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Abstract
Cross-lingual AMR parsing is the task of pre-001
dicting AMR graphs in a target language when002
training data is available only in a source lan-003
guage. Due to the small size of AMR training004
data and evaluation data, cross-lingual AMR005
parsing has only been explored in a small set006
of languages such as English, Spanish, Ger-007
man, Chinese, and Italian. Taking inspiration008
from Langedijk et al. (2022), who apply meta-009
learning to tackle cross-lingual syntactic pars-010
ing, we investigate the use of meta-learning for011
cross-lingual AMR parsing. We evaluate our012
models in both zero-shot and few-shot scenar-013
ios and assess their effectiveness in Croatian,014
Farsi, Korean, Chinese, and French. Notably,015
Korean and Croatian test sets are developed as016
part of our work, based on the existing The Lit-017
tle Prince English AMR corpus, and made pub-018
licly available. We empirically study this ap-019
proach by comparing it to a classical joint learn-020
ing method. Our findings suggest that while021
the meta-learning model performs similarly to022
a jointly trained model on average SMATCH023
score, it exhibits inconsistency and unstable024
performance across settings.025

1 Introduction026

Abstract Meaning Representation (Banarescu et al.,027

2013, AMR) represents the meaning of texts as028

rooted and directed acyclic graphs. AMR graphs029

capture the underlying semantics of input texts030

while abstracting away from their syntactic real-031

izations. Nodes in AMR graphs are not explic-032

itly mapped to their input token. Hence, it is an033

unanchored formalism. AMRs are widely used034

to enhance the capabilities of NLP systems such035

as question answering (Deng et al., 2022; Kapani-036

pathi et al., 2021), text summarization (Liao et al.,037

2018; Liu et al., 2015), or human-robot interaction038

(Bonial et al., 2019, 2023).039

AMR was originally designed for English texts040

only. However, Damonte and Cohen (2018) demon-041

strated that AMR could be used for other languages042

such as Spanish, Italian, Chinese, and German. 043

Since then, many approaches have adopted AMR 044

parsing for multilingual AMR parsing (Procopio 045

et al., 2021; Blloshmi et al., 2020; Xu et al., 2021; 046

Cai et al., 2021; Sheth et al., 2021). However, one 047

of the main challenges for this task is the lack of 048

data. Currently, training data are only available in 049

English (Knight et al., 2017, 2020) and evaluation 050

data in 6 languages: English, German, Spanish, 051

Italian, Chinese (Damonte and Cohen, 2018), and 052

French (Kang et al., 2023). To overcome the lack 053

of training data in target languages, previous ap- 054

proaches create silver training data in the target 055

languages through translation (Damonte and Co- 056

hen, 2018; Blloshmi et al., 2020), or using paral- 057

lel corpus with English AMR parsers (Xu et al., 058

2021; Blloshmi et al., 2020). Another approach 059

uses English data for training and then evaluates 060

the model in the target language as a zero-shot ap- 061

proach (Procopio et al., 2021). Since evaluation 062

data is available in five languages, most of these 063

proposals focus on this small set of languages. 064

In this study, our goal is to apply AMR parsing 065

for more diverse languages that have been less ex- 066

plored in previous approaches and tackle the lack 067

of training data with few-shot learning. Taking in- 068

spiration from Langedijk et al. (2022), who applied 069

meta-learning for few-shot cross-lingual syntactic 070

parsing, we apply meta-learning for cross-lingual 071

AMR parsing. To examine the efficiency of the 072

method, we compare the meta-learning approach 073

to a classical joint learning method. We focus on 074

specific settings such as the number of training lan- 075

guages, the robustness of the model with respect to 076

input translation quality, low-resource settings, and 077

various hyperparameters for fine-tuning. 078

Our contributions to cross-lingual AMR parsing 079

are threefold: 080

• This work presents the first empirical study 081

on meta-learning applications on cross- 082

lingual AMR parsing. 083
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• We train and evaluate our model in languages084

