All of
them could be used as Language Models inside AriEL.

3.3 Datasets: toy and human sentences

We perform our analysis on two datasets. A toy dataset of sentences generated from a
context-free grammar (CFG) and a realistic dataset of sentences written by humans playing
a cooperative game.

The toy dataset: we generate questions about objects with a CFG (Supplementary Ma-
terial 1). To stress the models we choose a CFG with a large vocabulary and numerous
grammar rules, rather than classic alternatives (e.g. REBER, Hochreiter and Schmidhuber
(1997)). All are questions about house objects, so we call it the HouseQ dataset.

We distinguish between unbiased sentences, simply sampled from the CFG, and biased
sentences, selected according to an additional structural constraint after being sampled
from the CFG. To do so we generate an adjacency matrix of words that can occur together
in a sentence, and we use that to bias the sentences. Once a sentence is produced from
the CFG, if all its words can be together in a sentence judged by the adjacency matrix,
the sentence is considered as biased, and unbiased otherwise. For simplicity the adjacency
matrix is a random matrix of zeros and ones, generated once for all the experiments, making
sure that some symbols like the, it or ?, can be found in all sentences. We want to emulate a
CFG constrained by realistic scenes, where not all the grammatically correct sentences are
semantically correct: e.g. ‘Is it the wooden shower in the kitchen ?’ could be grammatical,
but semantically incorrect since it is unusual. We use it to detect how each learning method
extracts the grammar and the roles of each word, despite a bias that makes it harder.

It has a 840 words vocabulary with maximal and mean sentence length of 19 and 9.9 symbols.
We split the biased dataset into 1M train, 10k test and 512 validation sentences, with no
overlap between them. We created 10k unbiased test sentences with the same CFG, only
with sentences that do not follow the adjacency matrix. We train on the biased sentences
and we test if they grasped the grammar behind, with the unbiased.

The real dataset: we choose the GuessWhat?! dataset (De Vries et al., 2017), a dataset
of questions asked by humans to solve a cooperative game. It has a vocabulary of 10,469
words. The maximal and mean length of the sentences are of 57 and 5.9 symbols.

3.4 Evaluation Metrics

3.4.1 Quantitative evaluations on the toy grammar, HouseQ

Metrics chosen take advantage of the possibilities opened by the CFG and the random bias,
that allow to automatically check the grammatical and bias correctness of the language
produced. Standard metrics like perplexity, only check if the word predicted matches in the
exact time step the word in a reference sentence. In our view, it makes it an obscure metric
for language quality, used in the lack of a better one for (non CFG) human language. We
measure generation, prediction and generalization quality. We study networks with a latent
dimension of 16 units, to understand their compression limits, and for 512 units, often taken
as the default size (Kingma and Welling, 2014; Vaswani et al., 2017).

Generation/Decoding Quality is evaluated with sentences produced randomly sampling
the latent space of each decoder. The sampling is done uniformly within the maximal hyper-
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cube defined by the encoded biased test sentences. We sample 10k sentences and evaluate:
i) vocabulary coverage (VC) as the ratio of sampled words, over the size of the complete
vocabulary; ii) uniqueness (U) as a ratio of unique sampled sentences; and iii) validity
(V) as a ratio of valid sampled sentences, defined as the unique and grammatically correct
sentences, the most important of our metrics.

Prediction Quality is evaluated by encoding and decoding the 10k biased test sentences as
follows: i) prediction accuracy biased (PAB) as a ratio of correctly reconstructed sentences
(i.e. all words must match); ii) grammar accuracy (GA) as a ratio of grammatically correct
reconstructions (i.e. can be parsed by the CFG, even if the reconstruction is not accurate).
and iii) bias accuracy (BA) as the ratio of reconstructions that keep the training set bias.

Generalization Quality is evaluated using the 10k unbiased test sentences while the em-
beddings were trained on the biased training set. The prediction accuracy unbiased (PAU),
as PAB, is the ratio of correctly reconstructed unbiased sentences. It measures how well the
latent space generalizes to grammatically correct sentences outside the training bias.

3.4.2 Quantitative evaluations on the real dataset, GuessWhat?!

Humans use spontaneously ungrammatical constructions. We therefore quantify the quality
of the language learned with two measures: memorization and subjective interpretability.
Memorization is the percentage of sentences that are unique and are found in the training
data, indicating how easy it is to retrieve the learned information. To measure subjective
interpretability, we asked 5 surveyees to evaluate the interpretability of the generated sen-
tences. They were assigned 5 sentences for each method and d, with each sentence from a
different training seed. Samples shown to the surveyees can be seen in SM12.

3.4.3 Interpolations within AriEL

AriEL organization of language in volumes changes with d, using the same Language Model.
In figure 2 we show how many valid sentences can be found on a straight line between two
random points in [0, 1]d, AriEL’s latent space. Valid refers to unique and grammatically
correct, as in the toy dataset case. Since the average is taken over the segment and over the
random pairs of points, we call this metric interpolation diversity. For each d the average is
taken over 15 different random sentence pairs, and over 100 interpolation steps on the line
that connects them. The Language Model tested is the one trained on the toy grammar.

