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Abstract

Cross-lingual AMR parsing is the task of pre-
dicting AMR graphs in a target language when
training data is available only in a source lan-
guage. Due to the small size of AMR training
data and evaluation data, cross-lingual AMR
parsing has only been explored in a small set
of languages such as English, Spanish, Ger-
man, Chinese, and Italian. Taking inspiration
from Langedijk et al. (2022), who apply meta-
learning to tackle cross-lingual syntactic pars-
ing, we investigate the use of meta-learning for
cross-lingual AMR parsing. We evaluate our
models in both zero-shot and few-shot scenar-
ios and assess their effectiveness in Croatian,
Farsi, Korean, Chinese, and French. Notably,
Korean and Croatian test sets are developed as
part of our work, based on the existing The Lit-
tle Prince English AMR corpus, and made pub-
licly available. We empirically study this ap-
proach by comparing it to a classical joint learn-
ing method. Our findings suggest that while
the meta-learning model performs similarly to
a jointly trained model on average SMATCH
score, it exhibits inconsistency and unstable
performance across settings.

1 Introduction

Abstract Meaning Representation (Banarescu et al.,
2013, AMR) represents the meaning of texts as
rooted and directed acyclic graphs. AMR graphs
capture the underlying semantics of input texts
while abstracting away from their syntactic real-
izations. Nodes in AMR graphs are not explic-
itly mapped to their input token. Hence, it is an
unanchored formalism. AMRs are widely used
to enhance the capabilities of NLP systems such
as question answering (Deng et al., 2022; Kapani-
pathi et al., 2021), text summarization (Liao et al.,
2018; Liu et al., 2015), or human-robot interaction
(Bonial et al., 2019, 2023).

AMR was originally designed for English texts
only. However, Damonte and Cohen (2018) demon-
strated that AMR could be used for other languages

such as Spanish, Italian, Chinese, and German.
Since then, many approaches have adopted AMR
parsing for multilingual AMR parsing (Procopio
et al., 2021; Blloshmi et al., 2020; Xu et al., 2021;
Cai et al., 2021; Sheth et al., 2021). However, one
of the main challenges for this task is the lack of
data. Currently, training data are only available in
English (Knight et al., 2017, 2020) and evaluation
data in 6 languages: English, German, Spanish,
Italian, Chinese (Damonte and Cohen, 2018), and
French (Kang et al., 2023). To overcome the lack
of training data in target languages, previous ap-
proaches create silver training data in the target
languages through translation (Damonte and Co-
hen, 2018; Blloshmi et al., 2020), or using paral-
lel corpus with English AMR parsers (Xu et al.,
2021; Blloshmi et al., 2020). Another approach
uses English data for training and then evaluates
the model in the target language as a zero-shot ap-
proach (Procopio et al., 2021). Since evaluation
data is available in five languages, most of these
proposals focus on this small set of languages.

In this study, our goal is to apply AMR parsing
for more diverse languages that have been less ex-
plored in previous approaches and tackle the lack
of training data with few-shot learning. Taking in-
spiration from Langedijk et al. (2022), who applied
meta-learning for few-shot cross-lingual syntactic
parsing, we apply meta-learning for cross-lingual
AMR parsing. To examine the efficiency of the
method, we compare the meta-learning approach
to a classical joint learning method. We focus on
specific settings such as the number of training lan-
guages, the robustness of the model with respect to
input translation quality, low-resource settings, and
various hyperparameters for fine-tuning.

Our contributions to cross-lingual AMR parsing
are threefold:

* This work presents the first empirical study
on meta-learning applications on cross-
lingual AMR parsing.



* We train and evaluate our model in languages
less explored for AMR parsing: Korean, Croa-
tian, French, and Farsi.

* We publish new evaluation data in Korean
and Croatian, based on The Little Prince.

* We release a multilingual AMR parser that
can be evaluated in many languages in zero-
shot. We also release the code to train and
evaluate the model.

