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ABSTRACT

In recent years, there has been an explosion of research into developing robust
deep neural networks against adversarial examples. As one of the most successful
methods, Adversarial Training (AT) has been widely studied before, but there is
still a gap to achieve promising clean and robust accuracy for many practical tasks.
In this paper, we consider the AT problem from a new perspective which connects
it to catastrophic forgetting in continual learning (CL). Catastrophic forgetting is a
phenomenon in which neural networks forget old knowledge upon learning a new
task. Although AT and CL are two different problems, we show that they actually
share several key properties in their training processes. Specifically, we conduct
an empirical study and find that this forgetting phenomenon indeed occurs in ad-
versarial robust training across multiple datasets (SVHN, CIFAR-10, CIFAR-100,
and TinyImageNet) and perturbation models (ℓ∞ and ℓ2). Based on this observa-
tion, we propose a novel method called Adaptive Multi-teachers Self-distillation
(AMS), which leverages a carefully designed adaptive regularizer to mitigate the
forgetting by aligning model outputs between new and old “stages”. Moreover,
our approach can be used as a unified method to enhance multiple different AT
algorithms. Our experiments demonstrate that our method can significantly en-
hance robust accuracy and meanwhile preserve high clean accuracy, under several
popular adversarial attacks (e.g., PGD, CW, and Auto Attacks). As another benefit
of our method, we discover that it can largely alleviate the robust overfitting issue
of AT in our experiments.

1 INTRODUCTION

Deep Neural Networks (DNNs) (LeCun et al., 2015) have demonstrated state-of-the-art performance
in a number of fields, such as computer vision (He et al., 2016) and natural language processing (De-
vlin et al., 2019). But DNNs have been shown to be vulnerable to adversarial perturbation examples.
Such examples are crafted by making small changes to natural data, but these changes are often im-
perceptible to human observers (Goodfellow et al., 2015; Szegedy et al., 2014). This vulnerability
of DNNs raises significant security concerns regarding their practicality in security-sensitive appli-
cations, such as face recognition (Parkhi et al., 2015) and autonomous driving (Chen et al., 2015).

To address the security concerns, a great deal of defense methods have been developed to improve
the adversarial robustness of DNNs (Buckman et al., 2018; Guo et al., 2018; Song et al., 2018; Xie
et al., 2018; Madry et al., 2018; Zhang et al., 2019b). Among existing defense strategies, Adversar-
ial Training (AT) (Madry et al., 2018; Zhang et al., 2019b) has been demonstrated as one of the most
effective methods to defend against adversarial examples (Pang et al., 2021; Maini et al., 2020). The
idea of AT is utilizing adversarial samples to train the model in each training epoch, which can be
formulated as a “minimax robust optimization” problem, searching for the best solution to the worst-
case scenario. However, the robust accuracies achieved by AT are still not that satisfying for many
tasks. For instance, as a representative AT method, if we perform TRADES (Zhang et al., 2019b)
with the ℓ∞ norm on CIFAR-10, it yields a robust accuracy less than 50% under Auto Attack. A
complete introduction of existing AT methods is provided in Section 2.

In this paper, we conduct a deep investigation on the learning process of adversarial samples, because
whether the model can effectively learn adversarial examples greatly determines the final adversarial
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training performance. In particular, we build the seemingly unusual connection between AT and
Continual learning (CL), an area that has been extensively studied recently (Wang et al., 2024).
Our inspiration comes from the following observation: during the adversarial training process, the
distribution of adversarial examples varies across different training epochs, a phenomenon quite
similar to learning different distributions in CL (each distribution corresponds to a unique learning
task). Specifically, the standard DNNs training process implicitly assumes that the data are drawn
independently and identically distributed (i.i.d.) from the same probability distribution. However, in
the scenario of AT, the generated adversarial samples often do not hold this assumption. Note that
the adversarial samples in each epoch are usually generated by gradient information determined by
current model parameter (Madry et al., 2018). Therefore, as the model parameter updates during the
training process, the distribution of adversarial samples should continuously shift over time. Thus,
each stage of the alternating training procedure can be regarded as a unique task (similar with a CL
scenario). In addition, unlike conventional machine learning models built on static data distribution,
CL is characterized by learning from dynamic data distributions and often suffers from catastrophic
forgetting (Kirkpatrick et al., 2017). Specifically, the catastrophic forgetting is a phenomenon in
which neural networks forget old knowledge upon learning a new task. Considering the similarity
between the AT and CL problems, it is natural to ask the following questions:

Does the forgetting phenomenon also occur in adversarial training process? If so, is it possible
to improve the performance of adversarial training through mitigating the forgetting?