less explored for AMR parsing: Korean, Croa-085

tian, French, and Farsi.086

• We publish new evaluation data in Korean087

and Croatian, based on The Little Prince.088

• We release a multilingual AMR parser that089

can be evaluated in many languages in zero-090

shot. We also release the code to train and091

evaluate the model.092

2 Related Work093

2.1 Cross-Lingual AMR Parsing094

Cross-lingual AMR parsing tasks refer to predict-095

ing AMR graphs in a target language when training096

data is available only in a source language (tar-097

get language ̸= source language). AMR training098

data, consisting of pairs made of a sentence1 and099

its corresponding AMR graph, are only available100

in English. Therefore, previous approaches have101

either created artificial training data in the target102

language or trained the model using English AMR103

data, subsequently evaluating it in the target lan-104

guage in a zero-shot fashion.105

Damonte and Cohen (2018) adopt machine trans-106

lation to translate English sentences in the training107

data into the target language to obtain training data108

in target languages. The translations are silver due109

to their quality as opposed to gold, which is man-110

ually annotated. They also adopt annotation pro-111

jection with word alignment to obtain training data112

in target languages. Xu et al. (2021) and Blloshmi113

et al. (2020) adopt parallel corpus (English - tar-114

get language) and parse the English side of the115

corpus with an existing English AMR parser to116

eventually obtain a new pair of target text and its117

corresponding AMR graph (the data is silver due to118

the quality of the AMR graph). Conversely, in the119

zero-shot approach, the English AMR task is con-120

sidered a pivot task, and multilingual translation121

between English and the target language is added122

as an auxiliary task (Procopio et al., 2021; Xu et al.,123

2021). The second task allows a model to parse124

AMR graphs from the target language in zero-shot.125

Uhrig et al. (2021) propose to translate target texts126

into English and then use an existing English parser127

to obtain its graph. This simple method does not128

require training an AMR parser in the target lan-129

guages and provides a simple yet effective solution130

for cross-lingual AMR parsing.131

1AMR graph can be used beyond sentence level
(O’Gorman et al., 2018).

However, these approaches focus on a small set 132

of languages for which training or evaluation data 133

are available. We extend our research to a more 134

diverse set of languages. To obtain training data 135

in different languages, we employ machine trans- 136

lation as in Damonte and Cohen (2018) and use 137

the data to train a multilingual AMR parser. We 138

then evaluate our model in a zero-shot / few-shot 139

fashion on five languages: Chinese (Sino-Tibetan), 140

Korean (Koreanic), and three languages from three 141

branches of the Indo-European family: French (Ro- 142

mance), Farsi (Indo-Iranian) and Croatian (Slavic). 143

2.2 Meta Learning 144

Meta-learning, also known as learning to learn, 145

is a learning paradigm that allows a model to 146

quickly learn a new task with only a few exam- 147

ples. This is made possible by the prior knowledge 148

that the model has acquired through a series of dif- 149

ferent tasks. There are three main approaches to 150

meta-learning: metric-based meta-learning, model- 151

based meta-learning, and optimization-based meta- 152

learning. Among them, the optimization-based 153

method is widely used in NLP applications due to 154

its effectiveness. Especially, model agnostic meta- 155

learning (Finn et al., 2017, MAML) under this cat- 156

egory has gained popularity due to its efficacy. Pre- 157

vious approaches have adopted MAML in few-shot 158

scenarios for question answering (Nooralahzadeh 159

et al., 2020), machine translation (Gu et al., 2018), 160

speech recognition (Singh et al., 2022), dependency 161

parsing (Langedijk et al., 2022) among others. 162

The idea behind MAML is to find good initial 163

parameters θ that can be tuned to unseen tasks with 164

only a few optimization steps and a few training 165

data examples. MAML trains a model to be good 166

at adapting to new tasks only with a few examples 167

by simulating the few-shot training and evaluation 168

during the training. At each iteration step, a base 169

model is temporarily trained with a few examples 170

and then evaluated to unseen examples of the task. 171

The loss calculated in this step contains information 172

about how good the model is at predicting unseen 173

examples after being trained on a few examples. 174

The global learning objective is to minimize this 175

loss. Therefore, over the entire training, the model 176

learns to adapt quickly using only a few examples. 177

Moreover, the model is trained with different tasks 178

so that it can learn to adapt quickly to any similar 179

tasks.2 In cross-lingual applications, each task cor- 180

2Target tasks with a similar distribution as the source tasks
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responds to a different language, which is the focus181

