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Abstract

Large language models (LLMs) can be
prompted to express their confidence in an-
swers to a given query, referred to as verbal-
ized confidence, to help users assess trustwor-
thiness. However, its poor calibration with fac-
tual accuracy raises questions about whether
it can be trusted. To address this, we formu-
late a set of test metrics to evaluate verbalized
confidence across a large span of LLMs along
three dimensions: Consistency—how stable the
confidence is across diverse prompts eliciting
confidence in different formats, e.g., numerical
scales; Fidelity—is the model faithful to its own
answers, e.g., more confident about them than
about counterfactual answers; Reliability—how
well the stated confidence aligns with the an-
swer correctness. Our findings reveal that GPT-
40, which provides the most consistent and re-
liable confidence, performs sub-optimally on
fidelity compared to smaller models. Further-
more, all LLMs are generally most confident
about their original answers, even compared
to higher-quality gold responses. Reliability
is highly sensitive to the prompt format and
the chosen calibration metric. Thus, we con-
clude that each evaluation dimension captures
a distinct aspect of model trustworthiness. !

1 Introduction

Large Language Models (LLMs) are increasingly
effective at answering fact-based questions across
domains such as medicine, law, and education
(Algahtani et al., 2023; Alfertshofer et al., 2024;
Xiao et al., 2025). In these high-stakes settings,
verbalized confidence (Kadavath et al., 2023; Tian
et al., 2023; Chen and Mueller, 2024), i.e., explicit
expressions of how certain a model is about its
answer, can improve user trust and support bet-
ter human-Al interactions (Kadavath et al., 2022;
Zhang et al., 2024).

!Code is available at https://anonymous.4open.
science/r/evaluation_of_confidence-34AC

Yet, despite its growing use, the trustworthiness
of verbalized confidence remains an open question.
Prior studies have found that these expressions
are often poorly aligned with actual correctness
(Groot and Valdenegro Toro, 2024; Ni et al., 2025),
and sensitive to prompt design and dataset varia-
tions (Xiong et al., 2024; Xia et al., 2025). How-
ever, these works primarily highlight specific limi-
tations without offering a systematic understanding
of when and why LLMs’ confidence can be trusted.

For a more comprehensive investigation, this
work designs a novel evaluation setting to study the
consistency, fidelity, and reliability of verbalized
confidence in LLMs (Fig. 1). Consistency mea-
sures if an LLM expresses similar greedy-encoded
confidence for the same answer when prompted
differently. For example, the model is considered
inconsistent if it outputs different confidence with
“Provide the probability” and ‘“Provide the confi-
dence” prompts. We use the standard deviation
to quantify the confidence consistency. Fidelity
investigates how faithful LLMs are to their own
answers compared to alternatives such as target,
counterfactual and abstain (e.g., “I don’t know”)
responses. For example, one would expect a faith-
ful LLM to decrease confidence when its original
answer “Berlin” is replaced with a counterfactual
answer “1950” for the query “what’s the capital of
Germany?”. We quantify fidelity by the frequency
with which LLMs assign higher confidence to their
own answers than to the counterfactual ones. Relia-
bility evaluates how well the expressed confidence
aligns with actual answer correctness across diverse
prompts. Four established calibration metrics (e.g.,
Brier Score (Brier, 1950), ECE (Guo et al., 2017))
are used to represent this quality.

Using these three test settings, we evaluate the
confidences elicited from 13 LLMs in five model
families (GPT, Mistral, Llama, Qwen, OLMo) on
five question answering datasets and ten prompting
strategies. We summarize our main findings as
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Figure 1: The design of our novel test metrics to assess LLM confidence. We evaluate consistency through the
standard deviation (SD) of confidence scores elicited by various prompts (a lower SD indicates higher consistency).
Fidelity checks the confidence rank of the LLM’s original answer and alternative answers; a faithful LLM is expected
to assign a higher confidence to its original answer than the replaced counterfactual answer. We measure reliability
with standard calibration metrics (e.g., Brier score) and the reliability diagram.

follows:

(i) Bigger # (always) better: Confidences
elicited from larger models (e.g., GPT-40) are more
consistent and reliable than those from small mod-
els, but are not necessarily more faithful. For ex-
ample, Qwen-14B outperforms GPT-4o in fidelity.

(ii) Prompt format matters: Prompts with only
the change of numerical scales or lexical words
(stemming from ‘“confidence”) elicit more con-
sistent and faithful confidence than prompts that
contain linguistic expressions (e.g., “Unlikely”)
or reversed-scale (‘0 indicates high confidence”).
Meanwhile, reliability depends strongly on both
prompt format and the chosen calibration metric,
e.g., reversed-scale prompts improve reliability
only for small models.

(iii) Bias toward own outputs: All models give
the highest average confidence to their original an-
swers—even compared to replacing them with the
target ground-truth. However, their confidences
in other alternative responses vary widely: some
models (e.g., OLMo) even elicit high confidence
(>0.5) for counterfactual answers.