1.1 OUR MAIN CONTRIBUTIONS

Firstly, we conduct an empirical study to answer the first question. Our experimental results uncover
that the forgetting phenomenon indeed appears in adversarial training process. Specifically, when
the model is trained in the later epochs, it is possible to forget the information from adversarial
samples learned in earlier epochs. For instance, as shown in Figure 1, we continuously monitor
the classification probability changes of an adversarial sample with the true label “ship” during the
adversarial training process (the 200 epochs are evenly divided into 5 stages). We find that during
stages 1 to 3, the sample was correctly classified and the confidence score reached 41. 79% in stage
2. However, the sample was misclassified in stages 4 and 5, and the confidence had dropped to
merely 7.15% in stage 5. In our empirical study, we can also observe this phenomenon on multiple
datasets beyond CIFAR-10, such as SVHN, CIFAR-100, and TinyImageNet. It is worth noting that
the previous work (Gupta et al., 2020) illustrated another experiment, using the adversarial samples
generated at different training stages to test the final built model. As we know, an adversarial sample
is generated based on the current parameters and gradient information of the training stage it belongs
to, so their experimental purpose is not about uncovering the “forgetting” issue of a fixed adversarial
example across different training stages. On the other hands, our used adversarial sample in Figure 1
is generated at the beginning, and then is always fixed to test across all the stages (so as to illustrate
the forgetting towards this fixed adversarial sample).

(a) stage 1 (✓) (b) stage 2 (✓) (c) stage 3 (✓) (d) stage 4 (×) (e) stage 5 (×)
Figure 1: Demonstration of a real adversarial example being learned and correctly classified by
the model in Stage 1, but forgotten and misclassified in stage 5. The true label of this adversarial
example is “ship”. The AT method is TRADES (Zhang et al., 2019b). The horizontal axis represents
the ten classes in CIFAR-10 and the vertical axis represents classification probabilities. Probabilities
corresponding to the true label are shown in purple, while all others are shown in orange. “✓” means
“classified correctly”, and “×” means “classified wrongly”.

Following these empirical findings, we try to explore that whether the performance of AT can be
enhanced by mitigating the forgetting issue. In the line of research on CL, there have been nu-
merous methods emerged for addressing the phenomenon of catastrophic forgetting, such as the
replay-based methods (Buzzega et al., 2020; Boschini et al., 2022) and the regularization-based
methods (Sun et al., 2023; Rebuffi et al., 2017). However, most of these methods are designed for
standard CL tasks and cannot be directly applied to AT, due to the following two major challenges.
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(1) For AT, the model should capture much more subtle information from each adversarial example,
compared to ordinary image classification problems, because an adversarial sample is usually gener-
ated by adding small and carefully crafted changes. For example, perturbations may target specific
features such as a cat’s tail, rather than altering the entire sample’s classification from cat to dog.
(2) As we known, adversarial training is inherently much harder than training a standard DNN, as
theoretically proved in (Zhang et al., 2019b). For example, adversarial training models usually have
a low classification accuracy (e.g., roughly less than 40% on CIFAR-100), which may lead to trans-
ferring a certain extent of incorrect information to the subsequent “stages”. Thus, how to transfer
the previous correct information and avoid the negative impact from the incorrect information, is
another obstacle that hinders directly applying existing CL methods to enhance AT.

To address these challenges, we propose a novel method named “Adaptive Multi-teacher Self-
distillation (AMS)”, which combines multi-teacher self-distillation method and adaptive weight
mechanism to alleviate the forgetting issue in AT. Our initial idea comes from Knowledge distil-
lation (Hinton et al., 2015), which is a method that can capture more refined and subtle feature
information by aligning the model soft output between old and new tasks. However, the knowledge
distillation methods employed in CL (e.g., Lwf (Li & Hoiem, 2017) and iCaRL (Rebuffi et al., 2017))
may not be sufficiently sensitive to certain types of perturbations, leading to suboptimal defense ef-
fectiveness in these situations. For example, one “stage” of AT may be sensitive to pixel-level noise,
while another may be sensitive to geometric transformations or color shifts. To address this issue, we
propose a multi-teacher self-distillation method designed to capture diverse feature representations,
thereby enhancing the model’s ability to cope with various forms of perturbations. As explained
before, another issue is that the information transferred from earlier stages to later stages is not al-
ways reliable. So, we design a “Reweighting-based Loss Correction” mechanism to adaptively
eliminate the negative effects caused by “bad” teachers. Specifically, we utilize the softmax outputs
of the teacher models to determine the weight for each sample based on the probability of the true
class. Higher probabilities indicate a greater confidence of correct classification, and thus we assign
higher weights to these samples and lower weights to those misclassified ones. Overall, this mech-
anism ensures that misclassified samples do not significantly affect the loss function of distillation
module.

We validate the effectiveness of our proposed AMS method through the experiments on a range
of datasets (CIFAR-10/100, SVHN, and TinyImageNet) and model architectures (PreActResNet-18
and WideResNet-34/28-10). The experimental results suggest that our method can enhance state-
of-the-art adversarial training methods, improving adversarial robustness accuracy across various
datasets and architectures.