of our study.182

The closest approach to ours is Langedijk et al.183

(2022), who adopt MAML for cross-lingual depen-184

dency parsing. They train a dependency parser on185

a set of languages using MAML and then evalu-186

ate their model on unseen languages to investigate187

the model’s ability to adapt quickly. In contrast,188

we focus on a semantic parsing task with an unan-189

chored formalism. In addition, they have multilin-190

gual training data at hand, whereas we generate191

our silver multilingual data by machine transla-192

tion from English data. Another difference is that193

they use a graph-based biaffine model for parsing,194

whereas we use a seq2seq model with a linearized195

graph. Sherborne and Lapata (2023) applied meta-196

learning to cross-lingual SQL parsing. While use-197

ful at representing (and executing) database queries198

expressed in natural language, SQL is not a general-199

purpose semantic formalism like AMR. To the best200

of our knowledge, our work is the first to apply201

MAML for cross-lingual AMR parsing.202

3 Meta X-AMR203

3.1 Seq2seq AMR Parsing204

Three AMR parsing approaches are widely used:205

transition-based parsing (Damonte et al., 2017),206

graph-based parsing (Zhang et al., 2019; Cai and207

Lam, 2019), and sequence-to-sequence parsing208

(Bevilacqua et al., 2021). Among these, the last209

approach views AMR parsing as generating an210

AMR graph from input texts using a sequence-to-211

sequence model. In this approach, AMR graphs212

should be first linearized in a single-line format (see213

Figure 1). Bevilacqua et al. (2021) explore various214

methods to linearize AMR graphs such as depth-215

first search, breadth-first search, and PENMAN216

notation. Among these techniques, we adopt depth-217

first search, identified as the most efficient way218

for seq2seq AMR parsing according to Bevilacqua219

et al. (2021). In particular, we use the method and220

implementation of van Noord and Bos (2017)3 to221

linearize AMR graphs. This method includes light222

pre-processing such as removing variables and wiki223

links. We refer the readers to van Noord and Bos224

(2017) for a comprehensive understanding of the225

linearization process.226

To generate AMR graphs from multi-lingual in-227

puts, we employ mBart-large-50 model (Tang228

3https://github.com/RikVN/AMR

(a) AMR graph (b) linearized AMR

Figure 1: “The dog eats a bone.”

et al., 2020)4 as done by Procopio et al. (2021). The 229

mBart model is a pretrained transformer (Vaswani 230

et al., 2017) and contains multiple layers of en- 231

coders and decoders. For input and output se- 232

quences, mBart takes a special token which in- 233

dicates a language type at the beginning of texts. 234

For multilingual input sentences, we add the prefix 235

according to its language and for AMR graphs, 236

we add an <amr> prefix. Since this is not in- 237

cluded in the vocabulary of mBart, we add this 238

new vocabulary to the model and randomly initial- 239

ize the corresponding vector as done by Procopio 240

et al. (2021). Since the output of this model is a 241

linearized graph, we restructure the AMR graph 242

through post-processing steps for evaluation. We 243

employ the implementation code of van Noord and 244

Bos (2017) for this step. 245

3.2 MAML for Cross-lingual AMR Parsing 246

We apply MAML (Finn et al., 2017) to train our 247

multilingual AMR parser. The training procedure 248

is described below (see Figure 2 for visual 249

description). 250

251

Step 1: At each iteration step, the initial model (Θ) 252

is copied once per language i. For each i, 2 ×K 253

examples are randomly sampled from Dtrain
i and 254

divided into the support and the query set (K each). 255

Using the support set, the model is temporarily up- 256

dated with stochastic gradient descent with learning 257

rate α (Eq. 1). Iterate through the support set for P 258

adaptation steps to obtain Φi: 259

Φi ← Θ− α▽Θ L(Θi). (1) 260

Next, the loss is computed to evaluate the 261

temporary model Φi on the query set. The loss 262

Li(Φi) is saved for the next step. The entire step 263

is called an ‘inner loop’ and the inner loop is 264

repeated over the entire task batch, that is, for the 265

number of all training languages I . 266

267

4We use facebook/mbart-large-50 model via the trans-
formers library (Wolf et al., 2020).
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Figure 2: One training step for MAML cross-lingual AMR parsing.