3.4.4 Qualitative evaluations

We show (1) samples of reconstruction via next word prediction of unbiased sentences, to
understand the generalization capabilities of different models (d = 16, table 3 and S2),
(2) generated sentences by uniformly sampling the latent space, after training on the toy
dataset, to understand the generation capabilities (d = 16, table 4 and S3) (3) samples
generated by AriEL with a pretrained GPT2 as its language model, for small latent spaces
(d = 1, 5, table 5 and S4) and long sentences (100 symbols), to see if the folding process
and the floating point precision represent a limitation for AriEL. To avoid cherry picking,
we display the first samples produced.

4 Results

4.1 Quantitative Evaluations

AriEL improves over the rest for all the 7 measures on the toy data (table 1 and figure S2),
outperforming them by a large margin for validity, i.e. unique and grammatical sentences
generated, the most important of the metrics. Transformer performs remarkably well at not
overfitting and it is able to reconstruct biased and unbiased sentences better than the other
non-AriEL methods, even under-parameterized (d = 16). However, it performs very poorly
at generating diverse valid sentences by random sampling. VAE 16 despite the poor gener-
alization to the biased and the unbiased test set, results in the best non-AriEL generator,
measured by validity. The conflict between log-prior and log-likelihood, encouraged VAE to
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Generation Prediction Generalization

param
vocabulary
coverage validity uniqueness

bias
accuracy

grammar
accuracy

prediction
accuracy
biased

prediction
accuracy
unbiased

d = 16
AriEL 237K 70.4 ± 0.2% 97.6 ± 0.2% 99.7 ± 0.1% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 53.1 ± 0.4%

Transformer 258K 70.1 ± 0.8% 4.7 ± 2.7% 99.1 ± 0.5% 99.98 ± 0.01% 99.95 ± 0.02% 99.92 ± 0.02% 49.0 ± 0.1%
AE 258K 6.89 ± 0.7% 11.5 ± 4.2% 13.9 ± 5.1% 89.5 ± 2.3% 98.0 ± 1.7% 0.0 ± 0.1% 0.0 ± 0.1%

VAE 258K 11.5 ± 2.6% 16.0 ± 9.2% 24.3 ± 14.8% 85.4 ± 5.2% 85.1 ± 8.8% 0.0 ± 0.1% 0.0 ± 0.1%
d = 512
AriEL 237K 70.2 ± 0.3% 97.9 ± 0.2% 99.8 ± 0.1% 100.0 ± 0.0% 100.0 ± 0.0% 100.0 ± 0.0% 53.2 ± 0.3%

Transformer 9M 67.3 ± 0.9% 17.2 ± 6.3% 87.2 ± 7.5% 99.99 ± 0.01% 99.91 ± 0.03% 99.86 ± 0.05% 49.0 ± 0.1%
AE 120M 39.3 ± 6.0% 21.0 ± 11.8% 71.8 ± 5.6% 82.2 ± 3.5% 86.8 ± 1.3% 34.7 ± 11.4% 24.4 ± 6.0%

VAE 120M 28.9 ± 2.4% 26.5 ± 2.4% 95.2 ± 3.8% 73.8 ± 2.2% 89.5 ± 2.8% 4.3 ± 3.7% 4.9 ± 3.6%

Table 1: Evaluation of continuous sentence embeddings on the toy dataset
(d = 16, 512). Each experiment is run 5 times. AriEL, achieves almost perfect perfor-
mance in most metrics, especially in validity, which quantifies how many random samples
were decoded into a unique and grammatical sentence. Transformer performed exception-
ally, except for validity. All methods improved their performance increasing d, particularly
in validity, but still achieved less than one third the performance of AriEL. VAE is the
second best in validity, supporting the hypothesis, that volume coding facilitates retrieval
of information by random sampling.
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Figure 2: Interpolations between ran-
dom points in AriEL’s latent space,
and amount of valid sentences gener-
ated in between. For a low latent dimen-
sion all sentences are very densely packed,
and in the extreme of d = 1, all sentences
are found on the same axis. As d increases,
the sentences are redistributed in [0, 1]d

and less sentences are found in a given
direction. The lower bound at 0.746 can
change depending on the training dataset.

param
prediction
accuracy memorization

subjective
interpretability

d = 16
AriEL 2,901K 97.2 ± 0.2% 21.9 ± 0.4% 100.0 ± 0.0%

Transformer 588K 88.4 ± 0.4% 0.5 ± 0.4% 17.6 ± 15.3%
AE 2,787K 11.9 ± 0.6% 2.4 ± 0.6% 75.6 ± 31.4%

VAE 2,787K 14.0 ± 1.6% 2.8 ± 1.4% 68.8 ± 17.1%

d = 512
AriEL 2,901K 97.3 ± 0.2% 20.9 ± 0.4% 92.0 ± 15.0%

Transformer 18,809K 88.7 ± 1.7% 3.46 ± 1.7% 45.2 ± 17.4%
AE 4,900K 15.9 ± 2.3% 3.4 ± 0.9% 77.6 ± 16, 1%

VAE 5,425K 27.2 ± 2.1% 0.4 ± 0.1% 41.6 ± 16.7%

Table 2: Performance on the Guess-
What?! Questioner data. For the real
dataset the pattern is repeated: AriEL
shows that a larger value of valid sentences
is possible. Transformer 16 gave better re-
sults when nlayers = 2 than nlayers = 20,
that was tested to increase its learnable pa-
rameters from 588K to 2,666K.

look for sentences outside the bias, since it was able to produce more grammatically cor-
rect sentences, albeit unbiased, than AE. Increasing the learned parameters (d = 512), had
no effect on Transformer, that was already excellent in several of the metrics, apart from
a significant improvement in validity. However, a larger latent space and the increase in
number of parameters that followed, prevented AE and VAE from overfitting (better PAU
and PAB). When trained on human sentences, on the GuessWhat?! dataset, AriEL sets
again a large memorization and interpretability margin compared to the other approaches.
Generated samples can be found in table S5.