2 BACKGROUND

2.1 ADVERSARIAL TRAINING

Let D = {(xi, yi)}ni=1 denote a C-classes training dataset with n samples from the original data
distribution P , where xi ∈ Rd is a natural sample in the d-dimensional input space and yi ∈
{1, . . . , C} is its ground true label. Vanilla adversarial training can be formulated as a minimax
robust optimization problem (Madry et al., 2018):

min
θ

Exi∼P

[
max

x′
i∈Bp(xi,ϵ)

L(hθ(x
′
i), yi)

]
, (1)

where hθ : Rd → RC is a DNN classifier with parameter θ, (x′
i, yi) is an adversarial example of

(xi, yi), and Bp(xi, ϵ) = {x′
i : ∥x′

i − xi∥p ≤ ϵ} is an adversarial region centered at xi with radius
ϵ > 0 under the ℓp norm-bounded perturbation (e.g., ℓ∞ (Rice et al., 2020) and ℓ2 (Carlini et al.,
2019) norms), L(hθ(x

′
i), yi) is the cross-entropy loss function on the adversarial example (x′

i, yi).
As explained in (Madry et al., 2018), the inner maximization problem is to find the worst-case
samples for the given model, while the outer minimization problem aims to train a model robust to
adversarial examples. To solve this problem, Madry et al. (2018) employed a multi-step “Projected
Gradient Descent (PGD)” method, which starts at a randomly initialized point x0 in Bp(xi, ϵ) and
iteratively updates the adversarial example by

x′
i = ΠBp(xi,ϵ) (x

′
i + α · sign (∇xi

L (hθ(x
′
i), yi))) , (2)

where α is the step size, Π(·) is the projection operator. We refer to this inner maximization problem
with K steps as “PGD-K”. Numerous studies have been proposed based on PGD, including (Jia
et al., 2022; Kannan et al., 2018; Chen et al., 2022; Rice et al., 2020).
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Besides PGD, another representative AT method is TRADES (Zhang et al., 2019b), which balances
the trade-off between robust and clean accuracy by minimizing a different adversarial loss

min
θ

Exi∼P

{
L(hθ(xi), yi) + β · max

x′
i∈Bp(xi,ϵ)

DKL(hθ(xi) ∥ hθ(x
′
i))

}
, (3)

where DKL(· ∥ ·) is the Kullback-Leibler divergence. The first term in Eq.(3) contributes to clean
accuracy, and the second term with hyper-parameter β (set β = 6 as default) can be seen as a reg-
ularization for adversarial robustness that balances the outputs of clean and adversarial examples.
Furthermore, a substantial body of related work based on TRADES has been proposed, includ-
ing (Wu et al., 2020; Cui et al., 2021; Jin et al., 2023).

In addition to PGD-based and TRADES-based methods, several enhancements for AT have been
made by employing other strategies, including unsupervised/self-supervised learning (Alayrac et al.,
2019; Chen et al., 2020b;a; Naseer et al., 2020), data augmentation (Lee et al., 2020; Rebuffi et al.,
2021b; Gowal et al., 2021; Rice et al., 2020; Wu et al., 2020), and generative model (Dong et al.,
2020; Pang et al., 2022; Wang et al., 2023). Furthermore, due to the high computational cost of AT,
various efforts have been made to accelerate the training process. These include reusing computa-
tions (Shafahi et al., 2019; Zhang et al., 2019a) and adopting one-step training methods (Wong et al.,
2020; Jia et al., 2024; Vivek & Babu, 2020).

2.2 CONTINUAL LEARNING AND KNOWLEDGE DISTILLATION

Continual learning (CL) (Wang et al., 2024; Lopez-Paz & Ranzato, 2017), a rapidly developing
field in deep learning, aims to develop systems capable of learning continuously from sequential
or streaming data while retaining previously acquired knowledge. A significant challenge that CL
encounters is “catastrophic forgetting” (McClelland et al., 1995; McCloskey & Cohen, 1989), where
DNNs forget old knowledge upon learning new information. Various strategies have been proposed
to mitigate this phenomenon in CL, primarily focusing on regularization-based methods and replay-
based methods (De Lange et al., 2021). Roughly speaking, the replay-based methods method uti-
lizes reservoir sampling (Vitter, 1985) to maintain historical data (e.g., ER (Chaudhry et al., 2019),
GCR (Tiwari et al., 2022) and DGC-ER (Lin et al., 2024)) or logits (e.g., DER (Buzzega et al.,
2020)) in the memory buffer, then extract new incoming training data with random samplings for
learning the current task. Another way to solve continual learning is through deliberately designed
regularizer terms. For example, the method EWC (Kirkpatrick et al., 2017) adds a quadratic penalty
in the loss function, which penalizes the variation of each parameter depending on its contribution to
old tasks; Lwf (Li & Hoiem, 2017) learns new training samples while using their predictions from
the output head of the old tasks to compute the distillation loss.

Knowledge distillation (KD) (Hinton et al., 2015) is a method that distills knowledge from a larger
deep neural network into a small network (Li et al., 2020; Polino et al., 2018; Zhang et al., 2018a;b).
KD learning schemes (Gou et al., 2021) can be divided into three main categories based on whether
the teacher model is updated simultaneously with the student model or not: offline distillation (Hin-
ton et al., 2015; Mirzadeh et al., 2020), online distillation (Zhang et al., 2018b; Wu & Gong, 2021),
and self-distillation (Zhang et al., 2019c; Hou et al., 2019; Yang et al., 2019). In self-distillation, the
same network serves as both the teacher and the student models, enabling direct application in CL
scenarios, e.g., iCaRL (Rebuffi et al., 2017) and Lwf (Li & Hoiem, 2017).