Step 2: Li(Φi) is summed up over training lan-268

guages to update the initial model Θ by stochastic269

gradient descent with a learning rate β. This entire270

step is called an ‘outer loop’. Note that in Eq. 2,271

we use ▽ΦiLi(Φi) instead of ▽θLi(Φi) because272

we apply First-Order MAML to avoid computation273

overhead (second-order derivative requires heavy274

computation):275

Θ← Θ− β
∑
i

▽ΦiLi(Φi). (2)276

Step 3: Repeat Step 1 and Step 2 until the total277

number of training steps.278

Step 4: We evaluate the model with target test data279

once the training is over. The evaluation is done280

in a zero-shot or a few-shot fashion, which means281

that the model is evaluated on new target languages282

that are unseen during the training.283

4 Experimental Setup284

4.1 Data285

We aim to train a multilingual AMR parser that286

adapts quickly to new languages, specifically287

French, Chinese, Korean, Farsi, and Croatian, with288

0 example (0-shot learning) or a few examples289

(few-shot learning). Our method is similar to290

that of Langedijk et al. (2022) in applying meta-291

learning for a few-shot cross-lingual parsing task,292

but our training data is only available in English,293

whereas they have multilingual training data. To294

create multilingual training data, we apply ma-295

chine translation as in previous approaches (Da-296

monte and Cohen, 2018; Xu et al., 2021; Blloshmi297

et al., 2020). We adopt DeepL5 for automatic298

translation and translate English AMR training299

data (LDC2020T02) (Knight et al., 2020) into 13300

languages: German, Italian, Romanian, Finnish,301

5https://www.deepl.com

Russian, Turkish, Japanese, Czech, Dutch, Polish, 302

Swedish, Estonian, and Indonesian. These lan- 303

guages are supported by mBart (Tang et al., 2020), 304

a model we adopted for our experiments. The 13 305

languages were chosen for language diversity and 306

cover 5 language families: Indo-European (Ger- 307

manic, Romance, Slavic), Uralic, Turkic, Japonic, 308

and Austronesian. For each training language, 309

there are 55,635 pairs of a sentence and their 310

corresponding AMR graph. We use a total of 311

14 languages including English for our training 312

data. We use Spanish as the validation language. 313

Note that we need the validation set as well as 314

k fine-tuning examples in the same language for 315

k-shot evaluation. For the validation set, we use 316

the Spanish test set from AMR 2.0 (Damonte and 317

Cohen, 2020) and for the fine-tuning dataset, we 318

translate k random examples of the English dev 319

set. We use French, Chinese, Korean, Farsi, and 320

Croatian as test languages. For French, Chinese, 321

and Farsi, we employ the Little Prince AMR cor- 322

pus annotated in each language, respectively from 323

Kang et al. (2023), https://amr.isi.edu/ and 324

Takhshid et al. (2022)6. For Croatian and Korean, 325

we create our test sets by manually aligning The Lit- 326

tle Prince corpus in each language to corresponding 327

English AMR graphs. We make the test set publicly 328

available.7 329

4.2 Meta-Training and Evaluation 330

We adopt mBart model from the transformers li- 331

brary (Wolf et al., 2020) to train our multilin- 332

gual AMR parser. To implement model-agnostic 333

meta-learning, we employ the learn2learn library 334

6The original dataset in Farsi consists of AMR graphs
where the nodes are in Farsi. Since we employ AMR graphs
with English nodes, we use only the input texts of the corpus
and use graphs from the English AMR corpus.

7The URL will be provided upon publication.
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(Arnold et al., 2020). We train our model for 30,000335