2 Related Work

2.1 Cross-Lingual AMR Parsing

Cross-lingual AMR parsing tasks refer to predict-
ing AMR graphs in a target language when training
data is available only in a source language (tar-
get language # source language). AMR training
data, consisting of pairs made of a sentence! and
its corresponding AMR graph, are only available
in English. Therefore, previous approaches have
either created artificial training data in the target
language or trained the model using English AMR
data, subsequently evaluating it in the target lan-
guage in a zero-shot fashion.

Damonte and Cohen (2018) adopt machine trans-
lation to translate English sentences in the training
data into the target language to obtain training data
in target languages. The translations are silver due
to their quality as opposed to gold, which is man-
ually annotated. They also adopt annotation pro-
jection with word alignment to obtain training data
in target languages. Xu et al. (2021) and Blloshmi
et al. (2020) adopt parallel corpus (English - tar-
get language) and parse the English side of the
corpus with an existing English AMR parser to
eventually obtain a new pair of target text and its
corresponding AMR graph (the data is silver due to
the quality of the AMR graph). Conversely, in the
zero-shot approach, the English AMR task is con-
sidered a pivot task, and multilingual translation
between English and the target language is added
as an auxiliary task (Procopio et al., 2021; Xu et al.,
2021). The second task allows a model to parse
AMR graphs from the target language in zero-shot.
Uhrig et al. (2021) propose to translate target texts
into English and then use an existing English parser
to obtain its graph. This simple method does not
require training an AMR parser in the target lan-
guages and provides a simple yet effective solution
for cross-lingual AMR parsing.

'AMR graph can be used beyond sentence level
(O’Gorman et al., 2018).

However, these approaches focus on a small set
of languages for which training or evaluation data
are available. We extend our research to a more
diverse set of languages. To obtain training data
in different languages, we employ machine trans-
lation as in Damonte and Cohen (2018) and use
the data to train a multilingual AMR parser. We
then evaluate our model in a zero-shot / few-shot
fashion on five languages: Chinese (Sino-Tibetan),
Korean (Koreanic), and three languages from three
branches of the Indo-European family: French (Ro-
mance), Farsi (Indo-Iranian) and Croatian (Slavic).

2.2 Meta Learning

Meta-learning, also known as learning to learn,
is a learning paradigm that allows a model to
quickly learn a new task with only a few exam-
ples. This is made possible by the prior knowledge
that the model has acquired through a series of dif-
ferent tasks. There are three main approaches to
meta-learning: metric-based meta-learning, model-
based meta-learning, and optimization-based meta-
learning. Among them, the optimization-based
method is widely used in NLP applications due to
its effectiveness. Especially, model agnostic meta-
learning (Finn et al., 2017, MAML) under this cat-
egory has gained popularity due to its efficacy. Pre-
vious approaches have adopted MAML in few-shot
scenarios for question answering (Nooralahzadeh
et al., 2020), machine translation (Gu et al., 2018),
speech recognition (Singh et al., 2022), dependency
parsing (Langedijk et al., 2022) among others.
The idea behind MAML is to find good initial
parameters 6 that can be tuned to unseen tasks with
only a few optimization steps and a few training
data examples. MAML trains a model to be good
at adapting to new tasks only with a few examples
by simulating the few-shot training and evaluation
during the training. At each iteration step, a base
model is temporarily trained with a few examples
and then evaluated to unseen examples of the task.
The loss calculated in this step contains information
about how good the model is at predicting unseen
examples after being trained on a few examples.
The global learning objective is to minimize this
loss. Therefore, over the entire training, the model
learns to adapt quickly using only a few examples.
Moreover, the model is trained with different tasks
so that it can learn to adapt quickly to any similar
tasks.? In cross-lingual applications, each task cor-

“Target tasks with a similar distribution as the source tasks



responds to a different language, which is the focus
of our study.

