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Abstract
Vision-Language Models (VLMs) have made
remarkable progress in document-based Visual
Question Answering (i.e., responding to queries
about the contents of an input document provided
as an image). In this work, we show these mod-
els can memorize responses for training samples
and regurgitate them even when the relevant vi-
sual information has been removed. This includes
Personal Identifiable Information (PII) repeated
once in the training set, indicating these models
could divulge memorised sensitive information
and therefore pose a privacy risk. We quantita-
tively measure the extractability of information in
controlled experiments and differentiate between
cases where it arises from generalization capabili-
ties or from memorization. We further investigate
the factors that influence memorization across
multiple state-of-the-art models and propose an ef-
fective heuristic countermeasure that empirically
prevents the extractability of PII.

1. Introduction
Document-Based Visual Question Answering (Mathew
et al., 2021)—the task of answering questions about the
content of documents presented as visual inputs—has wit-
nessed remarkable advancements in recent years, with mod-
ern Vision-Language Models (VLMs) gaining the ability
to comprehend textual information exclusively from visual
cues and provide accurate responses (Davis et al., 2022; Lee
et al., 2023; Kim et al., 2022; Chen et al., 2023b;a; GPT).

However, our paper exposes a concerning behavior of these
models: even when the answer to a question is explicitly
removed from the input image and is unique or sporadically
repeated across the training set, the VLM can still provide
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Figure 1. A malicious user may prompt a Vision-Language Model
(VLM) to reveal secret information about a victim by generat-
ing a copy of the original document with the secret information
missing (black box). If the secret was part of the training question-
answer pairs, the VLM may respond correctly. For ethical reasons,
we anonymize (grey boxes) personal information of a DocVQA
(Mathew et al., 2021) sample on which the attack is successful for
the Donut model (Kim et al., 2022). The answer is repeated only
once in the whole training set, yet it is memorized.

the correct response. This ability, which we refer to as
extractability of the answers given some input context, indi-
cates that the VLM may have either memorized the answer
from a specific training sample (Feldman, 2019; Carlini
et al., 2023b; Lukasik et al., 2023) or learned a distributional
shortcut that allows to infer it from spurious features (Jabri
et al., 2016; Niu et al., 2021; Goyal et al., 2017; Dancette
et al., 2021; Tito et al., 2023). We show that, in some cases,
sensitive information can be extracted even when it appears
only in a single training sample (see Figure 1). In order
to fix this unintended behaviour of the models, we intro-
duce a simple mitigation strategy that reduces the amount
of extractable PIIs to zero.

In this study, we investigate this phenomenon across three
state-of-the-art Document-Based VQA models: Donut (Kim
et al., 2022), Pix2Struct (Lee et al., 2023) and PALI-3 (Chen
et al., 2023b)). We evaluate their behaviour on the popular
Document Visual Question Answering (DocVQA) dataset
(Mathew et al., 2021), which consists of a public collection
of pages from industrial documents accompanied by ques-
tions and answers for a purely extractive purpose (i.e., the
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task only necessitates reading the document without any
additional reasoning). We propose a series of controlled ex-
periments on in-distribution canaries, enabling us to address
the following key questions:

• What type of training information can be extracted
from Document-Based VQA systems? In Section 4
we show that, among the extractable answers, some
are only present once in the training set. In some cases,
extractable information is PII.

• Can we distinguish between extractable answers
arising from generalization and memorization? In
Section 4, we propose an efficient technique to attribute
extractability to either memorization or generalization,
and find that each phenomenon is responsible for some
of the data we extract.

• How do different modalities, contextual information
and training conditions influence extractability? In
Section 5, we highlight two key factors that favour
extractability: (low) image resolution at training time,
and access to the exact training question. In contrast,
we find that access to partial information about training
images is less important for extractability.

• Are there effective countermeasures? In Section 6,
we evaluate multiple heuristic defenses. We show that
training a model to abstain from responding when the
answer is not visually present in an input effectively
mitigates extraction of PIIs.

2. Related Work
The concerning phenomenon we observe in Figure 1 can
be seen as an extension to the VQA setting of the notion of
training data extraction that has been observed in generative
models for text (Carlini et al., 2021; 2023b; Kandpal et al.,
2022) and images (Carlini et al., 2023a; Somepalli et al.,
2023b). These works primarily focus on showcasing the
ability to extract near-exact copies of entire training samples
from a model. In contrast, we focus on partial extraction
of information from a VQA model and aim to distinguish
between extraction attempts that succeed due to the mem-
orization or generalization capabilities of the considered
models. To provide context for our definitions and experi-
mental setup, we start with a concise overview of relevant
literature.

