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Abstract001

This paper addresses the use of a graph convolutional002

network for delineation of structures and estimation003

of landmarks in mammograms, a critical step in the004

evaluation of image quality in breast cancer screen-005

ing. In this context, the ability to estimate the006

uncertainty of the predicted positions is crucial. In007

the current work we focus on the pectoral muscle,008

where the variability in muscle visibility across im-009

ages introduces significant uncertainty. Our main010

contribution is a novel modification of a deep graph011

convolutional network (GCN) that not only locates012

key points along the muscle boundary but also pro-013

vides uncertainty estimates, which are useful for014

selecting images that must be evaluated by a hu-015

man. We introduce a novel approach to estimate016

both aleatoric and epistemic uncertainties using a017

GCN framework. Aleatoric uncertainty captures018

variability in ground truth due to annotator dif-019

ferences, while epistemic uncertainty accounts for020

the model’s inherent limitations. Our method was021

tested on in-house annotated mammograms and the022

external InBreast dataset, demonstrating compara-023

ble accuracy to human annotators and robustness024

in the presence of domain shifts. The uncertainty025

estimates were found to be highly accurate, confirm-026

ing their potential for identifying cases that require027

human review.028

1 Introduction029

Breast cancer is the most common form of cancer in030

females, worldwide, and mammographic screening031

is an effective way of detecting cancers at an early032

stage.033

In mammography screening it is crucial to main-034

tain high image quality to ensure the best possible035

visualization of breast tissue and the identification036

of potential breast cancer indicators. This includes037

technical quality in the form of image sharpness and038

contrast as well as the proper positioning, which039

ensures that the relevant parts of the breast are040

depicted. The quality of the images significantly041

impacts the rates of patient recall and the detec-042

tion of cancer through screening, thus affecting the043

accuracy and reliability of the screening process.044

Therefore, mammograms routinely undergo quality045

assessment by radiographers, which would benefit046

Figure 1. Sample mammograms where the pectoral
muscle is clearly depicted (left) and blurry (right).

from automatic analysis. 047

An important part of the quality assessment con- 048

cerns the depiction of the pectoral muscle in the 049

mediolateral oblique (MLO) view, relating to its 050

size, its shape, and its orientation (Waade et al. [1]). 051

The muscle should be located in the top left (right) 052

corner of a standard X-ray mammogram in MLO- 053

view. The complexity of the task varies considerably, 054

as shown in Figure 1, where the muscle is clearly 055

visible as a light area in the left image, while the 056

right image shows a more difficult case where the 057

lower part of the muscle is blurry. 058

Previous studies have used different methods for 059

segmenting the muscle, using various proprietary 060

versions of convolutional neural nets (CNNs). Ma 061

et al. [2] apply a method similar to a U-Net and 062

concludes it works better than traditional imaging 063

techniques. Brahim et al. [3] use a CNN model 064

heatmaps generated by a GradCam method. PeM- 065

Net (Yu et al. [4]) uses a InceptionResNetv2 back- 066

bone and a complex up-sampling scheme to generate 067

pixel masks. Guo et al. [5] use a U-Net to segment 068

the muscle. Yang et al. [6] uses deep learning in the 069

way of a modified U-Net model to segment pectoral 070

muscle volume from computed tomography images. 071

While these methods may provide state-of-the-art 072

segmentation masks, their handling of uncertainty 073

leaves something to be desired, as they focus only on 074

average error (over different datasets and different 075

criteria). They do not provide explicit probability 076

distributions or confidence intervals for their location 077

estimates. We argue that the application to image 078

quality control would benefit from such estimates, 079
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so that a human could perform the evaluations in080