In the interpolation diversity study (figure 2) we see that for low d, we have to pass through
many sentences in between two random points in the latent space, while as we augment the
dimensionality, we distribute the sentences in different directions. Therefore we find less
sentences when we move on a straight line between two random points.
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Input Sentences
is it huge and teal ?
is the thing transparent , huge and slightly heavy ?
AriEL
is it huge and teachable ?
is the thing transparent , huge and slightly heavy ?
Transformer
is it huge and magenta ?
is the thing transparent , huge and slightly heavy ?
AE
is it this average-sized and average-sized laminate ?
is the thing very heavy , heavy and very heavy ?
VAE
is it the light deep bedroom ?
is the thing textured , textured and moderately heavy ?

Table 3: Generalization: next word
prediction of unbiased sentences at
test time. Blue means that the incor-
rect reconstruction complies with the bias
and purple means that it is still unbiased.
Most reconstructions seem grammatically
correct. In practice AriEL also made er-
rors. Some failed reconstructions comply
with the training bias, some do not. In-
terestingly the errors made by Transformer
tend to turn the unbiased input sentence
into a biased version. AE produced only
biased sentences whose structure resembled
the unbiased ones. VAE behaved similarly,
producing more unbiased sentences.

AriEL
is the object that tiny very light set ?
is the thing a tiny destroyable abstraction ?
Transformer
is it an tomato slot box made of decoration facing stone ?
is the thing short and spring heavy slightly heavy potang ?
AE
is the object that light light laminate ?
is the thing a light , small and small laminate ?
VAE
is the thing a light and deep office ?
is it light , light and light and pink ?

Table 4: Generation: output of the de-
coder when sampled uniformly in the
latent space. Red defines grammatically
incorrect generations according to the CFG
the models are trained on. AriEL produces
an extremely varied set of grammatically
correct sentences, most of which keep the
bias of the training set. Transformer re-
veals itself to be hard to control via random
sampling of the latent space, since it almost
never produces correct sentences with this
method. AE and VAE manage to produce
several different sentences, the latter pro-
ducing more non grammatical, but as well
more varied grammatical ones.

4.2 Qualitative Evaluations

Table 3 and S2 show the generalization study. AE and VAE fail to generalize to the unbiased
language, but both keep the structure of the input sentence. Their behavior improved with
d = 512, and its increase of parameters. In theory, AriEL can reconstruct any sequence by
design. In practice, it failed slightly less often than Transformer. Both produce reconstruc-
tions of the unbiased input at a similar rate (table 3, 1 and figure S2). This means that
codes for data not seen during training are available for AriEL and Transformer. Instead,
the latent space seems to be taken exclusively by the training set for AE and VAE, since
sentences that are not seen during training (e.g. unbiased) cannot be reconstructed.

A very high number (97.6± 0.2%) of AriEL’s generations are valid (table 4 and 1). AE and
VAE perform well despite the small latent space. VAE triples AE in validity when d = 16
(table 1). Transformer struggles to generate grammatical sentences sampling the latent
space. However, increasing d, Transformer, AE and VAE improve in validity, remaining at
one third AriEL’s reference.

Samples generated with GPT-2 as AriEL’s LM can be seen in table 5 and S4, for
d = 1, 5, 10, 50, 100. Despite the large vocabulary of GPT-2, 50K subwords, and the long
sentences, 100 symbols, the floating point precision and the unit hypercube latent space of
AriEL, seem to still be able to generate high quality language.

5 Discussion

AriEL latent space d is a free parameter. The size d of the latent space of AriEL can
be defined at any time, for a fixed Language Model. It could therefore be controlled with a
learnable parameter or with the activity of another neuron. As we increase d, the volumes
will have more neighbouring volumes that represent different sentences (figure 2).
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d = 1

Where to go from here?\n\nWe’re looking for special interests and fans to pay much
more attention to when they come in to another site. If you’re looking for good stuff
to read on other sites, then get on your site and read their stories. If you’re looking for
things that work for your community, then look up what their leaderboard is and where
they’re based. If you’re looking for things that make me love them, then say hey. You’re
really doing your

Saul Niguez is not going to let go of his dream of playing for Hillary Clinton.\n\nThe
Florida native will plan to accept the Democratic presidential nomination for president
on November 8.\n\nThe 38-year-old machinist has called Trump\’s presidential nominee
a ”post-modern bull - ” on social media.\n\nIn an interview with DailyMail.com, Niguez
told her you could still name her after Trump.\n\n”This is my father\’s
d = 5

Utility Shells are just as dependent on human labor as steel, yet they had been enormously
more efficient than nuclear power in incongruity’s late 70s. US clients – including the
nation’s largest retiree retirement fund – already manufactured many of their own carbon-
free cars. But what about non-node Americans? How could they simply cool down at
home for work for years at a time? Inventing these subs would seem like a smart thing
to do. But there’s one

