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Figure 1: Left: An overview of the proposed ReCoDe method. A GNN policy A aggregates the encoded
observations of neighboring agents within a visibility range RN and generates constraint parameters θ that
influence the feasible set U of an optimization-based controller B . Right: Real-robot position-swap in a 90 cm-
wide, 6.4m-long corridor. Top: baseline QP controller dead-locks. Bottom: the same controller augmented
with ReCoDe succeeds. Six holonomic ground robots (Blumenkamp et al.) communicate only within 1.5m.

Abstract: Constraint-based optimization is a cornerstone of robotics, enabling
the design of controllers that reliably encode task and safety requirements such as
collision avoidance or formation adherence. However, handcrafted constraints
can fail in multi-agent settings that demand complex coordination. We intro-
duce ReCoDe—Reinforcement-based Constraint Design—a decentralized, hybrid
framework that merges the reliability of optimization-based controllers with the
adaptability of multi-agent reinforcement learning. Rather than discarding expert
controllers, ReCoDe improves them by learning additional, dynamic constraints
that capture subtler behaviors, for example, by constraining agent movements to
prevent congestion in cluttered scenarios. Through local communication, agents
collectively constrain their allowed actions to coordinate more effectively under
changing conditions. In this work, we focus on applications of ReCoDe to multi-
agent navigation tasks requiring intricate, context-based movements and consen-
sus, where we show that it outperforms purely handcrafted controllers, other hy-
brid approaches, and standard MARL baselines. We give empirical (real robot)
and theoretical evidence that retaining a user-defined controller, even when it is
imperfect, is more efficient than learning from scratch, especially because Re-
CoDe can dynamically change the degree to which it relies on this controller.

1 Introduction
Ensuring that multiple autonomous agents, such as fleets of autonomous vehicles and warehouse
robots, can safely and efficiently coordinate in a shared environment is a long-standing challenge in
robotics [2, 3]. Classical approaches rely heavily on optimization-based controllers, which encode
mission objectives and constraints into a tractable optimization problem [4]. By carefully designing
these constraints, we can ensure collision avoidance, enforce kinematic limitations, and guide agents
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toward their goals. Yet, as scenarios grow more complex, handcrafted constraints become insuffi-
cient: they cannot easily adapt to evolving conditions or fully exploit coordination opportunities [5].
At the opposite extreme, multi-agent reinforcement learning (MARL) is a highly adaptive paradigm
that shapes agent behavior through experience without task-specific design [6, 7, 8]. However,
MARL lacks the analytic structure and safety assurances of optimization-based methods, making its
decisions harder to predict, verify, or trust in critical applications.

This paper presents ReCoDe (Reinforcement-based Constraint Design), a hybrid, decentralized
framework combining optimization-based control with adaptation provided by MARL. ReCoDe
operates by augmenting a given expert controller1: it keeps the original controller (and its safety
constraints) but learns additional, situation-dependent constraints via MARL. These learned con-
straints dynamically modify each agent’s feasible action set, allowing for finer control and improved
coordination beyond what the fixed controller permits. This approach preserves the desirable proper-
ties of the expert controller—like safety guarantees and interpretability—while enabling adaptation
to complex scenarios. ReCoDe is inherently multi-agent, as agents learn to collectively shape their
constraints for better overall performance. Agents integrate information from neighbors via local
communication when deciding how to adjust their constraints at each point in time. This design is
facilitated by a Graph Neural Network (GNN)-based policy (Figure 1).

Why learn additional constraints? While handcrafted optimization-based controllers excel at encod-
ing single-agent safety requirements and tasks, they often fall short when dealing with more intricate
multi-agent interactions. Consider a two-way street where vehicles want to travel either up or down:
although handcrafted constraints can ensure safety (e.g., avoiding collisions), they typically do not
address higher-level challenges such as congestion or mutual blocking. To deal with such challenges,
human drivers impose on themselves additional situational constraints—like staying strictly within
a lane or yielding to unblock traffic. These more nuanced behaviors hinge on communication among
agents and online adaptation to changing conditions. Starting with only basic constraints (e.g., colli-
sion avoidance), ReCoDe learns such higher-level coordination rules as additional constraints, based
on context and communication with other agents. The result is a hybrid controller that keeps formal
guarantees, anchors learning with expert structure, and still adapts online to multi-agent interactions
by letting agents collectively shape stricter constraints that help them coordinate.

Why learn constraints rather than the optimization objective? Some existing hybrid approaches
work by learning the optimization objective [9, 10]. We posit that retaining the handcrafted objective
and refining decision-making with learned constraints is more data-efficient, because the default
objective, even if imperfect, embeds expert knowledge of the task. Moreover, while hard constraints
can, in principle, be mimicked by infinite-cost penalties in the objective, thus learning the objective is
theoretically more general–RL rarely discovers such penalties, and its learned costs remain soft and
opaque. Concretely, in ReCoDe, each agent’s learned policy π : O→Θ maps its local observation
o(t) to the parameters θ(t) = (a(t), b(t)) of a single quadratic constraint ∥u(t)− a(t)∥2 ≤ b(t),
added to the expert controller at every timestep. Here u(t)∈Rm is the constrained optimization’s
decision variable, a(t)∈Rm is a reference action suggested by the policy, and the uncertainty radius
b(t)∈R≥0 dictates how tightly the solver must follow that reference—the larger b(t), the more the
agent defers to the original controller. Thus the action space of the policy consists of the constraint
parameters (a(t), b(t)), rather than the actual control input u, which is outputted by the solver.

Scope and Results. We investigate ReCoDe’s mechanism theoretically and empirically. On the
theory side we show that enlarging the uncertainty radius b(t)–thus increasing the agent’s reliance on
the default controller–can improve performance in some situations (Proposition 3.2), while shrinking
it enables precise learned control (Propostion 3.1). Empirically we confirm that ReCoDe learns to
exploit this: it tightens its quadratic constraint in congested situations requiring precision and relaxes
it when the path is clear, shifting authority between the learned policy and the default controller
based on the situation (Figures 3d–3e). This supports our claims about the benefits of retaining the
default controller (and in particular, its optimization objective). We perform an ablation to further

1We will refer to this controller, interchangeably, as the default/expert/handcrafted controller.
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compare learning only constraints, learning only the objective, and learning both, and find that
learning just the constraint parameters yields the highest return and fastest convergence (Figure 3f).

While ReCoDe is a general method, we focus on studying its effectiveness in navigation and con-
sensus settings. We design four experiments where coordination is necessary due to the small size
of the environment, formation constraints, or conflicting incentives. We compare ReCoDe’s perfor-
mance in these experiments to several baselines: RVO [11], a gold-standard non-learning methods
for collision avoidance; two different hybrid methods from the literature [5, 9]; and end-to-end
MARL. Across all four scenarios, ReCoDe attains, on average, 18% better reward than the next-
best method (Table 2), and trains using just 5% as many samples as end-to-end MARL (Figure 3b).
We further demonstrate that ReCoDe preserves safety throughout training and deployment, and find
that ReCoDe’s learned constraints still provide a benefit to the handcrafted controller even in less
coordination-heavy tasks (Figure 3a). Finally, we deploy ReCoDe on real robots, tasking two robot
teams in a narrow corridor to swap positions. We find that the default controller often fails this task,
leading robots into a deadlock, whereas ReCoDe’s additional constraints let robots coordinate to
avoid deadlock and successfully swap (Figure 1).

