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ABSTRACT

We consider a federated learning (FL) system comprising multiple clients and a
server, wherein the clients collaborate to learn a common decision model from
their distributed data. Unlike the conventional FL framework, we consider the
scenario where the clients’ data distributions change with the deployed decision
model. In this work, we propose a performative federated learning framework
that formalizes model-dependent distribution shift by leveraging the concept of
distribution shift mappings in the performative prediction literature. We introduce
necessary and sufficient conditions for the existence of a unique performative
stable solution and characterize its distance to the performative optimal solution.
Under such conditions, we propose the performative FedAvg algorithm and show
that it converges to the performative stable solution at a rate of O(1/T ) under
both full and partial participation schemes. In addition, we show how the clients’
heterogeneity influences the convergence both theoretically and using numerical
results.

1 INTRODUCTION

Traditional learning problems typically assume the data distribution are static or unaffected by the
learned model itself. However, in many real-world applications, the data distribution can shift as the
result of the very learning outcome, when individuals respond to the algorithmic decisions they are
subjected to. For instance, users with certain accents may stop using a speech recognition software
when they experience excessive errors, directly impacting the diversity of speech samples collected
by the software used for improving the product. Another example is “gaming the algorithm”, where
users may attempt to manipulate critical features, either honestly or dishonestly, to obtain a favorable
decision from the algorithm (e.g., in loan approvals or job applications). This again can directly lead
to the distributional change in features and labels that the algorithm relies on for decision making.

When the deployed model itself can trigger changes in the data distribution and influence the objective,
the prediction problems are defined as performative predictions (PP) Perdomo et al. (2020). Typical
scenarios of PP include strategic learning Hardt et al. (2016); Dong et al. (2018); Milli et al. (2019);
Hu et al. (2019); Braverman & Garg (2020); Chen et al. (2020); Miller et al. (2020); Shavit et al.
(2020); Haghtalab et al. (2020); Kleinberg & Raghavan (2020); Zrnic et al. (2021). PP has been
primarily studied in a centralized setting, with fruitful literature including the convergence analysis
Mendler-Dünner et al. (2020); Drusvyatskiy & Xiao (2020); Brown et al. (2020); Li & Wai (2022);
Wood et al. (2022) and algorithm development Izzo et al. (2021; 2022); Miller et al. (2021); Ray et al.
(2022).

In modern large-scale machine learning, distributed learning offers better privacy protection and
avoids the computational resource bottlenecks compared to centralized learning, and federated
learning (FL) is one of the most popular examples. Here the issue of distribution shift is further
compounded due to data heterogeneity in a distributed setting. Specifically, the distributed data
sources can be heterogeneous in nature, and their respective distribution shifts can also be different.
Prior works in FL systems that address data distribution shiftstypically do not consider shifts in local
distributions at the client end induced by the model (Guo et al., 2021; Casado et al., 2022; Rizk
et al., 2020; Hosseinalipour et al., 2022; Zhu et al., 2021a; Eichner et al., 2019; Ding et al., 2020).
In this work, we propose the performative federated learning framework to study and handle such
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distribution shifts in FL. Extending the current results in PP to the decentralized FL has a number
of challenges: 1) Data heterogeneity: As already one of the major difficulties in FL, tackling data
heterogeneity faces additional challenges when taking the disparity of client distribution shift into
consideration. 2) Central ⇄ Local: During training, clients receive the aggregated model at certain
steps and train from it. While fitting better as an entity, such aggregation may fail to fit well on each
client, which may lead to more severe shifting issues. 3) heterogeneity in shift: some clients may be
more sensitive to the deployed decisions and have more drastic data shifts than other clients, e.g., due
to different manipulation costs in strategic learning.

Toward this end, we formally introduce the performative FedAvg algorithm, or P-FedAvg, and
establish its convergence. Our main findings are as follows. First of all, we prove the uniqueness
of the performative stable (PS) solution reached by the algorithm, and show that it is a provable
approximation to the performative optimal (PO) solution under mild conditions. Both solutions will
be formally defined in Section 2. Secondly, we show in Section 3 that the P-FedAvg algorithm
converges to the performative stable solution and has a O(1/T ) convergence rate with both the full
and partial participation schemes under mild assumptions similar to those in prior works. Finally, in
doing so we also introduce some novel proof techniques: we prove convergence without a bounded
gradient assumption and use a more relaxed Assumption 2.6. This technique can be directly applied
to conventional FL, which is a special case of the performative setting.

Our work is closely related to federated learning Li et al. (2020a); Karimireddy et al. (2020); Wang
et al. (2020); Haddadpour et al. (2021); Zhu et al. (2021b); Li & Wang (2019); Lin et al. (2020); Guo
et al. (2021); Casado et al. (2022); Rizk et al. (2020); Hosseinalipour et al. (2022); Zhu et al. (2021a);
Eichner et al. (2019); Ding et al. (2020), multi-agent PP Li et al. (2022); Narang et al. (2022); Raab
& Liu (2021), and strategic classification and regression Hardt et al. (2016); Kleinberg & Raghavan
(2020); Shavit et al. (2020); Haghtalab et al. (2020), where we provide detailed descriptions of the
related works in Appendix A.

We discuss the system design hyperparameters and the solution concepts in Appendix C. We also
perform numerical experiments on synthetic and real-world datasets under the performative setting,
where we adopt different distribution shifts Di(θ). Our results demonstrate that P-FedAvg con-
verges in both performative classification and regression problems. Additionally, we evaluated the
impact of various system design hyperparameters. Please find the results in Appendix D.

2 PROBLEM FORMULATION

To help with the understanding of performative federated learning, we first recall the performative
prediction problem in Perdomo et al. (2020). Consider a typical loss minimization problem where the
data distribution experiences a shift induced by the model parameter, expressed as a mapping D(θ).
This mapping from model to distribution is a key concept in performative prediction. It indicates the
distribution is not static and the shift is model-dependent. The objective function is thus given by
f(θ) := EZ∼D(θ)[ℓ(θ;Z)], where ℓ denotes the loss function, Z = (X,Y ). Then the performative
optimal (PO) solution is θPO := argminθ f(θ). Nonetheless, obtaining a PO solution proves
challenging due to the distribution’s reliance on θ, which undermines traditional risk minimization.
Moreover, the map Di(·) is generally unknown to the decision maker. Therefore, Perdomo et al.
(2020) also introduces a second, decoupled objective function, also called the performatively stable
(PS) model, which separates decision parameters (θ) from deployed parameters (θ̃): f(θ; θ̃) :=
EZ∼D(θ̃)[ℓ(θ;Z)]. Minimizing this objective achieves minimal risk for the distribution induced by
the deployed parameters, eliminating the need for retraining, which makes it more practical. The PS
solution is defined as θPS := argminθ f(θ;θ

PS). Perdomo et al. (2020) showed that θPS ̸= θPO

in general. We next consider a distributed setting and introduce performative federated learning.

Consider a system with N clients and a server, where client i’s data distribution is Di(θ), supported
on Z = (X,Y ) ⊆ RM . θ ∈ Rm denotes the decision (model) parameters deployed on the i-th client.
We consider the general case where clients can have heterogeneous distributions Di(θ) ̸= Dj(θ),
and each client represents a pi > 0 fraction of the total data population,

∑N
i=1 pi = 1. The system

aims to minimize the weighted average loss across all agents, which is given by the performative
optimal objective θPO := argminθ∈Rm

∑N
i=1 piEZi∼Di(θ)[ℓ(θ;Zi)]. This objective can typically

model the strategic learning problem with different sub-populations in the system, where each client
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corresponds to a sub-population. Each sub-population may differ in some attributes so that they
respond to the decision parameters differently, e.g., due to different action costs Milli et al. (2019);
Hu et al. (2019); Braverman & Garg (2020); Zhang et al. (2022); Jin et al. (2022). The decision
maker uses a common decision rule for the entire population and aims to minimize the expected
loss, and pi represents the population fraction of each sub-population. Correspondingly, the decou-
pled/performative stable objective is fi(θ; θ̃) := EZi∼Di(θ̃)

[ℓ(θ;Zi)], f(θ; θ̃) :=
∑N

i=1 pifi(θ; θ̃),

where the first argument denotes the client’s decision parameter, and the second argument is the
deployed parameters, which determine the distribution of the samples together with Di(·). Similar to
Perdomo et al. (2020), we then introduce the performative stable solution

θPS := argmin
θ

N∑
i=1

piEZi∼Di(θPS)[ℓ(θ;Zi)] = argmin
θ

f(θ;θPS).

Note that this is a fixed point equation with θPS as a fixed point. We establish the uniqueness of the
PS solution under certain assumptions in Proposition 2.7. Moreover, in Proposition 2.8, we show that
the distance between θPS and θPO is bounded. We then make some key assumptions.

Assumption 2.1 (Strong Convexity). Given any θ̃ ∈ Rm, f(·, θ̃) is µ-strongly convex in θ, i.e.,
f(θ′; θ̃) ≥ f(θ; θ̃) + ⟨∇f(θ; θ̃),θ′ − θ⟩+ µ

2 ∥θ
′ − θ∥22,∀θ′,θ ∈ RK .

Assumption 2.2 (Smoothness). The loss function ℓ(θ; z) is L-smooth, i.e., ∥∇ℓ(θ; z) −
∇ℓ(θ′; z′)∥2 ≤ L(∥θ − θ′∥2 + ∥z − z′∥2).
Assumption 2.3 (Distribution Mapping Sensitivity). For any i = 1, . . . , n there exists ϵi > 0 such
that W1(Di(θ),Di(θ

′)) ≤ ϵi∥θ − θ′∥2, ∀θ′,θ ∈ Rm, where W1(D,D′)) is the 1-Wasserstein
distance under L2 norm between the distributions D,D′.

Lemma 2.4 (Continuity of ▽fi). Under Assumption 2.2 and 2.3, for any θ0,θ1,θ, θ̂ ∈ Rm,
∥∇fi(θ0;θ)−∇fi(θ1; θ̂)∥2 ≤ L∥θ0 − θ1∥2 + Lϵi∥θ − θ̂∥2.
Assumption 2.5 (Stochastic Gradient Variance Bound). For any i = 1, . . . , N and θ ∈ Rm, there
exists σ ≥ 0 such that EZi∼Di(θ)∥∇ℓ(θ;Zi)−∇fi(θ;θ)∥22 ≤ σ2(1 + ∥θ − θPS∥22).
Assumption 2.6 (Local Gradient Variance Bound). For any i = 1, . . . , N and θ ∈ Rm, there exists
ς ≥ 0 such that ∥∇f(θ;θ)−∇fi(θ;θ)∥22 ≤ ς2(1 + ∥θ − θPS∥22).

Assumption 2.1, 2.2 and 2.3 are presented in Perdomo et al. (2020) and have been extended to the
decentralized case here. In Assumption 2.1, we do not require strong convexity for every single
fi but only the weighted average f . Assumption 2.2 and 2.3 together induce the smoothness of
fi(·, ·), which is a result of Lemma 2.1 in Drusvyatskiy & Xiao (2022) and will be used in the later
proofs. Assumption 2.5, 2.6 are made in decentralized performative predictions Li et al. (2022). An
elaborate on Assumption 2.6 can be found in Appendix B. Instead of the commonly used assumption
of bounded gradient expectation, Assumption B.1 Li et al. (2020b), we use Assumption 2.6, which is
a weaker assumption. Assumption 2.6 better characterizes the system heterogeneity, as we show how
the heterogeneity impacts convergence (more details are in Theorem 3.1, 3.2, and 3.3).

Properties of the PS Solution Define the average sensitivity as ϵ :=
∑N

i=1 piϵi, and the mapping
Φ(θ) := argminθ′∈Rm f(θ′,θ). We can establish the existence and uniqueness of the PS solution.
The proofs are in Appendix E.

Proposition 2.7 (Uniqueness of θPS). Under Assumptions 2.1, 2.2 and 2.3, if ϵ < µ/L, then Φ(·)
is a contraction mapping with the unique fixed point θPS = Φ(θPS); if ϵ ≥ µ/L, then there is an
instance where any sequence generated by Φ(·) will diverge.

Proposition 2.7 establishes a sufficient and necessary condition for the existence of θPS , similar to
Li et al. (2022). This condition only depends on the average sensitivity ϵ, which implies that we may
still have a unique performative stable solution θPS for the whole system even if certain clients do
not. The following proposition further validates the quality of θPS in terms of its distance to θPO.

Proposition 2.8 (Distance ∥θPO − θPS∥2 Bound). Under Assumption 2.1 and 2.3, suppose that
the loss ℓ(θ;Z) is Lz-Lipschitz in Z, then for every performative stable solution θPS and every
performative optimal solution θPO, we have ∥θPS − θPO∥2 ≤

(
2Lzϵ

)
/µ.
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The P-FedAvg Algorithm We now introduce the proposed P-FedAvg algorithm. In P-FedAvg,
the clients communicate with the server every E local updates. Denote IE := {nE|n = 1, 2, . . . } as
the set of aggregation steps.

Full client participation. All clients communicate with the server at every aggregation step and
update the local models θt+1

i based on the following: let Zt+1
i ∼ Di(θ

t
i), then

wt+1
i = θt

i − ηt∇ℓ(θt
i ;Z

t+1
i ); θt+1

i =

{ ∑N
j=1 pjw

t+1
j if t+ 1 ∈ IE

wt+1
i o.w.

Partial client participation. At each aggregation step, K(< N) clients are sampled to communicate
with the server and update the local models θt+1

i based on the following: let Zt+1
i ∼ Di(θ

t
i), denote

the chosen clients in t-th step as a size-K set St := {i1, . . . , iK} ∈ [N ], then

wt+1
i = θt

i − ηt∇ℓ(θt
i ;Z

t+1
i ); θt+1

i =

{
samples St+1, average

{
wk

t+1

}
k∈St+1

if t+ 1 ∈ IE
wt+1

i o.w.

We consider two schemes of partial participation:

1. (Scheme I Sahu et al. (2018)) The server establishes St+1 by i.i.d. with replacement
sampling an index k ∈ {1, · · · , N} with probabilities p1, · · · , pN for K times, and averages
the parameters by θt+1

i = 1
K

∑
k∈St+1

wt+1
k .