Out featured: on Alcoholism, Marriage and Dating: I’am No Timber [Decision note: 19th
August 2013] with Runnymede Colman and producer Dan Patrick\n\nPartial transcript
as follows:\n\nDAVID WEISES: After 20 years of marriage to my Malcastian partner,
we’ve lost our lives to drugs. And so it’s our hope that by allowing my Malcastian partner
to become an alcoholic and grow up to be a successful husband and

Table 5: AriEL samples using GPT-2 as Language Model. Even for a large language
model such as the small GPT-2, 117M parameters, over 50K subwords, and 100 symbols
sentences, AriEL results in high quality samples for a wide range of latent dimensions (SM
11). Floating point precision does not seem to be of concern up to this limit.

Evidence for volume codes. The results suggest that AriEL volumes are responsible of
its success. We provided evidence on how volume codes improve the retrieval of information
composed of discrete, variable length sequences, by random sampling, compared to other
codes. AriEL generates more valid sentences, an explicit volume code. VAE is the second
on the toy dataset, an implicit volume code, but it is worse than AE on the real dataset.

Transformers are hard to sample from the latent space. The Transformer has
been used in this work in an uncommon way: by sampling its latent space instead of its
output space. Its low validity score in this work reflects it. Our aim was to understand the
latent organization of language, so, we do not suggest this is the most effective way to use
Transformer. Transformer is excellent when sampled in the output space, but it’s difficult
to sample from the latent space. This is so because Transformer represents each word in d
dimensions while the other approaches represent a sentence in d dimensions. Transformer
needs a very high dimensional vector to represent a sentence, n · d, where n is the number
of words in it. This makes it hard to find sentences by uniform sampling the latent space.

6 Conclusions

We proposed AriEL, a mapping of language into volumes, that we used as a reference
system for language generation. AriEL fuses arithmetic coding and k-d trees to construct
volumes that preserve the statistics of a dataset. On the one hand, this study helps to
realize how much of the latent space lies unused by standard architectures. On the other
hand, when compared to standard techniques it highlights room for improvement in their
capacity for generation, prediction and generalization. AriEL allows us to sample/generate
in theory the training set probability distribution and in practice a diverse set of sentences,
as demonstrated on the toy, on the human dataset and using GPT-2 as its language model.
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Supplementary Material

1 Context-free grammar (CFG) used in the experiments

The context free grammar used to generate the biased and unbiased sentences is composed
by the following rules:

s → q

q → qword a d j e c t i v e ’ , ’ a d j e c t i v e ’ and ’ a d j e c t i v e ’? ’
q → qword a d j e c t i v e ’ and ’ a d j e c t i v e ’? ’
q → qword a d j e c t i v e ’? ’
q → qword ’made ’ ’ of ’ noun mater ia l ’? ’
q → qword p r e p o s i t i o n np ’? ’
q → qword np ’? ’

np → de terminer a d j e c t i v e a d j e c t i v e a d j e c t i v e noun
np → de terminer a d j e c t i v e ’ , ’ a d j e c t i v e ’ and ’ a d j e c t i v e noun
np → de terminer a d j e c t i v e ’ and ’ a d j e c t i v e noun ’made ’ ’ of ’ noun mater ia l
np → de terminer a d j e c t i v e a d j e c t i v e noun
np → de terminer a d j e c t i v e ’ and ’ a d j e c t i v e noun
np → de terminer a d j e c t i v e noun ’made ’ ’ of ’ noun mater ia l
np → de terminer noun ’made ’ ’ of ’ noun mater ia l
np → de terminer a d j e c t i v e noun
np → de terminer noun

qword → ’ i s ’ ’ i t ’ | ’ i s ’ ’ the ’ ’ o b j e c t ’ | ’ i s ’ ’ the ’ ’ th ing ’
noun → n o u n o b j e c t | noun mater ia l | noun roomtype
p r e p o s i t i o n → p r e p o s i t i o n m a t e r i a l

a d j e c t i v e → a d j e c t i v e c o l o r | a d j e c t i v e a f f o r d a n c e | a d j e c t i v e o v e r a l l s i z e |
a d j e c t i v e r e l a t i v e s i z e | a d j e c t i v e r e l a t i v e p e r d i m e n s i o n s i z e |
a d j e c t i v e m a s s | a d j e c t i v e s t a t e | a d j e c t i v e o t h e r

n o u n o b j e c t → ’ accordion ’ | ’ a c o u s t i c ’ ’ gramophone ’ | ’ bar ’ | ’ b a r r i e r ’ |
’ ba ske t ’ | ’ outdoor ’ ’ lamp ’ | ’ outdoor ’ ’ s e a t i n g ’ | . . .

noun mater ia l → ’ b r i c k s ’ | ’ carpe t ’ | ’ decora t ion ’ ’ s tone ’ | ’ f a c i n g ’ ’ s tone ’ |
’ grass ’ | ’ ground ’ | ’ laminate ’ | ’ l e a t h e r ’ | ’ wood ’ | . . .

noun roomtype → ’ aera t ion ’ | ’ ba lcony ’ | ’ bathroom ’ | ’ bedroom ’ | ’ b o i l e r ’ ’ room ’ |
’ garage ’ | ’ gues t ’ ’ room ’ | ’ h a l l ’ | ’ ha l lway ’ | ’ k i t c h e n ’ | . . .