Related Work. Classical multi-robot control is rooted in constrained optimization, where an ob-
jective encodes the mission and constraints enforce safety, kinematics and environmental limits
[4]. Linear programming and quadratic programming are the most common type of optimization
[12, 13], often making use of control-barrier or Lyapunov functions for analytic collision avoidance
and tracking guarantees [14, 15, 5]. Non-convex solvers can handle richer dynamics at higher com-
putational cost [16]. In contrast, multi-agent learning approaches—including MARL—optimize
neural policies directly from interaction data and have been applied to many coordination problems
[6, 17, 18, 8]. In MARL, agents learn to make decisions by interacting with the environment and
updating their policies based on the feedback. Unlike constrained optimization, these methods do
not require an analytic formalization of the desired task, and are more adaptible. However, they
sacrifice the analytic guarantees of model-based controllers and may converge slowly when safe,
high-reward actions are sparse. We provide a more detailed survey of both strands in Appendix A.

Hybrid methods combine MARL with constrained optimization. Relevant works in this space are
[5], [10], and [9]. In [5], MARL is used to optimize parameters of CBFs in constrained optimiza-
tion problems for multi-agent navigation. In this work, rather than optimizing existing constraints,
we learn additional, entirely new, constraints. The methods in [9] and [10] can be seen as shap-
ing the objective of a constrained optimization problem, in different ways. While not applicable
to our evaluated experimental scenarios, in [10], RL is used to learn the objective function of a
model-predictive control system for a single agent, under analytic assumptions that enable gradient
backpropagation. In [9], the shielding method is introduced, which intervenes when the learned
policy’s action violates safety constraints. One implementation of shielding uses constrained opti-
mization whose objective is to find a safe action closest to the policy’s. ReCoDe instead attempts to
generate an action based on a user-provided objective function and safety constraints, and generates
additional constraints to further guide this optimization. We compare to shielding and Online CBF,
and find that ReCoDe outperforms both these methods in a variety of navigation tasks (Section 4).

2 Problem Setting and Method: Dynamic Constraint Design
Setting. We consider a multi-agent system consisting of N agents in a shared environment. The
primary objective of each agent is to maximize its cumulative reward over time. The reward at
time t reflects the agent’s performance in the environment and may depend on factors such as task
completion, efficiency, or cooperation with other agents. Agents interact with their environment
through control inputs, which are obtained by solving an optimization problem whose constraints
the agent itself can partially specify through choosing parameters θ(t). This optimization problem
gives instantaneous control input at every time step (i.e., there is no MPC-like receding horizon).

Let xi(t) ∈ Rn denote the state of agent i at time t, and ui(t) ∈ Rm denote its control input. The
dynamics of our agents are given by the discrete system xi(t + dt) = fi (xi(t),ui(t)), where fi
represents the dynamics of agent i and dt is a constant representing the length of a time step. Further-

3



more, at each time t, agent i receives an observation oi(t) ∈ Oi, which depends on its own state, the
states of other agents (if observed), and environmental variables: oi(t) = hi (xi(t),x−i(t), e(t)),
where hi is the observation function, x−i(t) denotes the states of other visible agents, and e(t) rep-
resents external environmental factors. Given the observation and constraint parameters θi(t), agent
i thus solves the constrained optimization problem minui(t)∈Ui(oi(t);θi(t)) Ji(oi(t),ui(t)), where
Ui := {ui(t) | gk(oi(t),ui(t);θi(t)) ≤ 0, k = 1, . . . ,K}.

Here, Ji (oi(t),ui(t)) is a strictly convex in u, quadratic cost function, possibly representing factors
like energy expenditure or deviation from a desired trajectory. Ui is the set of admissible controls
parametrized by θ, where gi represents the constraint functions. The constraint parameters of agent
i are selected based on its current observation oi(t) and its policy: θi(t) = πi (oi(t)), where πi :
Oi → Θi is a policy mapping observations to parameters.

Method. To enable agents to design constraints, we propose (Re)inforcement-based (Co)nstraint
(De)sign. ReCoDe trains agents in simulation using MAPPO, an actor-critic MARL algorithm [19].
Each agent i seeks to learn a policy πi that maps observations to constraint parameters, aiming to
maximize the agent’s reward. We design each agent’s policy network to leverage relational infor-
mation in the multi-agent system through a mechanism that aggregates nearby agents’ messages.
Although any such mechanism could work in principle, we elect to use Graph Neural Networks
(GNNs). GNN architectures enable decentralized execution in inference time through message pass-
ing, where each agent computes messages mij to send to neighbors; aggregates incoming messages
mi =

∑
j∈Ni

mij ; and updates its state n′
i = σ(mi). This local computation ensures that each

agent is decentralized, relying only on its own and neighbors’ information. The unique structure
of GNNs make the agent’s perception of its neighborhood both permutation invariant and dynamic.
That is, the order of neighboring agents does not affect the computation, and the neighborhood can
adapt to external constraints, such as a limited sensing range. An overview of our method is shown
in Figure 1. Further implementation details are available in Appendix B.

Centralized Training, Decentralized Execution. We adopt a CTDE setup to speed up data col-
lection during training [20]. Specifically, we run M environment instances in parallel, each with N
agents, and aggregate the resulting O(M×N) optimization problems into a single batched program.
However, if just one agent learns a parameter configuration that makes its constraints infeasible, the
entire batch solver can fail, making it difficult to identify which agent caused the issue. To circum-
vent this, we introduce a slack variable sk only in learned constraints (thus safety is unaffected),

transforming Ui into Us
i :=

{
ui(t)

∣∣∣∣ gk (oi(t),ui(t);θi(t)) ≤ sk, k ∈ [1,K]

}
. During training,

each agent tries to minimize Ji (oi(t),ui(t)) +
∑|Us

i |
k=1 λksk where each slack sk ≥ 0 is heavily

penalized (λk ≫ 0), so it is only nonzero when no feasible solution exists. This setup also identi-
fies infeasible programs by flagging the agents whose sk is nonzero. This centralization takes place
in training; at deployment, each agent is fully decentralized, and solves its own local optimization
problem with the final learned constraints based only on local observations and communication.