The closest approach to ours is Langedijk et al.
(2022), who adopt MAML for cross-lingual depen-
dency parsing. They train a dependency parser on
a set of languages using MAML and then evalu-
ate their model on unseen languages to investigate
the model’s ability to adapt quickly. In contrast,
we focus on a semantic parsing task with an unan-
chored formalism. In addition, they have multilin-
gual training data at hand, whereas we generate
our silver multilingual data by machine transla-
tion from English data. Another difference is that
they use a graph-based biaffine model for parsing,
whereas we use a seq2seq model with a linearized
graph. Sherborne and Lapata (2023) applied meta-
learning to cross-lingual SQL parsing. While use-
ful at representing (and executing) database queries
expressed in natural language, SQL is not a general-
purpose semantic formalism like AMR. To the best
of our knowledge, our work is the first to apply
MAML for cross-lingual AMR parsing.

3 Meta X-AMR

3.1 Seq2seq AMR Parsing

Three AMR parsing approaches are widely used:
transition-based parsing (Damonte et al., 2017),
graph-based parsing (Zhang et al., 2019; Cai and
Lam, 2019), and sequence-to-sequence parsing
(Bevilacqua et al., 2021). Among these, the last
approach views AMR parsing as generating an
AMR graph from input texts using a sequence-to-
sequence model. In this approach, AMR graphs
should be first linearized in a single-line format (see
Figure 1). Bevilacqua et al. (2021) explore various
methods to linearize AMR graphs such as depth-
first search, breadth-first search, and PENMAN
notation. Among these techniques, we adopt depth-
first search, identified as the most efficient way
for seq2seq AMR parsing according to Bevilacqua
et al. (2021). In particular, we use the method and
implementation of van Noord and Bos (2017)3 to
linearize AMR graphs. This method includes light
pre-processing such as removing variables and wiki
links. We refer the readers to van Noord and Bos
(2017) for a comprehensive understanding of the
linearization process.

To generate AMR graphs from multi-lingual in-
puts, we employ mBart-large-50 model (Tang

3https://github.com/RikVN/AMR
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Figure 1: “The dog eats a bone.”

etal., 2020)* as done by Procopio et al. (2021). The
mBart model is a pretrained transformer (Vaswani
et al., 2017) and contains multiple layers of en-
coders and decoders. For input and output se-
quences, mBart takes a special token which in-
dicates a language type at the beginning of texts.
For multilingual input sentences, we add the prefix
according to its language and for AMR graphs,
we add an <amr> prefix. Since this is not in-
cluded in the vocabulary of mBart, we add this
new vocabulary to the model and randomly initial-
ize the corresponding vector as done by Procopio
et al. (2021). Since the output of this model is a
linearized graph, we restructure the AMR graph
through post-processing steps for evaluation. We
employ the implementation code of van Noord and
Bos (2017) for this step.

3.2 MAML for Cross-lingual AMR Parsing

We apply MAML (Finn et al., 2017) to train our
multilingual AMR parser. The training procedure
is described below (see Figure 2 for visual
description).

Step 1: At each iteration step, the initial model (©)
is copied once per language ¢. For each i, 2 x K
examples are randomly sampled from D;rai“ and
divided into the support and the query set (K each).
Using the support set, the model is temporarily up-
dated with stochastic gradient descent with learning
rate « (Eq. 1). Iterate through the support set for P
adaptation steps to obtain ¢;:

P; < O —ave L(O;). (1

Next, the loss is computed to evaluate the
temporary model ®; on the query set. The loss
L;(®;) is saved for the next step. The entire step
is called an ‘inner loop’ and the inner loop is
repeated over the entire task batch, that is, for the
number of all training languages I.

*We use facebook/mbart-large-50 model via the trans-
formers library (Wolf et al., 2020).
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Figure 2: One training step for MAML cross-lingual AMR parsing.