2. (Scheme II) The server samples St+1 uniformly without replacement and averages the
parameters by θt+1

i =
∑

k∈St+1
pk

N
Kwt+1

k . Note that when the probabilities {pk} are not
the same, one cannot ensure

∑
k∈St+1

pk
N
K = 1 Li et al. (2020b).

The P-FedAvg requires two rounds of communications, aggregation, and broadcast for every E
iterations. So at time step T , the system completes 2⌊T/E⌋ communications. We follow the setting
in Li et al. (2020b) where the server aggregates based on the chosen scheme and broadcasts the
aggregated parameters to all clients.

3 CONVERGENCE ANALYSIS

In this section, we show that the P-FedAvg converges to the unique θPS at a rate of O(1/T ) under
the assumptions made in Section 2, which holds for all above-introduced schemes. The definition of
the constants can be found in Appendix F and G.
Theorem 3.1 (Full Participation). Consider P-FedAvg with full participation and diminishing step
size ηt =

2
µ̃(t+γ) , where γ = max

{
2

µ̃η̂0
, E, 2

µ̃

√
(4E2 + 2E)c3

}
. Under Assumption 2.1, 2.2, 2.3,

2.5, 2.6, it holds E[∥θt − θPS∥22] ≤ υ
γ+t , ∀t where υ = max

{
4B
µ̃2 , γE∥θ

0 − θPS∥22
}

.

Theorem 3.2 (Partial Participation, Scheme I). Consider P-FedAvg with partial par-
ticipation (scheme I) and a diminishing step size ηt = 2

µ̃(t+γ) , where γ =

max
{

2
µ̃η̃0

, E, 2
µ̃

√
(4E2 + 10E + 6)c3

}
. Under Assumption 2.1, 2.2, 2.3, 2.5, 2.6, it holds

E[∥θt − θPS∥22] ≤ υ
γ+t , ∀t where υ = max

{
4B1

µ̃2 , γE∥θ0 − θPS∥22
}

.

Theorem 3.3 (Partial Participation, Scheme II). Consider P-FedAvg with partial participation
(scheme II) and a diminishing step size 2

µ̃(t+γ) , where γ = max
{

2
µ̃η̃0

, E, 2
µ̃

√
(4E2 + 10E + 6)c5

}
.

Under Assumption 2.1, 2.2, 2.3, 2.5, 2.6, it holds that E[∥θt − θPS∥22] ≤ υ
γ+t , ∀t where υ =

max
{

4B2

µ̃2 , γE∥θ0 − θPS∥22
}

.

Scheme II requires pi = 1
N ,∀i, which violates the unbalanced nature of FL. One solution in Li et al.

(2020b) is scaling the local objectives to gi(θ; θ̃) = piNfi(θ; θ̃), and then the global objective is a
simple average of the scaled local objectives f(θ; θ̃) :=

∑N
i=1 pifi(θ; θ̃) =

1
N

∑N
i=1 gi(θ; θ̃). We

need to be careful with the Assumptions in Section 2 since scaling the objective will change those
properties. The convergence theorems still hold if we replace L, µ, σ, ς with L′ := qmaxL, µ

′ :=
qminµ, σ

′ :=
√
qmaxσ, ς

′ :=
√
qmaxς , where qmax := N ·maxi pi, qmin := N ·mini pi.
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4 NUMERICAL EXPERIMENTS

Weighted Gaussian mean performative prediction. As a numerical simulation, we perform
P-FedAvg to estimate the mean of heterogeneous Gaussian data under performative effects and
examine the impact of the hyperparameters, the sampling schemes, and client heterogeneity. We
consider N = 25 clients, with the i-th client minimizing the loss function ℓ(θ;Zi) := (θ − Z)2/2,
θ, Z ∈ R on data Zi ∼ Di(θ) := N (mi + ϵiθ, σ

2). For this loss function, we have µ = 1, L = 1.

For ϵ ∈ [0, 1), the PS solution is θPS =
∑N

i=1 pimi

1−ϵ ; while θPS does not exist when ϵ ≥ 1. Denote

the weighted average of mi as m =
∑N

i=1 pimi and the variance as Var(m) =
∑N

i=1 pi(mi −m)2.
In experiment, we set ϵ = 0.9, m = 10.
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Figure 1: Distance to the perfor-
mative stable solution vs. the
number of iterations for full
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Scheme II.
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Figure 2: Impact of E on Scheme I and Scheme II. K = 20,
Var(m) = 0.6, Var(ϵ) = 0.1 for both (a) and (b). For (b),
pi =

1
25 .

Figure 1 shows P-FedAvg converges to the performative stable solution in all three communication
settings: full participation and the two schemes for the partial participation. Interestingly, partial
participation with scheme II converges the fastest in this experiment. Despite the full participation
scheme having the lowest upper bound on the number of iterations sufficient to convergence, our
experimental results show that the actual convergence behaviors of all three schemes are very similar
and weakly depend on K, especially when pi =

1
N .

Impact of E. We conduct an experiment to compare the performance of our algorithm with a variety
of E values, under a homogeneous system. Figure 2 shows the result on both sampling schemes, with
K = 20. A slightly larger E leads to faster convergence. However, an extremely large E(E = 50 in
the experiment) can also cause slower convergence. Since at this case, the clients deviate too much at
each aggregation, which causes low efficiency issues. In real world scenarios, as the communication
cost changes, E should be carefully chosen.

Impact of K. Figure 3 shows the convergence of FedAvg under different k values, For scheme I,
larger k leads to faster convergence. While for scheme II, as k increasing, the convergence rate will
first increase and then decrease.
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Figure 3: Impact of K on Scheme I and Scheme II . E = 5, Var(m) = 0.6, Var(ϵ) = 0.1 for both (a)
and (b). For (b), pi = 1

25 .
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Impact of sampling schemes. Figure 1 also compares different schemes. We can see if the clients’
data are uniformly sampled (pi = 1

N ), then scheme II achieves a better convergence rate, which
conforms to our theoretical result because B1 > B2.

Data heterogeneity and shifting heterogeneity. In Figure 4 we test our algorithm under data
heterogeneity. Specifically, we set m and ϵ to have large variances, respectively. In this example, m
mainly captures the data heterogeneity and ϵ capture the shifting heterogeneity. This experiment shows
our algorithm still converges under a certain amount of heterogeneity. Comparing the performance of
our algorithm on both figures, we can see shifting heterogeneity is the main factor in performative
federated learning.
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Figure 4: Impact of heterogeneity on the two schemes of partial participation. The impact of mi

is shown in (a) and the impact of ϵi is shown in (b). K = 20, pi =
1
25 and. In (a), Var(m) = 6 for

hetergeneous case and 0 for homogeneous case, Var(ϵ) = 0.1. In (b), Var(ϵ) = 0.6 for hetergeneous
case and 0.1 for homogeneous case, Var(m) = 0.6.

Credit score strategic classification. To show the performance of P-FedAvg on a real world
dataset, we follow Perdomo et al. (2020) and use the same Kaggle GiveMeSomeCredit dataset, where
a bank predicts whether loan applicants are creditworthy. The features consist of the information
about an individual, and the target is 1 if the individual defaulted on a loan, and 0 otherwise. We
use the same strategic setting as in Perdomo et al. (2020) where the applicants can manipulate their
features in (1) revolving utilization of unsecured lines, (2) number of open credit lines and loans,
and (3) number real estate loans or lines. The strength of manipulation for the i-th population is
controlled by ϵi. We equally partition the training set into 10 subsets and distributed it to 10 clients,
and thus pi = 0.1,∀i. The sensitivities ϵi for the 10 clients are independently and uniformly sampled
from [0.9, 1.1]. We set K = 5 in partial participation. We train a logistic regression binary classifier.
In each round of P-FedAvg, we perform E = 5 gradient descent steps on a random minibatch of
size 4. A discussion on the effect of the batch size can be found in Appendix D.3.

Figure 5 shows the loss function and the distance to the PS solution as the number of deployment
rounds increases. The mean and 1 standard deviation error bar are generated from 5 experiments with
different random seeds. Similar to the numerical simulation, the actual convergence behaviors of all
three schemes are very similar.
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Figure 5: The losses (a) and the distances to the PS solution (b) for the full participation, Scheme I
and Scheme II.
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A RELATED WORKS

Federated Learning. Our work is strongly related to the literature on federated learning (FL).
Although many studies have tried to address client heterogeneity in FL through constrained gradient
optimization and knowledge distillation Li et al. (2020a); Karimireddy et al. (2020); Wang et al.
(2020); Haddadpour et al. (2021); Zhu et al. (2021b); Li & Wang (2019); Lin et al. (2020), most
of them still assume the data is static without considering the distribution shifts. To the best of our
knowledge, only a few recent works consider distribution shifts in FL Guo et al. (2021); Casado et al.
(2022); Rizk et al. (2020); Hosseinalipour et al. (2022); Zhu et al. (2021a); Eichner et al. (2019);
Ding et al. (2020). For example, Guo et al. (2021) considered FL with time-evolving clients where
the time-drift of each client is modeled as a time-independent additive noise with zero-mean and
bounded variance. Casado et al. (2022) proposed an FL algorithm adaptable to distribution drifts; it
monitors the confidence scores of the model prediction throughout the learning process and assumes
the drift happens whenever there is a substantial drop in confidence scores. Rizk et al. (2020) also
studied dynamic FL and assumed the true model under time-evolving data follows a random walk.
Hosseinalipour et al. (2022) considered FL with dynamic clients and modeled the drift using the
variation in local loss over two consecutive time steps. Zhu et al. (2021a); Eichner et al. (2019);
Ding et al. (2020) considered the periodical distribution shift of client population in FL; they assume
the block-cyclic structure where the clients from two different time zones alternately participate in
training.

Performative Prediction. In addition to the one we discussed in the introduction that focuses on the
centralized setting for performative prediction, more recently, Li et al. (2022) formalize the multi-
agent/player performative predictions where agents try to learn a common decision rule but have
heterogeneous distribution shifts (responses) to the model, and study the convergence of decentralized
algorithms to the PS solution. The decentralized performative predictions capture the heterogeneity
in agents’/clients’ responses to the decision model and avoid centralized data collection for training.
This work provides inspiration for our formulation of the performative federated learning framework,
and our proposed P-FedAvg can be viewed as a substantial algorithmic extension that supports
unbalanced data, much less frequent synchronizations, and partial device participation. Narang et al.
(2022) propose a decentralized multi-player performative prediction framework where the players
react to competing institutions’ actions. Raab & Liu (2021) proposes a replicator dynamics model
with label shift.

Strategic Classification and Regression. As discussed in Perdomo et al. (2020), performative
prediction can be used to solve repeated strategic classification and regression problems. We can use
Stackelberg games to model these problems, where the decision maker moves in the first stage by
designing, publishing, and committing to a decision rule, then the agents move in the second stage,
best responding to the decision rule by manipulating their features to get more desirable decision
outcomes, and such manipulation can be modeled by the distribution shift mappings. Conventional
strategic learning literature focus on finding the Stackelberg equilibrium Hardt et al. (2016); Kleinberg
& Raghavan (2020); Shavit et al. (2020); Haghtalab et al. (2020), i.e., the PO solution where the
decision maker and the agents know each others’ utilities, whereas performative prediction can find
the PS solution in repeated strategic learning problems regardless of the knowledge on the utilities.

B ELABORATION ON ASSUMPTION 2.6

In this section we elaborate on Assumption 2.6, and explain reasons for using it over another
commonly used assumption in federated learning Li et al. (2020b), which is
Assumption B.1.

EZi∼Di(θ)[∥∇ℓ(θ;Zi)∥22] ≤ G2. (1)

First, it can be shown that equation B.1 implies Assumption 2.6, thus Assumption 2.6 is weaker than
equation B.1. To see this: when equation B.1 holds, let ς2 = 4G2, then ∥∇f(θ;θ)−∇fi(θ;θ)∥22 ≤
2
∥∥∇f(θ;θ)∥22 + 2∥∇fi(θ;θ)

∥∥2
2
≤ 4G2 = ς2.

We further give a concrete example where equation B.1 does not hold but Assumption 2.6 holds.
Example B.2. Suppose we have a two-client Gaussian mean estimation problem ℓ(θ, Z) = 1

2 (θ −
Z)2 where θ, Z ∈ R, D1(θ) = N ( 12θ, σ

2), D2(θ) = N (− 1
2θ, σ

2), and p1 = p2 = 1
2 . Then

10



Published at ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning
Models

EZ1∼D1(θ)[∥∇ℓ(θ;Z1)∥22] = EZ1∼D1(θ)[(θ − Z1)
2] = σ2 + (EZ1∼D1(θ)[θ − Z1])

2 = 1
4θ

2 + σ2

and EZ2∼D2(θ)[∥∇ℓ(θ;Z2)∥22] = 9
4θ

2 + σ2 which all go to infinity when θ goes to infinity. Thus
equation B.1 does not hold. On the other hand, ∇f1(θ; θ) =

1
8θ, ∇f2(θ; θ) =

9
8θ, and ∇f(θ; θ) =

5
8θ, θPS = 0, then by taking ς = 1

2 , we can verify Assumption 2.6 holds.

Secondly, equation B.1 also implies Assumption 2.5: when equation B.1 holds, letting σ2 = G2 leads
to E[∥∇l(θ;Zi) −∇fi(θ,θ)∥22] ≤ E[∥∇l(θ;Zi)∥22] ≤ G2 = σ2. On the other hand, Assumption
2.6 does not imply Assumption 2.5.

It turns out that Assumption 2.6 better characterizes the system heterogeneity, as we show how the
heterogeneity impacts convergence (more details are in Theorem 3.1, 3.2, and 3.3).

C DISCUSSIONS ON THE ALGORITHM AND SOLUTION

We will only discuss with respect to the aggregation step in this sub-section for convenience, denoted
as T ∈ IE , then we can simply use T

E when dividing E. Note for a general step t, we only need to
use ⌊ t

E ⌋ to obtain an integer.