steps and evaluate the model every 500 steps with336

the Spanish validation set. Early stopping is ap-337

plied, terminating training if the dev SMATCH score338

fails to improve for more than 7,500 steps. For both339

validation and testing, we employ k-shot learning,340

where the model is fine-tuned with k examples be-341

fore being evaluated on the entire test/validation342

set. The number of fine-tuning cycles, called an343

adaptation step, is denoted as P . Unless specified344

otherwise, we set P = 0 and k = 0 (0-shot learn-345

ing). MAML requires two learning rates, one for the346

inner loop (α) and one for the outer loop (β). We347

conducted a grid search to identify an optimal learn-348

ing rate set and used α = 1× 10−5, β = 3× 10−5349

throughout the experiments. For β, we use a linear350

learning rate scheduler with 1,500 warm-up steps.351

Unless specified otherwise, we apply 1× 10−5 to352

fine-tune a model before validation/testing. At each353

iteration step during the training, 2 ×K are sam-354

pled to form a query and a support set for each355

training language. As a result, the batch size N356

equals 2×K × I , where I denotes the number of357

training languages. By default, we assign K = 8358

and I = 14, unless stated otherwise. We report359

evaluation scores using SMATCH (Cai and Knight,360

2013), an evaluation metric for AMR graphs.361

4.3 Baseline with Joint Learning362

We train a baseline model with a joint learning363

method for comparison with our approach. The364

same mBart model is used as described in 4.2. For365

the training set, we use the multilingual AMR train-366

ing sets in 14 languages described in 4.1. At each367

iteration step, we randomly select N training exam-368

ples from the concatenated training sets to calculate369

the loss and optimize the model accordingly. The370

model is evaluated in 0-shot or k-shot depending371

on the experiment setting (details are described372

for in each Section 5). Note that we aim to con-373

duct a comparative study with the meta-learning ap-374

proach. Therefore, unless mentioned otherwise, we375

apply the same hyperparameters and test/evaluation376

method for both approaches (e.g. batch size, learn-377

ing rate scheduler, k-shot size). However, whereas378

meta-learning requires two learning rates for an379

inner loop and an outer loop, the baseline only re-380

quires one learning rate during the training. We use381

a uniform learning rate for training 3× 10−5 with382

a linear scheduler with 1500 warm-up steps.383

fr zh ko fa hr avg

base_14langs 56.3 45.6 42.1 46.3 51.4 48.3
base_12langs 53.6 41.6 40.1 43.4 45.9 44.9
base_8langs 47.5 39.8 39.1 40.5 22.4 37.8

MAML_14langs 56.5 46.1 42.2 46.7 50.8 48.4
MAML_12langs 48.5 39.4 35.1 39.7 45.0 41.5
MAML_8langs 47.7 39.6 34.3 40.1 42.4 40.8

Table 1: SMATCH scores according to the number of
training languages.

5 Research Questions and Discussions 384

We examine the strengths and weaknesses of our 385

method by answering the research questions below. 386

For evaluation, we systematically vary six hyper- 387

parameters individually while keeping the remain- 388

ing parameters fixed, and assess their influence on 389

the model’s performance through comprehensive 390

evaluation and analysis (see Table 8 of Appendix A 391

for the entire hyper-parmeters settings). We com- 392

pare each model to its opponent baseline model 393

for evaluation. Questions Q1 to Q3 center on how 394

the two models respond to specific factors during 395

the training phase, while Q4 to Q6 pertain to the 396

fine-tuning and evaluation stages. The discussions 397

on the questions lead to a final discussion Q7 on 398

whether meta-learning proves to be the optimal 399

approach for cross-lingual AMR parsing. 400

Q1: How does the number of languages affect 401

the performance of the models? 402

To examine how the number of training languages 403

impacts the model performance, we incrementally 404

add more languages to the training data and we 405

train three models respectively with 8, 12, and 14 406

languages. The first model is trained in German, 407

English, Italian, Romanian, Russian, Turkish, and 408

Japanese. Then we add Czech, Dutch, Polish, and 409

Swedish, and then finally we add Estonian and In- 410

donesian. Note that for meta-learning, the batch 411

size depends on the number of training tasks since 412

we randomly sample K examples per language 413

(batch size = 2×K × I where I denotes the num- 414

ber of training languages). To keep the batch size 415

consistent across experiments while altering only 416

the number of languages, when more than 8 lan- 417

guages are used for training, we randomly sample 418

8 languages per iteration step and select K training 419

examples per language. Unless specified otherwise, 420

each model is evaluated in a zero-shot manner for 421

five languages: French, Chinese, Korean, Farsi, 422
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and Croatian.423