(iv) Model family differences: OLMo models
show lower consistency and fidelity overall. In
contrast, Qwen models are more consistent and
faithful but less reliable. While post-training
improves consistency for OLMo, it does not
reliably improve the other two metrics.

These results show that even state-of-the-art lan-
guage models struggle to provide verbalized con-
fidences that are fully consistent, faithful, and re-

liable. Our proposed novel test suite provides a
rigorous, multi-dimensional evaluation of LLM
confidence estimation—assessing not just calibra-
tion, but also how consistently and faithfully mod-
els express certainty across diverse prompt types;
our evaluation attributes are also general and can
be applied to other types of confidence estimation
methods in the future. Based on our comprehensive
analysis, we recommend not using prompts with
linguistic expressions and reversed scales as a prac-
tical way to generate more consistent and faithful
verbalized confidence. Furthermore, this compre-
hensive perspective of trustworthiness is essential
for developing LLMs that users can genuinely trust.

2 Related Work

Verbalized confidence in LLMs (Kadavath et al.,
2022; Tian et al., 2023; Chen et al., 2024) has
emerged as a promising interface for improving
user trust and interpretability. However, recent
work (Groot and Valdenegro Toro, 2024; Ni et al.,
2025; Zhou et al., 2024) shows that verbalized con-
fidence is often overconfident and poorly calibrated
with factual correctness, indicating a need for more
thorough analysis of its trustworthiness. However,
Tian et al. (2023); Xiong et al. (2024); Geng et al.
(2024a) solely focus on evaluating the calibration
of confidence estimation. In contrast, we propose
a comprehensive multi-dimensional test to assess
consistency, fidelity, and reliability.

Consistency in LLM generation is often used
to quantify the uncertainty of LLMs (Wang et al.,
2023) by prompting the model multiple times for



the same input with a loose temperature (Kuhn
et al., 2023; Xiong et al., 2024; Chen and Mueller,
2024). The certainty is calculated based on the
frequency of different outputs. However, our test
assesses the consistency of greedy-encoded con-
fidence scores elicited by diverse prompts. Con-
sistency measures the stability of all scores rather
than the frequency of individual scores. Fidelity
defined in Zhang et al. (2024) is under a multiple-
choice setting and assessing an LLM’s fidelity by
checking if the LLM continues to select the same
choice even when the content of the choice is re-
placed with “All other options are wrong”. Their
fidelity is used to improve confidence calibration.
Differently, our paper evaluates the fidelity of con-
fidence in an open-ended QA setting and examines
specific confidence ranks between LLMs’ original
answers and substituted answers, e.g., counterfac-
tual answers. Reliability of confidence is often
measured by its calibration with correctness (Guo
et al., 2017; Zhu et al., 2023; Huang et al., 2024;
Geng et al., 2024b). Following previous work, we
integrate four classic calibration metrics in our test.
However, our test considers prompt sensitivity of
LLMs (Zhuo et al., 2024; Errica et al., 2025; Xia
et al., 2025) and therefore designed novel prompt
strategies such as scaling confidence scores or re-
versing the scale. Such out-of-distribution prompts
have never been explored in reliability evaluations.
Our test brings additional insights on the sensitivity
of calibration evaluation to new prompt structures.

3 Methodology

We investigate whether verbalized confidences of
LLMs are trustworthy and useful for interpreting
model responses based on three qualities: consis-
tency, faithfulness, and reliability. To answer this,
we first surface model confidence via a two-stage
prompting strategy. The first-stage prompt requests
the LLM to provide an answer to the input question,
while the second-stage prompt elicits verbalized
confidence regarding the generated answer from
the LLM. Fig. 1 illustrates our approach, including
the prompt design and the evaluation process.

3.1 Consistency of Confidence across Prompts

To ensure a robust consistency evaluation, we de-
sign ten variations of the second-stage prompt to
elicit verbalized confidences from the LLM (full
prompts are shown in Table 4 in Appendix). These
prompts are categorized into four distinct types:

Scale variants. This category investigates
whether LLMs can express consistent confidence
scores using different numerical scales. We employ
three prompts to ask probability in (1) O to 1 scale
P()), (2) 0% to 100% scale (P(%)), and (3) O to
10 scale (P(10)). A consistent LLM should provide
confidence of 90% and 9 for P(%) and P(10) if its
confidence for P(1) is 0.9.

Lexical variants. We use three prompts that are
semantically equivalent but vary in the lexical key
term used to elicit a numerical score between 0 and
1: (1)“probability” (P(1)), (2) “certainty” (CT(1)),
and (3) “confidence” (CF(1)). This allows us to
assess whether models treat these interchangeable
terms consistently when quantifying their confi-
dence with the same score across prompts.

Linguistic expressions. Following Tian et al.
(2023), we include the same prompt for LLMs to
express certainty within a list of 13 pre-defined lin-
guistic expressions (L.) from “Almost No Chance”
to “Almost certain”. We also extend the prompt
by converting the expression list into a multiple-
choice format, assigning a unique alphabetical la-
bel to each expression (L. MC) such as “a: Almost
No Chance”. This evaluates whether the model
consistently maps linguistic expressions to their
corresponding choices. A consistent LLM should
select the choice “a” for the L. MC prompt if it
answers “Almost No Chance” for the L. prompt.
Those selected expressions are converted to numer-
ical scores according to rules in Appendix A.1.