Training data extraction from generative models. Large
Language Models (LLMs) can memorize and regurgitate
training data (Carlini et al., 2021; 2023b; Chen et al., 2020),
even when no overfitting occurs (on average) (Tirumala
et al., 2022). Similarly, text-to-image generators like Stable
Diffusion can reproduce training data when prompted with
captions seen during training (Somepalli et al., 2023a;b; Car-
lini et al., 2023a). For both text and image generators, the

ability to extract a sample appears to depend heavily on the
number of duplicates of that sample in the training set (Car-
lini et al., 2023b), even though some uniquely-occurring
samples can also be extracted (Carlini et al., 2021).

While no prior work has (to our knowledge) studied whether
private training samples can be extracted from VQA sys-
tems, some studies have shown that language models can
learn to infer sensitive information such as gender or nation-
ality of a person from other contextual clues or distributional
shortcuts (Plant et al., 2022), and that VQA systems can
memorize information shared across many training samples
(Tito et al., 2023). These works thus exploit the model’s le-
gitimate generalization properties rather than the memoriza-
tion notion we analyse in this work. (For further discussion
about distributional shortcuts, refer to Appendix D.2).

Defining memorization. Disentangling memorization
and generalization is a challenging task. A widely accepted
definition is the counterfactual notion proposed by Feldman
(2019), which defines memorization as the difference in per-
formance of a model on some sample, comparing the cases
in which a sample is in the training set or not. Unfortunately,
empirically measuring this counterfactual score is expensive,
as it requires training a large number of models, including
and excluding the training sample in question (Lukasik et al.,
2023; Feldman & Zhang, 2020; Zhang et al., 2021b). In our
paper, we follow a more efficient heuristic adopted by prior
works, where counterfactual memorization is estimated by
comparing the performance of just two models, one trained
on a dataset containing the considered sample and one not
containing it (Carlini et al., 2021; Guo et al., 2023).

3. Experimental Setting
Document-based visual question answering. Given an
input image representing a document I and a question about
its content Q whose correct answer is a, the goal of a
Document-Based VQA model f is to produce an answer
â = f(I,Q) such that â = a. This is done by training
the model on a dataset Dtr = {(Ii, Qi, ai)}Ni=1 to max-
imize the likelihood of the correct response ai given the
input image-question pair (Ii, Qi). To simplify notation and
improve readability, unless referring to specific samples is
crucial for clarity, we often suppress the sample index i. For
a thorough literature review about these systems, refer to
Appendix D.1.

Dataset. We focus on the DocVQA dataset (Mathew et al.,
2021), which contains images of real-world documents with
diverse formats (e.g., letters, advertisements, reports, tickets
etc.). We focus on this dataset for two reasons: (1) It is
representative of privacy-sensitive tasks, and contains multi-
ple forms of PII (see Appendix C); (2) it contains questions
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Figure 2. Four examples of Personally Identifying Information (PII) extractable by Donut (first two samples from left) and Pix2Struct-Base
(last two samples from right). A malicious user may query the model to reveal the PII by using a scan of the document from which the PII
has been removed (black in the image). We anonymize personal information using gray boxes.

that are purely extractive (Mathew et al., 2022), meaning
the answer is always explicitly written in the document.
This makes it easier to automatically detect and eliminate
parts of the input image that are necessary to answer a ques-
tion, which forms the basis of our memorization test. This
process would be harder for datasets that require abstract
reasoning or external knowledge to answer questions.

Models. We consider three end-to-end state-of-the-art sys-
tems capable of directly processing the input image docu-
ment, comprehending its contents, and producing a relevant
response: 1) Donut (Kim et al., 2022), among the first
end-to-end Document-Based VQA systems that achieves
high performance without using Optical Character Recog-
nition (OCR). It is first pre-trained on synthetic documents,
and then fine-tuned on DocVQA. 2) Pix2Struct (Lee et al.,
2023), a specialized model available in two versions: Base
(282M parameters) and Large (1.3B parameters). It is pre-
trained to perform semantic parsing of a 80M subset of
the C4 corpus (Raffel et al., 2019) and then fine-tuned on
DocVQA. 3) PaLI-3 (Chen et al., 2023b), a foundation
model of 5B parameters, pre-trained on a web-scale multi-
lingual image-text dataset, and fine-tuned on DocVQA.

Each of the models is fine-tuned on DocVQA using the
training procedure outlined by the respective authors. To
guard against overfitting, we perform early stopping based
on the validation loss. This ensures that all the models we
evaluate can generalize to previously unseen data, making
them representative of practical deployed VQA systems.
While training at the maximum resolution possible is gen-
erally recommended to achieve better performance (Kim
et al., 2022; Lee et al., 2023; Chen et al., 2023b), lower reso-
lutions might also be adopted in some settings to accelerate
training, especially for the largest models. We train each
model multiple times with different image resolutions, to
analyze the effect of this design choice on memorization.

Defining and Quantifying Extractability Drawing inspira-
tion from (Carlini et al., 2023b), we introduce a definition of
extractability that is suitable for the Document-Based VQA
task.