critical cases where the predicted locations are likely081

to be substantially off target.082

Graph convolutional neural nets (GCNs) have083

been introduced as an alternative to heatmap based084

methods for landmark detection to better capture085

relationships between landmarks. The aim is to086

enable the model to learn relations between point087

positions and thereby improve on the relative po-088

sitioning of the landmarks. In the present study,089

we use the GCN approach to identify points along090

the border of the muscle. Since the muscle is lo-091

cated in a corner, the task of identifying the border092

that extends from the top edge to the side edge093

is equivalent to segmenting it. However, landmark094

based modelling extends directly to locating of sin-095

gular key points that are used for quality assessment096

of mammogram, such as the nipple and the infra-097

mammary fold. While these are not included in the098

present study, this is a natural extension of the land-099

mark approach, which can also benefit from learning100

the geometric relations among the points. While101

heatmap based methods can also be used for these102

tasks, the location of singular points is handled more103

directly in landmark based methods.104

We adopt a modification of the ”Deep Adaptive105

Graph” (DAG) framework, which has previously106

been used for identifying key points in faces (Li et107

al. [7]). Our contribution is an extension of the DAG108

framework that provides an explicit probabilistic109

model for the location of the key points. We train110

the model to output estimates of the aleatoric (truly111

random) uncertainties together with the key point112

coordinates.113

To our knowledge, no attempts to explicit uncer-114

tainty modelling in GCNs have been published to115

date, and such modelling has been called for: ”To116

date, the vast majority of existing works do not117

take into account the uncertainty of a GCN regard-118

ing its prediction, which is alarming especially in119

high-stake scenarios.” (Kang et al. [8]). We use the120

Laplace distribution, which has been used as a prior121

for Bayesian uncertainty estimation in a general con-122

text (Kendall and Gal [9]), but to our knowledge123

not in a GCN setting.124

In addition we estimate the epistemic (model re-125

lated) uncertainties through the variations within126

a model ensemble, and combine the aleatoric and127

epistemic uncertainties to create accurate confidence128

intervals.129

2 Method130

We include only an informal description of the ”Deep131

Adaptive Graph” (DAG) framework (Li et al. [7]),132

which we build on, and refer to this source for tech-133

nical details. The model’s basic task is to locate134

a vector of points v ∈ Rn×2 in an image as close135

as possible to the ground truth of correct locations 136

v∗. It uses a high-resolution convolutional net (HR- 137

Net) to generate a feature map for the given image. 138

These features are fed into a GCN together with 139

the geometry of a current location estimate v and 140

give a vector ∆v as output. The process starts with 141

an initial point vector v0, which is updated itera- 142

tively: vi+1 = vi +∆vi, which is intended to move 143

toward v∗. The algorithm described by (Li et al. [7]) 144

also included a so-called global step prior to the ∆v 145

updates, but this was not included in the present 146

application. We let T be the number of local steps 147

and for convenience define µ = vT . 148

2.1 Aleatoric uncertainty estimation 149

By aleatoric uncertainty we mean uncertainty about 150

the ground truth that is ”truly random” in the 151

sense that it cannot be eliminated by any amount 152

of training data or any kind of model (Hüllermeier 153

and Waegeman [10]). It represents the randomness 154

among different annotators - or even the same an- 155

notator at different times - in how they place the 156

markings. In the right image of Figure 1, e.g. the 157

delineation of the lower part of the muscle is likely 158

to vary substantially in this way. 159

Earlier research on aleatoric uncertainty in GCN 160

models focus on labelling problems, where the task 161

is to assign properties to the nodes in a graph 162

(Vashishth et al. [11]). A recent overview of uncer- 163

tainty in GCN models is given in (Wang et al. [12]), 164

which gives a taxonomy of types and sources for un- 165

certainties, and ways to estimate them. Our work is 166

different in the way that we develop an architecture 167

that allows the model to estimate 2-dimensional lo- 168

cations in parallel with uncertainty estimates for the 169

same locations. We accomplish this by extending the 170

method of Li et al with the inclusion of a separate 171

GCN module that estimates aleatoric uncertainties 172

through parameterized random distributions. It is 173

structurally equivalent to the GCN module that 174

computes ∆v and is applied after the last iteration 175

T . It takes as input the HR-net features evaluated 176

at the locations µ together with the geometric fea- 177

tures of µ. The output is denoted by log(b) ∈ Rn×2, 178

where bix and biy represent the uncertainties for µi
x 179

µi
y. 180

Rather than the traditional deep learning ap- 181

proach of defining a loss function which measures 182

the distance from the desired outcome, we view the 183

entire model as a parameterized statistical model 184

of the training data. For each point in v∗i, we 185

assume that v∗ix has the Laplace (double exponen- 186

tial) distribution with median µi
x scale parameter 187

bix, which we write v∗ix ∼ L(µi
x, b

i
x) and similarly 188

v∗iy ∼ L(µi
y, b

i
y). We assumed all components to be 189
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Figure 2. Computational pipeline.