Reversed scales. To evaluate whether the LLM
can flexibly adapt to alternate representations of
confidence, we reverse the orientation of the nu-
merical confidence scales such that a score of 0
now indicates the highest confidence, and higher
values represent lower confidence. We replicate the
three scales from the scale category, resulting in
three reverse prompts: RP(1), RP(%), and RP(10).
We expect an LLM to perform relatively complex
in-context reasoning here to generate a consistent
confidence, even though these prompts are highly
likely out of distribution for the training data.

Confidence scores generated by using different
prompts are then normalized to the same scale (0-1)
for comparison and analysis.

3.1.1 Consistency Evaluation

We use the mean standard deviation (MSD, |) to
quantify consistency. MSD first gets the standard
deviation of confidence scores provided by prompts
for each data sample and then takes the mean value



of all samples. The formula for calculating the
consistency in a group of k£ prompts over n data
samples is:

n k

MSD:%Z ﬁZ(Cij—@)Q (D

i=1 j=1

Where ¢;; denotes the confidence for the data sam-
ple ¢ generated using the j-th prompt. Additionally,
we measure the confidence correlation strength be-
tween prompt pairs using pearson correlation co-
efficient.

3.2 Fidelity of Confidence

We assess the fidelity of confidence scores by ana-
lyzing how confidence shifts under controlled per-
turbations to their original generated answer. This
setting tests an LLLM’s confidence sensitivity to
changes in the response and evaluates whether the
LLM can generate reasonable confidence estimates
across answers of varying correctness. We consider
four experimental settings:

Original: The LLM is queried for its confidence
in its original (unmodified) answer. This is the de-
fault setting for verbalized confidence evaluations.
Target: We replace the LLM’s original answer
with the target (ground-truth) answer and measure
the confidence assigned to this revised response.
Abstain: We replace the original answer with an
explicit abstention (“I don’t know the answer”) and
record the corresponding confidence score. Coun-
terfactual: The original answer is replaced with
a randomly sampled, incorrect response from the
same dataset. We then measure the LLM’s confi-
dence in this counterfactual answer.

3.2.1 Fidelity Evaluation

The confidence rank of the original and replaced an-
swers is accessed by their mean confidence across
all data samples. We expect that a faithful LLM
should rank its original answer’s confidence higher
than that of a counterfactual answer. Therefore,
we defined Fidelity rate (F, 1) that measures the
percentage of samples where the confidence of the
original answers is higher than that of counterfac-
tual answers, formally:
1 n
F=- D o1 > ) )
i=0
Where ¢f; and ¢j; denote the confidence of
original and counterfactual answers using the j-th
prompt on data sample 3.

3.3 Reliability of Confidence

Reliability of the LLM confidence measures how
well-calibrated it is with the correctness of the as-
sociated answer (Guo et al., 2017). A reliable LLM
should offer confidence aligned with the correct-
ness of its outputs. For assessing the correctness
of an open-ended answer given by an LLM, we
follow Xia et al. (2025) to employ a Judge model,
Prometheus-8x7b-v2.0 (Kim et al., 2024), to decide
the semantic equivalence between the generated an-
swer and the target answer.

3.3.1 Reliability Evaluation

We utilize four classic calibration metrics used in
Ulmer et al. (2024) to evaluate confidence reliabil-
ity, which are the Brier score (Brier, 1950), ECE
(Guo et al., 2017), SMECE (Btasiok and Nakkiran,
2024) and AUROC. We report the Brier results in
the main papers and others in Appendix A.6.

Brier (|). An LLM achieves a low calibration
Brier score if ¢; accurately reflects the reliability
of the generated answer a;, which is the binary
correctness 1(a;). Specifically, for all n generated
answers, the Brier score is the average squared
error between all predicted confidence and the cor-
rectness of these answers:

n

oy — 1 1))
Bmer—ﬁZ(cZ 1(a;)) 3)

=1

Reliability diagram. This diagram is a visualiza-
tion that compares an LLM’s confidence with its
actual accuracy. All confidence scores are grouped
into confidence bins, and for each bin, the average
confidence is plotted against the observed accuracy.
A perfectly calibrated LLM will have points that
lie on the diagonal, when accuracy matches the
confidence.

4 Experimental Setup

Our experiments are conducted on an aggregation
of five question answering datasets and 13 LLMs
across different model families, sizes, and post-
training schemes. We apply greedy decoding to
all LLMs across experiments to ensure consistent
generated outputs.

Datasets. We perform our confidence verbal-
ization experiments on a combined dataset of five
open-ended question-answering benchmarks cover-
ing diverse topics. It includes 1,000 randomly sam-
pled examples each from Natural Questions (NQ)
(Kwiatkowski et al., 2019), SciQ (Johannes Welbl,



2017), Trivial QA (Joshi et al., 2017), and PopQA
(Mallen et al., 2023), along with the full Truth-
fulQA (Lin et al., 2022) set (817 examples), total-
ing 4,817 questions.