Definition 3.1. Extractability of the answer a from a
partial context (I−a, Q) Given a model f and a sample
(I,Q, a) ∈ D, we say it is an extractable sample if the cor-
rect answer a is obtained from the partial context (I−a, Q),
i.e., f(I−a, Q) = a, where I−a is a copy of the image I
from which the correct answer a has been removed.

We obtain the partial image I−a by using the OCR outputs
of Tesseract (Smith, 2007) included in the dataset: we iden-
tify the bounding boxes associated with all occurrences of
the answer a within the document and replace it by a blank
white box (we use black in the visualizations for readability).
With this methodology, it is easy to identify some sensitive
samples that are effectively extractable from the training set.
In Figure 2, we show a few of the several cases in which it
is possible to extract PII that is repeated only once or twice
across the whole training set containing about 40K samples.

However, precisely quantifying the amount of extractable
samples requires some care. Notably, due to occasional fail-
ures of the OCR system and the matching procedure to find
the answer a within a document, some successful extrac-
tions are false positives (i.e., the correct answer is still in the
input document). To account for this, we manually curate a
smaller set of training samples (or canaries) DC . We select
about 5400 canary answers (corresponding to about 1200
unique images) at random. We then manually inspect each
of them and filter out all cases in which the answer removal
procedure has failed. We also filter out samples for which
the answer could be easily inferred from the context (e.g.,
predicting an intermediate value in a sequence of numbers,
or predicting the total amount given a list of values), leaving
us with 4654 samples, The obtained set of canaries contains
a substantial amount of PIIs, whose distribution with respect
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Figure 3. Extractability of answers for an attacker prompting the
model with the original image from which the answer has been
removed I−ai

i and the original training question Qi. The Y-axis
is in logscale, therefore it overemphasizes the magnitued of lower
values. PaLI-3 exhibits the lowest amount of extractable informa-
tion in M .
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to the most relevant classes of PIIs is reported in Figure 7 in
Appendix C.

4. Extractability and Memorization
In this section, we quantify the extent to which malicious
users who are aware of the original training question and
possess an incomplete copy of the training document can
prompt the Document-based VQA systems to successfully
retrieve the information they seek.

Let us consider a model f that has been trained on Dtr in-
cluding the canaries. We indicate with E the set of samples
in DC that are extractable from context for f . In Figure 3,
we report the amount of extractable samples |E|, where |.|
indicates the cardinality of the set. As it can be seen, all the

considered models extract a non-zero amount of answers
from the canaries set. However, it is unclear whether the
models are extracting some information because they have
memorized it or because the partial context provided is al-
ready sufficient for a well-trained VQA system to respond
correctly. For this reason, we propose a simple procedure to
roughly estimate which samples in E are extractable due to
memorization or generalization.

4.1. A Simple Baseline for Disentangling Memorization
and Generalization

In order to determine whether the extractable answers are
effectively memorized, in a similar vein to (Carlini et al.,
2023b; Guo et al., 2023), we introduce a generalization
baseline fG (with the same architecture as f ). The idea is to
compare the answers E extractable from f to the answers
G that are extractable from a model fG that has never seen
DC at training time (by removing it from the training set1,
i.e. Dtr −DC ), and which can therefore extract the correct
answers due to legitimate generalization capabilities (or
chance). If an answer is extractable from f but not from
fG, this suggests that the answer was memorized at training
time, and cannot simply be recovered from context. We thus
quantify the amount of extractable memorized information
as the amount of answers extractable from f but not fG: in
other terms, |M | = |E −G|.

Result: In Figure 3 we report |E|, |M | and |G| for all the
considered models. In Figure 4, we also report the amount of
unique PIIs that are memorized. These PIIs mostly represent
individuals names, sensitive locations (like travel destina-
tions), and serial numbers of tickets or products. For both
Donut and Pix2Struct, a substantial amount of examples
extractable by f are not extractable by the generalization
baseline and are likely memorized. In contrast, for PaLI-3
trained at a high resolution, most extractable answers appear
due to generalization alone, and not memorization.

As shown in Figure 4, the highest resolution variants of
Donut and Pix2Struct can extract PIIs and especially unique
PIIs, but the highest resolution variant of PaLI-3 does not.
From these results, we can identify two factors that have a
strong impact on the amount of memorized samples:

1) Training resolution: Given a fixed model architecture,
the resolution at which the model is trained is inversely pro-
portional to the amount of memorized samples. Intuitively,
the lower the resolution, the harder it is for a model to ac-
tually read the answers from the image and the easier it is
for it to minimise the loss by memorization. For instance,
while at the highest resolution for Donut |M | = 63, as the
training resolution decreases, |M | grows to 109, 168 and

1Notice that removing the canaries set from the training set
does not yield a difference in generalization performance.
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to an extremely high level of 756 for the lowest training
resolution.