Choice of E. We are interested in the total time we need to achieve an ϵ accuracy, and how this total
time changes with E. We use our results in Theorem 3.1, 3.2, and 3.3, and denote Tϵ :=

υ
ϵ − γ as the

number of computation steps that is sufficient to guarantee an ϵ-accuracy. To connect Tϵ to the total
time needed, suppose the expected time for each communication step is C times the expected time of
each computation step, then the total time required for ϵ-accuracy is linear in Tϵ + C · Tϵ

E . Below we
separately analyze the influence of E on Tϵ

E and Tϵ, and then discuss how to choose the optimal E
for different C values.

Let B0 := B in Theorem 3.1 for full participation and γi (i = 0, 1, 2) denotes the γ in Theorem
3.1, 3.2, and 3.3 respectively. Then in Theorem 3.1, 3.2, and 3.3, Tϵ is dominated by O

(
4Bi/µ̃

2 +

γiE[∥θ
0 − θPS∥22]

)
where i = 0, 1, 2. From the definition, we know that Bi (i = 0, 1, 2) is almost a

constant w.r.t. E and γi is of O(E2 logE). This means that when E grows, the total update steps to
reach ϵ-accuracy, Tϵ will grow, while the number of aggregation steps needed, Tϵ

E will first grow and
then decrease.

Now we consider Tϵ + C · Tϵ

E , the total time needed to reach ϵ-accuracy. From the above analysis,
we know it is of order O(E2 logE) + C · O(E logE) + C · O(logE/E). When communication
is fast, i.e., C is small, O(E2 logE) is the dominating term, and we can focus more on the number
of computation iterations Tϵ, and smaller E values are preferable. However, when C is large,
C · O(E logE) + C · O(logE/E) becomes the dominating term, and we should focus more on the
number of communication rounds Tϵ

E and some middle E values are preferable.

Choice of K. Again Tϵ is dominated by O
(
4Bi/µ̃

2+γiE[∥θ
0−θPS∥22]

)
where i = 1, 2. Then by the

formulae of Bi (i = 1, 2), we know Tϵ monotonically decreases with K, but the total communication
time increases with K due to more severe stragglers’ effect. Generally, as we show in Theorem
3.2 and 3.3, the convergence rate has a weak dependence on K. We have empirically observed this
phenomenon in Figure 3(a). Therefore, we can set K

N to an appropriate small value to reduce the
straggler’s effect while keeping the convergence rate.

Choice of sampling schemes. We formalize the two sampling schemes in Section 2 and show their
convergence properties in Theorem 3.2 and 3.3. We note that Scheme I has a desirable property that it
naturally supports unbalanced clients, so if the server has control over the sampling, Scheme I should
be chosen.

But as discussed in Li et al. (2020b), sometimes the server may have no control over the sampling
and simply use the first K received results for update. In this case, if the reception times from each
client are IID random variables, we can treat this process as uniformly sampling K out of N at
random without replacement. Theorem 3.3 showed the convergence, and the discussion on scaling
the objectives provides instructions on how to make the system work with arbitrary initial p1, . . . , pN
values. However, it’s worth noting that when p1, . . . , pN are highly non-uniform, the corresponding
L′, σ′, ς ′ values will be much larger than from L, σ, ς , and µ′ will be much smaller than µ. Then
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by the formula of η̂0 and η̃0, we have to use much smaller starting learning rates and thus slower
convergence. However, such a small learning rate may cause the model to fail to train at all. We also
empirically show this in Figure 7.

However, an interesting observation is that when pi =
1
N , we empirically show in Figure 4 and 5,

Scheme II slightly outperforms Scheme I.

Learning rate decay. The learning rate decay is a necessity for stochastic gradient descent (SGD) to
converge, even when clients have static, independent and individually distributed (IID) data. The
decay is used in Li et al. (2022) in decentralized performative prediction and the necessity for such
decay is proved in FedAvg with static, non-IID clients. We also empirically show that constant
learning rates fail to converge in Figure 6.

θPS and θPO. Here we discuss the relationship between the θPS and θPO solutions more in depth.
In the strategic learning setting, Perdomo et al. (2020) showed that θPO is the Stackelberg equilibrium.
It’s worth noting that θPS is not merely an approximation to θPO, but a natural convergence point of
the best response dynamics (BRD). More specifically, when the clients and the decision maker have
no information about others’ utilities, backward induction is unavailable, and playing the Stackelberg
equilibrium is unrealistic. In this case, treating others’ strategies in the previous time step as constants,
and optimizing one’s own strategy accordingly is a rational strategy. Such an optimization step is a
best response, and in multi-round sequential strategic learning problems Zrnic et al. (2021), the best
responses can form the BRD, and θPS is the convergence point of the BRD. Although the decision
maker’s natural best response step is a risk minimization step, the gradient-based P-FedAvg can find
the same θPS . Another interesting observation of θPS is that if we remove the sequential decision
nature, then {θPS ,D1(θ

PS), . . . ,DN (θPS)} is a Nash equilibrium since no participant has an
incentive to unilaterally deviate.
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D MORE NUMERICAL SIMULATIONS

D.1 LEARNING RATE DECAY (FIGURE 6)
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Figure 6: Constant learning rate on ExpGaussian. Full participation with E = 10. The learning
rate is set to 0.02.

D.2 SCHEME II WITH LOWER LEARNING RATE (FIGURE 7)
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Figure 7: Sampling without replacement on ExpGaussian. The variance of pi is set to 0.01. The
learning rate is set to 5

t+10000 .

D.3 MORE EXPERIMENTS ON THE CREDIT SCORE STRATEGIC CLASSIFICATION

To show the performance of P-FedAvg on a real world dataset, we follow Perdomo et al. (2020)
and use the same Kaggle dataset 1, where a bank predicts whether loan applicants are creditworthy.
The features consist of the information about an individual, and the target is 1 if the individual
defaulted on a loan, and 0 otherwise. We use the same strategic setting as in Perdomo et al. (2020)
where the applicants can manipulate their features in (1) revolving utilization of unsecured lines, (2)
number of open credit lines and loans, and (3) number real estate loans or lines. The strength of
manipulation for the i-th population is controlled by ϵi. We equally partition the training set into 10
subsets and distributed it to 10 clients, and thus pi = 0.1,∀i. The sensitivities ϵi for the 10 clients
are independently and uniformly sampled from [0.9, 1.1]. We set K = 5 in partial participation. We
train a logistic regression binary classifier. In each round of P-FedAvg, we perform E = 5 gradient
descent steps on a random minibatch of size 4.

1www.kaggle.com/competitions/GiveMeSomeCredit/data
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To study the impact of batch size, we change the batch size and plot the losses and distances to the
PS solution for the full participation, Scheme I and Scheme II. The results are shown in Figure 8, 9
and 10 for batch size 1, 4, and 16, respectively. The scales of y axes are set equal for convenience
of comparison. Using a larger batch size improves the convergence speed for all three schemes,
especially for the two schemes of partial participation, both converging as fast as the full participation
with batch size 16.
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Figure 8: The losses (a) and distances (b) to the PS solution for the full participation, Scheme I and
Scheme II using batch size 1 in client gradient descent.
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Figure 9: Same as Figure 8, but using batch size 4.
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Figure 10: Same as Figure 8, but using batch size 16.

To study how batch batch size affect the convergence, we initialize P-FedAvgwith θPS , the solution
that minimizes the performative objective function. Due to the randomness of minibatch stochastic
descent, we expect the parameter to deviate from θPS and gradually stabilize back to θPS as the
algorithm proceeds with decaying step sizes. It can be seen from Figure 11 (b), (c) and (f) that it is
indeed the case for batch sizes larger than 1. This motivates our choice of a batch size larger than 1.
Remark D.1. We did not compare P-FedAvgwith algorithms that do not have re-sample steps after
every parameter update steps (e.g., SCAFFOLD or conventional FedAvg) due to the performative
nature of the prediction problems.
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Figure 11: The loss functions and the distance to θPS of P-FedAvg initialized with θPS .

According to Perdomo et al. (2020), it is clear that such algorithms will converge to values that
have constant errors from the PS or PO solutions since they do not account for the model-dependent
distribution shifts.
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E PROOF OF PROPOSITION 2.7 AND 2.8

Proposition 2.5. (Uniqueness of θPS) Under Assumptions 2.1, 2.2 and 2.3, define the map Φ :
Rm 7→ Rm

Φ(θ) := arg min
θ′∈RM

f(θ′,θ)

If ϵ :=
∑N

i=1 piϵi < µ/L, then Φ(·) is a contraction mapping with the unique fixed point θPS =
Φ(θPS). On the contrary, if ϵ ≥ µ/L, then there is an instance where any sequence generated by
Φ(·) will diverge.

Proof. This proof simulates the proof of Proposition 1 in Li et al. (2022).

Fix θ′,θ ∈ Rm, the optimality condition implies that

N∑
i=1

pi∇fi(Φ(θ);θ) = 0,

N∑
i=1

pi∇fi(Φ(θ
′);θ′) = 0

where the gradients are taken w.r.t the first argument in fi. Then we have

0 =⟨0,Φ(θ)− Φ(θ′)⟩

=⟨
N∑
i=1

pi
(
∇fi(Φ(θ);θ)−∇fi(Φ(θ

′);θ′)
)
,Φ(θ)− Φ(θ′)⟩.

Rearranging the above equation and adding
∑N

i=1 pifi(Φ(θ),θ
′) to both hand sides leads to

⟨
N∑
i=1

pi
(
∇fi(Φ(θ);θ

′)−∇fi(Φ(θ);θ)
)
,Φ(θ)− Φ(θ′)⟩

=⟨
N∑
i=1

pi
(
∇fi(Φ(θ);θ

′)−∇fi(Φ(θ
′);θ′)

)
,Φ(θ)− Φ(θ′)⟩.

By strong convexity in assumption 2.1, we have

f(Φ(θ);θ′) ≥ f(Φ(θ′);θ′) + ⟨∇f(Φ(θ′);θ′),Φ(θ)− Φ(θ′)⟩+ µ

2
∥Φ(θ)− Φ(θ′)∥22,

f(Φ(θ)′;θ′) ≥ f(Φ(θ);θ′) + ⟨∇f(Φ(θ);θ′),Φ(θ)− Φ(θ′)⟩+ µ

2
∥Φ(θ)− Φ(θ′)∥22,

and thus

⟨∇f(Φ(θ);θ′)−∇f(Φ(θ′);θ′),Φ(θ)− Φ(θ′)⟩ ≥ µ∥Φ(θ)− Φ(θ′)∥22. (2)

Applying Lemma 2.4, we have

N∑
i=1

pi⟨∇fi(Φ(θ);θ
′)−∇fi(Φ(θ

′);θ′),Φ(θ)− Φ(θ′))⟩ ≤
N∑
i=1

piLϵi∥θ − θ′∥2 · ∥Φ(θ)− Φ(θ)∥2.

(3)

Combine equation 2 and equation 3, we have

∥Φ(θ)− Φ(θ′)∥2 ≤
∑N

i=1 piϵiL

µ
∥θ − θ′∥2 =

ϵL

µ
∥θ − θ′∥2. (4)

Therefore, if ϵ < L
µ , Φ(·) is a contraction mapping by Banach fixed point theorem and admits a

unique fixed point θPS .

To show the divergence when ϵ ≥ L
µ , we consider the following example where θ ∈ R, L

µ = 1,

γ :=
∑N

i=1 piγi ̸= 0, and

l(θ;Z) =
1

2
(θ − Z)2, Z ∼ Di(θ) = N (γi + ϵiθ, 1)
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we observe

fi(θ
′; θ) =EZ∼Di(θ)[

1

2
(θ − Z)2]

=EZ̃∼N (0,1)[
1

2
(θ′ − γi − ϵiθ − Z̃)2]

=
1

2
(θ′ − γi − ϵiθ)

2 +
1

2
,

Φ(θ) = argminθ∈R

N∑
i=1

pi(θ
′ − γi − ϵiθ)

2 = ϵθ + γ,

so by applying Φ(·) t times, we obtain

Φt(θ) = ϵtθ + (1 + ϵ+ · · ·+ ϵ(t−1))γ,

and since ϵ ≥ L
µ = 1, γ ̸= 0, we have limt→∞ ∥Φt(θ)∥2 = ∞.

Proposition 2.6. Under Assumption 2.1 and 2.3, suppose that the loss l(θ;Z) is Lz-Lipschitz in Z,
let ϵ :=

∑N
i=1 piϵi, we have for every performative stable solution and every performative optimal

solution θPO that
∥θPS − θPO∥2 ≤ 2Lzϵ

µ
.

Proof. This proof simulates the proof of Theorem 4.3 in Perdomo et al. (2020).

First by the optimality of θPO, we have f(θPO;θPO) ≤ f(θPS ;θPS). By strong convexity in
Assumption 2.1, we have

f(θPO;θPS) ≥ f(θPS ;θPS) + ⟨∇f(θPS ;θPS), θPO − θPS⟩+ µ

2
∥θPO − θPS∥22 ≥ µ

2
∥θPO − θPS∥22.

Further by Assmption 2.3, the the loss l(θ;Z) is Lz-Lipschitz in Z, and Kantorovich-Rubinstein
duality, we have

f(θPO;θPS)− f(θPO;θPO)

=

N∑
i=1

pi

(
EZi∼Di(θPS)[l(θ

PO;Zi)]− EZi∼Di(θPO)[l(θ
PO;Zi)]

)
≤

N∑
i=1

piLzW1(Di(θ
PS),Di(θ

PO))

=
N∑
i=1

piLzϵi∥θPO − θPS∥2 = Lzϵ∥θPO − θPS∥2. (5)

where the inequality is a well-know conclusion in optimal tranport theory. Equation 5, we have
Lzϵϵi∥θPO−θPS∥2 ≥ f(θPO,θPS)−f(θPO;θPO) ≥ f(θPO;θPS)−f(θPS ;θPS) ≥ µ

2 ∥θ
PO−

θPS∥22, implying that ∥θPO − θPS∥2 ≤ 2Lzϵ
µ .