de terminer → ’ a ’ | ’ an ’ | ’ t ha t ’ | ’ the ’ | ’ t h i s ’

p r e p o s i t i o n m a t e r i a l → ’made ’ ’ of ’

a d j e c t i v e c o l o r → ’ an t i que ’ ’ white ’ | ’ magenta ’ | ’ maroon ’ |
’ s l a t e ’ ’ gray ’ | ’ whi te ’ | ’ y e l l ow ’ | . . .

a d j e c t i v e a f f o r d a n c e → ’ a c t a b l e ’ | ’ addab le ’ | ’ a d d r e s s a b l e ’ | ’ d e l i v e r a b l e ’ |
’ d e s t r o y a b l e ’ | ’ d i v i d a b l e ’ | ’ movable ’ | . . .

a d j e c t i v e s i z e → a d j e c t i v e o v e r a l l s i z e | a d j e c t i v e r e l a t i v e p e r d i m e n s i o n s i z e

a d j e c t i v e o v e r a l l s i z e → ’ average−s i z e d ’ | ’ huge ’ | ’ l a r g e ’ | ’ smal l ’ | ’ t iny ’
a d j e c t i v e r e l a t i v e p e r d i m e n s i o n s i z e → ’ deep ’ | ’ narrow ’ | ’ sha l l ow ’ |

’ shor t ’ | ’ t a l l ’ | ’ wide ’

a d j e c t i v e m a s s → ’ heavy ’ | ’ l i g h t ’ | ’ moderate ly ’ ’ heavy ’ | ’ moderate ly ’ ’ l i g h t ’ |
’ s l i g h t l y ’ ’ heavy ’ | ’ very ’ ’ heavy ’ | ’ very ’ ’ l i g h t ’

a d j e c t i v e s t a t e → ’ c l o s e d ’ | ’ opened ’
a d j e c t i v e o t h e r → ’ t e x t u r e d ’ | ’ t ransparen t ’

1
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2 Size of the CFG language space

From the CFG used in the experiment, it is possible to extract a total of 15,396 distinct
grammar rules, some are shown below. However, for simplicity, we defined only 4, related to
the number of adjectives in it. In the case of the unbiased dataset, those rules can produce
a total of 9.81e+18 unique sentences. The total number of unique sentences for the biased
dataset is expected to be an order of magnitude smaller.

[ qword , p r e p m a t e r i a l , determiner , a d j s t a t e , ’ and ’ , a d j o t h e r , noun roomtype , ’ ? ’ ]
[ qword , p r e p s p a t i a l , determiner , a d j o t h e r , a d j s t a t e , a d j s t a t e , noun ob jec t , ’ ? ’ ]
[ qword , determiner , a d j o t h e r , ’ , ’ , adj mass , ’ and ’ , a d j a f f o r d a n c e , noun roomtype , ’ ? ’ ]
[ qword , determiner , a d j r e l a t i v e p e r d i m e n s i o n s i z e , a d j o v e r a l l s i z e , noun ob jec t , ’ ? ’ ]
[ qword , determiner , a d j o v e r a l l s i z e , ’ , ’ , a d j s t a t e , ’ and ’ , a d j s t a t e , noun mater ia l , ’ ? ’ ]
[ qword , p r e p s p a t i a l , determiner , a d j o t h e r , adj mass , a d j a f f o r d a n c e , noun mater ia l , ’ ? ’ ]
[ qword , a d j s t a t e , ’ and ’ , a d j r e l a t i v e s i z e , ’ ? ’ ]
[ qword , p r e p m a t e r i a l , determiner , adj mass , a d j o t h e r , a d j o t h e r , noun mater ia l , ’ ? ’ ]
[ qword , p r e p s p a t i a l , determiner , a d j s t a t e , a d j o t h e r , a d j c o l o r , noun ob jec t , ’ ? ’ ]
[ qword , determiner , a d j r e l a t i v e s i z e , ’ and ’ , a d j o v e r a l l s i z e , noun mater ia l , ’ ? ’ ]
[ qword , determiner , a d j s t a t e , a d j o v e r a l l s i z e , a d j o t h e r , noun roomtype , ’ ? ’ ]
[ qword , determiner , a d j o t h e r , a d j s t a t e , adj mass , noun mater ia l , ’ ? ’ ]
[ qword , determiner , a d j o v e r a l l s i z e , ’ and ’ , a d j o t h e r , noun mater ia l , ’ ? ’ ]
[ qword , determiner , a d j c o l o r , a d j o t h e r , noun ob jec t , ’ ? ’ ]
[ qword , p r e p s p a t i a l r e l , determiner , adj mass , a d j c o l o r , noun roomtype , ’ ? ’ ]
[ qword , determiner , a d j s t a t e , ’ and ’ , a d j r e l a t i v e s i z e , noun ob jec t , ’ ? ’ ]
[ qword , determiner , a d j c o l o r , a d j c o l o r , a d j r e l a t i v e s i z e , noun mater ia l , ’ ? ’ ]
[ qword , determiner , a d j a f f o r d a n c e , noun ob jec t , ’ ? ’ ]
[ qword , determiner , a d j o t h e r , a d j o t h e r , a d j s t a t e , noun roomtype , ’ ? ’ ]

3 Example of sentences generated from the CFG

3.1 Biased sample sentences

• is it large, light yellow and light ?