Constraint Form. In ReCoDe, agents augment a default controller with additional constraints for
improved performance. We focus on learning a single, quadratic constraint ∥ui(t) − ai(t)∥2 ≤
bi(t)+ s0 parametrized by θi(t) = (ai(t), bi(t)), where ai(t) ∈ Rm is a reference action suggested
by the policy, bi(t) ∈ R≥0 is a radius that decides how much the handcrafted controller can steer
away from a(t), and s0 is a slack variable. We explain the reasoning for this, and consider other
types of constraints, in Appendices C and G. The learned agent policy πi : Oi → Θi maps its
observation oi(t) to the constraint parameters θi(t) = (ai(t), bi(t)), and agent i solves:

min
ui(t)

Ji (oi(t),ui(t)) + λ0s0 s.t. ∥ui(t)− ai(t)∥2 ≤ bi(t) + s0,ui(t) ∈ Us
i (oi(t)) . (1)

Here, Us
i (oi(t)) defines the constraints of our default (expert) controller, which may be parametrized

by agent observations but, unlike (a(t), b(t)), not learned by our algorithm. We call bi(t) the uncer-
tainty radius of agent i at time t, since it controls how strict the learned constraint is. A larger value
of bi(t) can be viewed as the learned policy having uncertainty about how optimal the action ai(t)
is, hence preferring to influence the default controller less.
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We assume that in (1) the objective Ji is strictly convex in u and that, for every observation o and
parameter vector θ ∈ Θ, the feasible set is non-empty and convex. We further assume that the
problem (1) admits a unique minimizer u⋆(o,θ), and that the solution mapping θ 7→ u⋆(o,θ) is
continuously differentiable in a neighborhood of each θ ([21] lists mild regularity conditions under
which this property holds). Because Ji(o,u) is strictly convex quadratic in u and constraints are
convex, (1) is a convex QCQP. Such problems are known to be efficiently solvable [22]. This is
important for inference and training, as we must deploy many instances of (1) during data collection.

3 Analysis
Our analysis shows that tightening the uncertainty radius b(t) enables adaptability, letting ReCoDe
track any safe trajectory, whereas enlarging the radius lets the handcrafted controller take over and
raise the reward when the policy is uncertain—thereby validating ReCoDe’s design of dynamically
balancing learned and expert control (proofs in Appendices D–E).

Adaptability. Since ReCoDe uses a constrained-optimization framework, user-defined safety
constraints are never violated. We show here that as long as it remains within these con-
straints, and the slack penalty λ0 is sufficiently large, ReCoDe is precise and adaptable: the
agent can choose constraints that force its controller to track any safe, feasible trajectory with
arbitrarily small error. Formally, let T ∈ N be a finite time horizon. Consider an agent in
our system whose initial state is x∗(1), and a feasible desired trajectory of actions and states
(x∗(1), u∗(1)), (x∗(2), u∗(2)), . . . , (x∗(T ), u∗(T )) where executing u∗(t) in state x∗(t) takes the
agent to state x∗(t+1). Let Bε(p) = {y ∈ Rm : ∥y−p∥ < ϵ} be the ε-neighbourhood of a point p.
Assume that, for each time t, the desired action u∗(t) is strictly feasible under the handcrafted con-
straints without requiring any slack, i.e., with s0(t) = 0. More formally, there exists η > 0 such that
for all t, Bη(u

∗(t)) ⊆ Us
i (oi(t)), where Us

i (·) denotes the feasible set defined by the hand-crafted
constraints with slack parameters, and at u∗(t) we have s0(t) = 0. Then we have:

Proposition 3.1 (ε-Close Trajectory Tracking). For any ε > 0, there exists a sufficiently large
penalty factor λ0 and a sequence of learned constraint parameters {(a(t), b(t))}Tt=1, with a(t) ∈
Rm and b(t) ∈ R>0, such that the unique optimal solutions uopt(t) of the optimization problem (1)
satisfy ∥uopt(t) − u∗(t)∥ ≤ ε, ∀t = 1, . . . , T . Moreover, the resulting state trajectory {x(t)}Tt=1

satisfies: ∥x(t)− x∗(t)∥ ≤ ε, ∀t = 1, . . . , T .

Uncertainty Mitigation. In many RL algorithms, such as actor-critic, an agent wants to pick a
control input u to maximize the true expected reward Q∗

i (o, u) given observation o, but must op-
timize some imperfect learned proxy of Q∗

i –a critic–which we denote Ql
i(o, u). ReCoDe, instead,

has the agent policy output a(o) and an uncertainty radius b(o) that define a ball (constraint) where
u should lie ∥u− a(o)∥2 ≤ b(o). We make the somewhat simplifying interpretation that the agent
chooses a(o) because it maximizes Ql

i(o, u) for some learned proxy Ql
i. Next, the handcrafted

optimization objective Ji
(
o, u

)
picks u inside the ball; the larger the radius b(o), the stronger the

expert controller’s influence. We will show it is beneficial to enlarge b(o), i.e., to mix the expert
controller with the learned policy, when Ql

i(o, u) is more uncertain than Ji given observation o. By
uncertain we mean that Ql

i(o, u)’s gradient is locally bounded by a small δ and therefore it assigns
roughly the same value to all actions locally2. The result requires that for some c1(o), c2(o) > 0, in
a neighborhood of a(o), a weighted combination c1Q

l
i − c2Ji is a good approximation of Q∗

i .3

Proposition 3.2. Assume there is r > 0 such that for all actions u ∈ Br

(
a(o)

)
we have

∣∣Q∗(o, u)−[
c1Q

l
i(o, u) − c2Ji(o, u)

]∣∣ ≤ ε and ∥∇uQ
l
i(o, u)∥2 ≤ δ1. Assume also that there exists a unit

direction d and a constant δ2 > δ1 such that d⊤∇u

[
−Ji

](
o,a(o) + xd

)
≥ δ2 ∀x ∈ [0, r].

Let c2δ2 − c1δ1 = ∆. If every action u ∈ Br

(
a(o)

)
is strictly in problem (1)’s feasible action

set without slack and λ0 (the slack penalty on s0) is sufficiently large, then Q∗(o, uopt(o)) ≥
Q∗(o, a(o)) + r∆− 2ε, where uopt is the solution to (1) (i.e., ReCoDe’s output) given b(o) = r.

2Strictly speaking, flatness does not necessarily imply uncertainty; we use it as an imperfect proxy.
3If c1Ql

i − c2Ji locally approximates Q∗
i + c3 for some constant c3(o), a similar result holds. Note: this

approximation assumption is weaker than assuming Ql
i or Ji on their own can be used to approximate Q∗

i .

5



How to read the bound. r = b(o) is the uncertainty radius; enlarging it lets the handcrafted objective
Ji shape the solver’s choice inside a wider ball. The constant δ1 upper-bounds the gradient of Ql

i in
that ball, so it quantifies how flat—hence how uncertain—the learned policy is locally. By contrast
δ2 > δ1 lower-bounds the directional derivative of −Ji along at least one direction, certifying that
the expert objective is less flat than Ql

i. If c2δ2 > c1δ1, then ∆ = c2δ2−c1δ1 > 0; consequently the
term r∆ in the bound is positive and the solver finds an action that beats the critic’s own maximizer
by at least r∆−2ε. In other words, when, locally, the critic is flat but the expert objective is decisive,
enlarging the uncertainty radius mitigates uncertainty by mixing expert and learned knowledge.