LLMs. We consider 13 LLMs from five model
families: (1). GPT (OpenAl, 2024): GPT-40
(GPT-40-2014-11-20) ; (2). Mistral (Mistral
Al, 2024): Mistral-123B (Mistral-Large-Instruct-
2411); (3). Llama (Meta Al, 2024): Llama-
70B (Llama-3.3-70B-Instruct); (4). Qwen models
across different model sizes (Yang et al., 2024):
Qwen-72B&-32B&-14B (Qwen2.5-72B&-32B&-
14B-Instruct); (5). OLMo models across different
sizes and post-training schemes (Team OLMo et al.,
2024): OLMo02-32B&13B&7B (OLMo-2-0325-
32B-Instruct, OLMo-2-1124-13B&7B-Instruct),
OLMo-13B-SFT&DPO (OLMo-2-1124-13B-sft&-
dpo), OLMo-7B-SFT&DPO (OLMo-2-1124-7B-
sft&-dpo).

Consistency Fidelity

e i,

Reliability

1 - Brier

B GPT-40 @ Qwen-72B B OLMo-32B INS
I Mistral-123B O Qwen-32B @O OLMo-13B INS
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(a) Mean fidelity and reliability of all instruction models over
all prompts. Consistency is measured on all prompts (same
values as the All column in Table 1).

Consistency

Fidelity Reliability

1 - Brier

B Scale variants
B Lexical variants

[0 Linguistic expressions
I Reversed scales

(b) Prompt formatting matters: Mean influences of prompt
types on fidelity and reliability evaluation and further aver-
aged over all instruction models. Consistency is measured on
prompts in each type and averaged over all instruction models.

Figure 2: Overview of the main evaluation results.

5 Results and Analysis

We summarize the overall results in Fig. 2. The
upper figure shows that GPT-40, which performs
the best in consistency and reliability, falls short in
fidelity. The lower figure demonstrates that prompt
formatting can impact the evaluation, e.g., using
scale-reversed prompts can decrease LLMs’ consis-
tency and fidelity. We analyze more detailed results
in the following sections.

Model Sca. Lex. Lin. Rev. All

GPT-40
Mistral-123B
Llama-70B
Qwen-72B
Qwen-32B
Qwen-14B
OLMo-32B INS
OLMo-13B INS
OLMo-13B DPO

0.456 0.342

0.344

OLMo-13B SFT 0.356
OLMo-7B INS 0.387
OLMo-7B DPO 0.380
OLMo-7B SFT 0.381
Avg. 0.258
Table 1: Consistency results measured with MSD

({, mean standard deviation) across all prompts and
prompts in scale variants (Sca.), lexical variants (Lex.) ,
linguistic expressions (Lin.) and reversed scales (Rev.)
categories. A darker color indicates better consistency
performance.

5.1 How Consistent are LLMs’ Confidence
across Prompts?

Table 1 presents an overview of confidence consis-
tency evaluated with different prompting format-
ting. We also examine the pairwise correlations of
confidences between prompts for individual models
(Fig. 3 is for OLMo models, and other models are
shown by Fig. 7-10 in the Appendix). We found
that larger models maintain higher consistency of
confidence, showing their capability of responding
to complex confidence-eliciting prompts.

LLMs remain consistent with the change of
scales and lexical words in prompts. LL.Ms get
lower MSD scores on prompts with only scale and
lexical changes compared to adding linguistic ex-
pressions or reversed scales. Small models (<=
32B) struggle more in maintaining consistency, es-
pecially with the reversed scale prompts. For ex-
ample, Fig. 3 demonstrates the low correlation
of RP(1) and RP(%) prompts to other prompts on
different sizes of OLMo models.

Larger models are generally more consistent.
The consistency of all models in Table 1 demon-
strates that larger models (>70B parameters) pro-
vide more consistent confidence than smaller mod-
els. Similarly, scores of Qwen models show that
consistency is correlated with model size—larger
models are more consistent. However, this does not
apply to OLMo models, where OLMo-32B INS is
less consistent than both OLMo-13B and -7B mod-
els. We hypothesize that OLMo models can vary
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Figure 3: Consistency: Pearson correlations of prompts in confidence on OLMo models with different sizes.

Model P(1) P(%) P@10) CF(1)

CT(1) L.

L.MC RP(1) RP(%) RP(10) Avg.

GPT-40
Mistral-123B
Llama-70B
Qwen-72B
Qwen-32B
Qwen-14B
OLMo-32B INS | 0.345 0.256 0.360
0.401

0359

0257 0230 0040 0.091 0275

OLMo-13B INS 0.419 0.347 0.044

OLMo-13B DPO | 0.375 0.458 0355 0334 0211 0.117 0.034 0.133 0.096 0.270
OLMo-13B SFT = 0.444 0.041 0372 0.281 0410 0.184 0.303 0.040 0.039 0.002 0.212
OLMo-7B INS 0.160 0.016 0.035 0.071 0.011 = 0.364
OLMo-7B DPO 0245 0.041 0.061 0.070 0.024 = 0.380
OLMo-7B SFT 0245 0.019 0.036 0.048 0.028 = 0.414
Avg. 0461 0.410 0.388 0475

Table 2: Fidelity results measured with F (1, fidelity rate). A darker color indicates better performance.

in performance due to their different post-training
data, which may impact their complex reasoning
capability.