3 CATASTROPHIC FORGETTING IN AT
In this section, we first explain that why AT can be regarded as a “CL-style” problem, from the per-
spective of data distribution shifts during the training process. Then, we investigate the phenomenon
of forgetting in AT through an empirical study.

Regard AT as a CL-style problem. We are aware that AT involves the model adapting to contin-
ually changing distributions of adversarial samples, and we will explain that it shares some similar
properties with a CL scenario that adapts the model to new tasks or changing environments. Recall
from Eq.(1) that vanilla adversarial training is formulated as a minimax robust optimization prob-
lem, utilizing the original data distribution P and a DNNs classifier hθ. In each epoch of the training
process, the parameter is updated by a set of adversarial samples, denoted by Padv , based on the
inner maximization problem, where Padv can be viewed as a sample set selected from an implicit
distribution by adding adversarial perturbations to the original distribution. To distinguish the differ-
ent Padvs at different epochs, we add a subscript to it; for example, Padv

t denotes the sample Padv
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at the t-th epoch. The knowledge required to solve the outer minimization problem (i.e., minimizing
the loss L on Padv

t ) is different from the knowledge needed for optimizing on Padv
t−1 . In other words,

the tasks training on Padv
t−1 and Padv

t are in fact different. The sequence of changing adversarial
samples {Padv

t }Tt=1 induce a sequence of tasks for the classifier hθ. Since the inner maximization
optimal problem at epoch t can only generate the sample Padv

t , the model at this current epoch
cannot revisit the knowledge from previous tasks, which is similar to a CL scenario.

Does catastrophic forgetting exist in AT? To answer this question, we further conduct an empirical
study to verify the forgetting phenomenon in AT. We first define “stage” and “stage sequence”
within the context of AT, which are similar to “task” and “task sequence” in CL. Let Padv

t represent
the adversarial samples generated in the t-th epoch. Suppose there are T epochs in total. We divide
the training process into multiple stages with each stage containing m epochs:

{Padv
1 , . . . ,Padv

m︸ ︷︷ ︸
S1

,Padv
m+1, . . . ,Padv

2m︸ ︷︷ ︸
S2

, . . . ,Padv
(⌈ T

m ⌉−1)×m+1
, . . . ,Padv

T︸ ︷︷ ︸
S⌈ T

m
⌉

}.

Thus, we define the stage sequence as S = {S1, . . . ,S⌈ T
m ⌉}. The experiment is designed as fol-

lows. We first train a model by an AT method and collect the adversarial samples. Specifically, we
collect correctly classified adversarial samples in the s-th stage and form a new “correctly classified
adversarial dataset” , which is denoted by Cadvs . This process continues until the end, producing a
collection of correctly classified adversarial dataset denoted as Cadv = {Cadv1 , . . . , Cadv⌈ T

m ⌉}. After
completing the training process, we evaluate the classification accuracy on each collected dataset
Cadvs . Meanwhile, we employ the Final Average Accuracy (FAA) (Douillard et al., 2020; Hou et al.,
2019) and Final Forgetting (FF) (Chaudhry et al., 2019) to assess the forgetting degree. These two
metrics are both widely used for continual learning.

Table 1: Verification results of the forgetting phenomenon in adversarial training across different
datasets and perturbation threat models. The T = 200 epochs are evenly divided into 5 stages.
Note that the “adversarial datasets” collected at each stage are initially classified correctly, resulting
in an initial accuracy of 100% for each dataset. Let ak,j (for k ≥ j) denote the classification
accuracy evaluated on the testing set of the stage j after learning stage k. The FAA is defined
as FAA ≜ 1

T

∑T
j=1 aT,j ; the FF is defined as FF ≜ 1

T−1

∑T−1
j=1 (maxk∈{1,...,T−1}ak,j − aT,j).

These two metrics quantify the degree of forgetting, where higher FAA and lower FF indicate less
forgetting of previously learned knowledge.

Dataset Norm Robust Test Accuracy (%) FAA (%) FF (%)
stage 1 stage 2 stage 3 stage 4 stage 5

CIFAR-10 ℓ∞ 88.36 91.43 89.21 90.65 90.21 89.97 10.03
ℓ2 89.34 90.67 90.56 91.84 90.63 90.61 9.39

CIFAR-100 ℓ∞ 77.74 87.87 88.33 89.25 89.35 86.51 13.49
ℓ2 78.89 89.34 88.21 88.50 90.17 87.02 12.98

SVHN ℓ∞ 88.61 92.52 92.45 92.91 90.18 91.33 8.67
ℓ2 86.72 92.66 90.57 90.47 91.81 90.45 9.55

TinyImageNet ℓ∞ 58.98 81.53 80.70 81.05 75.83 75.62 24.38
ℓ2 65.18 81.85 79.70 82.37 82.73 78.37 22.63

In Table 1, we observe that forgetting occurs across a variety of datasets (e.g., SVHN, CIFAR-10,
CIFAR-100 and TinyImageNet), perturbation threat models (e.g., ℓ2 and ℓ∞) and different stages
of training, indicating that it might be a general property in adversarial training. We can find a
significant gap between the robust test performances at the stage when the datasets are collected
and the final robust test performance at the end of training. Notably, under the ℓ∞ threat model,
FAA decreased significantly from 100% to 86.51% for CIFAR-100 and from 100% to 75.62% for
TinyImageNet. We also investigate the phenomenon of forgetting in adversarial training via some
other supplemental experiments in Appendix B.1 and B.2.