• is it white, deep pink and average-sized ?

• is it a light, huge and shallow laminate ?

• is the object average-sized and light ?

• is the object fashionable, ghost white and pale turquoise ?

• is the thing huge, huge and khaki ?

• is the thing small, ignitable and very light ?

• is the object a notable very light orange carpet ?

• is the object this small wood made of facing stone ?

• is the object a textured and combinable floor cover made of laminate ?

3.2 Unbiased sample sentences

• is the object the huge tiny lovable guest room ?

• is the object the closed closed transparent textile ?

• is the thing a transparent, narrow and slightly heavy textile ?

• is it steerable, dark orange and light ?

• is it gray, very heavy and textured ?

• is it closed, heavy and moderately light ?

• is it transparent, transformable and moderately light ?

• is the thing average-sized and dark red ?

• is the thing large and deep garage ?

• is it that slightly heavy stucco made of grass ?
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4 CFG Vocabulary

Annotation Nb. of classes Example of classes
Noun 86 air conditioner, mirror, window, door, piano
WordNet category (Miller, 1995) 580 instrument, living thing, furniture, decoration
Location 24 kitchen, bedroom, bathroom, office, hallway, garage
Color 139 red, royal blue, dark gray, sea shell
Color property 2 transparent, textured
Material 15 wood, textile, leather, carpet, decoration stone
Overall mass 7 light, moderately light, heavy, very heavy
Overall size 4 tiny, small, large, huge
Category-relative size 10 tiny, small, large, huge, short, shallow, narrow, wide
State 2 opened, closed
Acoustical capability 3 sound, speech, music
Affordance 100 attach, bend, divide, play, shake, stretch, wear

Table S1: Description of vocabulary used.

5 Use of latent space

In figure S1, each dot represents a sentence in the latent space. In the first row the dot in the
latent space is passed as input to the decoder, while in the second and third row the dot is
the output of the encoder when the biased test sentence is fed at its input. Two random axis
in Rd are chosen for the generator, first row, while two axis were chosen subjectively among
the first components of a PCA for the encoder, second and third row. In every case, the
values in the latent space where normalized between zero and one to ease the visualization.
Lines are used to ease the visualization of the clusters of data with their label, since the
point clouds overlap and are hard to see. The curves are constructed as concave hulls of
the dots based on their Delaunay triangulation, a method called alpha shapes Edelsbrunner
et al. (1983).

We can see in figure S1 (first row) how easy it is to find grammatical sentences when
randomly sampling the latent space for each model. AriEL practically only generates gram-
matical sentences and AE and VAE perform reasonably well too, while Transformer fails.
AriEL failures are plot on top, to remark how few they are, while AE, VAE and Transformer
failures are plot at the bottom, otherwise they would hide the rest given how numerous they
are. In the same figure (rows two and three) we can observe how different methods structure
the input in the latent space, each with prototypical clusters. The Transformer presents an
interesting structure of clusters whose purpose remains unclear. Interestingly, the encoding
maps seem to be more organized than the decoding ones. All the models seem to cluster
data belonging to different classes at the encoding, that could be taken advantage of by a
learning agent placed in the latent space. However it seems hard to use the Transformer as
a generator module for an agent. The good performance of AriEL is a consequence of the
fact that all the latent space is utilized, and in no directions large gaps can be observed.
This can be seen in the two encoding rows, where the white spaces around the cloud of dots
are consequence of the rotation performed by the PCA, otherwise all the space between 0
and 1 would be utilized by AriEL.
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Figure S1: Random-sampling-based generation in the first row, and encoding
of input sentences in the remaining rows. A sentence is represented by a point in
the latent space. First row shows the proportion of grammatically correct sentences that
can be decoded by random uniform sampling the latent space. AriEL sampled almost
only grammatical sentences (ungrammatical are so few that are placed on top in the plot).
Transformer mainly yielded ungrammatical sentences, while AE and VAE were able to
produce many grammatical sentences (ungrammatical are below, otherwise they would cover
up the grammatical). Each dot is labeled according to how many adjectives the sentence
generated has. Second and third rows show the clusters of points in the latent space for the
test sentences as they are mapped by the encoders. All models seem to shift the clusters
to some degree according to the number of adjectives in the sentence, in the second row. A
similar conclusion applies to the third row, that shows where sentences of different length
are encoded. For all panels, we searched subjectively for the dimensions that would better
reveal some clustering, with the help of PCA. We scaled all latent representations between
[0,1] for visualization.
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6 Visualization of performance on toy data
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Figure S2: Radar Chart of the Quantitative Assessment. Latent space of R16 on
the left and R512 on the right. Training was performed on biased sentences. The metrics
are defined in Methodology: Generalization is measured by prediction accuracy of unbiased
sentences (PAU), Prediction by prediction accuracy of biased sentences (PAB), grammar
accuracy (GA) and bias accuracy (BA) and Generation by uniqueness (U), validity (V),
vocabulary coverage (VC) and grammar coverage (GC). AriEL excels in all the 8 metrics.
Most importantly AriEL outperforms every other method in Generation Validity (V) and it
doesn’t require a large latent space to do so (R16 similar to R512). VAE performs remarkably
well at generating unique and grammatical sentences (validity, V) when the latent space is
small (R16), probably given the volume-code nature of the method. Transformer performs
exceptionally at not overfitting in the reconstruction tasks and generalizing, it manages to
cover all grammar rules, even with a very small number of parameters (R16). Transformer
proved to be an inefficient generator using random sampling as input (validity) but improved
with a larger latent space. For a larger latent space of R512, AE and VAE overfit less (PAU
and PAB) and improve their Generation (V).