2) Pretraining: Manually inspecting the samples ex-
tractable by the generalization baseline, we observe that
for Donut and Pix2Struct, these contain highly repeated
answers (e.g., page, table and figure numbers) or frequently
repeated names of organizations (e.g., ITC and AHA). For
PaLI-3, we instead observe that, besides trivial answers like
the ones extracted for Donut and Pix2Struct, the generaliza-
tion baseline correctly responds to questions whose answer
relies on general knowledge (e.g., the meaning of ambigu-
ous acronyms that can be resolved considering the topic of
the input document, properties of chemical substances or
general geographical notions). This is attributable to the
web-scale pretraining. The lower amount of samples in M
may also indicate that a better pre-trained model may rely
less on memorization even at relatively low training reso-
lutions due to their better generalization abilities: indeed,
of all the models, PaLI-3 produces the best generalization
performance on the test set (87.6 ANLS compared to 76.6
and 67.5 of the best Pix2Struct and Donut variants, respec-
tively).

4.2. Extractable Memorization and Simplicity Scores

The method proposed in the previous section may incor-
rectly identify some extractable answers as memorized due
to the randomness of the training process. To show our attri-
bution technique mostly identifies memorized samples, we
leverage a modified version of the memorization and sim-
plicity metrics developed in (Feldman, 2019; Zhang et al.,
2021a).

Memorization and simplicity scores. Let A be stochastic
training algorithm. For each sample (Ii, Qi, ai) ∈ DC , we
would like to estimate the Memorization score (Feldman,
2019):

M(A,Dtr, i) = Pf∼A(Dtr)[f(Ii, Qi) = ai]−
Pf∼A(Dtr−i)[f(Ii, Qi) = ai]

(1)

where Dtr−i indicates Dtr from which sample i has been
removed. This score quantifies the difference between the
probability that a model produces a correct prediction on a
canary given the model has seen it at training time or not.

A score of 1 indicates the model can predict correctly on
an input sample exclusively if it has seen it at training time.
A score of 0 indicates that it has the same probability to
produce a correct prediction whether the sample was or not
in the training set. Note that the memorization score says
nothing about the model’s accuracy on a sample (e.g., both
a model that is always right or always wrong exhibits low
memorization). To account for this (Zhang et al., 2021a)
proposed a simplicity score S(A,Dtr, i) that sums the first

and second terms of Equation (1). This allows to distinguish
cases where a model fails to memorize a sample because it
is hard to answer even when trained on (low simplicity), or
because the answer is easy to produce even when not trained
on (high simplicity).

Extractable memorization and simplicity. These two
scores do not quite reflect the property we are interested:
they inform us about the correctness of a model on an input
sample (I,Q), and not about the ability to answer a ques-
tion given a partial context (I−a, Q). We thus adapt the
memorization and simplicity scores accordingly, to consider
the probability of a successful extraction:

ME(A,Dtr, i) = Pf∼A(Dtr)[f(I
−ai
i , Qi) = ai]−

Pf∼A(Dtr−i)[f(I
−ai
i , Qi) = ai]

(2)

We call Equation (2) the Extractable Memorization score,
and refer to the first term as the in-sample extractability and
to the second as the out-sample extractability. Similarly, we
define an Extractable Simplicity score SE(A,Dtr, i) as the
summation of the two terms.

Empirical estimation. Analogously to (Feldman, 2019;
Lukasik et al., 2023), we compute empirical estimates
M̂E and ŜE of ME and SE by training on random
splits Sk of the training set that omit or maintain at ran-
dom samples from the canary set DC . We produce a
total of K splits, and define the indices of the splits
containing a sample i as Kin = {k : (Ii, Qi, ai) ∈
Sk} and Kout = {k : (Ii, Qi, ai) /∈ Sk}. We
then compute the in-sample and out-sample extractabil-
ity scores as 1

|Kin|
∑

k∈Kin
1(ai = fSk(I−ai

i , Qi)) and
1

|Kout|
∑

k∈Kout
1(ai = fSk(I−ai

i , Qi)). Given that train-
ing Document-Based VQA systems is extremely expensive,
we follow the sampling procedure in (Carlini et al., 2022)
in order to produce K = 50 splits such that each canary is
in or out of a split exactly 25 times.

Experimental results. In Figure 5 we plot 2D histograms
of the memorization and simplicity scores, M̂E and ŜE .
As it can be seen, the vast majority of the samples are not
extractable at all, so we have M̂E = ŜE = 0. Some frac-
tion of the training canaries are counterfactually extractable
though, i.e., M̂E ≫ 0. To determine whether the technique
proposed in Section 4.1 is actually identifying memorised
samples, we now plot the Extractable Memorization and
Simplicity scores of samples E −G that were extractable
only from the original model f , as well as the “control” sam-
ples G that were extractable by the generalization baseline
fG. As expected, samples in G have low memorization
scores M̂E : these answers can be extracted whether we
train on them or not. In contrast, samples in E − G have
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memorization scores M̂E that vary between 0 and 1. Most
of the samples are close to the line ŜE = M̂E , indicating
that the in-sample extractability is the only term contributing
to M̂E (i.e., a model must see a sample at training time in
order to extract it, and cannot extract it due to generalization
only).