4 OUR METHODOLOGY

For ease of understanding, we briefly introduce our high-level idea below, and then elaborate on
each technical part.
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Figure 2: Framework of our AMS. The upper module (in yellow block) consists of the model for
previous stages, with the aim of maintaining knowledge of previous stages. The lower module (in
red block) is the vanilla adversarial training process.

Overview. Our goal is to design a method to enhance robust accuracy through alleviating forgetting.
We consider using multi-teacher self-distillation technology, which combines multi-teacher distil-
lation architecture and self-distillation algorithm to transfer the subtle feature information learned
from previous “stages”. However, since adversarial training models usually do not have high classifi-
cation accuracy (say,≥ 90%), which may lead to transferring more previous incorrect information to
the subsequent “stages”. To alleviate the negative effects caused by the incorrect information from
previous “stages”, we propose an adaptive sample reweighting mechanism called “Reweighting-
based Loss Correction” to correct the loss function in distillation module. The overall framework of
our method can be seen in Figure 2 and the complete algorithm is presented in Algorithm 1.

Algorithm 1 Adversarial training with AMS

Input: Training datasetsD = (xi, yi)
n
i=1, perturbation bound ϵ, learning rate τ , step size α, number

of iterations K in inner optimization, network architecture parameterized by θ, memory buffer
M, regularization parameter λ, interval parameter m, and the number of epoch T .

Output: Robust network with parameter θT
1: Initialize θ
2: s← 0
3: for t = 1, . . . , T do
4: Sample xi from D
5: for i = 1, . . . , n do
6: x0

i ← xi + 0.001 · N (0, I)
7: for k = 1, . . . ,K do
8: x′

i = ΠBp(xi,ϵ) (x
′
i + α · sign (∇xi

L (hθ(x
′
i), yi)))

9: end for
10: for θj ∈M do
11: wi,j =

[
softmax(hθj (x

′
i))

]
yi

/* Reweightng-based Loss Correction */
12: end for
13: θi+1 ← θi − τ · 1n

∑n
i=1∇(Ladv +

λ∑s−1
j=1 wi,j

·
∑s−1

j=1 wi,j ·DKL(hθj
(x′

i) ∥ hθt
(x′

i)))

14: /* Adaptive Multi-teacher Self-distillation */
15: end for
16: if mod(t,m) == 0 then
17: M← θt /* Save model parameters */
18: s← s+ 1
19: end if
20: end for

6
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Multi-teacher Self-distillation. A direct way to employ multi-teacher self-distillation technique
is to treat each training epoch in the adversarial training process as a separate “stage”. However,
since the adversarial training process requires a large number of epochs (e.g., 200 as in (Madry
et al., 2018)), directly applying this method could result in a rapid increase in both training time and
memory as training progresses. So we take every m epochs of the training process as one stage, as
illustrated in Section 3 before.

Now we integrate the multi-teacher self-distillation approach into the PGD framework to transfer
knowledge learned from previous stages, thereby mitigating forgetting and improving the model’s
robust accuracy. Generally, assuming we have a model hθt

parameterized by θt at epoch t within
stage s, the multi-teacher self-distillation approach can be formulated as:

Lms =

s−1∑
j=1

DKL(hθj
(x′

i) ∥ hθt
(x′

i)), (4)

where DKL(· ∥ ·) is the Kullback-Leibler divergence. {θj}s−1
j=1 represent the model parameters from

all stages before stage s, and x′
i is an adversarial sample in epoch t. Thus, the training objective of

AT with multi-teacher self-distillation can be expressed as

L = Ladv +
λ

s− 1
· Lms, (5)

where the regularization parameter λ controls the plasticity-stability trade-off. Too much focus on
stability will hinder the model’s ability to learn new adversarial samples, whereas excessive plasticity
will lead to greater forgetting of previously learned knowledge. The fraction 1

s−1 is used to calculate
the average of all distillation losses. The term “Ladv” is the adversarial loss of current epoch t and
can be formulated as

Ladv = max
x′
i∈Bp(xi,ϵ)

L(hθt(x
′
i), yi). (6)

Ideally, we look for parameters that fit the current stage well while retaining the correct knowledge
learned in the previous stages, thereby enhancing the model’s ability to cope with various forms
of perturbations. However, during knowledge distillation, a large amount of incorrect information
made by previous stage models can be transferred to current stage model along with parameters.
This occurs due to the low robust accuracy of AT models. For example, the best robust accuracy on
CIFAR-10 is less than 60%.