7 Training details

We go through the training data 10 times, in mini-batches of 256 sentences. We applied
teacher forcing (Williams and Zipser, 1989) during training. We use the Adam (Kingma
and Ba, 2015) optimizer with a learning rate of 1e-3 and gradient clipping at 0.5 magni-
tude. Learning rate was reduced by a factor of 0.2 if the loss function didn’t decrease within
5 epochs, with a minimum learning rate of 1e-5. For all RNN-based embeddings, kernel
weights used the Xavier uniform initialization (Glorot and Bengio, 2010), while recurrent
weights used random orthogonal matrix initialization (Saxe et al., 2014). Biases are initial-
ized to zero. Embeddings layers are initialized with a uniform distribution between [-1, 1].
For Transformer the multihead attention matrices and the feedforward module matrices,
used the Xavier uniform initialization (Glorot and Bengio, 2010), the beta of the layer nor-
malization uses zeros, and its gamma uses ones for initialization. AE and VAE are trained
with a word dropout of 0.25 at the input, and VAE is trained with KL loss annealing that
moves the weight of the KL loss from zero to one during the 7th epoch, similarly to the
original work (Bowman et al., 2016). Our code is in TensorFlow (Abadi et al., 2015). We run
our experiments on an NVIDIA TITAN Xp and an NVIDIA Tesla K40c. Each experiment
took less than one day to converge.

8 AriEL is an explicit volume code proof

AriEL uses a bounded region of Rd, the interval [0, 1]d, so encoder and decoder map each
input to and from a compact set. Moreover, any sequence x is assigned to a hyper-rectangle
(Johnson, 2018) and back. Since hyper-rectangles cannot be divided into two disjoint non-
empty closed sets, they are connected (Munkres, 2018). Therefore AriEL is a volume code.
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AriEL is an explicit volume code since its LM is trained only on a next word prediction log-
likelihood loss, without a regularization term that encourages smoothness, and the volumes
are constructed by arranging the softmax outputs into a d dimensional grid, operation
performed with any choice of loss or optimizer.

9 More Sentences from the Qualitative Study

Input Sentences
is the thing this linen carpet made of tile ?
is it huge and teal ?
is the thing transparent , huge and slightly heavy ?
is the object antique white , tiny and closed ?
AriEL
is the thing this lime carpet made of tile ?
is it huge and teachable ?
is the thing transparent , huge and slightly heavy ?
is the object antique white , tiny and closed ?
Transformer
is the thing this stretchable carpet made of tile ?
is it huge and magenta ?
is the thing transparent , huge and slightly heavy ?
is the object antique white , tiny and closed ?
AE
is the thing this small toilet made of laminate ?
is it this average-sized and average-sized laminate ?
is the thing very heavy , heavy and very heavy ?
is the object light pink , small and textured ?
VAE
is the thing a small and textured deep stone ?
is it the light deep bedroom ?
is the thing textured , textured and moderately heavy ?
is the thing light , moderately heavy and light green ?

Table S2: Generalization: next word
prediction of unbiased sentences at
test time. An unbiased sentence is encoded
and decoded by each model. Color means
that the word was incorrectly reconstructed.
Blue means that the sentence complies with
the bias and purple means that the incor-
rect reconstruction is still unbiased. Most
reconstructions seem grammatically correct.
In practice AriEL also made errors. Some
of its failed reconstructions comply with the
training bias, some do not. Transformer per-
forms remarkably well, and interestingly the
errors made tend to turn the unbiased input
sentence into a biased version at the output.
AE produced only biased sentences whose
structure resembled the unbiased ones. VAE
behaved similarly, producing more unbiased
sentences.

AriEL
is the object that tiny very light set ?
is the thing a tiny destroyable abstraction ?
is the thing this mint cream textured organic structure ?
is the object this small large wearable textile ?
Transformer
is the thing slightly heavy heavy stone squeezable
closed sea heavy ?
is it pale lime executable executable shallow decoration
drab turquoise , heavy and potang ?
is it an tomato slot box made of decoration facing stone ?
is the thing short and spring heavy slightly heavy potang ?
AE
is the object that light light laminate ?
is the thing a light , small and small laminate ?
is the thing that tiny small decoration stone ?
is the object the average-sized , textured and
average-sized laminate ?
VAE
is the thing a light and deep office ?
is it light , light and light and pink ?
is the object dark , light and pink ?
is the object a light deep living room ?

Table S3: Generation: output of the
decoder when sampled uniformly in
the latent space. Red defines grammat-
ically incorrect generations according to the
CFG the models are trained on. AriEL pro-
duces an extremely varied set of grammati-
cally correct sentences, most of which keep
the bias of the training set. Transformer re-
veals itself to be hard to control via random
sampling of the latent space, since it almost
never produces correct sentences with this
method. AE and VAE manage to produce
several different sentences, the latter pro-
ducing more non grammatical, but as well
more varied grammatical ones.
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10 find operation

The find operation defines within which bounds the latent vector is pointing at, and therefore
what is the next word selected by AriEL. This operation is performed every time an axis di
is selected. We define it with an argmax operation at the end, but other solutions can be
defined. To give it a pseudonim we call it DetRoulette, from Deterministic Roulette.