5. Ablations on the Extraction Context
So far, we studied the extractability of an answer a assuming
knowledge of all other parts of an input. We now relax this
assumption to both gain further insights into the factors
influencing extractability, and, in some cases, to simulate
more realistic attack scenarios in which perfect knowledge
of the context (I−a, Q) is not available. Indeed, while
perfect knowledge of the context is unlikely in many cases,
it is possible for an attacker to craft an approximation of
the context (e.g., because the information they are seeking
is contained in documents with a known or fixed structure,
like driving licences or forms available online).

Before delving in the results, we point out that just like
modifying the way a LLM is prompted can modify its output
significantly, changing the way the VLMs are prompted
changes which samples are extractable. For this reason, in
few cases, the amount of extractable samples may increase
with respect to the baseline scenario we considered so far,
especially for cases in which the generalization baseline
is weakened by the reduced information contained in the
approximation of the context.

5.1. No Text in the Image

For LLMs, prior work has shown that prompting a model
with the prefix of a memorized string is a reliable way of
extracting data (Carlini et al., 2023b; Tirumala et al., 2022).
Yet, for Document-Based VQA systems it is unclear whether
the models actually needs to read any surrounding text in a
document in order to recall the answer. For this reason, we
study the case in which all text is removed from the image
I . If the model can still respond correctly, it indicates the
model is relying on the question and non-textual features
(e.g., layout, presence of icons or images etc.) in order to
regurgitate the answer. This experiment also represents a
practical threat model where the attacker knows the layout
of a document (e.g., because it is a form available online or
a document with a fixed structure like driving licences or ID
cards) but has little to no knowledge about its contents.

Results: Figure 6 shows that in case of Donut and Pix2Struct,
the absence of text in the image significantly reduces the
ability of the model to return the correct answer. In case of
Donut the amount of samples in M is 26. Pix2Struct shows
a similar decrease from about 94 to 27. The amount of PIIs
returned is also significantly reduced, and consisting mostly

of highly repeated PIIs (more than 6 times). In the case
of PaLI-3, we also observe the model responds correctly
to answers requiring general knowledge (e.g., the name of
chemical substances from their symbols contained in the
questions, names of animal species portrayed in pictures
contained in the document). The increase in the amount of
extractable answers may be related to the fact that, when
the extraction fails, a typical pattern is for the model to
read another part of the document. When no text is present,
it is easier for the model to retrieve the information from
the general knowledge it acquired at pre-training time. For
PaLI-3, no PII is extracted.

Reliance on surrounding text: The lack of any text
in the document significantly reduces the ability to
extract unique PIIs.

5.2. Imperfect Knowledge of the Training Question

To understand whether the model is memorizing an asso-
ciation between the exact question Q and answer a, we
measure whether we can extract the answer when the ques-
tion is paraphrased. We create paraphrases Q′ of Q and
extract the answers using (I−a, Q′). To this end, we use
PaLM2 (Anil et al., 2023) to create a paraphrased question
for each canary question. An example of paraphrase is the
following: if the question Q is“What is the address shown
in the document?”, then the paraphrase Q′ can be “What
is the street name and city shown in the document?”. This
experiment also reflects the setting in which the attacker
does not know the exact phrasing of the training question Q
and approximates it with their own words.

Results: Figure 6 shows that the number of extracted an-
swers significantly drops, but is still non-negligible. For
both Pix2Struct and Donut we observe several unique PIIs
are extractable (e.g., names of individuals, serial numbers of
tickets and travel destinations). The extractability increases
in the case of PaLI-3, but is again related to questions prob-
ing general knowledge and reveal no PII.

Robustness to paraphrasing of Q: Uncertainty
about the exact phrasing of a question that queries PII
does not prevent extraction of sensitive information,
but can reduce the amount of extractable samples.

5.3. Robustness to Image Perturbations

An attacker may be able to craft a document similar to the
one originally used for training, but the scanning procedure
naturally induces some small visual differences that may
influence the extractability of the answers (e.g. brightness
changes, small rotations or translations). For this reason
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Figure 5. Distributions of the M̂E and ŜE scores for all the canaries, E −G and G for both Pix2Struct base 1M Pixels (three panels on
the left) and Donut 2560 x 1920 (three panels on the right). Samples in E −G have high memorization scores, while samples in G do not.

we consider the case in which the original context I−a is
perturbed with augmentations that reflect plausible differ-
ences that may incur between the training and adversarially
crafted document scans. For this purpose, we consider the
following augmentations: 1) brightness change: we increase
(×1.3,×2) or decrease (×0.8,×0.5) the brightness of the
document; 2) small rotations: we randomly rotate by ±5 or
±10 degrees; 3) small translations: we randomly shift the
image by ±20 and ±100 pixels along both axes.