Results Table 1 shows that both the MAML and424

baseline models have a positive correlation with the425

number of training languages. The baseline model426

has the largest gain when increasing the number of427

languages from 8 to 12 language by 15.7%. MAML428

models, on the other hand, have the biggest gain429

when increasing the number of languages from 12430

to 14 languages by 14.2%. Looking in detail per431

target language, however, in the MAML model, not432

all target languages benefit from adding more train-433

ing languages. Comparing the two MAML models,434

trained respectively with 8 languages and 12 lan-435

guages, the SMATCH score drops in Chinese and436

Farsi when adding four languages to the training437

data, whereas the baseline model shows a steady438

increase across target languages when adding more439

languages. In other words, the baseline model ben-440

efits uniformly from the inclusion of more training441

languages across all target languages, while the442

performance of the MAML model varies depend-443

ing on the specific target language. In the MAML444

models, certain languages experience a decrease in445

performance despite the addition of more training446

languages. A caveat of this experiment is that the447

results may depend on the order in which the lan-448

guages are added and their typological relationship449

to evaluation languages (we leave this investigation450

to future work).451

Q2: How robust is the model with respect to452

translation quality?453

To assess the impact of the translation source on454

our method, we employ an alternative translation455

model to translate our training data. Specifically,456

we use the mBart translation models, sourced from457

the Huggingface hub8, to translate our training data458

into 14 languages. Subsequently, we use this trans-459

lated data to train both the MAML and baseline460

models. Following this, we contrast the evaluation461

outcomes of these models with those trained using462

the DeepL translation.463

Results For both the MAML and the baseline464

models, when using an open-source translation465

model mBart, the performance drops (see Table 2).466

In both cases, the Korean SMATCH score drops467

the most when using the mBart translation model.468

MAML model is more affected by this change. On469

the average score, the baseline model drops by470

8https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt

fr zh ko fa hr avg

base_DeepL 56.3 45.6 42.1 46.3 51.4 48.3
base_mBart 56.2 44.5 41.2 46.1 51.3 47.8

MAML_DeepL 56.5 46.1 42.2 46.7 50.8 48.4
MAML_mBart 55.6 45.1 40.8 46.1 48.9 47.3

Table 2: SMATCH scores according to the translation
source.

fr zh ko fa hr avg

base_full 56.3 45.6 42.1 46.3 51.4 48.3
base_1000 41.4 35.1 33.3 36.9 38.5 37.0

MAML_full 56.5 46.1 42.2 46.7 50.8 48.4
MAML_1000 38.9 33.9 32.8 36.1 35.0 35.3

Table 3: SMATCH scores according to training data size.

0.9%, whereas the MAML-model drops by 2.3%. 471

This result shows that the meta-learning model is 472

more sensitive to the input texts than the baseline 473

model. 474

Q3: Does the model learn efficiently in 475

lower-resource settings? 476

We assess the robustness of our method in low- 477

resource settings where only a smaller fraction 478

of training data is available. To this end, we ran- 479

domly sample 1,000 examples for each language 480

(the same examples across languages) and use only 481

this sampled data as training data. Since the en- 482

tire training data is a lot smaller than the original 483

model, we evaluate the model with the dev set ev- 484

ery 100 step instead of 500 to save the best model. 485

We also set the max training step to 10,000 instead 486

of 30,000. 487

Results Table 3 illustrates the SMATCH scores 488

achieved by both the MAML and baseline models 489

under different training conditions: using the en- 490

tire dataset (base_full, MAML_full) versus using 491

only 1,000 examples (base_1000, MAML_1000). 492

As expected, both models’ performance was sub- 493

stantially decreased when trained on a small dataset. 494

Specifically, the MAML model experienced a higher 495

drop in SMATCH score, declining by 27%, com- 496

pared to the baseline model, which exhibited a de- 497

crease of 23.3%. This discrepancy suggests that the 498

MAML model is more susceptible to performance 499

degradation in low-resource scenarios. 500
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Q4: How many adaptation steps does the model501