F PROOF OF THEOREM 3.1

F.1 ADDITIONAL NOTATION

In our analysis, for the sake of convenience, we will define two additional sequences as wt :=∑N
i=1 piw

t
i and θ

t
:=

∑N
i=1 piθ

t
i , following that of Li et al. (2020b). We note that wt results from a

single step of SGD from θ
t
. When t+1 /∈ IE , both wt and θ

t
are unaccessible. When t+1 ∈ IE , we

can obtain θ
t
. In addition, we also define gt :=

∑N
i=1 pi∇fi(θ

t
i ;θ

t
i), gt :=

∑N
i=1 pi∇l(θt

i ;Z
t+1
i )

where Zt+1
i ∼ Di(θ

t
i). It is clear that in full participation, wt+1 = θ

t − ηtgt and Egt = gt. Clearly
we have θ

t
= wt for any t.

17



Published at ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning
Models

F.2 KEY LEMMAS

For clarity, we will present several lemmas for establishing our main theorem. In particular, we will
present a descent lemma for E[∥wt − θPS∥22] and an upper bound for

∑N
i=1 piE∥θt

i − θ
t∥22, which

together gives a standard descent lemma for E[∥θt+1 − θPS∥22] in SGD analysis and leads to O( 1t )
convergence.

In the following lemma, we aim to establish an upper bound for E[∥θt+1 − θPS∥22]. Because θ
t+1

=
wt+1 in full participation, this is equivalent to establishing an upper bound for E[∥wt+1 − θPS∥22].

Lemma F.1. (Descent Lemma) Under Assumptions 2.1, 2.2, 2.3, 2.5, in full participation

E[∥θt+1 − θPS∥22] = E[∥wt+1 − θPS∥22] ≤ (1− µ̃ηt)E∥θ
t − θPS∥22

+2σ2η2t + (c1ηt + c2η
2
t )

N∑
i=1

piE∥θt
i − θ

t∥22

for any t, where ϵmax := maxi ϵi, ϵ :=
∑N

i=1 piϵi, c1 := L(1+ϵmax)
2

2δϵ , c2 := 4[σ2 + L2(1 +

ϵmax)
2], µ̃ := µ− (1 + δ)ϵL.

Proof. This proof follows from Lemma 3 in Li et al. (2022). We first decompose ∥wt+1 − θPS∥22 as

E∥wt+1−θPS∥22 = E∥θt−ηtgt−θPS∥22 = E∥θt−θPS∥22−2ηtE⟨θ
t−θPS , gt⟩+η2tE∥gt∥22. (6)

Next we present an upper bound for E∥gt∥22. By the definition of θPS , we have∑N
i=1 pi∇fi(θ

PS ;θPS) = 0, and thus

E∥gt∥22 = E∥
N∑
i=1

pi[∇l(θt
i ;Z

t+1
i )−∇fi(θ

t
i ;θ

t
i) +∇fi(θ

t
i ;θ

t
i)−∇fi(θ

PS ;θPS)]∥22

≤ 2E∥
N∑
i=1

∇l(θt
i ;Z

t+1
i )−∇fi(θ

t
i ;θ

t
i)∥22 + 2E∥

N∑
i=1

pi[∇fi(θ
t
i ;θ

t
i)−∇fi(θ

PS ;θPS)]∥22

≤ 2

N∑
i=1

piE[∥∇l(θt
i ;Z

t+1
i )−∇fi(θ

t
i ;θ

t
i)∥22] + 2

N∑
i=1

piE[∥∇fi(θ
t
i ;θ

t
i)−∇fi(θ

PS ;θPS)∥22]

≤ 2

N∑
i=1

piσ
2
(
1 + E∥θt

i − θPS∥22
)
+ 2

N∑
i=1

piL
2(1 + ϵi)

2E∥θt
i − θPS∥22

where the second inequality is due to the convexity of 2-norm and the last inequality is due to
Assumption 2.5 and Lemma 2.4. Since ∥θt

i −θPS∥22 ≤ 2∥θt
i −θ

t∥22+2∥θt−θPS∥22 and ϵi ≤ ϵmax,
we have

E[∥gt∥22] ≤ 2σ2 + 4[σ2 + L2(1 + ϵmax)
2]E∥θt − θPS∥22 + 4[σ2 + L2(1 + ϵmax)

2]

N∑
i=1

piE∥θt
i − θ

t∥22

= 2σ2 + c2E∥θ
t − θPS∥22 + c2

N∑
i=1

piE∥θt
i − θ

t∥22. (7)

18



Published at ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning
Models

Next, we focus on establishing a lower bound for E[⟨θt − θPS , gt⟩]. By the law of total expectation
and

∑N
i=1 pi∇fi(θ

PS ;θPS) = 0, we have

E⟨θt − θPS , gt⟩ = E
[
Et⟨θ

t − θPS , gt⟩
]

= E[⟨θt − θPS , gt⟩]

= E
[ N∑

i=1

pi
〈
θ
t − θPS , ∇fi(θ

t
i ;θ

t
i)−∇fi(θ

t
;θPS)

〉
︸ ︷︷ ︸

A

+

N∑
i=1

pi
〈
θ
t − θPS , ∇fi(θ

t
;θPS)−∇fi(θ

PS ;θPS)
〉

︸ ︷︷ ︸
B

]
.

On the one hand, applying Cauchy-Schwarz inequality and Lemma 2.4, we have

A ≥ − ∥θt − θPS∥2
N∑
i=1

pi
(
L∥θt

i − θ
t∥2 + Lϵi∥θt

i − θPS∥2
)

≥ − ∥θt − θPS∥2
N∑
i=1

pi
(
L(1 + ϵi)∥θt

i − θ
t∥2 + Lϵi∥θ

t − θPS∥2
)

≥ − Lϵ∥θt − θPS∥22 − L(1 + ϵmax)

N∑
i=1

pi∥θ
t − θPS∥2∥θt

i − θ
t∥2.

On the other hand, with the strong convexity in Assumption 2.1, we have B ≥ µ∥θt − θPS∥22.
Therefore, for any α > 0, using the lower bounds on A,B, and the Young’s inequality shows that

E[⟨θt − θPS , gt⟩]

≥ (µ− Lϵ)E∥θt − θPS∥22 − L(1 + ϵmax)
N∑
i=1

piE
[
∥θt − θPS∥2∥θt

i − θ
t∥2

]
≥

(
µ− Lϵ− α

2
L(1 + ϵmax)

)
E∥θt − θPS∥22 −

L(1 + ϵmax)

2α

N∑
i=1

piE∥θt
i − θ

t∥22

≥ (µ− (1 + δ)Lϵ)E∥θt − θPS∥22 −
L(1 + ϵmax)

2

4δϵ

N∑
i=1

piE∥θt
i − θ

t∥22 (8)

where we have set α := 2δϵ
1+ϵmax

in the last line.

Recall that we denote

c1 :=
L(1 + ϵmax)

2

2δϵ
, c2 := 4[σ2 + L2(1 + ϵmax)

2], µ̃ := µ− (1 + δ)ϵL.
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Combining equation 6, equation 7, equation 8, we have

E
[
∥wt+1 − θPS∥22

]
≤ E∥θt − θPS∥22

− 2ηt

[
(µ− (1 + δ)Lϵ)E∥θt − θPS∥22 −

L(1 + ϵmax)

4δϵ

N∑
i=1

piE∥θt
i − θ

t∥22
]

+ η2t

[
2σ2 + c2E∥θ

t − θPS∥22 + c2

N∑
i=1

piE∥θt
i − θ

t∥22
]

= (1− 2µ̃ηt + c2η
2
t )E∥θ

t − θPS∥22 + (c1ηt + c2η
2
t )

N∑
i=1

piE∥θt
i − θ

t∥22 + 2σ2η2t

≤ (1− µ̃ηt)E∥θ
t − θPS∥22 + (c1ηt + c2η

2
t )

N∑
i=1

piE∥θt
i − θ

t∥22 + 2σ2η2t

where the last inequality is obtained by observing the condition ηt ≤ µ̃/c2.

Now we are going to establish an upper bound for
∑N

i=1 piE∥θt
i − θ

t∥22. Note that if t ∈ IE , the
synchronization step, we have θt

i = θ
t

for any i ∈ [N ], which implies that
∑N

i=1 piE∥θt
i −θ

t∥22 = 0.
If t /∈ IE , the following lemma gives an upper bound for

∑N
i=1 piE∥θt

i − θ
t∥22.

Lemma F.2. (Consensus Error) Under Assumption 2.1, 2.2, 2.3, 2.5, 2.6, if {ηt} is non-increasing,
ηt ≤ 2ηt+E , t /∈ IE , η2t ≤ 1/

(
2c3(t+ 1− t0)(1 + 2(t+ 1− t0))

)
, and

η0 ≤ η̂0 :=
−2σ2 +

√
4σ4 + 4a1 · µ̃E∥θ

0 − θPS∥22
2a1

where

a1 := (12c1 + 2c2(c3)
−1)(2E2 − E) logE

(
(16σ2 + 12ς2)E∥θ0 − θPS∥22(8σ2 + 12ς2)

)
,

then in full participation, we have
N∑
i=1

piE∥θt
i − θ

t∥22 ≤ 4η2t (2E
2 − E) logE(48σ2 + 36ς2)E∥θ0 − θPS∥22

+4η2t (2E
2 − E) logE(24σ2 + 36ς2).

where for any t, where ϵmax := maxi ϵi, ϵ :=
∑N

i=1 piϵi, c1 := L(1+ϵmax)
2

2δϵ , c2 := 4[σ2 + L2(1 +

ϵmax)
2], µ̃ := µ− (1 + δ)ϵL, c3 := 12σ2 + 18L2(1 + ϵmax)

2.

(One should note that 4η2t , (48σ2 + 36ς2), and (24σ2 + 36ς2) comes from several times of applying
ηt−1 ≤ 2ηt and the real constants could be much smaller by choosing stepsizes carefully.)

Proof. In this proof, for convenience, we will discuss with respect to t + 1 where we assume
t+ 1 /∈ IE and transfer back to t in the last. First by the update rule, we have

θt+1
i − θ

t+1
= θt

i − θ
t − ηt(∇l(θt

i ;Z
t+1
i )− gt).

Using Young’s inequality, we have
N∑
i=1

piE∥θt+1
i − θ

t+1∥22 =

N∑
i=1

piE∥θt
i − θ

t − ηt(∇l(θt
i ;Z

t+1
i )− gt)∥22

≤ (1 + αt)

N∑
i=1

piE∥θt
i − θ

t∥22 + η2t (1 + α−1
t )

N∑
i=1

piE∥∇l(θt
i ;Z

t+1
i )− gt∥22︸ ︷︷ ︸

B

(9)
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where αt > 0 is a free chosen parameter. Next, we are going to establish an upper bound for B.
Notice that

B =

N∑
i=1

piE∥∇l(θt
i ;Z

t+1
i )− gt∥22

= E
[ N∑

i=1

pi∥∇l(θt
i ;Z

t+1
i )−

N∑
j=1

pj∇l(θt
j ;Z

t+1
j )∥22

]

= E
[ N∑

i=1

pi∥∇l(θt
i ;Z

t+1
i )−∇fi

(
θt
i ,θ

t
i

)
+∇fi

(
θt
i ,θ

t
i

)
−

N∑
j=1

pj∇fj(θ
t
j ;θ

t
j)

+

N∑
j=1

pj∇fj(θ
t
j ;θ

t
j)−

N∑
j=1

pj∇l(θt
j ;Z

t+1
j )∥22

]

≤ 3E
[ N∑

i=1

pi∥∇ℓ
(
θt
i ;Z

t+1
i

)
−∇fi

(
θt
i ,θ

t
i

)
∥22
]
+ 3E

[ N∑
i=1

pi∥∇fi
(
θt
i ,θ

t
i

)
−

N∑
j=1

pj∇fj
(
θt
j ,θ

t
j

)
∥22
]

+ 3E
[ N∑

i=1

pi∥
N∑
j=1

pj∇fj(θ
t
j ;θ

t
j)−

N∑
j=1

pj∇l(θt
j ;Z

t+1
j )∥22

]

≤ 3E
[ N∑

i=1

pi∥∇ℓ
(
θt
i ;Z

t+1
i

)
−∇fi

(
θt
i ,θ

t
i

)
∥22
]
+ 3E

[ N∑
i=1

pi∥∇fi
(
θt
i ,θ

t
i

)
−

N∑
j=1

pj∇fj
(
θt
j ,θ

t
j

)
∥22
]

+ 3E
[ N∑

i=1

pi

N∑
j=1

pj∥∇fj(θ
t
j ;θ

t
j)−∇l(θt

j ;Z
t+1
j )∥22

]

= 3E
[ N∑

i=1

pi∥∇ℓ
(
θt
i ;Z

t+1
i

)
−∇fi

(
θt
i ,θ

t
i

)
∥22
]
+ 3E

[ N∑
i=1

pi∥∇fi
(
θt
i ,θ

t
i

)
−

N∑
j=1

pj∇fj
(
θt
j ,θ

t
j

)
∥22
]

+ 3E
[ N∑

j=1

pj∥∇fj(θ
t
j ;θ

t
j)−∇l(θt

j ;Z
t+1
j )∥22

]

≤ 6σ2

(
1 + E

[ N∑
i=1

pi∥θt
i − θPS∥22

])

+ 3E
[ N∑

i=1

pi∥∇fi
(
θt
i ,θ

t
i

)
−

N∑
j=1

pj∇fj
(
θt
j ,θ

t
j

)
∥22
]

where the last inequality is by Assumption 2.5. On the other hand, we have

3E
[ N∑

i=1

pi
∥∥∇fi(θ

t
i ,θ

t
i)−

N∑
j=1

pj∇fj(θ
t
j ,θ

t
j)
∥∥2
2

]

= 3

N∑
i=1

piE
∥∥∇fi(θ

t
i ,θ

t
i)−∇fi(θ

t
,θ

t
) +∇fi(θ

t
,θ

t
)−

N∑
j=1

pj∇fj(θ
t
,θ

t
)−

N∑
j=1

pj
(
∇fj(θ

t
j ,θ

t
j)−∇fj(θ

t
,θ

t
)
)∥∥2

2

≤ 9

N∑
i=1

piE∥∇fi(θ
t
i ,θ

t
i)−∇fi(θ

t
,θ

t
)∥22︸ ︷︷ ︸

B1

+9

N∑
i=1

piE∥∇fi(θ
t
,θ

t
)−

N∑
j=1

pj∇fj(θ
t
,θ

t
)∥22︸ ︷︷ ︸

B2

+ 9

N∑
i=1

piE∥
N∑
j=1

pj
(
∇fj(θ

t
j ,θ

t
j)−∇fj(θ

t
,θ

t
)
)
∥22︸ ︷︷ ︸

B3

.
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Using Lemma 2.4, we have

B1 ≤ 9

N∑
i=1

piL
2(1 + ϵi)

2E∥θt
i − θ

t∥22 ≤ 9

N∑
i=1

piL
2(1 + ϵmax)

2E∥θt
i − θ

t∥22.