Results: In Figure 6, we can see that brightness changes can
indeed reduce the amount of extractable information, but
the amount of extractable samples is still significantly high.
In most cases, the stronger the change in brightness, the less
the answer is extractable. However, a substantial amount of
samples remains extractable, especially with respect to the
context perturbations considered in the previous sections.
Rotating or translating the image has a stronger adverse
effect on the extractability of answers, indicating that spatial
information plays a more important role for extractability
than the intensity information. Notice, the amount of ex-
tractable samples under image perturbations is significantly
larger than the amount extractable when the question is para-
phrased, indicating that precise knowledge of the question
Q is more important for an extraction attack than precise
knowledge of the original scan I−a. This also suggests that
extractability is more likely to be triggered in the presence
of the training question than in presence of the input image
I−a.

Robustness to Image Perturbations The amount of
extractable samples is relatively robust to brightness
perturbations and less to spatial transformations. An
adversary does not need to reproduce a perfect copy
of the original training image to extract the answer.

5.4. Permuting Modalities

Document-Based VQA systems contain both a visual com-
ponent and a language component, each of which are fine-

tuned on the training data. Extensive evidence has been
provided that each of these components can memorise train-
ing data in isolation (Feldman, 2019; Lukasik et al., 2023;
Carlini et al., 2022; 2019). Therefore an interesting question
is whether it is possible for a multimodal model to extract
the answers independently of one of the two input modal-
ities. For this reason, we consider two experiments that
randomise the relationship between the two input modali-
ties.

Extractability based on questions only. At inference time,
we feed the model a partial image with an unrelated question
(I

−aj

j , Qi), where i ̸= j and there is no training sample with
question Qi applied to image Ij , and the correct answer to
question Qi does not appear in the text of image Ij . This
experiment evaluates the ability of the model to respond
solely based on the question and reflects the case in which
the attacker does not know the image Ii at all.2

Results: In the setting where we try to extract the original
answer ai, as visible in the Shuffling column in Figure 6, we
can extract only 4 answers in case of Donut, and 21 in case
of Pix2Struct. Among all the samples in M , we can also
find some sensitive samples containing area codes, names of
individuals and dates in which the documents were issued.
The sensitive samples are also repeated only once or at most
twice in the model’s training set. While 2 answers can be
extracted for PaLI-3, no PII was extracted.

Extractability based on images only. As in the previous
experiment, we provide the model with a partial input image
and an unrelated question that does not contain an answer
within the image. We then measure whether we can extract
an answer to one of the questions that was asked about this
image during training. We find no extractable answers in
this setting, which suggests that the question plays a more
predominant role in the extraction.

2We have also tried replacing the input image with constant
intensity value set to black, white or the average value of Ii. No
answer was extractable in this case, perhaps because such images
are too far out-of-distribution.
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Figure 6. Extractability of answers when the context does not contain the text (No Text), the question is paraphrased (Paraphrasing), or
not related to the image but the model still responds correctly (Shuffling), the image undergoes rotations (R5* and R10*), translations
(T20px, T100px) and when brightness is changed by a mutliplicative factor (B×2, 1.3, 0.8 or 0.5). Darker colors indicate the number of
PII samples that are extractable. Y-axis is in logscale. Across all deployable models, PaLI-3 exhibits the lowest amount of extractable
information.

Dependency of extractability on modalities In few
cases, the model can leverage the language compo-
nent alone to extract sensitive answers. If the training
answers are not present in the image modality and
the question was not seen at training time for a spe-
cific document, the image alone is not sufficient to
extract any memorized answer.

6. Defenses
To conclude our study, we consider various mitigation strate-
gies and measure their impact on memorization and general-
ization capabilities of the models (by computing the ANLS
(Mathew et al., 2021) on a held-out test set):

• Inference Time Paraphrasing (ITP), similar to
(Somepalli et al., 2023a) we consider its effectiveness
as a defense strategy.

• Prepending/Appending a Random String (PR/AR)
Inspired by (Somepalli et al., 2023a), we perturb the
question by prepending or appending a short 6-digit
random string to the question.

• Extraction Blocking (EB) For each orig-
inal sample (I,Q, a), we suggest adding
to the training set a corresponding sample
(I−a, Q,’ANSWER NOT PRESENT’). This
approach is similar in spirit to the intuition behind the
V-CSS part of the algorithm proposed in (Chen et al.,
2020) to improve the grounding of VQA systems.