Step 2: £;(®;) is summed up over training lan-
guages to update the initial model © by stochastic
gradient descent with a learning rate 5. This entire
step is called an ‘outer loop’. Note that in Eq. 2,
we use Vo, L;(®P;) instead of \79L;(P;) because
we apply First-Order MAML to avoid computation
overhead (second-order derivative requires heavy
computation):

O 0—8> Vo, Li(®:). )

7

Step 3: Repeat Step 1 and Step 2 until the total
number of training steps.
Step 4: We evaluate the model with target test data
once the training is over. The evaluation is done
in a zero-shot or a few-shot fashion, which means
that the model is evaluated on new target languages
that are unseen during the training.

4 Experimental Setup
4.1 Data

We aim to train a multilingual AMR parser that
adapts quickly to new languages, specifically
French, Chinese, Korean, Farsi, and Croatian, with
0 example (0-shot learning) or a few examples
(few-shot learning). Our method is similar to
that of Langedijk et al. (2022) in applying meta-
learning for a few-shot cross-lingual parsing task,
but our training data is only available in English,
whereas they have multilingual training data. To
create multilingual training data, we apply ma-
chine translation as in previous approaches (Da-
monte and Cohen, 2018; Xu et al., 2021; Blloshmi
et al., 2020). We adopt DeepL’ for automatic
translation and translate English AMR training
data (LDC2020T02) (Knight et al., 2020) into 13
languages: German, Italian, Romanian, Finnish,

5https ://www.deepl.com

Russian, Turkish, Japanese, Czech, Dutch, Polish,
Swedish, Estonian, and Indonesian. These lan-
guages are supported by mBart (Tang et al., 2020),
a model we adopted for our experiments. The 13
languages were chosen for language diversity and
cover 5 language families: Indo-European (Ger-
manic, Romance, Slavic), Uralic, Turkic, Japonic,
and Austronesian. For each training language,
there are 55,635 pairs of a sentence and their
corresponding AMR graph. We use a total of
14 languages including English for our training
data. We use Spanish as the validation language.
Note that we need the validation set as well as
k fine-tuning examples in the same language for
k-shot evaluation. For the validation set, we use
the Spanish test set from AMR 2.0 (Damonte and
Cohen, 2020) and for the fine-tuning dataset, we
translate k£ random examples of the English dev
set. We use French, Chinese, Korean, Farsi, and
Croatian as test languages. For French, Chinese,
and Farsi, we employ the Little Prince AMR cor-
pus annotated in each language, respectively from
Kang et al. (2023), https://amr.isi.edu/ and
Takhshid et al. (2022)°. For Croatian and Korean,
we create our test sets by manually aligning The Lit-
tle Prince corpus in each language to corresponding
English AMR graphs. We make the test set publicly
available.’

4.2 Meta-Training and Evaluation

We adopt mBart model from the transformers li-
brary (Wolf et al., 2020) to train our multilin-
gual AMR parser. To implement model-agnostic
meta-learning, we employ the learn2learn library

The original dataset in Farsi consists of AMR graphs
where the nodes are in Farsi. Since we employ AMR graphs
with English nodes, we use only the input texts of the corpus
and use graphs from the English AMR corpus.

"The URL will be provided upon publication.
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(Arnold et al., 2020). We train our model for 30,000
steps and evaluate the model every 500 steps with
the Spanish validation set. Early stopping is ap-
plied, terminating training if the dev SMATCH score
fails to improve for more than 7,500 steps. For both
validation and testing, we employ k-shot learning,
where the model is fine-tuned with k£ examples be-
fore being evaluated on the entire test/validation
set. The number of fine-tuning cycles, called an
adaptation step, is denoted as P. Unless specified
otherwise, we set P = 0 and k£ = 0 (0-shot learn-
ing). MAML requires two learning rates, one for the
inner loop («) and one for the outer loop (3). We
conducted a grid search to identify an optimal learn-
ing rate setandused a = 1 x 107°, 3 =3 x 107°
throughout the experiments. For (3, we use a linear
learning rate scheduler with 1,500 warm-up steps.
Unless specified otherwise, we apply 1 x 107 to
fine-tune a model before validation/testing. At each
iteration step during the training, 2 X K are sam-
pled to form a query and a support set for each
training language. As a result, the batch size N
equals 2 x K x I, where I denotes the number of
training languages. By default, we assign K = 8
and I = 14, unless stated otherwise. We report
evaluation scores using SMATCH (Cai and Knight,
2013), an evaluation metric for AMR graphs.