independent, which gives the following likelihood:190

L =

M∏
k

n∏
i

∏
j∈{x,y}

1

2bk,ij

exp

(
−
|v∗k,ij − µk,i

j |
bk,ij

)
191

Here, k runs over the M training images, i runs192

over the n key points and j runs over the x and y193

dimension.194

Our approach is to optimize the model parame-195

ters with respect to this likelihood function, but as196

usual in statistical modelling, we minimize − log(L)197

instead, which has the same optimum and more198

favorable numerical properties:199

−logL =

M∑
k

n∑
i

∑
j∈{x,y}

log(2bk,ij )+
1

bk,ij

|v∗k,ij −µk,i
j |200

Minimizing this expression amounts to training the201

model end-to-end to estimate locations µi
x, µ

i
y and202

uncertainties bix, b
i
y for a given input image. To our203

knowledge, this approach to estimating aleatoric204

uncertainties for GCN models is novel.205

We also considered using normal distributions in-206

stead of Laplace, but chose the latter because it is207

the natural generalization of the L1-error that was208

used by (Li et al. [7]). It has the property that it pe-209

nalizes deviations linearly rather than quadratically,210

which makes it more robust. Normal distributions211

might place too much emphasize on the cases where212

the model has trouble reproducing the ground truth.213

2.1.1 Model pipeline214

The model pipeline is shown in Figure 2. The HR-215

Net (blue color) computes localized features, which216

are fed into the GCN models. GCN-1 (yellow) reads217

the HR-Net features at the initial points, combined218

with their geometry, and moves the points (hope-219

fully) toward the correct locations. This process220

is repeated T times. Then GCN-2 (red) takes the221

HR-Net features of these final locations as input,222

together with their geometry, and outputs the esti-223

mated x- and y- uncertainties, illustrated with red224

ellipses. The entire model is trained end-to-end to225

optimize the Laplace log-likelihood of the ground226

truth data.227

2.2 Epistemic uncertainty estimation 228

Our approach for estimating epistemic (model re- 229

lated) uncertainty (Hüllermeier and Waegeman [10]) 230

is more standard and straight forward. We train a set 231

of models with cross-validation, and use them as an 232

ensemble when evaluating the test sets (Dutschmann 233

et al. [13]). For each x- and y-value of each output 234

point for a given image we estimate the standard 235

deviation among the ensemble model outputs, and 236

treat this as the epistemic uncertainty. 237

2.3 Combined uncertainty 238

For the aleatoric uncertainty, we computed the av- 239

erage log(b) tensors over the ensemble and used the 240

exponential of this average as our b-values. We 241

computed the component-wise total variance V 242

by adding the ensemble variance estimate to the 243

Laplace variance 2b2. We then inverted the Laplace 244

variance function to get a modified b̂ =
√
V/2, which 245

was used to calculate confidence intervals according 246

to the Laplace distribution. 247

3 Data sets 248

For training data only in-house annotation was used 249

(details to be included after the anonymous review 250

is finished). The images were sampled randomly 251

from a set of mammograms from screening. All 252

annotations were made by the first author, who has 253

no formal background in radiology or radiography. 254

The number of in-house annotated images was 545. 255

From the same source as the in-house training data 256

we sampled a non-overlapping set of mammograms 257

to be annotated by two radiographers. A total of 94 258

images were annotated by both. 259

In order to evaluate our models’ generalizability, 260

we also tested it on the external dataset InBreast 261

(Moreira et al. [14]), which had 200 annotated im- 262

ages. 263

4 Experimental setup 264

The annotations of the pectoral muscle in the 265

datasets were represented as a list of points along 266

the border of the muscle. The number of points var- 267

ied among the data sets and also among the images 268

in each set. To facilitate the subsequent use of key 269

points, the annotations were standardized to n = 10 270

equidistant points along the annotated path, where 271

the first one was on the upper edge and the last one 272

was on the vertical edge. 273

The HR-net was set up with a depth of 32, while 274

the GCN modules that compute the ∆v and b ten- 275

sors had 6 layers and 256 filters. The number of 276

coordinate iterations T was set to 3. In line with Li 277

et al. [7], We use the average of the ground truth 278
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locations v∗ over the training set as starting values279