The proposition does not directly imply a strategy, as c1(o) and c2(o) are unknown. Instead, it ex-
plains why giving the policy control over the uncertainty radius can be useful. To properly determine
b(o), the an agent should have some notion of how to weigh the handcrafted vs. learned optimization
goal locally. Does ReCoDe tune b(o) like this in practice? In Section 4 we give empirical evidence
for this: b(o) shrinks in crowded, high-interaction states where the learned policy is more reliable
than the expert, but expands once the path is clear, leaning on the handcrafted controller.

4 Evaluation

We evaluate ReCoDe in four multi-agent navigation and consensus tasks that are designed to ex-
pose two common failure modes in multi-robot control. The first mode appears when safe, reward-
producing actions are sparse; in such settings pure reinforcement learning spends most of its time
exploring moves that end in collisions and learns very slowly. The second mode remains even when
individual safe moves are plentiful and easy to compute: with several robots in close proximity, re-
ciprocal blocking and group-level constraints can trap a system in deadlock, something a handcrafted
controller often cannot anticipate or avert.

The Narrow Corridor task places two teams at opposite ends of a narrow hallway and asks them
to swap positions, so agents must discover when to yield in a space where successful moves are
sparse. Connectivity requires a single team to navigate to the end of the hallway, but introduces
static obstacles and and requires that every pair of robots stay within a fixed communication range,
thereby preserving full connectivity throughout the task. This binds the motions of the entire group
and requires them to collectively negotiate movements. The Waypoint Navigation scenario moves
over-sized robots in a small room with random goals, frequently requiring robots to go “the long
way round” to their location if deadlocks are to be avoided. Finally, the Sensor Coverage scenario
is a multi-objective scenario that couples motion with high-level consensus about where to go: a
fleet of sensors, each assigned to monitor different phenomena, must collectively decide where to
position themselves to attain the best overall coverage of the environment while never breaking their
communication graph (see Appendix F, Figure 4). In all scenarios, holonomic agents observe their
own position, distance to goal position, and relative position to obstacles and other agents within
their communication range. Detailed scenario definitions are available in Appendix F.

Across all tasks we benchmark ReCoDe against multiple baselines. The first is the handcrafted
controller—the best constraint-based controller we could craft for each scenario, the details of
which we give in Appendix F. This is also the controller we use as a basis for ReCoDe. The other
non-learning based method is Reciprocal Velocity Obstacle (RVO) algorithm [11], a gold-standard
method for multi-agent collision avoidance. To isolate the benefit of optimization we also include
Pure MARL, an end-to-end MARL policy that directly controls the agents. Finally, we test against
two hybrid methods, Online-CBF [5] and shielding [9], covered in our Related Work section. In
our implementation of shielding, the policy outputs a target velocity and passes it through a safety
filter using the same safety constraints we used for ReCoDe; in Online CBF, we learn the parameter
k in the control barrier function of (2). In all experiments that make use of reinforcement learning,
we used MAPPO and the same GNN-based actor-critic architecture introduced in Section 2 (such
architectures are SOTA in end-to-end MARL–see, e.g., [23]). We train all baselines for 7.2 million
environment steps, or in the case of Pure MARL, for longer until reward stabilizes.
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A)

B)

C)

Initial Deadlock Success

Narrow
Corridor (a)

Connectivity
(b)

Waypoint
Nav. (c)

Sensor
Coverage

ReCoDe 0.55±0.03 0.40±0.03 0.73±0.06 0.25±0.01

Handcrafted 0.43±0.03 0.18±0.03 0.44±0.02 0.19±0.02

Online CBF 0.38±0.04 0.23±0.05 0.53±0.05 0.19±0.02

MARL -4.50±0.98 -3.85±3.37 -0.17±0.05 -0.45±0.06

Shielding 0.45±0.02 0.38±0.02 0.57±0.03 0.2±0.01

RVO 0.44±0.03 N/A 0.62±0.02 N/A

Figure 2: Experimental scenarios and results. Leftmost column: initial conditions; middle: a possible deadlock
scenario where agents require coordination to proceed; rightmost: scenario success. Agents are colored circles;
black edges denote communication lines. (A) Narrow Corridor: blue/green agents navigate to color-matched
regions while communicating with neighbors. (B) Connectivity: agents bypass obstacles without breaking any
communication links. (C) Waypoint Navigation: agents coordinate to reach color-matched goals, requiring
some to leave goals despite short-term incentives temporarily. The table shows average rewards per time step
for ReCoDe, handcrafted constraints, Online CBF, RVO, shielding, and Pure MARL across 75 random starting
conditions (mean ± standard deviation over best 6 consecutive training steps). Maximum possible rewards are
roughly 1 in Narrow Corridor, Connectivity, 1.5 in Waypoint, and unknown in Sensor Coverage.

4.1 Results

Our results are summarized in Table 2. ReCoDe significantly outperforms the baselines in all tested
scenarios, attaining, on average, 18% greater reward than the next-best method. Pure MARL per-
formed the worst, and was unable to control agents and reach to an adequate performance across all
scenarios. This is because our scenarios are very sensitive to small changes in the control input (e.g.,
in a narrow corridor a very small change in input makes the difference between a collision and suc-
cessful navigation); it is difficult to obtain a positive reward without optimization. Qualitatively, the
most frequent failure modes for other methods were deadlocks stemming from lack of coordination.

MARL/Handcrafted Controller Comparison. We examined how MARL and the handcrafted
controller compare to ReCoDe under easier conditions by varying each agent’s radius in Waypoint
Navigation. Smaller radii make collisions less likely, simplify navigation and require less intricate
coordination. Figure 3a shows that even with smaller agents, ReCoDe outperforms both pure MARL
and the handcrafted controller, and so might be beneficial even for less coordination-heavy scenar-
ios. Furthermore, compared to MARL, ReCoDe demonstrates much faster training convergence: as
shown in Figure 3b, whereas pure MARL still underperforms substantially after 500 training steps
of 120k frames each, ReCoDe reaches excellent performance in 20 steps. Another critical consid-
eration is safety during training. As shown in Figure 3c, ReCoDe consistently maintains near-zero
collision rates during training, a key advantage of hybrid methods over end-to-end MARL.

Mechanism. Proposition 3.2 suggests that agents should shrink the uncertainty radius b when the
learned policy is reliable and enlarge it when the handcrafted objective offers stronger signal. To test
whether ReCoDe learns this behavior, we logged b at three training checkpoints (0.96 M, 1.92 M and
8.64 M steps) in the Narrow Corridor task over 100 six-robot episodes with random initial states,
collecting data from agents aiming for the green region. Figures 3e–3d plot b against each robot’s
neighbor count and y-position (robots with y > 1.5 have reached the goal). Early in training b is
uniformly small, indicating near-total reliance on the learned policy; as learning progresses the mean
radius grows, allowing the default controller to contribute more. We find that b correlates negatively
with number of nearby agents (r≈−0.03, p < 10−40) and positively with y/goal proximity (r≈
0.08, p < 10−200). Thus ReCoDe tightens b to resolve likely deadlocks (as the learned policy is
better at such coordination) and relaxes it once the path is clear (as the default controller makes more
efficient, greedy movements), matching the strategy predicted by our analysis.