Reweightng-based Loss Correction (RLC). To resolve the above “transferring-incorrect-
information” problem, we propose a Reweighting-based Loss Correction mechanism to adaptively
eliminate the negative effects caused by “bad” teachers. Specifically, for a teacher model hθj

, we
first use the softmax function to compute the probability output of adversarial samples that are gen-
erated in the current stage. Then, we extract the probability corresponding to the true class for each
adversarial sample, denoted as w·,j . This probability w·,j quantifies the degree of correct informa-
tion that can be transferred from the teacher model. Therefore, for each adversarial sample x′, we
employ w·,j as a distillation weight to correct the loss function Lms (see Eq.(4)). Mathematically,
the probability of an adversarial sample x′

i with true label yi can be expressed as:

wi,j =
[
softmax(hθj

(x′
i))

]
yi
. (7)

As a consequence, we modify our approach to be an “adaptive” way, where the loss function of
Eq.(4) is changed to be:

Lams =
λ∑s−1

j=1 wi,j

·
s−1∑
j=1

wi,j ·DKL(hθj
(x′

i) ∥ hθt
(x′

i)). (8)

5 EXPERIMENTS

In this section, we first discuss the hyper-parameter sensitivity of our method, detailed in Section 5.1.
We then evaluate the robustness on benchmark datasets in Section 5.2. Section 5.3 presents our
findings that our method can mitigate the robust overfitting issue to a certain degree. Furthermore,
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in Section 5.4, we compare our approach with various CL methods. Additional experimental results
are explained in Section 5.5. Finally, we conduct the ablation study in Section 5.6.

Experimental Setting. We default to using PreActResNet-18 (He et al., 2016) for ℓ2 and ℓ∞ threat
models on CIFAR-10/100 (Krizhevsky, 2009), TinyImageNet and SVHN (Netzer et al., 2011). In
addition, we also use WideResNet-34-10 (Zagoruyko & Komodakis, 2016) for CIFAR-10/100 with
ℓ∞ threat model (for a proper comparison to the results reported for TRADES (Zhang et al., 2019b)),
and use WideResNet-28-10 for TinyImageNet (TinyImagenet dataset is a subset of ImageNet (Deng
et al., 2009)). For CIFAR-10/100, we train with the SGD optimizer with Nesterov momentum (Nes-
terov, 1983) 0.9 for 200 epochs using a batch size of 128, a step-wise learning rate initially at 0.1
and divided by 10 at the 100th and 150th epochs, and weight decay 5 × 10−4. For SVHN, we use
the same parameters except with a starting learning rate of 0.01 instead. For TinyImageNet, we
use the cyclic learning rate schedule with cosine annealing (Smith & Topin, 2019), where the initial
learning rate is set to 0.2. We adopt the widely used adversarial training setting (Madry et al., 2018;
Zhang et al., 2019b). For the ℓ∞ threat model, we using radius ϵ = 8/255 and step size α = 2/255;
For the ℓ2 threat model, we using radius ϵ = 128/255 and step size α = 15/255. For vanilla
adversarial training, the training examples are generated with 10 steps. We also adopt the widely
used data augmentation technology, such as random horizontal flip and 32 × 32 random crop with
4-pixel padding. We report the test accuracy on the best checkpoint that achieves the highest robust
validation accuracy under PGD-20. We implement and train our model with PyTorch on a 64-bit
Linux machine with 8 NVIDIA RTX A6000 Ada GPU.

Evaluation Setting. We evaluate the model robustness against wihte-box attacks, black-box attack
and Auto Attack. For white-box attacks, we utilize PGD-20 and CW-20 (Carlini & Wagner, 2017)
to evaluate the trained models. For the black-box attacks (Papernot et al., 2017), we generate ad-
versarial examples by attacking a local substitute model trained with the vanilla adversarial training
method. These adversarial examples are then applied to the defense model to evaluate its perfor-
mance. For the black-box attacks, we utilize PGD-20 and CW-20 as the attack methods. As one
of the strongest attacks for evaluating model robustness, Auto Attack (Croce & Hein, 2020b) con-
tains an ensemble of diverse attacks, including three wihte-box attacks (APGD-CE (Croce & Hein,
2020b), APGD-DLR (Croce & Hein, 2020b) and FAB (Croce & Hein, 2020a)) and one black-box
attack (Square Attack (Andriushchenko et al., 2020)).

5.1 SENSITIVITY OF HYPER-PARAMETER

In our proposed Algorithm 1, we need to determine two parameters, the regularization parameter λ
and the epoch interval parameter m. We conduct the numerical experiments to illustrate how these
hyper-parameters influence the performance of our algorithm. For the regularization parameter λ,
we train the model with λ ∈ {0.05, 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 3.0}. For the interval parameter m,
we train the model with m ∈ {10, 20, 30, 50}.
From Table 4 in Appendix B.3, we observe that as the regularization parameter λ increases, both the
clean accuracy and robust accuracy initially go up and then down. Taking both metrics into account,
we take λ = 0.5 as a proper choice for our method. Meanwhile, we evaluate the interval parameters
m comprehensively from four aspects: memory usage, time consumption, clean accuracy, and robust
accuracy, as illustrated in Figure 5 in Appendix B.3. We find that m = 20 is an appropriate setting
for our approach. So, in the following experiments, we set λ = 0.5 and m = 20 as the default
parameters.