4.3 Baseline with Joint Learning

We train a baseline model with a joint learning
method for comparison with our approach. The
same mBart model is used as described in 4.2. For
the training set, we use the multilingual AMR train-
ing sets in 14 languages described in 4.1. At each
iteration step, we randomly select N training exam-
ples from the concatenated training sets to calculate
the loss and optimize the model accordingly. The
model is evaluated in 0-shot or k-shot depending
on the experiment setting (details are described
for in each Section 5). Note that we aim to con-
duct a comparative study with the meta-learning ap-
proach. Therefore, unless mentioned otherwise, we
apply the same hyperparameters and test/evaluation
method for both approaches (e.g. batch size, learn-
ing rate scheduler, k-shot size). However, whereas
meta-learning requires two learning rates for an
inner loop and an outer loop, the baseline only re-
quires one learning rate during the training. We use
a uniform learning rate for training 3 x 10~ with
a linear scheduler with 1500 warm-up steps.

fr zh ko fa hr avg

base_14langs 563 456 421 463 514 483
base_12langs 53.6 41.6 40.1 434 459 449
base_8langs 475 398 39.1 405 224 378
MAML_l4langs 56.5 46.1 422 46.7 508 48.4
MAML_12langs 485 394 351 39.7 450 415
MAML_8langs  47.7 39.6 343 40.1 424 40.8

Table 1: SMATCH scores according to the number of
training languages.

5 Research Questions and Discussions

We examine the strengths and weaknesses of our
method by answering the research questions below.
For evaluation, we systematically vary six hyper-
parameters individually while keeping the remain-
ing parameters fixed, and assess their influence on
the model’s performance through comprehensive
evaluation and analysis (see Table 8 of Appendix A
for the entire hyper-parmeters settings). We com-
pare each model to its opponent baseline model
for evaluation. Questions Q1 to Q3 center on how
the two models respond to specific factors during
the training phase, while Q4 to Q6 pertain to the
fine-tuning and evaluation stages. The discussions
on the questions lead to a final discussion Q7 on
whether meta-learning proves to be the optimal
approach for cross-lingual AMR parsing.

Q1: How does the number of languages affect
the performance of the models?

To examine how the number of training languages
impacts the model performance, we incrementally
add more languages to the training data and we
train three models respectively with 8, 12, and 14
languages. The first model is trained in German,
English, Italian, Romanian, Russian, Turkish, and
Japanese. Then we add Czech, Dutch, Polish, and
Swedish, and then finally we add Estonian and In-
donesian. Note that for meta-learning, the batch
size depends on the number of training tasks since
we randomly sample K examples per language
(batch size = 2 x K x I where I denotes the num-
ber of training languages). To keep the batch size
consistent across experiments while altering only
the number of languages, when more than 8 lan-
guages are used for training, we randomly sample
8 languages per iteration step and select K training
examples per language. Unless specified otherwise,
each model is evaluated in a zero-shot manner for
five languages: French, Chinese, Korean, Farsi,



and Croatian.