Ablation. To test whether performance can be improved by learning the objective, we compared
three variants of ReCoDe in Narrow Corridor: standard ReCoDe, which learns only the quadratic-
constraint parameters; a variant that keeps this constraint fixed but lets the policy learn the goal
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Figure 3: (a) Complexity vs. Reward in Waypoint Navigation: ReCoDe consistently outperforms both pure
MARL and the handcrafted controller across different agent radii, demonstrating robustness in both high- and
low-task complexities. Shaded regions indicate standard deviations. (b) Sample Efficiency: In Waypoint Nav-
igation with agent radius = 0.1, ReCoDe quickly converges to near-optimal reward, whereas pure MARL re-
mains suboptimal even after 500 steps. (c) Collision penalties during training of the Narrow Corridor scenario
are near-zero for ReCoDe (−0.0001 on average), Online CBF (−0.06) and pure RL (−9.4). (d)–(e) Plots of
the learned constraint radius (b) vs. the agent’s y-position and number of neighbors at various stages of training
in the Narrow Corridor scenario. Shaded regions indicate 1

2
std. (f) Ablation: Learning constraints vs. objective

vs. both in the Narrow Corridor setting (4 random seeds).

position of the objective; and a variant that learns both the constraint and the target position simul-
taneously. Although the third variant is the most expressive, the constraint-only version reached its
peak sooner and achieved the highest return, while the two objective-learning variants converged
more slowly and plateaued at lower scores (Fig. 3f), supporting our claim that the fixed, expert-
designed objective provides a valuable inductive bias that is diluted once it becomes a moving target.

Robot Demonstration. We transferred the policy trained in the Narrow-Corridor simulation di-
rectly to six holonomic ground robots [1]. The physical arena matches the simulation scale: a
90 cm-wide, 6.4m-long corridor. Robots exchange messages only when separated by ≤ 1.5m to
mimic the limited communication range used during training. In our trials, the handcrafted con-
troller dead-locked in every run, typically when two teams met near the midpoint. With ReCoDe’s
learned quadratic constraint active, all six robots consistently complete the swap without violating
safety margins. These results corroborate the simulation study: ReCoDe’s online constraint genera-
tion resolved reciprocal blocking despite real-world noise stemming from positional tracking errors,
communication delays, and actuator limitations in precisely executing intended commands. We fur-
ther experiment with learning linear constraints, and find this encourages the robots to avoid partial
solutions, but does not affect reward–find more details in App. G. Figure 1 overlays the trajectories;
a video is available at https://www.youtube.com/watch?v=SgCE0TFOz2c.

5 Discussion
We presented ReCoDe, a hybrid control framework that combines expert knowledge with reinforce-
ment learning to augment constrained optimization-based controllers. Our experiments, focusing on
applications of ReCoDe to navigation and consensus, show that this combination outperforms both
of its components in isolation: handcrafted controllers respect safety yet coordinate poorly, and pure
MARL explores freely but lacks local precision and safety guarantees. ReCoDe overcomes both
weaknesses by constraining each agent in response to its neighbors’ intents, enabling adaptability
when the handcrafted controller would stall, but falling back on that controller when the learned
policy is uncertain. As a result it consistently outperforms other methods in our tested scenarios,
requiring fewer samples than pure learning while not violating the user-defined safety constraints.

8

https://www.youtube.com/watch?v=SgCE0TFOz2c


6 Limitations
(i) Our experiments demonstrate the performance improvements of ReCoDe in intricate navigation
tasks, and complex tasks involving both navigation and multi-objective consensus. However, due to
the significant work involved in setting up relevant experimental scenarios, we have not yet studied
ReCoDe in non-navigation settings such as multi-agent manipulation, leaving open the question of
how it compares to existing baselines in such settings. This will be a topic for future work.

(ii) ReCoDe currently assumes the underlying optimization problem is convex. In principle, Re-
CoDe can be extended to nonconvex optimization, but the user must provide a method of solving the
optimization problem that is efficient enough to collect data for. If the user is fine with sub-optimal
solutions, there are many methods (e.g., gradient descent) for solving nonconvex optimization prob-
lems, thus enabling us to extend ReCoDe to such settings. We note that because we are modifying
the user-provided controller anyway, it is likely not important for the user to use a solver that finds
the global optimum, and so this is not necessarily a fundamental limitation. However, as we did not
explore nonconvex, sub-optimal solvers in this work, we cannot decisively comment on how well
ReCoDe works in such settings.

(iii) Finally, data collection in our setting is computationally demanding to scale up to a great num-
ber of agents due to the need to many solve optimization problems. These optimization problems
are challenging to parallelize efficiently, as most solvers use complex, branching control flows better
suited for CPUs rather than GPUs, potentially limiting the scalability of our method. To address this
limitation, we explored GPU-compatible solvers such as qpth [24] and JAXOpt [25]. While these
recently developed solvers were specifically designed to address such scalability challenges, we ob-
served minimal computational advantages over CPU-based solvers given our relatively inexpensive
RL experiments. However, tests we performed indicate that these GPU-based solvers demonstrate
significantly better scaling properties when handling larger numbers of problems, suggesting they
should be preferred over CPU-based alternatives like CVXPYLayers [26] for larger-scale experi-
ments. Scaling up our framework using such GPU-compatible solvers can expand the scope of our
method to larger systems of agents, and further exploration is required to find the optimal setup.

7 Acknowledgements
This work was supported by ERC Project 949940 (gAIa).

References
[1] J. Blumenkamp, A. Shankar, M. Bettini, J. Bird, and A. Prorok. The Cambridge RoboMas-

ter: An Agile Multi-Robot Research Platform. In International Symposium on Distributed
Autonomous Robotic Systems (DARS), 2024.

[2] J. Alonso-Mora, T. Naegeli, R. Siegwart, and P. Beardsley. Collision avoidance for aerial
vehicles in multi-agent scenarios. Autonomous Robots, 39:101–121, 2015.

[3] W. Merkt, V. Ivan, and S. Vijayakumar. Continuous-time collision avoidance for trajectory
optimization in dynamic environments. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019.

[4] J. Gregory. Constrained optimization in the calculus of variations and optimal control theory.
Chapman and Hall/CRC, 2018.

[5] Z. Gao, G. Yang, and A. Prorok. Online control barrier functions for decentralized multi-agent
navigation. In IEEE International Symposium on Multi-Robot and Multi-Agent Systems (MRS),
2023.

[6] L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey of multiagent reinforce-
ment learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 38(2):156–172, 2008.