Algorithm 2 find operation

Input: bounds on axis di: Bslow(s), Bsup(s) ; value of latent space on di: z(di)
Output: si is the word z was pointing at,

1: function finds(Bslow(s) < z(di) < Bsup(s))
2: a(s) = Bsup(s)− z(di)
3: b(s) = Bslow(s)− z(di)
4: logits(s) = −a(s) · b(s)
5: si = argmaxs(logits(s))
6: return si
7: end function

s1 s2 s3 s4 s5

z(di)

Figure S3: The latent space z does not necessarily point at the most likely word. Here the
find function would return word s4, the least likely. The bounds define the limits of the
different blue areas.
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11 Samples from AriEL with GPT-2 as Language Model

d = 10

He must\’ve been very clear that the missive was a sign of trouble since the MTA
was lukewarm on keeping maintenance intact. ”It only takes a few seconds for
you to walk through the lines and see the notice,” Kris Johnson, who worked
on the 14th Street Bus line in January, said of the notice. ”But we don\’t hire
people that don\’t want to work as long as they work.”\n\nHow many times
have you seen ”Why $15 is $15

Dear Reader, As you can imagine, more people are reading The Jerusalem Post
than ever before. Nevertheless, traditional business models are no longer sus-
tainable and high-quality publications, like ours, are being forced to look for
new ways to keep going. Unlike many other news organizations, we have not
put up a paywall. We want to keep our journalism open and accessible and be
able to keep providing you with news and analyses from the frontlines of Israel,
the Middle East and the Jewish World.\n
d = 50

Melrose Creek is slated for redevelopment in where hundreds of 150-odd resi-
dents live in the effort to develop a pedestrian-friendly and quieter downtown
in a neighborhood that has been a struggling housing market for their entire
lives.\n\nAfter decades of straddling one of the most culturally open places in
San Francisco, Melrose Creek’s market-driven nature has resulted in popular
zoning problems—including a seismic event lifting off of a tent park and opulent
vistas sunbathed against the bicycle-friendly

Light Air Rating/Bearing Temperature. Can Handle Winds from Down (1 to
15 ft/min. - 30 It should be able to raise to about 53 mph, 35 mph = 24% duty
on stiff and T-shielded loads). Can Handle Medium Dry conditions and Good
Condition\n\n\nHybrid Extra Performance.” Two Driven In Woofer Lighting
Stations! 1967-1992\n\n\nAlso applicable to the best gasket material available.
No Gasket Limit forlyst glass.\n\n\n
d = 100

In the last three years, items were being traded around the world for less in
bitcoin. Reuters estimates that its stock price dropped 19%.\n\nYesterday,
China has kind of happened. On Yahoo Finance, Rory Schrimpf wrote (”A
good amount of Chinese billionaires are planning formal plans for a market of
bitcoin for a fund,” his Twitter feed says). The gist itself looks like this:\n\nA
”bitcoin meeting” that can potentially all but guarantee big deals in bitcoin
might come down to ”

Even though the story wants to be understood, many people who have expe-
rienced hardfought battles of adversity are still going to think that what they
experienced in the Battle of Telluride will help define their narratives in a way
which will bring this story to the public’s attention and invite new dialogue and
reconciliation, news organisations have widely concluded that dreams of revolu-
tion come easy to ordinary people who make difficult choices. What we often
forget is that urbanisation has devastating dams, fragmentation, and denial of
services and employment

Table S4: AriEL samples using GPT-2 as Language Model. Even for a large language
model such the small GPT-2, which has 117M parameters, and over 50K subwords vocab-
ulary, AriEL folding resulted in high quality samples for a wide range of latent dimensions.
Here the samples are 100 subword symbols long. This proves the float 32 representation
constraint does not represent a limitation at least up to this limit.
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12 Samples from AriEL trained on GuessWhat?!

16 512
AriEL is it silver ? bowel in white colour ?

is it the trash can ? is it the steel top in white ?
look like food ? is it in left ?

Transformer foreground am exactly exactly by
left same cat dog by

does it the taller ?

bed about bike base base us on ’
electricity poster clothing a clothing
clothing clothing clothing clothing
clothing clothing clothing ?

is it she is ?

trees stoplight ground ground bird
side bikes ?

is it that directly ?

AE a person ? is it a left side ?
the table ? are they in the left side ?
is it in the ? a person ?

VAE is the one one of us ? something it to white right side ?
the person on a person a ? all a person , blue right ?
are they in the left of the left side
of the ?

all white blue one of front , ?

Table S5: AriEL samples training the Language Model on the real dataset Guess-
What?!. Most samples created through AriEL seem easily interpretable if not fully gram-
matically correct. Transformer appears to be very difficult to sample from the latent space,
and it produces very poor language for d = 16, and more reasonable even though hardly
interpretable for d = 512. AE and VAE seem to produce more reasonable sentences, still
often hardly interpretable, and less diverse than AriEL.
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