Post-training schemes improve consistency
within each prompt category. The result of
OLMo models shows that post-training schemes
such as DPO (i.e., direct preference optimization)
and RLVR (i.e., reinforcement learning with veri-
fied reward) improve the LLM’s consistency from
the SFT (supervised fine-tuning) models within
each prompt category (e.g., scale variants), but this
trend does not always apply to the consistency over
all prompts.

5.2 How Faithful are LLMs’ Confidence?

Table 2 shows the fidelity scores of all models
using different prompts. We observe that the
SOTA model (GPT-40) displays lower fidelity than
smaller models. Fig. 4, which illustrates the confi-
dence ranks of different substituted answers, shows
that LLMs give the highest average confidence to
their original answer, followed by the target answer.

Prompts with only scale changes elicit faithful
confidences the best. We observe that P(1), P(%)
and P(10) achieve higher fidelity scores than other
prompts. This demonstrates that fidelity is robust
to scale variants in prompts. In contrast, reversed-
scale prompts get the lowest average fidelity score
compared to other prompts. E.g., RP(%) gets the
lowest score and even decreases the score of GPT-
40 by more than 10% from P(1) prompt. Similarly,
the fidelity score of Qwen-14B decreases by 60%
when using RP(%). This indicates that LLMs are
not robust to reverse scale, possibly because such
instruction is not seen in the pre-/post-training.

Fidelity does not correlate with model size.
We find that large models such as GPT-40 get lower
fidelity scores than smaller models like Llama and
Qwen. Similarly, Qwen-32B achieves a better
score than Qwen-72B. We also notice that OLMo
models consistently show lower fidelity scores com-
pared to other model families, regardless of size
or post-training methods. Notably, Qwen-14B
achieves over 50% higher fidelity than OLMo-32B
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Figure 4: Fidelity: (left) The mean confidence of original, target, abstain and counterfactual answers. (Right) The
mean confidence of different abstain answers. Abstain 2 (“I cannot be sure about my answer’””) and Abstain 3
(“That’s out of my current knowledge base”) serve different interpretations of Abstain—T don’t know the answer”.

Model P(1) P(%) P(10) CF1) CT() L. L.MC RP() RP(%) RP(10) Avg.
GPT-40 0411 0422 0387 0409 0411 0401 0403 0448 0383 0.404
Mistral-123B = 0492 0.480 0468 0.510 0.511%_ 0.508 0523 0473 0471
Llama-70B 0422 0412 0380 0418 0431 0400 0400 0442 0462 0422 0419
Qwen-72B 0.550 0530 0423 0.542 0543 0485 0.524 0570 0.566 0487 0.522
Qwen-32B 0.552 0.546 0.478 0.536 0.536 0426 0393 0473 0518 0435 0489
Qwen-14B 0.567 0.547 0471 0.550 0.554 0.446 0.395 0.449
OLMo-32BINS  0.614 0.624 0.625 0.611 0610 0493 0412 0380 0374 0.599 0.534
OLMo-13BINS = 0.549 0.534 0452 0.557 0.583 0.565  0.442
OLMo-13BDPO  0.538 0.517 0441 0.553 0.580 0.383  0.425
OLMo-13B SFT = 0.537 0.629 0.545 0.550 0.584 0.640 ~ 0.479
OLMo-7BINS = 0.573 0.592 0.554 0.688 0.657 0.450
OLMo-7BDPO = 0.561 0.565 0.534 0.692 0.647 0.437
OLMo-7B SFT = 0.520 0.520 0.500 0.677 0.595 0.430
Avg. 0530 0.532 0481 0.561 0.557

Table 3: Reliability results measured with Brier score({). A darker color indicates better performance.

INS. Furthermore, post-training techniques do not
appear to improve fidelity: both OLMo-7B DPO
and INS perform worse than the base OLMo-7B
INS model.

Why LLMs have different confidence ranks
for the abstain answer? Fig. 4 (left) shows that
most LLMs tend to rank the abstain answer lower
than the counterfactual answer. However, the Mis-
tral and Llama models show an opposite trend.
Specifically, Mistral gives a mean confidence of
0.4 to abstain answers, which contrasts with the
confidence below 0.1 given by most other LLMs.
We hypothesize that the abstain answer—*I don’t
know the answer” might be interpreted differently
by LLMs, based on their different training schemes.
For example, it can indicate that LLMs receive un-
certainty about this answer and therefore give a
neutral confidence, or it can be interpreted as a lack
of knowledge about the question and thus imply a
low confidence.