9

https://arxiv.org/abs/2405.02198
https://arxiv.org/abs/2405.02198
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s10514-015-9429-0&casa_token=QByq7Zgi3p4AAAAA:n-56Bf5bOfGUZnr2EKghJrJc2gBrnB1cvEk1yaXZsBMWVU_LU2mxGg9xJttpjJcDOoYI39_yOmB2qyjd7g
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s10514-015-9429-0&casa_token=QByq7Zgi3p4AAAAA:n-56Bf5bOfGUZnr2EKghJrJc2gBrnB1cvEk1yaXZsBMWVU_LU2mxGg9xJttpjJcDOoYI39_yOmB2qyjd7g
https://ieeexplore.ieee.org/abstract/document/8967641?casa_token=5mmHAqsKC6oAAAAA:7UUtxPMTgowJT4Ncp0N2PCasncHL_NYQVUxIgj9fBlNa9CkHfpJbSdxdl_dy2bd90HIQv_QT_gI
https://ieeexplore.ieee.org/abstract/document/8967641?casa_token=5mmHAqsKC6oAAAAA:7UUtxPMTgowJT4Ncp0N2PCasncHL_NYQVUxIgj9fBlNa9CkHfpJbSdxdl_dy2bd90HIQv_QT_gI
https://www.taylorfrancis.com/books/mono/10.1201/9781351070867/constrained-optimization-calculus-variations-optimal-control-theory-gregory
https://ieeexplore.ieee.org/abstract/document/10416796/?casa_token=f4WRo97Ux-gAAAAA:fznIARBiiClnS4jJDLD2_kpHbq6RBN-KREJnvpbj4Vnd8rDzgUkCU7MrwePw_gGOdBRTskjRVPU
https://ieeexplore.ieee.org/abstract/document/10416796/?casa_token=f4WRo97Ux-gAAAAA:fznIARBiiClnS4jJDLD2_kpHbq6RBN-KREJnvpbj4Vnd8rDzgUkCU7MrwePw_gGOdBRTskjRVPU
https://ieeexplore.ieee.org/abstract/document/4445757/?casa_token=H22XaTCkmEsAAAAA:4b9W9gXNjq0ABFmDmTojKdAbeL6qFTB2M9IHa7w3wO5SI8sma0WE5guSXB55CkNrXMIJJN7QElo
https://ieeexplore.ieee.org/abstract/document/4445757/?casa_token=H22XaTCkmEsAAAAA:4b9W9gXNjq0ABFmDmTojKdAbeL6qFTB2M9IHa7w3wO5SI8sma0WE5guSXB55CkNrXMIJJN7QElo


[7] L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino, M. Re, and S. Spanò.
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Appendix

A Further Related Work on Constrained Optimization and Multi-Agent RL
Constrained Optimization: Constrained optimization is one of the main tools to address multi-
agent motion control problems with system dynamics in the continuous domain. It provides a
structured methodology for choosing agent actions, where the objective function for optimization
encodes the mission goal and the constraints adhere to certain operational, physical or environmen-
tal constraints [4]. Depending on the problem’s complexity, various algorithms have been used in the
literature [27]. When objective functions and constraints are linear, linear programming efficiently
coordinates multi-agent movements [12, 13, 28]. For quadratic objectives (e.g., minimizing energy
or path deviation), quadratic programming (QP) and Second-order Cone Programming (SOCP) are
widely used [14, 29, 21]. They are often combined with control barrier functions (CBFs) and control
Lyapunov functions (CLFs) for collision avoidance and target tracking [15, 5], and find applications
in formation control [30] and model-predictive control [31]. These methods integrate system dynam-
ics and constraints to provide solutions in convex settings. When dealing with complex dynamics,
nonlinear programming remains a possibility [16, 32], at higher computational cost.

Constraints: In (multi-)agent control, constrained optimization problems generally consider four
types of constraints: (i) collision avoidance constraints; (ii) kinematic constraints; (iii) environ-
mental constraints and (iv) task-specific constraints. In particular, collision avoidance is critical
for multi-agent motion control to ensure safe and efficient operation in shared spaces, which is a
fundamental requirement in many existing works [2, 3]. Kinematic constraints describe limitations
on agent movements given their physical configuration and properties, which is important to en-
sure physically feasible trajectories for multi-agent systems and reduces sim-to-real gap compared
to traditional discrete multi-agent path finding methods [33, 34, 35]. Similarly, environmental con-
straints impose restrictions on multi-agent systems based on characteristics and conditions of the
environment in which multi-agent systems operate, including physical constraints such as walls or
obstacles and operational constraints such as energy limitations. These constraints play a critical
role in ensuring safe, efficient and robust operations of multi-agent systems in real-world environ-
ments [36, 37, 38]. Finally, task-specific constraints arise from specific objectives or missions that
agents need to accomplish, which are fundamental to align motion planning and control strategies
with functional goals of the system, such as goal constraints, time constraints and assignment con-
straints [39, 40, 41]. These constraints must be carefully designed to avoid conflicting with each
other, which could make the optimization problem infeasible.

Learning-based methods for multi-agent control have attracted significant attention in recent years
[8]. These methods parameterize the control policies of multi-agent systems with neural networks
and train their parameters with gradient-based algorithms, among which multi-agent reinforcement
learning (MARL) is highly notable. In MARL, agents learn to make decisions by interacting with
the environment and optimizing their policies based on environmental feedback and communica-
tion. Agents can be cooperative, competitive or a mix of both [6, 42, 7]. MARL has been applied
to multi-agent navigation [18, 43], traffic management [17, 44], coverage control [45, 46], among
other domains. Learning-based methods do not need to solve optimization problems and are com-
putationally efficient. However, they lose theoretical guarantees compared to optimization-based
methods and do not always converge to a good policy.

B Implementation Details
In our setting, we train agents using Multi-Agent Proximal Policy Optimization (MAPPO) [47], a
multi-agent variant of PPO [48] where each agent optimizes its policy using shared experience from
the environment while maintaining a centralized value function to improve coordination and stability
during training. We find that IPPO–a simpler, more decentralized multi-agent learning version of
PPO–also works well.

Both our agents’ actor policy and critic policy consist of a Graph Attention Network v2
(GATv2Conv) [49] layer that processes agent observations as node and edge features (e.g., node
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features might be the agent’s goal point, and edge features might consist of relative positions and
velocities). The GATv2Conv layer computes attention coefficients between connected agents to dy-
namically weigh the importance of neighboring information, producing updated node. The output
of the GNN is decoded by an MLP with one hidden layer (128 units, Tanh activation) that maps the
GNN embeddings to constraint parameters θi(t).

To solve optimization problems we use CVXPYLayers [26], which has some built-in support for
parallelization that enables us to solve large batches of problems faster. We use VMAS [50] as the
backbone of our vectorized multi-agent environment.

We find that ReCoDe’s performance is not particularly sensitive to choice of hyperparameters and
use the defaults of BenchMARL [51] to set the parameters of MAPPO and the GNN layers in all
experiments.