need to learn a new task efficiently?502

We fine-tune our model with 32 examples (32-shot)503

on target languages and evaluate the model with504

the test set in each language. Since the fine-tuning505

dataset is not available for the target languages,506

we use DeepL to translate the English dev set to507

obtain the data. The model is fine-tuned with the508

entire fine-tuning data iteratively and the number509

of iterations is called an adaptation step. To as-510

sess the influence of the adaptation steps on the511

model performance, we increase the number and512

evaluate the model accordingly. To minimize the513

effect of finetuning data, we sample 32 examples514

randomly three times and fine-tune and then evalu-515

ate the model three times. We then use the average516

score of the three evaluation processes. The fine-517

tuning learning rate is fixed to 1× 10−5 across all518

experiments.519

Results Figure 3 (whose data is also presented in520

Table 6 of Appendix A) visually represents the av-521

erage test SMATCH scores across target languages.522

When the adaptation step is 0, the model is evalu-523

ated in zero-shot. Surprisingly, the results indicate524

that both the MAML and baseline models performed525

less effectively after fine-tuning. The baseline526

model exhibits a gradual decline in performance527

with extended fine-tuning duration, except for a528

rapid drop and subsequent recovery between 3 and529

7 adaptation steps. The MAML model demonstrates530

an inconsistent pattern, with a substantial drop in531

performance between 0 and 2 adaptation steps, fol-532

lowed by gradual improvement between 2 and 5533

steps before declining again. The results lack a534

clear, consistent pattern. However, both models per-535

form better when not fine-tuned at all. We propose536

the hypothesis that the mBart pre-trained model537

has already enough knowledge of our target lan-538

guages (French, Chinese, Korean, Farsi, and Croa-539

tian), and fine-tuning the model with only a few540

examples in each language may impair the model’s541

capacity. This could also be attributed to the do-542

main difference between the fine-tuning dataset and543

the test dataset. The fine-tuning dataset includes544

content from general fields like news, online fo-545

rums, journals, and web blogs, whereas the test546

dataset consists of The Little Prince, a novel writ-547

ten in the 1940s. Consequently, the domain shift548

between the two datasets may have contributed to549

the model’s inability to generalize effectively to550

the test domain. Another hypothesis is the small551

Figure 3: Average SMATCH scores on target languages
according to adaptation steps.

size of the fine-tuning dataset, which may have hin- 552

dered the model’s ability to generalize effectively, 553

or an inadequate learning rate leading to undesir- 554

able model updates. We delve into the hypotheses 555

on the learning rate and the size of k in subsequent 556

questions. 557

Q5: High or low learning rate for fine-tuning? 558

To examine the model performance depending on 559

different learning rates, we fine-tune our model 560

with different learning rates and then evaluate each 561

model to record test scores. We apply the same 562

settings as in Q4, such as sampling fine-tuning data 563

three times with a k-size equal to 32. 564

Results Figure 4 (the numerical data is also pre- 565

sented in Table 7 of Appendix A) offers a visual de- 566

piction of the mean test SMATCH scores across var- 567

ious target languages. The baseline and the MAML 568

models show a similar pattern that a lower learning 569

rate leads to better results. When the learning rate 570

is 0, that is, the model is not fine-tuned, both mod- 571

els show the best performance. This is aligned with 572

the results in Q4 yet remains questionable as to why 573

fine-tuning in target languages does not lead to a 574

performance gain. This may be caused by small 575

k-size and in the following question, we discuss 576

the results with bigger k-size. 577

Q6: k-size: the bigger, the better? 578

To answer this question, we use different k = 579

0, 32, 64, 128 examples for fine-tuning before eval- 580

uation. As in Q4 and Q5, the training data is sam- 581

pled three times and we use the average score. We 582

apply 1× 10−5 to fine-tune the models. 583

Results Table 4 illustrates that for values of 584

32 ≤ k ≤ 128, larger values of k result in per- 585

formance improvements for both models. How- 586

ever, except for the models with 128 fine-tuning 587
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Figure 4: Average SMATCH scores on target languages
according to adaptation steps (see Appendix A for nu-
merical results).

k_size baseline MAML

0 48.3 48.4
32 48.2 47.3
64 48.2 47.7
128 48.5 48.5

Table 4: Average SMATCH scores on target languages
according to k-size.

examples, most models do not exhibit improve-588

ment compared to the 0-shot evaluation. It appears589

paradoxical that a fine-tuned model performs worse590

than a non-fine-tuned one. Particularly, the MAML591

model is adversely affected by the fine-tuning step592

and demonstrates a more significant performance593

decrease. The most substantial decline is observed594

between the 0-shot model and the 32-shot model,595

with a difference of 2.3%, whereas the 32-shot596

baseline model only degrades by 0.2% compared597

to the 0-shot model. Consequently, this leads us598

to revisit the hypotheses discussed in Q4 regard-599

ing the prior knowledge of the mBart model in our600

target languages and the domain shift between the601

fine-tuning dataset and the test set.602

Q7: Should cross-lingual AMR parsing go603

Meta?604

The provided table (Table 5) summarizes the high-605

est SMATCH scores achieved by both the baseline606

and MAML models during zero-shot evaluation.607

The difference in performance between these mod-608

els is marginal, varying depending on the target609

language. Consequently, drawing a definitive con-610

clusion regarding which method is superior proves611

challenging. However, through our examination,612

we have noted that MAML models exhibit greater613

sensitivity to changes in input types and dataset614

sizes. Notably, their performance deteriorates sig-615

nificantly in low-resource scenarios or when em-616

fr zh ko fa hr avg

baseline 56.4 45.6 42.1 46.3 51.4 48.36
MAML 56.5 46.1 42.2 46.7 50.8 48.46

Table 5: SMATCH scores of the baseline and the MAML
model (0-shot evaluation).