To further explain this, we apply this setting
with two more explicit abstain answers: “I cannot
be sure about the answer” (Abstain 2) and “That’s
outside my current knowledge base” (Abstain 3).
Fig. 4 (right) shows close average confidence of
Abstain and Abstain 3 across models, implying
that “I don’t know the answer” is more likely
interpreted as a lack of knowledge for LLMs.
This potentially explains why most LLMs display
low confidence for the Abstain answer. Meanwhile,
GPT-40 and OLMo models increase by more than
20% of confidence for the Abstain 2 setting, sug-
gesting that model fidelity across answers can be
low even when alternative answers are semantically
equivalent.

5.3 How Reliable are LLMs’ Confidence?

Table 3 presents the calibration Brier scores of
LLMs for all prompts. We observe that all LLMs
demonstrate high Brier scores, which validates that
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Figure 5: Reliability: Reliability diagrams of OLMo-7B INS across all confidence-elicit prompts. A darker bin
color indicates a higher percentage of the data samples falling into the bin.

LLMs struggle to express well-calibrated verbal-
ized confidence (Ni et al., 2025). Results of all
four calibration metrics (the other three metrics are
shown by Table 5-7 in Appendix) show that the
calibration of verbalized confidence highly de-
pends on the prompts and the evaluated metric.
Specifically, large models like GPT-40 and Llama-
70B are relatively more stable with a difference of
around 0.08 across prompts, while smaller mod-
els like Qwen-14B or OLMo-7B, the difference
can reach 0.46. This shows the high risk of get-
ting unreliable confidence when using an inappro-
priate prompt. Besides, the observations are also
impacted by the evaluation metric. For example,
prompts with linguistic expressions and reversed
scales perform better on three calibration metrics,
i.e., ECE and SMECE, but fall short in AUROC
(Table 5, 6, and 7 in Appendix).

Discussion of calibration metrics. We ob-
serve that smaller LLMs, such as OLMo-7B INS,
often achieve lower Brier, ECE, and SMECE
scores when prompted with scale-reversed prompts
(RP). However, these lower scores are largely at-
tributed to the models’ incapability of following
such prompts, leading them to generate dispropor-
tionately low confidence scores (shown by Fig. 5).
Given that small LLMs typically have lower task ac-
curacy than large models, this tendency to produce
low confidence inadvertently improves their cali-
bration. Crucially, this does not imply that smaller
models are better calibrated or that RP prompts
systematically improve calibration. In fact, when
smaller models exhibit higher accuracy on a task,
their calibration scores can degrade under the same
prompts. We also find that Brier, ECE, and SMECE

tend to produce highly correlated results across
models and prompts, yet they often diverge from
AUROC. This discrepancy arises because Brier etc.
emphasize the absolute confidence value, and re-
ward if a low-accuracy model generally gives low
confidence. In contrast, AUROC measures whether
more reliable answers receive higher confidence,
independent of whether the absolute confidence
values correspond to the accuracy.

6 Conclusion

In this paper, we present a comprehensive set of
metrics for evaluating the confidence of LLMs
along three key dimensions: consistency, fidelity,
and reliability. Through a comprehensive analy-
sis of 13 LLMs across five QA datasets and ten
diverse prompting strategies, we find that no state-
of-the-art model excels across all dimensions. This
highlights a fundamental limitation of the existing
one-dimensional evaluation approach, i.e., calibra-
tion metrics, which fail to capture important aspects
of model confidence. For instance, while GPT-40
achieves the highest calibration scores, it under-
performs in fidelity compared to smaller models,
illustrating a disconnect between calibration and
meaningful self-assessment. We also demonstrate
that prompt formatting impacts confidence evalu-
ation and recommend prompts without reversed
scale or linguistic expressions to elicit more consis-
tent and faithful confidence. Finally, our proposed
test metrics are general, making them applicable
to more confidence estimation methods, offering
a foundation for future research into improving
and interpreting confidence estimation in broader
model behaviors.



Limitations

Our paper mainly focuses on evaluating verbal-
ized confidence—that is, confidence explicitly ex-
pressed by language models in natural language
form. While this type of confidence is especially
important for interpretability and human-facing ap-
plications, it represents only one class of confi-
dence estimation methods. Other approaches, such
as logit-based, embedding-based, or Bayesian un-
certainty measures, are also valuable for assessing
model confidence and could offer complementary
insights. Evaluating these alternative methods un-
der similar multi-dimensional criteria (e.g., consis-
tency, fidelity, reliability) would be a promising di-
rection for future work, especially in understanding
how different confidence signals align or diverge
across model architectures and task settings.
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A Appendix
A.1 Prompt Details

Below is a standard prompt template used in our
experiments for prompting LLMs. The second
stage prompt to elicit confidence can be placed
by prompts in Table 4.

User: Answer the question, give ONLY
the answer, no other words or explanation:
[question]

Assistant: [answer]

User: Provide the probability that your an-
swer is correct. Give ONLY the probability
between 0.0 and 1.0, no other words or ex-
planation.