Results: We observe that although ITP and PR/AR can re-
duce the amount of extractable information, they also yield
a substantial drop in ANLS on a held-out validation set.
Therefore they can only be implemented as mitigation strate-
gies if the practitioners are willing to pay a cost in terms
of performance. On the other hand, we observe EB to be

∆ ANLS / |M | PR AR ITP EB (Ours)

Donut -3.4 / 38 -3.1 / 34 -12.5 / 26 +1.2 / 2
Pix2Struct-B -2.9 / 40 -1.9 / 35 -12.9 / 28 +3.4 / 0
Pix2Struct-L -2.6 / 37 -2.0 / 33 -13.8 / 25 +2.1 / 0
PaLI-3 -3.7 / 4 -3.2 / 3 -8.1 / 9 +1.5 / 0

Table 1. Variation of ANLS (utility metric for DocVQA) and
amount of extractable samples in M for various countermeasures
with respect to the standard training procedure.

extremely effective, reducing to 0 the amount of extractable
samples for most models. Furthermore, although we apply
the technique by augmenting the original training set using
the context (I−a, Q), it is also generalizes to adversaries
that query the model with the approaches considered in
Section 5 (see Table 2), while producing an increase in the
ANLS (in a similar way V-CSS does in (Chen et al., 2020)).

7. Conclusion
In this study we have analysed the memorization abili-
ties of three recent Document-Based VQA systems. We
have shown these models can memorize information that
is unique or sporadically repeated across the training set
and it can be extracted when the model is prompted with
incomplete context. We have introduced an extension of
the Counterfactual Memorization and Simplicity scores that
reveals that the memorized information identified by our
attribution method is indeed also memorized according to
these more computationally expensive scores. We have
analysed the influence of the context on the extractability
of samples, and studied the effectiveness of a few heuristic
techniques, one of which results in a reduction of the amount
of extractable samples and improves the test performance.
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Impact statement
This paper shows it is possible for a malicious user to prompt
a model to reveal training data. This phenomenon is stud-
ied in a worst-case but plausible condition in which the
attacker knows the training image and question, except for
the answer. Our study only represents a starting step in
the direction of prompting VLMs to elicit the extraction of
private data. It may be possible for an attacker to develop
more sophisticated attack strategies. Such strategies can
be used both in a beneficial way (e.g., for organizations
to audit the privacy preserving properties of their systems)
or maliciously (e.g., for an attacker to obtain confidential
information).

In this study we have used public data, and for further cau-
tion we have anonymised all the sensitive samples we re-
ported in our qualitative analysis. Indeed, in some parts of
the world the Right To Be Forgotten is in place, and the
individuals whose data is reported in the considered pub-
lic dataset my ask for their data to be cancelled. When
performing our quantitative analysis, we report aggregate
numbers and described the extractable samples without re-
vealing their exact content for the same reasons. Therefore,
we expect no individual or organization to be harmed by
reporting our results.

Furthermore, although we propose a countermeasure (EB)
that is effective across all the attack scenarios we consid-
ered, it is still a heuristic approach and may not prevent
extraction in case more sophisticated attack techniques are
developed. Furthermore, it may hypothetically introduce a
”side-channel” that an adversary might exploit to increase
the exposure to membership inference attacks: if the model
responds with the default negation, this may be seen as an
index the sample was in the training set. This may not be
relevant for several applications, where the information to
be protected is not the membership of a document to the
training set but the specific content of the document, but may
be problematic in other applications. An obvious solution
would be to apply Differentially Private (DP) training. Since
DP provides guarantees about the likelihood of success of
Membership Inference Attacks (MIA), but no closed form
formula is available to translate the MIA guarantees into ex-
traction prevention guarantees, practitioners could consider
tuning (ϵ, δ) so as to empirically reduce extraction to zero.
However, scaling DP to VLMs without causing significant
utility degradation is a complex task that requires extensive
and difficult parameter tuning (Kurakin et al., 2022), since
noise addition and norm clipping could impact one of the
two modalities disproportionately (Hu et al., 2022). beyond
the scope of this work.
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|M |/ #PII No Text Paraphrasing Shuffling R5° R10° T20px T200px B×2 B×1.3 B×0.8 B×0.5

Donut 0 / 0 0 / 0 0 / 0 1 / 0 0 / 0 0 / 0 0 / 0 6 / 1 6 / 1 2 / 0 5 / 0
Pix2Struct-B 0 / 0 1 / 0 1 / 0 2 / 0 2 / 0 0 / 0 0 / 0 0 / 0 4 / 0 4 / 0 0 / 0
Pix2Struct-L 1 / 0 0 / 0 0 / 0 1 / 0 1 / 0 0 / 0 0 / 0 0 / 0 4 / 0 2 / 0 0 / 0

PaLI 0 / 0 0 / 0 2 / 0 1 / 0 1/ 0 0 / 0 2 / 0 3 / 0 1 / 0 0 / 0 1 / 0

Table 2. Effectiveness of extraction blocking for the various contexts portrayed in Figure 4. Notice, we do not include in the training sets
any of the contexts we consider in this table. This indicates the protection offered by Extraction Blocking extends beyond the types of
context provided at training time.

A. Computational Cost of Training
Donut Fine-tuning Donut at maximum input resolution requires 64 A100 GPUs for a day. Given its relatively compact
size (176M parameters), Donut can be trained on high-resolution input images (2560 × 1920 ≈ 5M pixels), a crucial aspect
for achieving optimal performance. Lowering the resolution can significantly reduce the cost of training, however, as we
observe, it increases the tendency of the model to memorize the training data and reduces the generalization capabilities of
the models. Therefore it is not recommended.