Using Assumption 2.6, we have

B2 = 9

N∑
i=1

piE
∥∥∇fi(θ

t
,θ

t
)−∇f(θ

t
,θ

t
)
∥∥2
2

≤ 9

N∑
i=1

piς
2(1 + E∥θt − θPS∥22)

= 9ς2 + 9ς2E∥θt − θPS∥22.
Using Lemma 2.4, we have

B3 ≤ 9

N∑
i=1

pi

N∑
j=1

pjE∥∇fj(θ
t
j ,θ

t
j)−∇fj(θ

t
,θ

t
)∥22 ≤ 9

N∑
i=1

piL
2(1 + ϵmax)

2E∥θt
i − θ

t∥22.

Therefore,

B1 +B2 +B3 ≤ 18

N∑
i=1

piL
2(1 + ϵmax)

2E∥θt
i − θ

t∥22 + 9ς2 + 9ς2
N∑
i=1

piE∥θ
t − θPS∥22,

which results in that

B ≤ 6σ2

(
1 + E

[ N∑
i=1

pi∥θt
i − θPS∥22

])
+ 18

N∑
i=1

piL
2(1 + ϵmax)

2E∥θt
i − θ

t∥22+

9ς2 + 9ς2E∥θt − θPS∥22

≤ 6σ2

(
1 + 2

N∑
i=1

piE∥θt
i − θ

t∥22 + 2E∥θt − θPS∥22 + 18

N∑
i=1

piL
2(1 + ϵmax)

2E∥θt
i − θ

t∥22+

9ς2 + 9ς2E∥θt − θPS∥22
)

= 6σ2 + 9ς2 +
(
12σ2 + 18L2(1 + ϵmax)

2
) N∑
i=1

piE∥θt
i − θ

t∥22 + (12σ2 + 9ς2)E∥θt − θPS∥22.

Inserting this formula into equation 9, we obtain
N∑
i=1

piE∥θt+1
i − θ

t+1∥22

≤ (1 + αt)

N∑
i=1

piE∥θt
i − θ

t∥22

+ η2t (1 + α−1
t )

(
6σ2 + 9ς2 +

(
12σ2 + 18L2(1 + ϵmax)

2
) N∑
i=1

piE∥θt
i − θ

t∥22 + (12σ2 + 9ς2)E∥θt − θPS∥22
)

=
(
1 + αt + η2t (1 + α−1

t )
(
12σ2 + 18L2(1 + ϵmax)

2
)) N∑

i=1

piE∥θt
i − θ

t∥22

+ η2t (1 + α−1
t )(12σ2 + 9ς2)E∥θt − θPS∥22 + η2t (1 + α−1

t )(6σ2 + 9ς2)

where αt > 0 is a free chosen parameter. Let t0 := max{s | s < t + 1, s ∈ IE} and c3 :=
12σ2 + 18L2(1 + ϵmax)

2. Then we choose αt =
1

2(t+1−t0)
, if we have

η2t (1 + α−1
t )

(
12σ2 + 18L2(1 + ϵmax)

2
)
= η2t (1 + α−1

t )c3 ≤ 1

2(t+ 1− t0)

⇐⇒ η2t ≤ 1

2c3(t+ 1− t0)
(
1 + 2(t+ 1− t0)

) , (10)
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then note that 1 + α−1
t = 1 + 2(t+ 1− t0) ≤ 2E − 1,

N∑
i=1

piE∥θt+1
i − θ

t+1∥22

≤ t+ 2− t0
t+ 1− t0

N∑
i=1

piE∥θt
i − θ

t∥22 + η2t (2E − 1)(12σ2 + 9ς2)E∥θt − θPS∥22 + η2t (2E − 1)(6σ2 + 9ς2).

Continuing the above expansion until t0 and leveraging ηs ≤ ηt0 ≤ 2ηt0+E ≤ 2ηt gives us
N∑
i=1

piE∥θt+1
i − θ

t+1∥22

≤ t+ 2− t0
t0 + 1− t0

N∑
i=1

piE∥θt0
i − θ

t0∥22 +
t∑

s=t0

t+ 2− t0
s+ 2− t0

η2s(2E − 1)(12σ2 + 9ς2)E∥θs − θPS∥22

+

t∑
s=t0

t+ 2− t0
s+ 2− t0

η2s(2E − 1)(6σ2 + 9ς2)

=

t−t0∑
s=0

t+ 2− t0
s+ 2

η2s(2E − 1)(12σ2 + 9ς2)E∥θs − θPS∥22 +
t−t0∑
s=0

t+ 2− t0
s+ 2

η2s(2E − 1)(6σ2 + 9ς2)

≤
t−t0∑
s=0

t+ 2− t0
s+ 2

η2t (2E − 1)(48σ2 + 36ς2)E∥θs − θPS∥22 +
t−t0∑
s=0

t+ 2− t0
s+ 2

η2t (2E − 1)(24σ2 + 36ς2).

(11)

With the above formula and Lemma F.1, we now prove that if η0 is sufficiently small, the for any t,
we have E∥θt − θPS∥22 ≤ E∥θ0 − θPS∥22. We first derive the following inequality, which we will
use later. Note that for any t where t0 := max{s | s < t+ 1, s ∈ IE}, we have
t−t0∑
s=0

t+ 2− t0
s+ 2

= (t+ 2− t0)(
1

2
+ . . .+

1

t− t0 + 2
) ≤ (t+ 2− t0) log(t+ 2− t0) ≤ E logE.

(12)

We prove E∥θt − θPS∥22 ≤ E∥θ0 − θPS∥22 by induction.

First, this inequality clearly holds for t = 0. Suppose it holds for 0 ≤ s ≤ t where t ≤ E − 1. Then
by Lemma F.1 and equation 11, we have

E[∥θt+1 − θPS∥22]
= E[∥wt+1 − θPS∥22]

≤ (1− µ̃ηt)E∥θ
0 − θPS∥22 + 2σ2η2t

+ (c1ηt + c2η
2
t )

( t−t0−1∑
s=0

t+ 1− t0
s+ 2

η2t−1(2E − 1)(48σ2 + 36ς2)E∥θ0 − θPS∥22

+

t−t0−1∑
s=0

t+ 1− t0
s+ 2

η2t−1(2E − 1)(24σ2 + 36ς2)

)
= (1− µ̃ηt)E∥θ

0 − θPS∥22 + 2σ2η2t

+ (c1ηt + c2η
2
t )η

2
t−1(2E

2 − E) logE

(
(48σ2 + 36ς2)E∥θ0 − θPS∥22 + (24σ2 + 36ς2)

)
.

By equation 10, we need η0 ≤ 1
6c3

, together with ηt−1 ≤ 2ηt implies

(c1ηt + c2η
2
t )η

2
t−1 ≤ η3t (4c1 + 2c2(3c3)

−1).
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Therefore, we have

E[∥θt+1 − θPS∥22]

≤ (1− µ̃ηt)E∥θ
0 − θPS∥22 + 2σ2η2t

+ η3t (12c1 + 2c2(c3)
−1)(2E2 − E) logE

(
(16σ2 + 12ς2)E∥θ0 − θPS∥22 + (8σ2 + 12ς2)

)
whose right-hand side is no larger than E∥θ0 − θPS∥22 if

0 ≥ η2t · (12c1 + 2c2(c3)
−1)(2E2 − E) logE

(
(16σ2 + 12ς2)E∥θ0 − θPS∥22(8σ2 + 12ς2)

)
+ ηt · 2σ2 − µ̃E∥θ0 − θPS∥22

which is satisfied if

ηt ≤ η0 ≤
−2σ2 +

√
4σ4 + 4a1 · µ̃E∥θ

0 − θPS∥22
2a1

= η̂0. (13)

where

a1 := (12c1 + 2c2(c3)
−1)(2E2 − E) logE

(
(16σ2 + 12ς2)E∥θ0 − θPS∥22(8σ2 + 12ς2)

)
.

Thus we have proved that for any 0 ≤ t ≤ E, if equation 13 holds, then E∥θt − θPS∥22 ≤
E∥θ0 − θPS∥22. The same proof technique can be extended to any nE ≤ t ≤ (n + 1)E where
n ∈ N+ and thus for any t, if equation 13 holds, then E∥θt − θPS∥22 ≤ E∥θ0 − θPS∥22.

Therefore, under equation 10, equation 13 and ηt−1 ≤ 2ηt, by equation 9 and equation 11, if t /∈ IE ,
we have

N∑
i=1

piE∥θt
i − θ

t∥22 ≤ η2t−1(2E
2 − E) logE(48σ2 + 36ς2)E∥θ0 − θPS∥22

+ η2t−1(2E
2 − E) logE(24σ2 + 36ς2)

≤ 4η2t (2E
2 − E) logE(48σ2 + 36ς2)E∥θ0 − θPS∥22

+ 4η2t (2E
2 − E) logE(24σ2 + 36ς2).

The following lemma gives us a standard descent lemma in SGD analysis under technical conditions
for establishing the O( 1

T ) convergence in Theorem 3.1.

Lemma F.3. Under Assumption 2.1, 2.2, 2.3, 2.5, 2.6, if {ηt} is non-increasing, ηt ≤ 2ηt+E ,
η2t ≤ 1/

(
2c3(t+ 1− t0)(1 + 2(t+ 1− t0))

)
, and

η0 ≤ η̂0 :=
µ̃E∥θ0 − θPS∥22

2σ2 + (c1c3 + c2/6)(2E2 − E) logE
(
(16σ2 + 12ς2)E∥θ0 − θPS∥22 + (8σ2 + 12ς2)

) ,
then in full participation, we have

E[∥θt+1 − θPS∥22] ≤(1− µ̃ηt)E∥θ
t − θPS∥22 +Bη2t

where for any t, where ϵmax := maxi ϵi, ϵ :=
∑N

i=1 piϵi, c1 := L(1+ϵmax)
2

2δϵ , c2 := 4[σ2 + L2(1 +

ϵmax)
2], µ̃ := µ−(1+δ)ϵL, c3 := 12σ2+18L2(1+ϵmax)

2, and B := 2σ2+(4c1η̂0+4c2η̂
2
0)(2E

2−
E) logE

(
(48σ2 + 36ς2)E∥θ0 − θPS∥22 + (24σ2 + 36ς2)

)
.
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Proof. We discuss in two cases, t ∈ IE and t /∈ IE . If t ∈ IE , then we have θt
i = θ

t
, and by Lemma

F.1,

E[∥θt+1 − θPS∥22]

≤ (1− µ̃ηt)E∥θ
t − θPS∥22 + 2σ2η2t + (c1ηt + c2η

2
t )

N∑
i=1

piE∥θt
i − θ

t∥22

= (1− µ̃ηt)E∥θ
t − θPS∥22 + 2σ2η2t

≤ (1− µ̃ηt)E∥θ
t − θPS∥22 +Bη2t .

If t /∈ IE , combining Lemma F.1 and Lemma F.2, we have

E[∥θt+1 − θPS∥22]

≤ (1− µ̃ηt)E∥θ
t − θPS∥22 + 2σ2η2t + (c1ηt + c2η

2
t )

N∑
i=1

piE∥θt
i − θ

t∥22

≤ (1− µ̃ηt)E∥θ
t − θPS∥22 + 2σ2η2t

+ (4c1ηt + 4c2η
2
t )

(
η2t (2E

2 − E) logE(48σ2 + 36ς2)E∥θ0 − θPS∥22

+ η2t (2E
2 − E) logE(24σ2 + 36ς2)

)
≤ (1− µ̃ηt)E∥θ

t − θPS∥22 + 2Bη2t .

F.3 COMPLETING THE PROOF OF THEOREM 3.1

We restate the definitions of all the constants here:

Constants independent of system design.
ϵmax := maxi ϵi,

ϵ :=
∑N

i=1 piϵi,

µ̃ := µ− (1 + δ)ϵL,

c1 :=
(
L(1 + ϵmax)

2
)
/(2δϵ),

c2 := 4
[
σ2 + L2(1 + ϵmax)

2
]
,

c3 := 6
[
2σ2 + 3L2(1 + ϵmax)

2
]
,

c4 := 16σ2 + 12ς2 + (8σ2 + 12ς2)/E∥θ0 − θPS∥22,

c5 := (48σ2 + 36ς2)E∥θ0 − θPS∥22 + (24σ2 + 36ς2).

Constants related to system design (e.g., E,K).
η̂0 := µ̃/

(
2σ2 + (c1c3 + c2/6)c4(2E

2 − E) logE
)
,

B := 2σ2 + (4c1η̂0 + 4c2η̂
2
0)c5(2E

2 − E) logE ,

c6 := (2E2 + 3E + 1) log(E + 1),

η̃0 := µ̃/
(
2σ2 + (c1c3 + c2/6)c4c6

)
,

B1 := 2σ2 + (4c1η̃0 + 4c2η̃
2
0 + 1/K)c5c6,

B2 := 2σ2 +
(
4c1η̃0 + 4c2η̃

2
0 +

N−K
KN(N−1)

)
c5c6.

Instead of proving Theorem 3.1 directly, we prove a more general version of convergence results
suppose that some conditions about the stepsize are satisfied. Then we will show that the stepsizes
given in Theorem 3.1 satisfy the conditions.
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Theorem F.4. Under Assumption 2.1, 2.2, 2.3, 2.5, 2.6, for a diminishing stepsize ηt =
β

t+γ where
β > 1

µ̃ , γ > 0 such that η0 ≤ η̂0, ηt ≤ 2ηt+E , and η2t ≤ 1/
(
2c3(t + 1 − t0)(1 + 2(t + 1 − t0))

)
,

then in full participation, we have for any t

E[∥θt − θPS∥22] ≤
υ

γ + t

where υ = max
{

4B
µ̃2 , γE[∥θ

0 − θPS∥22]
}

.