Results Table 1 shows that both the MAML and
baseline models have a positive correlation with the
number of training languages. The baseline model
has the largest gain when increasing the number of
languages from 8 to 12 language by 15.7%. MAML
models, on the other hand, have the biggest gain
when increasing the number of languages from 12
to 14 languages by 14.2%. Looking in detail per
target language, however, in the MAML model, not
all target languages benefit from adding more train-
ing languages. Comparing the two MAML models,
trained respectively with 8 languages and 12 lan-
guages, the SMATCH score drops in Chinese and
Farsi when adding four languages to the training
data, whereas the baseline model shows a steady
increase across target languages when adding more
languages. In other words, the baseline model ben-
efits uniformly from the inclusion of more training
languages across all target languages, while the
performance of the MAML model varies depend-
ing on the specific target language. In the MAML
models, certain languages experience a decrease in
performance despite the addition of more training
languages. A caveat of this experiment is that the
results may depend on the order in which the lan-
guages are added and their typological relationship
to evaluation languages (we leave this investigation
to future work).

Q2: How robust is the model with respect to
translation quality?

To assess the impact of the translation source on
our method, we employ an alternative translation
model to translate our training data. Specifically,
we use the mBart translation models, sourced from
the Huggingface hub®, to translate our training data
into 14 languages. Subsequently, we use this trans-
lated data to train both the MAML and baseline
models. Following this, we contrast the evaluation
outcomes of these models with those trained using
the DeepL translation.

Results For both the MAML and the baseline
models, when using an open-source translation
model mBart, the performance drops (see Table 2).
In both cases, the Korean SMATCH score drops
the most when using the mBart translation model.
MAML model is more affected by this change. On
the average score, the baseline model drops by

8https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt

fr zh ko fa hr avg

base_DeepL 563 456 421 463 514 483
base_mBart 56.2 445 412 46.1 513 47.8
MAML_DeepL. 56.5 46.1 422 46.7 50.8 484
MAML_mBart 55.6 45.1 40.8 46.1 489 473

Table 2: SMATCH scores according to the translation
source.

fr zh ko fa hr avg

base_full 563 456 421 463 514 483
base_1000 414 351 333 369 385 370
MAML_full ~ 56.5 46.1 422 46.7 508 484
MAML_1000 38.9 339 328 36.1 350 353

Table 3: SMATCH scores according to training data size.

0.9%, whereas the MAML-model drops by 2.3%.
This result shows that the meta-learning model is
more sensitive to the input texts than the baseline
model.

Q3: Does the model learn efficiently in
lower-resource settings?

We assess the robustness of our method in low-
resource settings where only a smaller fraction
of training data is available. To this end, we ran-
domly sample 1,000 examples for each language
(the same examples across languages) and use only
this sampled data as training data. Since the en-
tire training data is a lot smaller than the original
model, we evaluate the model with the dev set ev-
ery 100 step instead of 500 to save the best model.
We also set the max training step to 10,000 instead
of 30,000.

Results Table 3 illustrates the SMATCH scores
achieved by both the MAML and baseline models
under different training conditions: using the en-
tire dataset (base_full, MAML_full) versus using
only 1,000 examples (base_1000, MAML_1000).
As expected, both models’ performance was sub-
stantially decreased when trained on a small dataset.
Specifically, the MAML model experienced a higher
drop in SMATCH score, declining by 27%, com-
pared to the baseline model, which exhibited a de-
crease of 23.3%. This discrepancy suggests that the
MAML model is more susceptible to performance
degradation in low-resource scenarios.
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Q4: How many adaptation steps does the model
need to learn a new task efficiently?

We fine-tune our model with 32 examples (32-shot)
on target languages and evaluate the model with
the test set in each language. Since the fine-tuning
dataset is not available for the target languages,
we use DeepL to translate the English dev set to
obtain the data. The model is fine-tuned with the
entire fine-tuning data iteratively and the number
of iterations is called an adaptation step. To as-
sess the influence of the adaptation steps on the
model performance, we increase the number and
evaluate the model accordingly. To minimize the
effect of finetuning data, we sample 32 examples
randomly three times and fine-tune and then evalu-
ate the model three times. We then use the average
score of the three evaluation processes. The fine-
tuning learning rate is fixed to 1 x 1075 across all
experiments.