Pix2Struct Fine-tuning Pix2Struct Base, independently of the resolution, requires 32 TPUv2 for about 5 hours. Training
Pix2Struct Large, independently of the resolution, requires 64 TPUv2 for about 5 hours. Due to its relatively larger size, the
smaller model is fine-tuned at a resolution of about 1.2M pixels, while the larger model is fine-tuned at a resolution of about
0.8M pixels.

PaLI-3 Fine-tuning PaLI-3 64 TPUv2 for 15 hours. Due to its size (5B parameters), it is typically fine-tuned at a resolution
of approximately 1.1M pixels (1064 × 1064).

Computing the memorization scores The amount of compute needs to be multiplied by the number of runs for each
measurement: for the simplest attribution method we consider, we only need 2 runs; for the counterfactual extractable
memorization and simplicity scores, we need to perform 50 runs. Performing more is both computationally prohibitive and
expensive for the storage of the largest models we consider.

B. Further results
Effectivenes of EB for prompting strategies not used in the training set In Section 5 we have considered several ways
to prompt the model. Since EB includes only samples using a worst-case prompting strategy (I−a, Q), it may be natural
to wonder whether EB is still effective if an adversary prompts the model in different ways. We observe the technique is
actually still extremely effective, see Table 2

C. PII categories and their frequencies in the canaries
We manually annotate each answer in the canaries set as either PII or non-PII. We also classify each PII element as one of
the following classes: Places, Person, Temporal, Contact (Phone/Fax/Email), NRP (Nationality Religion Politic), URL,
and other forms of IDs (e.g. card numbers, serial numbers of tickets, document or people numerical identifiers etc.). The
distribution of PII in the canaries set DC is reported in Figure 7.

D. Further Related Works
D.1. Document-Based Visual Question Answering

Given the greater simplicity of solving the VQA problem by separating the tasks of document reading and document
understanding, OCR-reliant systems have been the state of the art for a few years (Tito et al., 2022; Huang et al., 2022).
However, as argued by (Kim et al., 2022), OCR-reliant systems have the disadvantage of requiring an expensive OCR-
preprocessing step, making the inference cost higher in case high-quality OCR results are required, with errors of the
OCR system propagating to the VQA component. The phenomenon is particularly apparent for languages with complex
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Figure 7. Frequency of different types of Personally Identifying Information (PII) in the canaries set DC .

character sets, requiring an expensive post-OCR correction module (Rijhwani et al., 2020; Schaefer & Neudecker, 2020).
For these reasons, OCR-free systems like (Kim et al., 2022; Lee et al., 2023) have received increasing attention, with
state-of-the-art models like PALI-3 (Chen et al., 2023b) closing the performance gap between the OCR-reliant and OCR-free
models. In this work we mainly focus on three state-of-the-art OCR-free systems that differ in model size, architecture and
pre-training stages. We consider both Donut (Kim et al., 2022) and Pix2Struct (Lee et al., 2023) among the set of models
that are specialised to perform document understanding. We also consider PALI-3 (Chen et al., 2023b), a foundational
vision-language model that can be fine-tuned in order to solve the task of document understanding, achieving state-of-the-art
performance.

D.2. Relations to Distributional Shortcut Learning in VQA

It is known that VQA systems can produce correct responses due to their ability to learn and leverage the frequent association
of a specific answer to some question (linguistic shortcut) (Jabri et al., 2016; Niu et al., 2021; Goyal et al., 2017; Chen et al.,
2020). For instance, if the question is “What is the colour of the grass?”, if the grass is green in most of the training images
for which the question is asked, the model will respond green independently of the actual colour in the considered test image.
This type of shortcuts does not need to be exclusively linguistic, and may involve the frequent co-occurrence of elements in
the input image (visual shortcut) or their combination with specific words in the question (multimodal shortcut) (Dancette
et al., 2021; Si et al., 2022). In other terms, VQA systems can learn simple rules relying on spurious but predictive features
that co-occurr across multiple samples in order to respond accurately even when the input image lacks the considered
information or contradicts it.

The concurrent work of (Tito et al., 2023) has shown this phenomenon occurring also in document-based Visual Question
Answering. The authors propose a new federated learning dataset containing invoices from several data providers. Since
a provider’s information (specifically, their name and email address) is repeated across several invoices that share visual
and linguistic similarities (e.g., identical layout, formatting, logos, fields etc.), a model can infer a provider’s name or
email address correctly on previously unseen test documents from the known provider that do not contain the requested
information. In contrast, we focus on centralised training and perform attacks on training documents. Our analysis aims at
factoring out the cases when models can extract information by leveraging knowledge learnt from other samples (which we
consider as a form of generalization rather than memorization). While their goal is to protect the identity of providers (in a
federated, group privacy setting), our goal is to protect the individual answers.
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