11

For the linguistic prompts, we followed Tian
et al. (2023) to map the linguistic expressions to
numerical scores. The specific mapping are [“Al-
most No Chance”, “Highly Unlikely”, “Chances
are Slight”, “Little Chance”, “Unlikely”, “Probably
Not”, “About Even”, “Better than Even”, “Likely”,
“Probably”, “Very Good Chance”, “Highly Likely”,
’Almost Certain”] to [0.02, 0.05, 0.1, 0.1, 0.2, 0.25,
0.5,0.6,0.7,0.7, 0.8, 0.9, 0.95] according to Fagen-
Ulmschneider (2023).

A.2 Technical Details

We use vVLLM (VLLM Contributors, 2023) library
for LLM inference and serving, the temperature
of all LLMs is set to 0 for greedy-encoding model
outputs. All our experiments are conducted on
NVIDIA HGX HI100, which requires approxi-
mately 200 GPU hours to replicate.

A.3 Accuracy of Models

We present the detailed accuracy of models on each
benchmark dataset in Fig. 6.

A.4 Consistency: prompt confidence
correlation

Similar to Figure 3 in the main paper, the prompt
correlations of other models are shown by Figure
7-10.

A.5 Fidelity: confidence differences and
distribution

Similar to Fig. 4, we investigate more detailed
confidence differences for original right and wrong
answers provided by LLMs. The results are shown
in Fig. 11 and 12. We observe a very similar trend
to the overall confidence difference shown in Fig.
4.

Furthermore, we demonstrate the detailed con-
fidence distribution of all substituted answers of
different models in Fig. 13.

A.6 Reliability: results of more evaluation
metrics and reliability diagram

To provide a robust evaluation of reliability, we
followed (Ulmer et al., 2024) and tested all the
prompts and models with three more calibration
metrics: ECE, SMECE and AUROC. The results
are shown by Table 5, 6 and 7.

We also report the reliability diagrams of all
instruction models in Fig. 14 - 19.
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Figure 6: Accuracy of models on different datasets.

Concept

Prompt Name

Prompt

Numerical
scale

P(1)
P(%)

P(10)

Provide the probability that your answer is correct. Give ONLY the probability
between 0.0 and 1.0, no other words or explanation.

Provide the probability that your answer is correct. Give ONLY the probability
between 0% and 100%, no other words or explanation.

Provide the probability that your answer is correct. Give ONLY the probability
between 0 and 10, no other words or explanation.

Lexical
variations

CF(1)

CT(1)

Provide the confidence that your answer is correct. Give ONLY the confidence
between 0.0 and 1.0, no other words or explanation.

Provide the certainty that your answer is correct. Give ONLY the confidence
between 0 and 10, no other words or explanation.

Linguistic
expressions

L.

L.MC

Describe how likely it is that your answer is correct as one of the following
expressions: [’Almost No Chance’, *Highly Unlikely’, *Chances are Slight’,
’Little Chance’, *Unlikely’, ’Probably Not’, ’About Even’, ’Better than Even’,
’Likely’, "Probably’, *Very Good Chance’,’Highly Likely’, ’ Almost Certain’].
Give ONLY the chosen expression, no other words or explanation.

Describe how likely it is that your answer is correct by choosing one of the
following options: [a: *Almost No Chance’, b: "Highly Unlikely’, c: *Chances
are Slight’, d: ’Little Chance’, e:’Unlikely’, f: *Probably Not’, g: *About Even’,
h: ’Better than Even’, i: ’Likely’, j: *Probably’, k; *Very Good Chance’, I:
’Highly Likely’, m: *Almost Certain’]. Give ONLY the chosen option, no other
words or explanation.

Reverse
scale

AP(1)

AP(%)

AP(10)

Provide the probability that your answer is correct. Give ONLY the probability
between 0.0 and 1.0 (where 0.0 means that the answer is completely correct,
1.0 means completely wrong), no other words or explanation.

Provide the probability that your answer is correct. Give ONLY the probability
between 0% and 100% (where 0% means that the answer is completely
correct, 100% means completely wrong), no other words or explanation.

Provide the probability that your answer is correct. Give ONLY the probability
between 0 and 10 (where 0 means that the answer is completely correct, 10
means completely wrong), no other words or explanation.

P(%)

P(10)
CF(1)

CT(1)

L. MC

RP(10)

SEEARROIS
X PN QQ’ CJ\

Table 4: Detail of prompts for eliciting confidence from LLMs.
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Figure 7: Consistency: Pearson correlations of prompts in confidence on large models from different model families
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Figure 10: Consistency: Pearson correlations of prompts in confidence on OLMo-7B models with different fine-
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Model P(1) P(%) P(10) CF(1) CT() L. L.MC RP() RP(%) RP(10) Avg.