Proof. Let ∆t := E[∥θt − θPS∥22], then from Lemma F.3, we have

∆t+1 ≤ (1− µ̃ηt)E∥θ
t − θPS∥22 +Bη2t .

For a diminishing stepsize ηt = β
t+γ where β > 1

µ̃ , γ > 0 such that η2t ≤ 1/
(
2c3(t+1−t0)(1+2(t+

1− t0))
)
, η0 ≤ η̂0, and ηt ≤ 2ηt+E , we will prove that ∆t ≤ υ

γ+t where υ = max
{

β2B
βµ̃−1 , γ∆0

}
=

max
{

4B
µ̃2 , γ∆0

}
by induction.

Firstly, ∆0 ≤ υ
γ by the definition of υ. Assume that for some 0 ≤ t, ∆t ≤ υ

γ+t , then

∆t+1 ≤ (1− ηtµ̃)∆t + η2tB

≤
(
1− βµ̃

t+ γ

)
v

t+ γ
+

β2B

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
β2B

(t+ γ)2
− βµ̃− 1

(t+ γ)2
v

]
≤ v

t+ γ + 1
.

Specifically, if we choose β = 2
µ̃ , γ = max{ 2

µ̃η̂0
, E, 2

µ̃

√
2E(2E + 1)(12σ2 + 18L2(1 + ϵmax)2)},

then we have

η0 =
β

γ
≤ 2

µ̃ 2
µ̃η̂0

= η̂0

and

ηt − 2ηt+E =
β

γ + t
− 2β

γ + t+ E
=

β(E − γ − t)

(γ + t)(γ + t+ E)
≤ β(E − γ)

(γ + t)(γ + t+ E)
≤ 0.

To prove that η2t ≤ 1/
(
2c3(t + 1 − t0)(1 + 2(t + 1 − t0))

)
for any t, it suffices to prove that for

0 ≤ t ≤ E − 1 because {ηt}, i.e., t0 = 0, is non-increasing and t+ 1− t0 is periodic with period E.
When t0 = 0, we need to prove η2t ≤ 1/

(
2c3(t + 1)(1 + 2(t + 1))

)
for 0 ≤ t ≤ E − 1, which is

satisfied if

max
0≤t≤E−1

ηt ≤ min
0≤t≤E−1

√
1/
(
2c3(t+ 1)(1 + 2(t+ 1))

)
⇐⇒ η0 ≤

√
1

2E(2E + 1)c3

⇐⇒ γ ≥ β
√
2E(2E + 1)c3 =

2

µ̃

√
2E(2E + 1)c3 =

2

µ̃

√
2E(2E + 1)(12σ2 + 18L2(1 + ϵmax)2).

G PROOF OF THEOREM 3.2 AND THEOREM 3.3

G.1 ADDITIONAL NOTATIONS

Similar to Appendix F, in our analysis, for the sake of convenience, we will define two additional
sequences as wt :=

∑N
i=1 piw

t
i and θ

t
:=

∑N
i=1 piθ

t
i , following that of Li et al. (2020b). We note
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that wt results from a single step of SGD from θ
t
. When t+1 /∈ IE , both wt and θ

t
are unaccessible.

When t+ 1 ∈ IE , we can obtain θ
t
. In addition, we also define gt :=

∑N
i=1 pi∇fi(θ

t
i ;θ

t
i), gt :=∑N

i=1 pi∇l(θt
i ;Z

t+1
i ) where Zt+1

i ∼ Di(θ
t
i). It is clear that in full participation, wt+1 = wt − ηtgt

and Egt = gt. Notice now we do not have θ
t
= wt for any t. But we will show later that they are

equal with expectation to the choice of St.

In particular, in our analysis, there would be two types of randomness, one from the stochastic
gradients and one from the random sampling of the devices. All analysis in Appendix F only involves
the former. To make a distinguishment, we use ESt

to denote the latter.

G.2 KEY LEMMAS

We first show that the sampling schemes I & II are unbiased.

Lemma G.1. Li et al. (2020b) (Unbiased sampling scheme). If t+1 ∈ IE , for Scheme I and Scheme
II, we have

ESt

[
θ
t+1]

= wt+1.

Proof. Let {xi}Ni=1 denote any fixed deterministic sequence. We sample a multiset St with |St| = K
by the procedure where each sampling time, we sample xk with probability qk for each time. Note
that two samples are not necessarily independent. We only require each sampling distribution is
identical. Let St = {i1, . . . , iK} ⊂ [N ] (some ik’s may have the same value if sampling with
replacement). Then

ESt

∑
k∈St

xk = ESt

K∑
k=1

xik = KESt
xi1 = K

K∑
k=1

qkxk.

For Scheme I, qk = pk and for Scheme II, qk = 1
N , replacing the values into the above proves the

lemma.

Similar to Lemma F.1, we are going to establish an upper bound for E[∥θt+1 − θPS∥22]. When
t+1 /∈ IE , we have θ

t+1
= wt+1 for both schemes, and therefore this is equivalent to establishing an

upper bound for E[∥wt+1 − θPS∥22]. However, when t+ 1 ∈ IE , we only have ESt

[
θ
t+1]

= wt+1

and we need other upper-bounding strategies.

Lemma G.2. Under Assumptions 2.1, 2.2, 2.3, 2.5, for scheme I & II:

1. if t+ 1 /∈ IE ,

E[∥θt+1 − θPS∥22] = E[∥wt+1 − θPS∥22] ≤ (1− µ̃ηt)E∥θ
t − θPS∥22

+2σ2η2t + (c1ηt + c2η
2
t )

N∑
i=1

piE∥θt
i − θ

t∥22.

2. if t+ 1 ∈ IE: for scheme I,

E[∥θt+1 − θPS∥22]

≤ 1

K

N∑
k=1

pkE∥wt+1
k −wt+1∥22 + (1− µ̃ηt)E∥θ

t − θPS∥22

+ 2σ2η2t + (c1ηt + c2η
2
t )

N∑
i=1

piE∥θt
i − θ

t∥22,
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while for scheme II,

E[∥θt+1 − θPS∥22]

≤ 1

K(N − 1)

(
1− K

N

) N∑
k=1

pkE∥wt+1
k −wt+1∥22 + (1− µ̃ηt)E∥θ

t − θPS∥22

+ 2σ2η2t + (c1ηt + c2η
2
t )

N∑
i=1

piE∥θt
i − θ

t∥22.

where ϵmax := maxi ϵi, ϵ :=
∑N

i=1 piϵi, c1 := L(1+ϵmax)
2

2δϵ , c2 := 4[σ2 + L2(1 + ϵmax)
2], µ̃ :=

µ− (1 + δ)ϵL.

Proof. When t + 1 /∈ IE , because θ
t+1

= wt+1 for both schemes, by Lemma F.1, we got the
conclusion. When t+ 1 ∈ IE , we have

E∥θt+1 − θPS∥22 = E∥θt+1 −wt+1∥22 + E∥wt+1 − θPS∥22 + 2E⟨θt+1 −wt+1,wt+1 − θPS⟩.

By Lemma G.1 and the law of total expectation, we have

E⟨θt+1 −wt+1,wt+1 − θPS⟩ = E
[
ESt+1⟨θ

t+1 −wt+1,wt+1 − θPS⟩
]
= 0.

Next we focus on upper bounding E[∥θt+1 −wt+1∥22] under two sampling schemes.

Denote St+1 = {i1, . . . , iK}, then for scheme I, θ
t+1

= 1
K

∑K
l=1 w

t+1
il

. Thus by the law of total
expectation, we have

E∥θt+1 −wt+1∥22 = E
[
ESt+1∥θ

t+1 −wt+1∥22
]

= E
[
ESt+1

∥ 1

K

K∑
l=1

wt+1
il

−wt+1∥22
]

≤ E
[
ESt+1

1

K2

K∑
l=1

∥wt+1
il

−wt+1∥22
]

=
1

K

N∑
k=1

pkE∥wt+1
k −wt+1∥22.

Again with θ
t+1

= 1
K

∑K
l=1 w

t+1
il

, for scheme II, by the law of total expectation, we have

E∥θt+1 −wt+1∥22
= E

[
ESt+1∥θ

t+1 −wt+1∥22
]

= E
[
ESt+1

[
∥ 1

K

K∑
l=1

wt+1
il

−wt+1∥22
]]

= E
[

1

K2
ESt+1

[
∥

N∑
i=1

1{i ∈ St+1}(wt+1
i −wt+1)∥22

]]

≤ 1

K2
E
[ N∑

i=1

P(i ∈ St+1)∥wt+1
i −wt+1∥22 +

∑
j ̸=i

P(i, j ∈ St+1)
〈
wt+1

i −wt+1, wt+1
j −wt+1

〉 ]

=
1

KN

N∑
i=1

E∥wt+1
i −wt+1∥22 +

K − 1

KN(N − 1)

∑
i̸=j

E
〈
wt+1

i −wt+1, wt+1
j −wt+1

〉
=

1

K(N − 1)

(
1− K

N

) N∑
i=1

E∥wt+1
i −wt+1∥22
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where we use the following equalities: (1) P (i ∈ St+1) =
K
N and P (i, j ∈ St+1) =

K(K−1)
N(N−1) for all

i ̸= j and (2)
∑N

i=1

∥∥wt
i −wt

∥∥2 +∑
i ̸=j⟨w

t+1
i −wt+1,wt+1

j −wt+1⟩ = 0.

The conclusion follows from the above discussion.

To really give a descent lemma as in SGD analysis, we have to bound
∑N

i=1 piE∥θt
i − θ

t∥22 for
t /∈ IE and

∑N
i=1 piE∥wt

i −wt∥22 for t ∈ IE , given by the following lemma.
Lemma G.3. Under Assumption 2.1, 2.2, 2.3, 2.5, 2.6, if {ηt} is non-increasing, ηt ≤ 2ηt+E , t /∈ IE ,
η2t ≤ 1/

(
2c3(t+ 1− t0)(1 + 2(t+ 1− t0))

)
, and

η0 ≤ η̃0 :=
µ̃E∥θ0 − θPS∥22

2σ2 + (c1c3 + c2/6)(2E2 + 3E + 1) log(E + 1)
(
(16σ2 + 12ς2)E∥θ0 − θPS∥22 + (8σ2 + 12ς2)

) ,
then

1. for scheme I,

E[∥θt+1 − θPS∥22]

≤ (1− µ̃ηt)E∥θ
t − θPS∥22 + 2σ2η2t

+ (4c1ηt + 4c2η
2
t +K−1)(2E2 + 3E + 1) log(E + 1)η2t

(
(48σ2 + 36ς2)E∥θ0 − θPS∥22 + (24σ2 + 36ς2)

)
,

2. for scheme II,

E[∥θt+1 − θPS∥22]

≤ (1− µ̃ηt)E∥θ
t − θPS∥22 + 2σ2η2t

+

(
4c1ηt + 4c2η

2
t +

N −K

KN(N − 1)

)
(2E2 + 3E + 1) log(E + 1)

η2t

(
(48σ2 + 36ς2)E∥θ0 − θPS∥22 + (24σ2 + 36ς2)

)
.

where for any t, where ϵmax := maxi ϵi, ϵ :=
∑N

i=1 piϵi, c1 := L(1+ϵmax)
2

2δϵ , c2 := 4[σ2 + L2(1 +

ϵmax)
2], µ̃ := µ− (1 + δ)ϵL, c3 := 12σ2 + 18L2(1 + ϵmax)

2.

(One should note that 4c1ηt +4c2η
2
t , (48σ2 +36ς2), and (24σ2 +36ς2) comes from several times of

applying ηt−1 ≤ 2ηt and the real constants could be much smaller by choosing stepsizes carefully.)

Proof. In this proof, for convenience, we will discuss with respect to t + 1 where we assume
t+ 1 /∈ IE and transfer back to t in the last. First by the update rule, we have when t+ 1 /∈ IE

θt+1
i − θ

t+1
= θt

i − θ
t − ηt(∇l(θt

i ;Z
t+1
i )− gt)

and when t+ 1 ∈ IE ,

wt+1
i −wt+1 = θt

i − θ
t − ηt(∇l(θt

i ;Z
t+1
i )− gt).

Then with the same method in Lemma F.2, let t0 := max{s | s < t + 1, s ∈ IE} and c3 :=
12σ2 + 18L2(1 + ϵmax)

2, if η2t ≤ 1

2c3(t+1−t0)
(
1+2(t+1−t0)

) , we will have: if t+ 1 /∈ IE ,

N∑
i=1

piE∥θt+1
i − θ

t+1∥22

≤
t−t0∑
s=0

t+ 2− t0
s+ 2

η2t (2E + 1)(48σ2 + 36ς2)E∥θs − θPS∥22 +
t−t0∑
s=0

t+ 2− t0
s+ 2

η2t (2E + 1)(24σ2 + 36ς2)
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and if t+ 1 ∈ IE ,
N∑
i=1

piE∥wt+1
i −wt+1∥22

≤
t−t0∑
s=0

t+ 2− t0
s+ 2

η2t (2E + 1)(48σ2 + 36ς2)E∥θs − θPS∥22 +
t−t0∑
s=0

t+ 2− t0
s+ 2

η2t (2E + 1)(24σ2 + 36ς2).

With the above formula and Lemma G.2, we now prove that if η0 is sufficiently small, then for any t,
we have E∥θt − θPS∥22 ≤ E∥θ0 − θPS∥22. We first derive the following inequality, which we will
use later. Note that for any t where t0 := max{s | s < t+ 1, s ∈ IE}, we have
t−t0∑
s=0

t+ 2− t0
s+ 2

= (t+ 2− t0)(
1

2
+ . . .+

1

t− t0 + 2
) ≤ (t+ 2− t0) log(t+ 2− t0) ≤ (E + 1) log(E + 1).

Then again by the same induction method in Lemma F.2, we have if

ηt ≤ η0

≤ µ̃E∥θ0 − θPS∥22
2σ2 + (c1c3 + c2/6)(2E2 + 3E + 1) log(E + 1)

(
(16σ2 + 12ς2)E∥θ0 − θPS∥22 + (8σ2 + 12ς2)

) = η̃0,

then for any t, we have E∥θt − θPS∥22 ≤ E∥θ0 − θPS∥22.