ploying different translation models for inputs. Ad- 617

ditionally, inconsistencies arise when fine-tuning 618

the model with varying adaptation steps, compli- 619

cating result interpretation and impeding progress 620

toward improvement. 621

Conversely, our observations indicate that a 622

straightforward joint learning approach yields com- 623

parable performance to the MAML model, not only 624

in zero-shot, but also in few-shot evaluations. This 625

highlights that the joint learning method remains 626

a robust starting point for cross-lingual AMR pars- 627

ing. As a result, MAML does not emerge as the 628

optimal solution for this task, given its inconsistent 629

performance. 630

6 Conclusion 631

This study investigates the effectiveness of meta- 632

learning compared to joint learning in cross-lingual 633

AMR parsing. We assess our models across less- 634

explored languages for AMR parsing, including 635

French, Chinese, Korean, Farsi, and Croatian. To 636

facilitate evaluation, we develop new test sets for 637

Korean and Croatian and release the data to pro- 638

mote AMR parsing in diverse languages. We 639

explore various settings to conduct a thorough 640

analysis of the meta-learning approach in con- 641

trast to joint learning. Our findings reveal that 642

meta-learning exhibits inconsistent performance 643

across different settings, whereas the joint learning 644

method demonstrates more consistent performance 645

across experimental variations. Consequently, our 646

results suggest that the joint learning method serves 647

as a robust baseline, while meta-learning appears to 648

be a suboptimal approach for cross-lingual AMR 649

parsing. We believe that this research provides 650

valuable insights into the comparative efficacy of 651

meta-learning and joint-learning methods in cross- 652

lingual AMR parsing, offering important guid- 653

ance for future developments in cross-lingual AMR 654

parsers. 655
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Limitations656

Our model does not outperform a simple mono-657

lingual model which is trained with AMR data658

in the target language translated by a MT system.659

However, our approach can be explored for low-660

resource languages for which machine translation661

is not available. In addition, we did not apply grid662

search to find the best learning rates for the baseline663

models and used the same learning rate as done by664

Procopio et al. (2021), who also employed mBart665

for sequence-to-sequence cross-lingual AMR pars-666

ing. This could have affected the results in favor667

of meta-learning. Nonetheless, this does not affect668

our conclusion of the empirical study to reveal the669

weakness of the meta-learning approach for cross-670

lingual AMR parsing. This study does not include671

evaluation scores on the AMR 2.0 multilingual test672

set, which could help position our models relative673

to the state-of-the-art models. This is because the674

Spanish test set in AMR 2.0 is already used as675

our validation set. Therefore, this data is omitted676

during testing for fair evaluation. Despite the limi-677

tations, we believe that our study empirically shows678

the constraints of meta-learning for cross-lingual679

AMR parsing and provides valuable insights into680

the meta-learning application in the task.681
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A Full Results and Hyper-parameters 915

adaptation steps baseline MAML

0 48.3 48.4
1 48.3 47.4
2 48.2 47.3
3 48.2 47.7
5 47.1 48.0
7 48.1 47.7
9 48.0 47.3
11 47.9 47.2
13 47.8 47.1
15 47.8 47.1

Table 6: Average SMATCH scores on target languages
according to adaptation steps.

finetuning lr baseline MAML

0 48.4 48.3
0.0000001 48.4 48.2
0.000003 48.1 48.3
0.00001 47.3 48.2
0.00003 44.3 46.0
0.0001 31.6 36.2
0.001 21.2 19.8

Table 7: Average SMATCH scores on target languages
according to fine-tuning learning rate.
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Q1 Q2 Q3 Q4 Q5 Q6

Number of languages (I) [8, 12,14] 14 14 14 14 14

Translation source DeepL [DeepL, mBart] DeepL DeepL DeepL DeepL

Data size Full Full [Full, 1000] Full Full Full

Adpatation step (P ) 0 0 0
[0, 1, 2, 3, 5, 7,

9, 11, 13, 15]
2 2

Finetuning lr rate 0 0 0 1e-5
[0, 1e-7, 3e-6, 1e-5,

3e-5, 1e-4, 1e-3]
1e-5

k size 0 0 0 32 32 [0, 32, 64, 128]

Table 8: Hyper-parameters settings for the research questions Q1-Q6
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