v0.280

The models were trained with the ADAM opti-281

mizer with a learning rate of 0.0001 and a batch size282

of 4 over 200 epochs, which was enough for over-283

fitting the models. The cross validation used 5 folds,284

where each model was trained on 4 of them. The285

last one was used for monitoring the log-likelihood286

and parameters that gave the highest value on the287

validation fold was saved. This procedure gives in-288

flated performance on the validation fold, but our289

purpose was only to create a model ensemble to290

be used on the test sets, not to cross-validate the291

models’ performance on the training set.292

Only a minimum of image preprocessing was per-293

formed. Right-side images were flipped, so that all294

images had the breast on the left side, with the295

pectoral muscle in the top left corner, if present.296

The images were resized to 512 x 512 pixels and297

the pixel values were re-scaled to [0, 1]. No data298

augmentation was used.299

5 Results300

5.1 Predictive performance301

We measure the location errors by the average ab-302

solute difference between the predicted coordinates303

and the ground truth:304

1

2nM test

Mtest∑
k

n∑
i

∑
j∈{x,y}

|v∗k,ij − µk,i
j |305

The location values v∗ and µ were scaled to the range306

[0, 1], so the error estimates can be interpreted as307

fractions of the height and width of the images.308

Recall that the internal test set had a ground truth309

annotation by two radiographers, and v∗ above was310

defined as the average of these. The model’s average311

error on this data set was 0.0054, while the average312

error compared to each of the radiographers indi-313

vidually gave 0.0061 and 0.0062, respectively. For314

comparison, the average between-radiographer error315

was 0.0057, so the model performance is essentially316

on par with our human experts.317

For the INBreast data set, the average error was318

higher, as would be expected due to the domain319

shift, but still quite acceptable: 0.0120.320

5.2 Uncertainty estimates321

The crucial property of uncertainty estimates is that322

they accurately model the empirical errors, so that323

the model can identify the cases where its location324

predictions should not be trusted. To test this we325

standardize the model errors by divided them with326

the predicted standard deviation. Under the model327

assumptions, these standardized errors should follow328

Figure 3. Histogram of standardized error distribution
for the internal test set.

Figure 4. Comparison of the empirical and theoretical
cumulative distribution for the internal test set.

the standard Laplace distribution. Figure 3 gives 329

the histogram of these for the internal test set, to- 330

gether with the probability density function for the 331

standard Laplace. Figure 4 shows a plot of the corre- 332

sponding empirical cumulative distribution together 333

with the theoretical one. These plots show a very 334

strong correspondence. The maximum difference 335

between the empirical and theoretical cumulative 336

distributions is 0.0459, which confirms a very good 337

match. 338

Figure 5 illustrates the model output on the two 339

mammograms shown in the introduction, where we 340

have zoomed in on the muscle. The red dots show the 341

average annotation points of the two radiographers. 342

The white and orange ellipses show the epistemic 343

and aleatoric 99% confidence areas, while the yellow 344

ellipses give the combined 99% confidence areas. As 345

expected, the model predictions are more accurate 346

for the left image with clearly visible muscle, and the 347

small uncertainty ellipses confirm that the model is 348

more certain about these. In the right image, we see 349

that the model is more certain (and accurate) for 350
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Figure 5. Sample mammograms with ground truth
and uncertainty ellipses. The center of the ellipses are
the predicted locations (not depicted)

the top points and more uncertain about the lower351

ones, which fits the visual impression. We also see352

that the epistemic uncertainties are smaller than the353

the aleatoric ones, which is desirable.354

In Figure 6 the ellipses are converted to uncer-355

tainty bands (yellow dotted lines), while the red356

lines show the interpolated muscle annotations.357

Figures 7 and 8 give the histogram and cumu-358

lative distribution plots for the external test set,359

which also shows an acceptable match with a maxi-360

mum difference of 0.1248. We see that the empirical361

distribution is shifted to the left, compared to the362

standard Laplace. This is likely due to a slightly363

different annotation practice, in that the annotators364

of the external images may have included a larger365

part of the blurry areas. This is confirmed by visual366

inspection of the images, as illustrated in 9 where we367

have problems seeing the lower part of the annotated368

muscle. Here we have included the border predicted369

by our model in yellow, and we see a perfect match370

in the upper, more visible part of the muscle.371

6 Discussion372

We have successfully trained a GCN model to predict373

the border points of pectoral muscles, while simul-374

taneously estimating the error distribution of these375

estimates, by interpreting the model outputs as the376

parameters of a Laplace distributions. The model’s377

uncertainty estimates were remarkably accurate, in378

that the standardized errors followed the standard379

Laplace distribution almost perfectly. This means380

that the uncertainty estimates were almost perfectly381

calibrated out-of-the-box. A practical implication382

is that if we define a desired confidence level of, say383

95%, the confidence intervals would in fact cover the384

Figure 6. Sample mammograms with ground truth
and uncertainty bands.