Results Figure 3 (whose data is also presented in
Table 6 of Appendix A) visually represents the av-
erage test SMATCH scores across target languages.
When the adaptation step is 0, the model is evalu-
ated in zero-shot. Surprisingly, the results indicate
that both the MAML and baseline models performed
less effectively after fine-tuning. The baseline
model exhibits a gradual decline in performance
with extended fine-tuning duration, except for a
rapid drop and subsequent recovery between 3 and
7 adaptation steps. The MAML model demonstrates
an inconsistent pattern, with a substantial drop in
performance between 0 and 2 adaptation steps, fol-
lowed by gradual improvement between 2 and 5
steps before declining again. The results lack a
clear, consistent pattern. However, both models per-
form better when not fine-tuned at all. We propose
the hypothesis that the mBart pre-trained model
has already enough knowledge of our target lan-
guages (French, Chinese, Korean, Farsi, and Croa-
tian), and fine-tuning the model with only a few
examples in each language may impair the model’s
capacity. This could also be attributed to the do-
main difference between the fine-tuning dataset and
the test dataset. The fine-tuning dataset includes
content from general fields like news, online fo-
rums, journals, and web blogs, whereas the test
dataset consists of The Little Prince, a novel writ-
ten in the 1940s. Consequently, the domain shift
between the two datasets may have contributed to
the model’s inability to generalize effectively to
the test domain. Another hypothesis is the small
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Figure 3: Average SMATCH scores on target languages
according to adaptation steps.

size of the fine-tuning dataset, which may have hin-
dered the model’s ability to generalize effectively,
or an inadequate learning rate leading to undesir-
able model updates. We delve into the hypotheses
on the learning rate and the size of k in subsequent
questions.

QS5: High or low learning rate for fine-tuning?

To examine the model performance depending on
different learning rates, we fine-tune our model
with different learning rates and then evaluate each
model to record test scores. We apply the same
settings as in Q4, such as sampling fine-tuning data
three times with a k-size equal to 32.

Results Figure 4 (the numerical data is also pre-
sented in Table 7 of Appendix A) offers a visual de-
piction of the mean test SMATCH scores across var-
ious target languages. The baseline and the MAML
models show a similar pattern that a lower learning
rate leads to better results. When the learning rate
is 0, that is, the model is not fine-tuned, both mod-
els show the best performance. This is aligned with
the results in Q4 yet remains questionable as to why
fine-tuning in target languages does not lead to a
performance gain. This may be caused by small
k-size and in the following question, we discuss
the results with bigger k-size.

Q6: k-size: the bigger, the better?

To answer this question, we use different £k =
0, 32,64, 128 examples for fine-tuning before eval-
uation. As in Q4 and QS5, the training data is sam-
pled three times and we use the average score. We
apply 1 x 1079 to fine-tune the models.

Results Table 4 illustrates that for values of
32 < k < 128, larger values of k result in per-
formance improvements for both models. How-
ever, except for the models with 128 fine-tuning
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Figure 4: Average SMATCH scores on target languages
according to adaptation steps (see Appendix A for nu-
merical results).

k_size Dbaseline MAML
0 48.3 48.4
32 48.2 47.3
64 48.2 47.7
128 48.5 48.5

Table 4: Average SMATCH scores on target languages
according to k-size.

examples, most models do not exhibit improve-
ment compared to the 0-shot evaluation. It appears
paradoxical that a fine-tuned model performs worse
than a non-fine-tuned one. Particularly, the MAML
model is adversely affected by the fine-tuning step
and demonstrates a more significant performance
decrease. The most substantial decline is observed
between the 0-shot model and the 32-shot model,
with a difference of 2.3%, whereas the 32-shot
baseline model only degrades by 0.2% compared
to the 0-shot model. Consequently, this leads us
to revisit the hypotheses discussed in Q4 regard-
ing the prior knowledge of the mBart model in our
target languages and the domain shift between the
fine-tuning dataset and the test set.

Q7: Should cross-lingual AMR parsing go
Meta?