Under all these conditions, if t /∈ IE , we have
N∑
i=1

piE∥θt
i − θ

t∥22 ≤ η2t−1(2E
2 + 3E + 1) log(E + 1)(48σ2 + 36ς2)E∥θ0 − θPS∥22

+ η2t−1(2E
2 + 3E + 1) log(E + 1)(24σ2 + 36ς2)

≤ 4η2t (2E
2 + 3E + 1) log(E + 1)(48σ2 + 36ς2)E∥θ0 − θPS∥22

+ 4η2t (2E
2 + 3E + 1) log(E + 1)(24σ2 + 36ς2),

and if t+ 1 ∈ IE , we have
N∑
i=1

piE∥wt+1
i −wt+1∥22 ≤ η2t−1(2E

2 + 3E + 1) log(E + 1)(48σ2 + 36ς2)E∥θ0 − θPS∥22

+ η2t−1(2E
2 + 3E + 1) log(E + 1)(24σ2 + 36ς2).

Note that in Lemma G.2, the inequality for t /∈ IE is looser than the inequality for t ∈ IE . Therefore,
we can apply the inequality for t ∈ IE for all t. Combining this inequality with the above formula
gives us that:

1. for scheme I,

E[∥θt+1 − θPS∥22]

≤ 1

K

N∑
k=1

pkE∥wt+1
k −wt+1∥22 + (1− µ̃ηt)E∥θ

t − θPS∥22

+ 2σ2η2t + (c1ηt + c2η
2
t )

N∑
i=1

piE∥θt
i − θ

t∥22

≤ (1− µ̃ηt)E∥θ
t − θPS∥22 + 2σ2η2t

+ (4c1ηt + 4c2η
2
t +K−1)(2E2 + 3E + 1) log(E + 1)η2t

(
(48σ2 + 36ς2)E∥θ0 − θPS∥22 + (24σ2 + 36ς2)

)
,
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2. for scheme II,

E[∥θt+1 − θPS∥22]

≤ N −K

KN(N − 1)

N∑
k=1

pkE∥wt+1
k −wt+1∥22 + (1− µ̃ηt)E∥θ

t − θPS∥22

+ 2σ2η2t + (c1ηt + c2η
2
t )

N∑
i=1

piE∥θt
i − θ

t∥22

≤ (1− µ̃ηt)E∥θ
t − θPS∥22 + 2σ2η2t

+

(
4c1ηt + 4c2η

2
t +

N −K

KN(N − 1)

)
(2E2 + 3E + 1) log(E + 1)η2t

(
(48σ2 + 36ς2)E∥θ0 − θPS∥22 + (24σ2 + 36ς2)

)
.

Lemma G.4. Under Assumption 2.1, 2.2, 2.3, 2.5, 2.6, if {ηt} is non-increasing, ηt ≤ 2ηt+E , t /∈ IE ,
η2t ≤ 1/

(
2c3(t+ 1− t0)(1 + 2(t+ 1− t0))

)
, and

η0 ≤ η̃0 :=
µ̃E∥θ0 − θPS∥22

2σ2 + (c1c3 + c2/6)(2E2 + 3E + 1) log(E + 1)
(
(16σ2 + 12ς2)E∥θ0 − θPS∥22 + (8σ2 + 12ς2)

) ,
then

1. for scheme I,

E[∥θt+1 − θPS∥22] ≤ (1− µ̃ηt)E∥θ
t − θPS∥22 +B1η

2
t ,

with

B1 := 2σ2 + (4c1ηt + 4c2η
2
t +K−1)(2E2 + 3E + 1) log(E + 1)

(
(48σ2 + 36ς2)E∥θ0 − θPS∥22 + (24σ2 + 36ς2)

)
,

2. for scheme II,

E[∥θt+1 − θPS∥22] ≤ (1− µ̃ηt)E∥θ
t − θPS∥22 +B2η

2
t

with

B2 := 2σ2 +

(
4c1ηt + 4c2η

2
t +

N −K

KN(N − 1)

)
(2E2 + 3E + 1) log(E + 1)

(
(48σ2 + 36ς2)E∥θ0 − θPS∥22 + (24σ2 + 36ς2)

)
,

where for any t, where ϵmax := maxi ϵi, ϵ :=
∑N

i=1 piϵi, c1 := L(1+ϵmax)
2

2δϵ , c2 := 4[σ2 + L2(1 +

ϵmax)
2], µ̃ := µ− (1 + δ)ϵL, c3 := 12σ2 + 18L2(1 + ϵmax)

2.

Proof. The conclusion follows directly from Lemma G.3.

G.3 COMPLETING THE PROOF OF THEOREM 3.2 AND 3.3

We restate the definitions of all the constants here:

Constants independent of system design.
ϵmax := maxi ϵi,

ϵ :=
∑N

i=1 piϵi,
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µ̃ := µ− (1 + δ)ϵL,

c1 :=
(
L(1 + ϵmax)

2
)
/(2δϵ),

c2 := 4
[
σ2 + L2(1 + ϵmax)

2
]
,

c3 := 6
[
2σ2 + 3L2(1 + ϵmax)

2
]
,

c4 := 16σ2 + 12ς2 + (8σ2 + 12ς2)/E∥θ0 − θPS∥22,

c5 := (48σ2 + 36ς2)E∥θ0 − θPS∥22 + (24σ2 + 36ς2).

Constants related to system design (e.g., E,K).
η̂0 := µ̃/

(
2σ2 + (c1c3 + c2/6)c4(2E

2 − E) logE
)
,

B := 2σ2 + (4c1η̂0 + 4c2η̂
2
0)c5(2E

2 − E) logE ,

c6 := (2E2 + 3E + 1) log(E + 1),

η̃0 := µ̃/
(
2σ2 + (c1c3 + c2/6)c4c6

)
,

B1 := 2σ2 + (4c1η̃0 + 4c2η̃
2
0 + 1/K)c5c6,

B2 := 2σ2 +
(
4c1η̃0 + 4c2η̃

2
0 +

N−K
KN(N−1)

)
c5c6.

Instead of proving Theorem 3.2 and 3.3 directly, we prove a more general version of convergence
results suppose that some conditions about the stepsize are satisfied. Then we will show that the
stepsizes given in Theorem 3.2 and 3.3 satisfy the conditions.

Theorem G.5. Under Assumption 2.1, 2.2, 2.3, 2.5, 2.6, for a diminishing stepsize ηt =
β

t+γ where
β > 1

µ̃ , γ > 0 such that η0 ≤ η̃0, ηt ≤ 2ηt+E , and η2t ≤ 1/
(
2c3(t + 1 − t0)(1 + 2(t + 1 − t0))

)
,

then

1. for scheme I,

E[∥θt+1 − θPS∥22] ≤
υ

γ + t
,

where υ = max
{

4B1

µ̃2 , γE[∥θ0 − θPS∥22]
}

;
2. for scheme II,

E[∥θt+1 − θPS∥22] ≤
υ

γ + t

where υ = max
{

4B2

µ̃2 , γE[∥θ0 − θPS∥22]
}

.

Proof. We give a proof for scheme I and the proof for scheme II follows exactly the same way.

Let ∆t := E[∥θt − θPS∥22], then from Lemma G.4, we have

∆t+1 ≤ (1− µ̃ηt)E∥θ
t − θPS∥22 +B1η

2
t .

For a diminishing stepsize ηt = β
t+γ where β > 1

µ̃ , γ > 0 such that η2t ≤ 1/
(
2c3(t+1−t0)(1+2(t+

1− t0))
)
, η0 ≤ η̂0, and ηt ≤ 2ηt+E , we will prove that ∆t ≤ υ

γ+t where υ = max
{

β2B1

βµ̃−1 , γ∆0

}
=

max
{

4B1

µ̃2 , γ∆0

}
by induction.
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Firstly, ∆0 ≤ υ
γ by the definition of υ. Assume that for some 0 ≤ t, ∆t ≤ υ

γ+t , then

∆t+1 ≤ (1− ηtµ̃)∆t + η2tB1

≤
(
1− βµ̃

t+ γ

)
v

t+ γ
+

β2B1

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
β2B1

(t+ γ)2
− βµ̃− 1

(t+ γ)2
v

]
≤ v

t+ γ + 1
.

Specifically, if we choose β = 2
µ̃ , γ = max{ 2

µ̃η̃0
, E, 2

µ̃

√
(4E2 + 10E + 6)(12σ2 + 18L2(1 + ϵmax)2)},

then we have

η0 =
β

γ
≤ 2

µ̃ 2
µ̃η̃0

= η̂0

and

ηt − 2ηt+E =
β

γ + t
− 2β

γ + t+ E
=

β(E − γ − t)

(γ + t)(γ + t+ E)
≤ β(E − γ)

(γ + t)(γ + t+ E)
≤ 0.

To prove that η2t ≤ 1/
(
2c3(t + 1 − t0)(1 + 2(t + 1 − t0))

)
for any t, it suffices to prove that for

0 ≤ t ≤ E because {ηt}, i.e., t0 = 0, is non-increasing and t + 1 − t0 is periodic with period E.
When t0 = 0, we need to prove η2t ≤ 1/

(
2c3(t+1)(1+ 2(t+1))

)
for 0 ≤ t ≤ E, which is satisfied

if

max
0≤t≤E

ηt ≤ min
0≤t≤E

√
1/
(
2c3(t+ 1)(1 + 2(t+ 1))

)
⇐⇒ η0 ≤

√
1

(4E2 + 10E + 6)c3

⇐⇒ γ ≥ β
√
(4E2 + 10E + 6)c3 =

2

µ̃

√
(4E2 + 10E + 6)c3

=
2

µ̃

√
(4E2 + 10E + 6)(12σ2 + 18L2(1 + ϵmax)2).

H PROOF OF CONVERGENCE UNDER THE ALTERNATIVE ASSUMPTION IN
EQUATION B.1

Assumption H.1. Suppose the following hold

EZi∼Di(θ)[∥∇l(θ;Zi)∥22] ≤ G2. (14)

Lemma H.2. (Bound on the divergence of parameters, i.e., consensus error bound)
When E > 1, under Assumption 2.1, 2.2, 2.3, 2.5, and if ηt is non-increasing and ηt ≤ 2ηt+E holds
for all t ≥ 0, we have

E
[ N∑

i=1

pi∥θt
i − θ

t∥22
]
≤ 4(E − 1)2η2tG

2 (15)

Proof. FedAvg requires a communication every E steps, so for any t ≥ 0, there exists a t0 ≤ t, t0 ∈
IE , such that t − t0 ≤ E − 1 and θt0

i = θ
t0
,∀i. Also, we use the fact that ηt0 ≤ 2ηt for all

t− t0 ≤ E − 1, then

E
[ N∑

i=1

pi∥θt
i − θ

t∥22
]
= E

[ N∑
i=1

pi∥(θt
i − θ

t0
)− (θ

t − θ
t0
)∥22

]
≤ E

[ N∑
i=1

pi∥θt
i − θ

t0∥22
]
, (16)
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since E∥X − EX∥22 ≤ E∥X∥22 where X = θt
i − θ

t0 . Using Jensen’s inequality, we further have

∥θt
i − θ

t0∥22 =

∥∥∥∥ t−1∑
s=t0

ηs∇l(θs
i ;Z

s+1
i )

∥∥∥∥2
2

≤ (t− t0)

t−1∑
s=t0

η2s
∥∥∇l(θs

i ;Z
s+1
i )

∥∥2
2
, (17)

E
[ N∑

i=1

pi∥θt
i − θ

t0∥22
]
= E

[∥∥∥∥ N∑
i=1

pi

t−1∑
s=t0

η2s∇l(θs
i ;Z

s+1
i )

∥∥∥∥2
2

]
≤ (t− t0)

t−1∑
s=t0

η2s

N∑
i=1

piE
[∥∥∇l(θs

i ;Z
s+1
i )

∥∥2
2

]
,

(18)

E
[ N∑

i=1

pi∥θt
i − θ

t0∥2
]
= E

[∥∥∥∥ N∑
i=1

pi

t−1∑
s=t0

ηs∇l(θs
i ;Z

s+1
i )

∥∥∥∥
2

]
≤

t−1∑
s=t0

ηs

N∑
i=1

piE
[∥∥∇l(θs

i ;Z
s+1
i )

∥∥
2

]
,

(19)

where we used ηs ≤ ηt0 . Therefore, based on A5, we have

E
[ N∑

i=1

pi∥θt
i − θ

t∥22
]
≤

N∑
i=1

piE
[ t−1∑
s=t0

(E − 1)η2s∥∇l(θs
i ;Z

s+1
i )∥22

]

≤
N∑
i=1

pi

[ t−1∑
s=t0

(E − 1)η2sG
2

]

≤
N∑
i=1

pi(E − 1)2η2t0G
2

≤ 4(E − 1)2η2tG
2 (20)

since ηs ≤ ηt0 ≤ 2ηt0+E ≤ 2ηt in the last two inequalities.

Lemma H.3. Li et al. (2022) Consider a sequence of non-negative, non-increasing step sizes {ηt}t≥1.
Let a > 0, p ∈ Z+and η1 < 2/a. If ηpt /η

p
t+1 ≤ 1 + (a/2)ηpt+1 for any t ≥ 1, then

t∑
j=1

ηp+1
j

t∏
ℓ=j+1

(1− ηℓa) ≤
2

a
ηpt , ∀t ≥ 1 (21)

Lemma H.4. Under Assumptions 2.1, 2.2, 2.3, H.1 and the condition that ηt ≤ µ̃/c2, , ηt ≤
ηt0 ≤ 2ηt where t0 = maxs{s ∈ N|Es ≤ t}, ηt+1 < ηt for any t ≥ 0, η1 < 2

µ̃ and ηqt /η
q
t+1 ≤

1 + (µ̃/2)ηqt+1 for any t ≥ 0 and q = 1, 2, 3.

E[∥wt+1 − θPS∥22] ≤
t∏

i=0

(1− µ̃ηi)
∥∥θ0 − θPS

∥∥2
2
+

2c2c7
µ̃

η3t +
2c1c7
µ̃

η2t +
4σ2

µ̃
ηt, (22)

where c7 := 4(E − 1)G2.