C Benefits of the Quadratic Constraint
When considering what type of constraint to augment the handcrafted controller with, one might
be tempted to use general linear constraints, expressed as a⊤i ui(t) ≤ bi, where ai ∈ Rm and
bi ∈ R are parameters that the agent can adjust, as these are the simplest and most efficient types of
constraints to solve for. While these constraints are beneficial in specific scenarios, and we do find
them useful in our ground robot demonstration (see Appendix G), they have an important drawback:
if an agent is allowed to parametrize k such constraints, the total number of parameters becomes
k(m + 1), growing quickly with k and m. However, linear constraints have a serious drawback: a
small value of k severely limits the agent’s ability to control the outcome of its optimization problem.
Specifically, with fewer than m+1 linear constraints, it is impossible to specify a bounded region in
Rm that contains an ϵ-ball around a point, which is necessary for fine-grained control. This suggests
setting k ≥ m + 1, making the dimension of our action space at least (m + 1)2. However, such
an action space scales poorly with m, requiring more samples for the agent to explore and learn
effective policies, and making it difficult to generalize from limited data. We conclude that this
choice of constraints is suboptimal.

We instead augment the handcrafted controller with a single quadratic constraint ∥ui(t)−ai(t)∥2 ≤
bi(t) + s defining the center of a ball and its radius, as described in the paper. The action space di-
mension of this constraint is dim(θi) = m + 1–significantly smaller than (m + 1)2 when using
multiple linear constraints. By adjusting ai(t) and bi(t), the agent can position the quadratic con-
straint’s feasible region anywhere in the control input space and adjust its size, allowing for a wide
range of control actions. This makes the quadratic constraint a flexible choice.

In spite of the above, there are some situations where we find that learning linear constraints some-
times produces desirable behavior. Please see Appendix G for details.

D Proof of Proposition 3.1

Proof. Consider a feasible desired trajectory {(x∗(t), u∗(t))}Tt=1. To prove the claim, we must show
that we can choose (a(t), b(t)) and λ0 so that the optimal uopt(t) never strays more than ε from u∗(t).
The main subtlety is that uopt(t) affects x(t+ 1) and thus oi(t+ 1), potentially changing feasibility
at future steps. We handle this by leveraging the continuity of the dynamics and observations. We
prove the claim by induction, assuming it holds for any ε > 0 up to time t, and showing it also holds
at time t+ 1.

First we show the base case t = 1. The agent’s state is x∗(1), trivially satisfying ∥x(1)− x∗(1)∥ =
0 ≤ ε. Choose a(1) = u∗(1) and b(1) = ε. This introduces the constraint ∥uopt(1)−u∗(1)∥ ≤ ε+s0
to the optimization problem (1), where s0 is a slack variable. Note that as λ0 → ∞, any positive
slack s0 > 0 becomes increasingly costly for the optimization problem. For large enough λ0, if a
solution with s0 = 0 exists, the solver will prefer it over any with s0 > 0. Thus, by assumption,
u∗(1) is feasible (it lies within U0

i (oi(1))), and there exists a sufficiently large λ0 for which our
construction will ensure s0 = 0, implying that uopt(1) must be within the ε-ball around u∗(1) to
remain optimal. Hence, ∥uopt(1)− u∗(1)∥ ≤ ε. This establishes the inductive claim for t = 1.
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Now assume the induction holds up to t, and we shall show it holds for t+ 1 ≤ T . By assumption,
for any ε0, there exists a sequence of quadratic constraint parameters that results in our agent having
state ∥x(t) − x∗(t)∥ < ε0 at time t. Moreover, there is a quadratic constraint such that the unique
optimal solution uopt(t) of the optimization problem (1) satisfies ∥uopt(t)− u∗(t)∥ ≤ ε0. We know
executing action u∗(t) from state x∗(t) results in our agent having state x∗(t+1). By continuity, for
any ϵ1 > 0 there exists small enough ε0 such that executing uopt(t) results in our agent having state
x(t+1) satisfying ∥x(t+1)− x∗(t+1)∥ < ε1. By assumption, u∗(t+1) is strictly feasible when
our agent’s state is x∗(t+ 1). By our continuity assumptions regarding (1), we may choose ε1 > 0
to be small enough such that u∗(t+ 1) is strictly feasible when our agent’s state is x(t+ 1). Given
such a ε1, as in the base case, we can set a(t + 1) = u∗(t + 1) and b(t + 1) = ε and fix λ0 large
enough to ensure ∥uopt(t+ 1)− u∗(t+ 1)∥ ≤ ε. This establishes the inductive claim for t+ 1.

E Proof of Proposition 3.2
Proof. By the directional–derivative assumption, integrating along x 7→ a(o) + xd for x ∈ [0, r]
gives −Ji

(
o, a(o) + rd

)
≥ −Ji

(
o, a(o)

)
+ rδ2. A sufficiently large λ0 forces uopt ∈ Br

(
a(o)

)
;

since the solver minimises Ji, hence maximises −Ji on that ball,

−Ji
(
o, uopt(o)

)
≥ −Ji

(
o, a(o) + rd

)
≥ −Ji

(
o, a(o)

)
+ rδ2.

Because ∥∇uQ
l
i(o, u)∥2 ≤ δ1 in the same ball, Ql

i

(
o, uopt(o)

)
≥ Ql

i

(
o, a(o)

)
− rδ1. Combining

the two bounds, c1Ql
i(o, u

opt) − c2Ji(o, u
opt) ≥ c1Q

l
i(o, a) − c2Ji(o, a) + r∆. Finally, since∣∣Q∗(o, u)− [c1Q

l
i(o, u)− c2Ji(o, u)]

∣∣ ≤ ε throughout the ball, we obtain

Q∗(o, uopt)+ε ≥ c1Q
l
i(o, u

opt)−c2Ji(o, u
opt) ≥ c1Q

l
i(o, a)−c2Ji(o, a)+r∆ ≥ Q∗(o, a)−ε+r∆.

Rearranging yields the stated inequality.

F Evaluation Scenarios in Detail
Experiment: Narrow Corridor. In this experiment, agents initiated at random locations in a narrow
corridor seek to either get to the blue or green region. Agents receive a reward of −10 for bumping
into each other or the corridor boundaries, 1 for every time step they spend in the correct region, and
a small reward whenever they take a step that brings them closer to this region.

Our handcrafted controller seeks to prevent collisions while sending agents to their target re-
gion. To avoid collisions, the ego agent’s controller introduces a CBF defined for each agent j:
hj(pego,pj) = k(∥pego − pj∥22 − d2min), where dmin > 0 is a safe distance threshold, p denotes
position, and k is a tuneable constant. This function hj is positive if the ego agent is at a distance
greater than dmin from agent j, and negative if too close. The collision avoidance constraints use hj

to ensure that, by properly choosing u, the ego agent moves in a direction that maintains or increases
this safety margin, thereby preventing collisions. At each time step, the ego agent solves (omitting
some low-level technical details):

max
u,s

di · uy

s.t. ∀j, 2
(
(xego − xj)ux + (yego − yj)uy

)
+ hj(pego,pj) ≥ 0

(pego + u) ∈ B, ∥u∥2 ≤ M

(2)

Here, B = [−Xmax, Xmax] × [−Ymax, Ymax] denotes the boundaries of the environment; d ∈
{−1, 1} indicates the target direction of the agent; u is a decision variable denoting the agent’s
velocity control input; the first constraint handles agent-agent collisions through the control barrier
function; the second constraint prevents agents from going out of bounds; and the third constraint
is a velocity limit. To use ReCoDe in this controller, all we need to do is introduce a slack decision
variable s ≥ 0 and a quadratic constraint on top of existing constraints, as shown in (1). Both the
handcrafted controller and the ReCoDe modification are efficiently solvable [22].