The provided table (Table 5) summarizes the high-
est SMATCH scores achieved by both the baseline
and MAML models during zero-shot evaluation.
The difference in performance between these mod-
els is marginal, varying depending on the target
language. Consequently, drawing a definitive con-
clusion regarding which method is superior proves
challenging. However, through our examination,
we have noted that MAML models exhibit greater
sensitivity to changes in input types and dataset
sizes. Notably, their performance deteriorates sig-
nificantly in low-resource scenarios or when em-

fr zh ko fa hr avg

564 456 421 463 514 4836
56.5 46.1 422 46.7 50.8 48.46

baseline
MAML

Table 5: SMATCH scores of the baseline and the MAML
model (0-shot evaluation).

ploying different translation models for inputs. Ad-
ditionally, inconsistencies arise when fine-tuning
the model with varying adaptation steps, compli-
cating result interpretation and impeding progress
toward improvement.

Conversely, our observations indicate that a
straightforward joint learning approach yields com-
parable performance to the MAML model, not only
in zero-shot, but also in few-shot evaluations. This
highlights that the joint learning method remains
a robust starting point for cross-lingual AMR pars-
ing. As a result, MAML does not emerge as the
optimal solution for this task, given its inconsistent
performance.

6 Conclusion

This study investigates the effectiveness of meta-
learning compared to joint learning in cross-lingual
AMR parsing. We assess our models across less-
explored languages for AMR parsing, including
French, Chinese, Korean, Farsi, and Croatian. To
facilitate evaluation, we develop new test sets for
Korean and Croatian and release the data to pro-
mote AMR parsing in diverse languages. We
explore various settings to conduct a thorough
analysis of the meta-learning approach in con-
trast to joint learning. Our findings reveal that
meta-learning exhibits inconsistent performance
across different settings, whereas the joint learning
method demonstrates more consistent performance
across experimental variations. Consequently, our
results suggest that the joint learning method serves
as a robust baseline, while meta-learning appears to
be a suboptimal approach for cross-lingual AMR
parsing. We believe that this research provides
valuable insights into the comparative efficacy of
meta-learning and joint-learning methods in cross-
lingual AMR parsing, offering important guid-
ance for future developments in cross-lingual AMR
parsers.



Limitations

Our model does not outperform a simple mono-
lingual model which is trained with AMR data
in the target language translated by a MT system.
However, our approach can be explored for low-
resource languages for which machine translation
is not available. In addition, we did not apply grid
search to find the best learning rates for the baseline
models and used the same learning rate as done by
Procopio et al. (2021), who also employed mBart
for sequence-to-sequence cross-lingual AMR pars-
ing. This could have affected the results in favor
of meta-learning. Nonetheless, this does not affect
our conclusion of the empirical study to reveal the
weakness of the meta-learning approach for cross-
lingual AMR parsing. This study does not include
evaluation scores on the AMR 2.0 multilingual test
set, which could help position our models relative
to the state-of-the-art models. This is because the
Spanish test set in AMR 2.0 is already used as
our validation set. Therefore, this data is omitted
during testing for fair evaluation. Despite the limi-
tations, we believe that our study empirically shows
the constraints of meta-learning for cross-lingual
AMR parsing and provides valuable insights into
the meta-learning application in the task.
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Q1 Q2 Q3 Q4 Q5 Q6

Number of languages (1) [8, 12,14] 14 14 14 14 14
Translation source  DeepL.  [DeepL, mBart] DeepL DeepL DeepL DeepL

Data size Full Full [Full, 1000] Full Full Full

. [0,1,2,3,5,7,
Adpatation step (P) 0 0 0 2 2
9,11, 13, 15]
. . [0, 1e-7, 3e-6, le-5,
Finetuning Ir rate 0 0 0 le-5 le-5
3e-5, le-4, 1e-3]
k size 0 0 0 32 32 [0, 32, 64, 128]

Table 8: Hyper-parameters settings for the research questions Q1-Q6
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