5.2 COMPARISON WITH SOTA ON WIDERESNET

In Table 2, we compare our method with the state-of-the-art methods on WideResNet across CIFAR-
10/100, SVHN and TinyImageNet, under the ℓ∞ norm with ϵ = 8/255. The state-of-the-art methods
include AVMixup (Lee et al., 2020), MART (Wang et al., 2019), ES (Rice et al., 2020), FAB (Zhang
et al., 2020), LS (Pang et al., 2021), LBGAT (Cui et al., 2021), S2O (Jin et al., 2022), RAT (Jin
et al., 2023), AWP (Wu et al., 2020), (Gowal et al., 2020), (Sehwag et al., 2022), (Gowal et al.,
2021), (Rebuffi et al., 2021a) and (Wang et al., 2023). We integrate AMS with TRADES, (Sehwag
et al., 2022), and (Wang et al., 2023), and assess their performances in different datasets. The results
in Table 2 suggest that our method consistently improves robust accuracy across different datasets
and models. Especially for TinyImageNet under Auto Attack, our method achieves a robust test
accuracy of 31.52%.
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Table 2: Test accuracy (%) of the proposed methods and current state-of-the-art methods on CIFAR-
10/100, SVHN and TinyImageNet under the ℓ∞ norm with ϵ = 8/255. We highlight the best results
in bold. Note that “∗” means under PGD-40 attack, and “∗∗” means under PGD-10 attack. The
numerical results of the baseline methods are quoted from their papers. “-” indicates that the result
is not reported in the original paper. The notations “(↑ ∆)” and “(↓ ∆)” indicate percentage increases
and decreases compared to the baseline, respectively. The term “1M” denotes the utilization of one
million images generated by a class-conditional Denoising Diffusion Probabilistic Model (Ho et al.,
2020).

Dataset Method Architecture Clean PGD-20 CW-20 AA

CIFAR-10

AVMixup (Lee et al., 2020) WideResNet-34-10 92.56 59.75 54.34 39.70
Gowal et al. (2020) WideResNet-70-16 85.29 58.22∗ - 57.20
MART (Wang et al., 2019) WideResNet-34-10 83.51 58.31 54.33 51.10
ES (Rice et al., 2020) WideResNet-34-20 85.34 - - 53.42
FAB (Zhang et al., 2020) WideResNet-34-10 84.52 - - 53.51
LS (Pang et al., 2021) WideResNet-34-20 86.43 57.91∗∗ - 54.39
S2O (Jin et al., 2022) WideResNet-34-20 86.01 61.12 57.93 55.90
RAT (Jin et al., 2023) WideResNet-34-10 85.98 58.47 56.13 54.20
S2O (Jin et al., 2022) WideResNet-34-10 85.58 59.43 55.66 53.93
S2O+AMS WideResNet-34-10 85.83 (↑ 0.25) 61.29 (↑ 1.86) 57.78 (↑ 2.12) 55.92 (↑ 1.99)
Wang et al. (2023) (1M) WideResNet-34-10 91.18 68.11 65.20 63.31
Wang et al. (2023) (1M)+AMS WideResNet-34-10 90.79 (↓ 0.39) 69.32 (↑ 1.21) 66.03 (↑ 0.83) 64.97 (↑ 1.66)

TRADES (Zhang et al., 2019b) WideResNet-34-10 84.65 56.68 54.49 53.00
TRADES+EMA (Gowal et al., 2020) WideResNet-34-10 84.78 57.23 55.12 53.76
TRADES+AMS WideResNet-34-10 85.37 (↑ 0.72) 58.76 (↑ 2.08) 56.43 (↑ 1.94) 54.31 (↑ 1.31)
TRADES+AWP (Wu et al., 2020) WideResNet-34-10 84.99 59.67 57.41 56.17
TRADES+AWP+AMS WideResNet-34-10 85.21 (↑ 0.22) 61.45 (↑ 1.78) 58.56 (↑ 1.14) 57.36 (↑ 1.19)

CIFAR-100

Gowal et al. (2020) WideResNet-70-16 60.86 31.47∗ - 30.03
Rebuffi et al. (2021a) (1M) WideResNet-28-10 62.41 - - 32.06
LBGAT (Cui et al., 2021) WideResNet-34-10 60.43 35.50 31.50 29.34
RAT (Jin et al., 2023) WideResNet-34-10 62.93 33.36 29.61 27.90
TRADES (Zhang et al., 2019b) WideResNet-34-10 60.22 32.11 28.93 26.90
TRADES+EMA (Gowal et al., 2020) WideResNet-34-10 61.43 32.76 29.41 27.19
TRADES+AMS WideResNet-34-10 62.56 (↑ 2.34) 33.81 (↑ 1.70) 30.47 (↑ 1.54) 28.25 (↑ 1.35)
Sehwag et al. (2022) (1M) WideResNet-34-10 65.76 36.33 32.97 31.20
Sehwag et al. (2022) (1M)+AMS WideResNet-34-10 65.55 (↓ 0.21) 36.42 (↑ 0.09) 33.56 (↑ 0.59) 31.46 (↑ 0.26)