Navigating this scenario demands sophisticated agent coordination, as robots must not only avoid
collisions but also work in concert to prevent gridlock. While traditional handcrafted controllers
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can manage basic collision avoidance, they frequently succumb to deadlocks due to their inability to
facilitate inter-agent coordination, as illustrated in Figure 2. These limitations expose a fundamental
weakness in conventional control approaches that rely on constrained optimization: without a mech-
anism for coordination, agents cannot make cooperative decisions like yielding to resolve impasses.
In contrast, our ReCoDe framework overcomes these challenges.

Experiment: Connectivity. In this experiment, agents in a narrow corridor must move to the
green region, while never breaking communication links: every pair of agents needs to always stay
within each others’ communication range. We introduce static obstacles into the environment that
the agents must learn to bypass while maintaining this connectivity requirement. We prevent agent
actions that would break this connectivity and give negative rewards to actions that attempt this.
Reward structure is otherwise the same as the previous experiment: a positive reward for reaching
the green region, and a negative reward for colliding.

Our handcrafted controller is based on (2), with the main difference being the introduction of a
quadratic constraint on distance: ∥pego − pj∥22 ≤ d2min.

This problem requires coordination between the agents: an agent greedily attempting to move to
the green region might result in a deadlock, as it leaves too little leeway for other agents to by-
pass obstacles–see Figure 2. While our handcrafted controller struggles in such situations, ReCoDe
handles them successfully (see Table 2).

Experiment: Waypoint Navigation. In this experiment, large agents in a small environment must
navigate to their respective goal points (Figure 2). The agents and goal points are initiated randomly.
At each time step, agents receive a reward proportional to dprev − dcurrent (their previous distance
to their goal minus their current distance), as well as a large, discrete reward when they get suf-
ficiently close. A penalty reward of −10 is given when agents collide. The scenario is similar to
Narrow Corridor in that agents must navigate to a goal point, but unlike Narrow Corridor, agents
have a greater diversity of possible goal points and strategies, enabling us to test whether ReCoDe
can explore diverse strategies. Our handcrafted controller is based on (2), with only the objective
function changed to minimize an agent’s distance to its respective goal point.

Experiment: Sensor Coverage. Sensor Coverage is a multi-objective task that poses a consensus
challenge alongside a navigation challenge. In it, decentralized mobile sensors monitor different
phenomena (e.g. wildlife or pollution) distributed across different locations–see Figure 4. The sen-
sors are placed in an environment with obstacles. Each sensor aims to maximize accuracy by getting
as close as possible to its assigned sensing target (which is unique to it), but the same formation
constraints as in the Connectivity scenario apply: sensors must maintain all communication links by
staying together. Due to this formation constraint, the sensors must choose which targets to prior-
itize and decide on the best location for overall coverage, which might, e.g., be directly on top of
some assigned targets, or somewhere near the center of the targets’ convex hull, not reaching any
target but weakly covering all targets, thus maximizing cumulative reward. The agents must also all
coordinate about how to move in formation to their desired location.

At every time-step the total reward ri for sensor i is ri = rproxi + rsafetyi . Here, rproxi =

e−λprox

∥∥pi−gi

∥∥2

, where λprox is a hyperparameter, pi is the sensor’s position and gi the centre
of its sensing target. rsafetyi denotes a reward penalty for unsafe behavior–collisions, going out of
bounds, and breaking formation constraints, as in the Connectivity scenario.

The handcrafted QP is identical to (2) except that the objective minimizes the distance-to-goal ∥pi+
ui − gi∥22. This kind of objective is suboptimal since it pulls agents in different directions (due to
having different goals), but they must stay connected, hence the entire cloud of agents can get stuck
in a deadlock. However, it is the best we could find for a quadratic constrained optimization program,
and it performs on par with other baselines except ReCoDe–see Table 2.

This is a multi-objective problem requiring decentralized consensus where the sensors must deter-
mine where to move and how to get there effectively. Discovering, and agreeing, on a solution to
pursue along the Pareto frontier of optimal trajectories and final locations is hard. Shielding and
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Figure 4: Visual depiction of the Sensor Coverage experiment. Sensors (the Os) increase the reward by ap-
proaching their color-matched Point of Interest (the Xs) but are constrained by the need to maintain formation
with other sensors.

Pure MARL have a difficulty optimizing this delicate trade-off, and the fixed QP stalls when two
attractive targets pull the team in opposite directions. ReCoDe’s learned constraints let neighbor-
ing sensors negotiate their trajectory, while locally relying on the default QP’s (imperfect) objective
function to further improve performance–thus achieving superior reward on this task.

G Additional Details on Robot Demonstrations
The platform we used is the Cambridge Robomaster [52]. We used the Freyja library [53] for
executing velocity commands. Our simulator was implemented using the robomaster branch of
the BenchMARL repository [51] as a base. We implemented our Narrow Corridor scenario in this
repository, and manually calibrated the robot controller parameters and arena dimensions to attain
sim2real. The default QP used for the robots is the one defined for the Narrow Corridor scenario in
Appendix F, lightly calibrated to attain better sim2real performance. We used motion capture for lo-
calization, and messages were only passed between robots within each others’ communication range
(1.5m). However, robots were only made aware of *relative spatial information* about neighboring
robots and their own coordinates (relative velocity and position).

What if we learn linear constraints instead of quadratic constraints? We experimented with
having robots learn a single linear constraint of the form a⊤i ui(t) ≤ bi, where ai ∈ Rm and bi ∈ R
are parameters that the agent can adjust. In Appendix C we explain why these kind of constraints are
generally inefficient. However, because the default QP we used for the Narrow Corridor scenario
already introduces other constraints (control barrier function and boundary constraints to prevent
collisions), linear constraints become more expressive, as they can intersect these other constraints
and bound various kinds of volumes. Thus, we speculated that they will perform well in this sce-
nario.

We found that using the linear constraint, although it is less principled, neither decreases nor in-
creases average reward or robomaster performance. However, it seems to enforce different kinds of
behaviors: while the quadratic constraint sometimes drove robots to attain partial solutions of the
Narrow Corridor environment (by having only some of them reach their goal), the linear constraint-
trained robots seemed to adapt an “all or nothing” strategy, where either all robots reach their goal,
or none of them do. It is interesting that both strategies led to the same average reward despite these
different behavioral modes. In future work, we are interested in exploring the effects of different
kinds of constraints on the agents’ learned policy.
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