Figure 7. Histogram of standardized error distribution
for the external test set.

ground truth in 95% of the cases. This will be very 385

useful for later applications of the model, since it 386

can reliably identify images that should be evaluated 387

by a human expert. The model’s point prediction 388

performance on the test set was also convincing, 389

with an L1-error similar to the difference between 390

the two radiographers, which might be considered 391

a lower bound on the possible performance. One 392

might expect weaker performance because the train- 393

ing set was annotated by a non-professional, but 394

this apparently made little difference. The model 395

performed reasonably well on the external data set, 396

despite substantial domain shift. We also suspect 397

that the main reason for the weaker results may be 398

a different annotation practice for uncertain cases. 399

Using the negative log-likelihood as a ”loss func- 400

tion” may be unfamiliar to some, since it does not 401

represent model errors directly, and is not even 402

bounded downwards. This is not a problem, however, 403
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Figure 8. Comparison of the empirical and theoretical
cumulative distribution for the external test set.

as long as it points the gradients in the direction404

that improves the model. The use of early stopping405

through monitoring of the log-likelihood on the vali-406

dation folds was necessary, as over-fitting produces407

models that radically underestimate the aleatoric408

uncertainty, even though the predicted locations409

might still be good. Therefore, monitoring of the410

full log-likelihood was preferable to monitoring of411

the location errors.412

7 Conclusion413

In this work, we presented a novel GCN model for de-414

tecting pectoral muscle boundaries in mammograms,415

with integrated uncertainty estimation. By modeling416

both aleatoric and epistemic uncertainties, we were417

able to produce accurate predictions of key bound-418

ary points, alongside uncertainty estimates that can419

help identify cases requiring human review. Our420

approach achieved results on par with human anno-421

tators and demonstrated robustness across domain422

shifts, as shown in tests on the InBreast dataset.423

The proposed uncertainty-aware framework has424

potential applications in clinical workflows, where425

the ability to flag uncertain cases could assist radiog-426

raphers in prioritizing manual reviews. Future work427

will explore the integration of expert-annotated data428

to further refine the model and improve generaliz-429

ability to diverse datasets, as well as investigate its430

practical use in a clinical setting.431

References432

[1] G. Waade, A. Skyrud Danielsen, Å. Holen,433

M. Larsen, B. Hanestad, N.-M. Hopland, V.434

Kalcheva, and S. Hofvind. “Assessment of435

breast positioning criteria in mammographic436

screening: Agreement between artificial in-437

telligence software and radiographers”. In:438

Figure 9. Example image from the INBreast test set,
where the annotated boundary may seem large.

Journal of Medical Screening 28 (Mar. 9, 439

2021), p. 096914132199871. doi: 10.1177/ 440

0969141321998718. 441

[2] X. Ma, J. Wei, C. Zhou, M. A. Helvie, H.-P. 442

Chan, L. M. Hadjiiski, and Y. Lu. “Automated 443

pectoral muscle identification on MLO-view 444

mammograms: Comparison of deep neural net- 445

work to conventional computer vision”. In: 446

Medical Physics 46.5 (May 2019), pp. 2103– 447

2114. issn: 2473-4209. doi: 10 . 1002 / mp . 448

13451. 449

[3] M. Brahim, K. Westerkamp, L. Hempel, R. 450

Lehmann, D. Hempel, and P. Philipp. “Auto- 451

mated Assessment of Breast Positioning Qual- 452

ity in Screening Mammography”. In: Can- 453

cers 14.19 (Jan. 2022). Number: 19 Publisher: 454

Multidisciplinary Digital Publishing Institute, 455

p. 4704. issn: 2072-6694. doi: 10 . 3390 / 456

cancers14194704. url: https://www.mdpi. 457

com / 2072 - 6694 / 14 / 19 / 4704 (visited on 458

02/22/2024). 459

[4] X. Yu, S.-H. Wang, J. M. Górriz, X.-W. Jiang, 460
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