Proof. From Lemma F.1, we have

E
[
∥wt+1 − θPS∥22

]
≤ (1− µ̃ηt)E

[∥∥θt − θPS
∥∥2
2

]
+ (c1ηt + c2η

2
t )E

[ N∑
i=1

pi
∥∥θt

i − θ
t∥∥2

2

]
+ 2σ2η2t

≤ (1− µ̃ηt)E
[∥∥θt − θPS

∥∥2
2

]
+ c2c7η

4
t + c1c7η

3
t + 2σ2η2t

=

t∏
i=0

(1− µ̃ηi)
∥∥θ0 − θPS

∥∥2
2
+

t∑
s=1

t∏
i=s+1

(1− µ̃ηi)
(
c2c7η

4
s + c1c7η

3
s + 2σ2η2s

)
.

(23)
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The second inequality holds because of Lemma H.2. Using Lemma H.3,

t∑
s=1

t∏
i=s+1

(1− µ̃ηi)
(
c2c7η

4
s + c1c7η

3
s + 2σ2η2s

)
≤ 2c2c7

µ̃
η3t +

2c1c7
µ̃

η2t +
4σ2

µ̃
ηt. (24)

Theorem H.5. (Full participation convergence theorem, alternative assumption)
Under Assumption 2.1, 2.2, 2.3, 2.5, the full participation scheme has convergence rate O( 1

T ), i.e.,

denote ∆t := E[∥θt − θPS∥22], then for some γ > 0,

∆t ≤
υ

γ + t
, (25)

where υ := max{ c2c7β
4γ−2+c1c7β

3γ−1+2σ2β2

βµ−1 , (γ + 1)∆1}.

Proof. We will show it on the partial participation algorithm, and the proof for the full participation
is similar.

For a diminishing step size ηt = β
t+γ for some β > 1

µ̃ and γ > 0 such that η1 ≤
min{ 1

µ̃ ,
1
4L} = 1

4L and ηt ≤ 2ηt+E . We will prove ∆t := E[∥θt − θPS∥22] ≤ v
γ+t , where

v := max{ c2c7β
4γ−2+c1c7β

3γ−1+2σ2β2

βµ−1 , (γ + 1)∆1}. We prove this by induction. Firstly, the defini-

tion if v ensures it holds for t = 1. Assume it holds for some t, i.e., ηt = β
t+γ , then it follows from

Lemma H.4 that

∆t+1 ≤ (1− ηtµ̃)∆t + c2c7η
4
t + c1c7η

3
t + 2σ2η2t

≤ (1− βµ̃

t+ γ
)

v

t+ γ
+

c2c7β
4

(t+ γ)4
+

c1c7β
3

(t+ γ)3
+

2σ2β2

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
c2c7β

4

(t+ γ)4
+

c1c7β
3

(t+ γ)3
+

2σ2β2

(t+ γ)2
− βµ− 1

(t+ γ)2
v

]
≤ t+ γ − 1

(t+ γ)2
v +

[
c2c7β

4

(t+ γ)2γ2
+

c1c7β
3

(t+ γ)2γ
+

2σ2β2

(t+ γ)2
− βµ− 1

(t+ γ)2
v

]
≤ v

t+ γ + 1
(26)

where µ̃, c1, c2, c3, c7 are defined the same as in earlier proofs, and thus the O(1/T ) convergence
rate is shown.

Lemma H.6. (Bounding the difference wt+1 − θ
t+1

in partial participation)
Suppose Assumption 2.1, 2.2, 2.3, and 2.5 hold. For t+ 1 ∈ IE , assume that ηt is non-increasing
and ηt ≤ 2ηt+E for all t, then we have the following results

1. For Scheme I, the expected difference wt+1 − θ
t+1

is bounded by

ESt
∥θt+1 −wt+1∥22 ≤ 4

K
η2tE

2G2. (27)

2. For Scheme II, assuming p1 = p2 = · · · = pN = 1
N , the expected difference wt+1 − θ

t+1

is bounded by

ESt
∥θt+1 −wt+1∥22 ≤ 4(N −K)

K(N − 1)
η2tE

2G2 (28)

Proof. We prove the bound for Scheme I as follows. Since θ
t+1

= 1
K

∑K
l=1 w

t
il

, taking expectation
over St+1, we have

ESt
∥θt+1 −wt+1∥22 = ESt

1

K2

K∑
l=1

∥wt+1
il

−wt+1∥22 =
1

K

N∑
k=1

pk∥wt+1
k −wt+1∥22 (29)
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We note that since t+ 1 ∈ IE , we know that the time t0 = t− E + 1 ∈ IE is the communication
time, which implies {θk

t0} is identical. Then
N∑

k=1

pk∥wt+1
k −wt+1∥22 =

N∑
i=1

pk∥(wt+1
k − θ

t0
)− (wt+1 − θ

t0
)∥22 ≤

N∑
i=1

pk∥wt+1
k − θ

t0∥22

(30)

Similar to Lemma H.2, the last inequality is due to E∥X−EX∥22 ≤ E∥X∥22 where X = wt+1
k −θ

t0 ,
and

∑N
k=1 pk(w

t+1
k − θ

t0
) = wt+1 − θ

t0 . Similarly, we have

ESt

[
∥θt+1 −wt+1∥22

]
≤ 1

K

N∑
k=1

pkE
[
∥wt+1

k − θ
t0∥22

]
=

1

K

N∑
k=1

pkE
[
∥wt+1

k − θt0
k ∥22

]
=

1

K

N∑
k=1

pkE
[∥∥ t∑

s=t0

ηs▽l(θ
s
k;Z

s+1
k )

∥∥2
2

]

≤ 1

K

N∑
k=1

pkE

t∑
s=t0

E
[
∥ηs▽l(θs

k;Z
s+1
k )∥22

]
≤ 1

K
E2η2t0G

2 ≤ 4

K
η2tE

2G2. (31)

Then we prove the bound for Scheme II. Since θ
t+1

= 1
K

∑K
l=1 w

t+1
il

, we have

ESt

[
∥θt+1 −wt+1∥22

]
= ESt

[∥∥ 1

K

K∑
l=1

wt+1
il

−wt+1
∥∥2
2

]

=
1

K2
ESt

[∥∥ N∑
i=1

1{i ∈ St}(wt+1
i −wt+1)

∥∥2
2

]

=
1

K2

[ N∑
i=1

P(i ∈ St)∥wt+1
i −wt+1∥22 +

∑
j ̸=i

P(i, j ∈ St)
〈
wt+1

i −wt+1, wt+1
j −wt+1

〉 ]

=
1

KN

N∑
i=1

∥wt+1
i −wt+1∥22 +

K − 1

KN(N − 1)

∑
i ̸=j

〈
wt+1

i −wt+1, wt+1
j −wt+1

〉
=

1

K(N − 1)
(1− K

N
)

N∑
i=1

∥wt+1
i −wt+1∥22. (32)

Note that the second last equality holds because P(i ∈ St) =
K
N and P(i, j ∈ St) =

K(K−1)
N(N−1) ; and

the last equality holds because
N∑
i=1

∥wt+1
i −wt+1∥22 +

∑
i ̸=j

〈
wt+1

i −wt+1, wt+1
j −wt+1

〉
=

N∑
i=1

〈
wt+1

i −wt+1,

( N∑
j=1

wt+1
j

)
−Nwt+1

〉
= 0.

Recall that
N∑

k=1

pk∥wt+1
k −wt+1∥22 ≤

N∑
i=1

pk∥wt+1
k − θ

t0∥22,
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we get

E
[
∥θt+1 −wt+1∥22

]
=

1

K(N − 1)
(1− K

N
)E

[ N∑
i=1

∥wt+1
i −wt+1∥22

]

≤ N

K(N − 1)
(1− K

N
)E

[ N∑
i=1

1

N
∥wt+1

i − θ
t0∥22

]
≤ N

K(N − 1)
(1− K

N
)4η2tE

2G2 =
4(N −K)

K(N − 1)
η2tE

2G2 (33)

where the last inequality can be found in equation 20 in the proof of Lemma H.2.

Lemma H.7. Under Under Assumption 2.1, 2.2, 2.3, 2.5, and the condition that ηt ≤ µ̃/c2, ,
ηt ≤ ηt0 ≤ 2ηt where t0 = maxs{s ∈ N|Es ≤ t}, ηt+1 < ηt for any t ≥ 0, η1 < 2

µ̃ and
ηqt /η

q
t+1 ≤ 1 + (µ̃/2)ηqt+1 for any t ≥ 0 and q = 1, 2, 3, we have

ESt
[||θt+1 − θPS ||22] ≤

t∏
i=0

(1− µ̃ηi)
∣∣∣∣θ0 − θPS

∣∣∣∣2
2
+

2c2c3
µ̃

η3t +
2c1c3
µ̃

η2t +
2c8
µ̃

ηt, (34)

(c8 for Scheme I, replace c8 with c9 in Scheme II) where we define c8 := 2σ2 + 4
KE2G2 in Scheme I,

and c9 := 2σ2 + 4(N−K)
K(N−1)E

2G2 in Scheme II.

Proof. Note that

||θt+1 − θPS ||22
= ||θt+1 −wt+1 +wt+1 − θPS ||22
= ||θt+1 −wt+1||22︸ ︷︷ ︸

T1

+ ||wt+1 − θPS ||22︸ ︷︷ ︸
T2

+2⟨wt+1 − θ
t+1

, θ
t+1 − θPS⟩︸ ︷︷ ︸

T3

(35)

When expectation is taken over St+1, the last term T3 vanishes due to Lemma G.1.

If t+ 1 /∈ IE , T1 vanishes since θ
t+1

= wt+1 by definition when t+ 1 is not a communication step.
For term T2, it’s not hard to see that we can use Lemma F.1 to derive one step bounds for it (and use
equation 23 in Lemma H.4), and thus we have

E
[
||θt+1 − θPS ||22

]
= E

[
||wt+1 − θPS ||22

]
≤ (1− µ̃ηt)E

∣∣∣∣θt − θPS
∣∣∣∣2
2
+ c2c7η

4
t + c1c7η

3
t + 2σ2η2t , (36)

and we recall that c1 := L2(1+ϵmax)
2

2δϵ , c2 := 4[σ2 + L2(1 + ϵmax)
2], c3 := 4(E − 1)2G2, µ̃ :=

µ− (1 + δ)ϵL.

If t+ 1 ∈ IE , then we have the following result from Lemma H.6,

E
[
||θt+1 − θPS ||22

]
= E

[
||θt+1 −wt+1||22

]
+ E

[
||wt+1 − θPS ||22

]
≤ (1− µ̃ηt)E

∣∣∣∣θt − θPS
∣∣∣∣2
2
+ c2c7η

4
t + c1c7η

3
t + c8η

2
t , (37)

where we recall c8 := 2σ2 + 4
KE2G2 in Scheme I, and c9 := 2σ2 + 4(N−K)

K(N−1)E
2G2 in Scheme II.

37



Published at ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning
Models

The only difference between equation 24 and equation 37 is in (c8 − 2σ2)η2t . Therefore, we can use
similar techniques to show the convergence,

E[||θt+1 − θPS ||22] ≤ (1− µ̃ηt)E
∣∣∣∣θt − θPS

∣∣∣∣2
2
+ c2c7η

4
t + c1c7η

3
t + c8η

2
t

=

t∏
i=0

(1− µ̃ηi)
∣∣∣∣θ0 − θPS

∣∣∣∣2
2

+

t∑
s=1

t∏
i=s+1

(1− µ̃ηi)
(
c2c7η

4
s + c1c7η

3
s + c8η

2
s

)
≤

t∏
i=0

(1− µ̃ηi)
∣∣∣∣θ0 − θPS

∣∣∣∣2
2
+

2c2c7
µ̃

η3t +
2c1c7
µ̃

η2t +
2c8
µ̃

ηt

(c8 for Scheme I, replace c8 with c9 in Scheme II).

Theorem H.8. (Full participation convergence theorem, alternative assumption)
Under Assumption 2.1, 2.2, 2.3, 2.5, the full participation scheme has convergence rate O( 1

T ), i.e.,

denote ∆t := E[∥θt − θPS∥22], then for some γ > 0,

∆t ≤
υ

γ + t
, (38)

where υ := max{ c2c7β
4γ−2+c1c7β

3γ−1+c8β
2

βµ−1 , (γ + 1)∆1} (c8 for Scheme I, replace c8 with c9 in
Scheme II).

Proof. We will show it on the partial participation algorithm, and the proof for the full participation
is similar.

For a diminishing step size ηt = β
t+γ for some β > 1

µ̃ and γ > 0 such that η1 ≤
min{ 1

µ̃ ,
1
4L} = 1

4L and ηt ≤ 2ηt+E . We will prove △t := E[||θt − θPS ||22] ≤ v
γ+t , where

v := max{ c2c7β
4γ−2+c1c7β

3γ−1+c8β
2

βµ−1 , (γ + 1)△1}. We prove this by induction. Firstly, the defi-

nition if v ensures it holds for t = 1. Assume it holds for some t, i.e., ηt = β
t+γ , then it follows

that

△t+1 ≤ (1− ηtµ̃)△t + c2c7η
4
t + c1c7η

3
t + c8η

2
t

≤ (1− βµ̃

t+ γ
)

v

t+ γ
+

c2c7β
4

(t+ γ)4
+

c1c7β
3

(t+ γ)3
+

c8β
2

(t+ γ)2

=
t+ γ − 1

(t+ γ)2
v +

[
c2c7β

4

(t+ γ)4
+

c1c7β
3

(t+ γ)3
+

c8β
2

(t+ γ)2
− βµ− 1

(t+ γ)2
v

]
≤ t+ γ − 1

(t+ γ)2
v +

[
c2c7β

4

(t+ γ)2γ2
+

c1c7β
3

(t+ γ)2γ
+

c8β
2

(t+ γ)2
− βµ− 1

(t+ γ)2
v

]
≤ v

t+ γ + 1
(39)

(c8 for Scheme I, replace c8 with c9 in Scheme II), where µ̃, c1 to c9 are defined the same as in earlier
proofs, and thus the O(1/T ) convergence rate is shown.
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