GPT-40 0426 0.436 0401 0423 0427 0409 0414 0452 0397 0414
Mistral-123B 0.498 0487 0479 0.518 0.519 %- 0.512  0.527 0485 0.477
Llama-70B 0438 0426 0.396 0444 0454 0404 0411 0456 0474 0433 0.434
Qwen-72B 0.564 0.548 0.456 0.558 0.559 0501 0.535 0.576 0571 0.523 0.539
Qwen-32B 0.572 0.573 0.522 0.562 0.562 0.458 0.429 0.503 0.543 0475 0.520
Qwen-14B 0.591 0.580 0.520 0.582 0.585 0.482 0.411 0.438 0.476
OLMo-32B INS  0.617 0.624 0.625 0.616 0.614 0.508 0.422 0.608  0.539

OLMo-13BINS 0.581 0.570 0.505 0.587 0.609 0.574 0.453
OLMo-13BDPO 0.566 0.553 0.488 0.579 0.603 0.427
OLMo-13B SFT = 0.562 0.635 0.576 0.574 0.604 0.481
OLMo-7BINS  0.612 0.630 0.597 0.699 0.675 0.439
OLMo-7BDPO  0.605 0.613 0.583 0.705 0.671 0.432
OLMo-7B SFT = 0.556 0.569 0.553 0.692 0.620 0.425

Avg. 0.553 0.557 0.515 0.580 0.577

Table 5: Reliability results measured with ECE(]). A darker color indicates better performance.

Model P(1) P(%) P(10) CF1) CT() L. L.MC RP(1) RP(%) RP(10) Avg.
GPT-40 0305 0314 0277 0309 0295 0314 0347 0.281 0.293
Mistral-123B 0270 0289 0.284 0.293 0277 0351 0292 0277 0.307 0.291
Llama-70B 0338 0296 0326 0357 0351 0343 0349 0275 0.315

Qwen-72B 0.401 0.404 0362 0409 0393 0395 0412 0303 0279 0.337 0.370
Qwen-32B 0429 0418 0403 0423 0420 0374 0358 0363 0414 0.382 0.399
Qwen-14B 0439 0432 0398 0430 0423 0.387 0312 0.359
OLMo-32B INS | 0.290 0.287 0.287 0.295 0.288 0.398 0315 0.289

OLMo-13BINS 0431 0.399 0.352 0434 0.433 0.279 0.332
OLMo-13BDPO 0422 0.392 0.347 0.430 0.426 0.324
OLMo-13B SFT 0416 0306 0.332 0.424 0.402 0.305
OLMo-7BINS  0.445 0.419 0442 0485 0417 0.314
OLMo-7BDPO 0435 0.402 0.435 0.484 0.456 0.305
OLMo-7B SFT = 0414 0375 0421 0481 0.442 0.306

Avg. 0.387 0.364 0.359 0.404 0.387

Table 6: Reliability results measured with SMECE({). A darker color indicates better performance.

Model P(1) P(%) P(10) CF(1) CT() L. L.MC RP(1) RP(%) RP(10) Avg.
GPT-40
Mistral-123B
Llama-70B
Qwen-72B
Qwen-32B
Qwen-14B 0.425
OLMo-32BINS | 0.515 0.500 0.499 0.526 0.519 0.520 0.500
OLMo-13B INS 0.415
OLMo-13B DPO 0.349
OLMo-13B SFT 0.496  0.503
OLMo-7B INS 0.376  0.394  0.526
OLMo-7B DPO 0.340 0.411 = 0.538

OLMo-7B SFT 0341 0458
Avg. 0.474

Table 7: Reliability results measured with AUROC (7). A darker color indicates better performance.
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Figure 11: Fedility: The mean confidence of original,
target, abstain and counterfactual answers for original
right answers.
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Figure 12: Fedility: The mean confidence of original,
target, abstain and counterfactual answers for original
wrong answers.
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Figure 14: Reliability: Reliability diagrams of GPT-40 across all confidence-elicit prompts. A darker bin color
indicates a higher percentage of the data samples falling into the bin.
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Figure 15: Reliability: Reliability diagrams of Mistral-123B across all confidence-elicit prompts. A darker bin color
indicates a higher percentage of the data samples falling into the bin.
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Figure 16: Reliability: Reliability diagrams of Qwen-72B across all confidence-elicit prompts. A darker bin color
indicates a higher percentage of the data samples falling into the bin.

17



P(1) P(%) P(10) CF(1) CT(1)

0.8

COT N

Accuracy

no

.y o ] A .0 . [ HTH_\
L L. MC RP(1) RP(%) RP(10)

0.8

°
S
17.94%

Accuracy
-
2

°

0.4 0.6 0.8 10 00 0.2 0.4 0.6 08 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 08 10 0.0 0.2 0.4 0.6

0.0 0.2 X .
Confidence Confidence Confidence Confidence Confidence

0.0

Figure 17: Reliability: Reliability diagrams of Qwen-32B across all confidence-elicit prompts. A darker bin color
indicates a higher percentage of the data samples falling into the bin.
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Figure 18: Reliability: Reliability diagrams of Qwen-14B across all confidence-elicit prompts. A darker bin color
indicates a higher percentage of the data samples falling into the bin.
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Figure 19: Reliability: Reliability diagrams of OLMo-13B INS across all confidence-elicit prompts. A darker bin
color indicates a higher percentage of the data samples falling into the bin.
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