SVHN

Gowal et al. (2021) WideResNet-28-10 92.87 - - 56.83
Gowal et al. (2021) (1M) WideResNet-28-10 94.15 - - 60.90
Rebuffi et al. (2021a) (1M) WideResNet-28-10 94.39 - - 61.09
Wang et al. (2023) (1M) WideResNet-28-10 95.08 65.38 62.98 61.73
Wang et al. (2023) (1M)+AMS WideResNet-28-10 95.26 (↑ 0.18) 66.67 (↑ 1.29) 64.21 (↑ 1.23) 63.15 (↑ 1.42)

TinyImageNet

Gowal et al. (2021) WideResNet-28-10 51.56 - - 21.56
Gowal et al. (2021) (1M) WideResNet-28-10 60.95 - - 26.66
Wang et al. (2023) (1M) WideResNet-28-10 64.83 32.21 31.65 30.76
Wang et al. (2023) (1M)+AMS WideResNet-28-10 64.20 (↓ 0.63) 33.46 (↑ 1.25) 32.54 (↑ 0.89) 31.52 (↑ 0.76)

5.3 ROBUST OVERFITTING

In our experiments, we also observe an interesting phenomenon that our method can alleviate robust
overfitting (Rice et al., 2020) (e.g., the accuracy curves shown in Figure 6 of Appendix 5.3), though
it is not the main focus in our paper. As a common issue in adversarial training, the property of
adversarial robust overfitting is that after the first and second learning rate decay, further training
will continue to substantially decrease the robust test accuracy. To illustrate this issue, we show
the comparisons on test accuracy with the baselines in Table 3 from both the best checkpoint, which
achieves the highest robust test accuracy under PGD-20 (denoted as “Best”), and the final checkpoint
(denoted as “Final”), as well as the differential between these two checkpoints (denoted as “Diff”).
A larger value of “Diff” indicates a more pronounced occurrence of robust overfitting. We observe
that the accuracy difference between the best and final test results from our method is reduced to
around 0.5%, while the gaps for PGD-10 and TRADES are significantly larger, at 7.23% and 3.28%
under the PGD-20 attack on CIFAR-10, respectively. This indicates that our method can effectively
mitigate the robust overfitting issue. Meanwhile, we also compared with some related works that
mitigate robust overfitting in Appendix 5.3 (Table 6).

5.4 COMPARISON WITH DIFFERENT CL METHODS

In Table 8 in Appendix B.5, we compare our method against various CL methods, such as replay-
based methods (e.g., ER (Chaudhry et al., 2019), DER (Buzzega et al., 2020), DGC-ER (Lin et al.,
2024), GCR (Tiwari et al., 2022)), regularization-based methods (e.g., EWC (Kirkpatrick et al.,
2017), Lwf (Li & Hoiem, 2017)). The experimental parameter settings for these CL methods are
provided in the Appendix B.5. From the results in Table 8, we observe that almost all the CL methods
achieve certain extent improvements on robust accuracy. For example, Lwf (Li & Hoiem, 2017) has
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Table 3: Test accuracy (%) of the proposed methods and two baseline methods with regularization
parameter λ = 0.5 and interval parameter m = 20 on CIFAR-10/100 and SVHN with ℓ∞ and
ϵ = 8/255 threat model for PreActResNet-18. We highlight the best results in bold.

Dataset Method Clean PGD-20 CW-20 AA
Best Final Diff Best Final Diff Best Final Diff Best Final Diff

CIFAR-10

PGD-10 85.29 85.74 -0.45 52.31 45.08 7.23 51.67 44.36 7.31 47.70 41.79 5.91
PGD-10+AMS 85.45 85.79 -0.34 55.83 55.17 0.66 53.17 52.74 0.43 51.63 51.21 0.42

TRADES 83.25 84.36 -1.11 53.29 50.01 3.28 49.98 48.03 1.95 49.11 46.37 2.74
TRADES+AMS 84.86 85.27 -0.41 55.59 55.01 0.58 53.31 52.86 0.45 51.22 50.57 0.65

CIFAR-100

PGD-10 58.12 59.34 -1.22 30.97 22.65 8.32 29.24 23.01 6.23 26.04 21.17 4.87
PGD-10+AMS 58.87 59.25 -0.38 33.16 32.78 0.48 30.03 29.37 0.66 28.31 27.43 0.88

TRADES 58.26 59.83 -1.57 31.07 28.84 2.23 27.85 26.02 1.83 25.93 24.36 1.57
TRADES+AMS 60.03 60.67 -0.64 33.21 32.84 0.37 29.47 28.96 0.51 28.05 27.31 0.74

SVHN

PGD-10 89.12 90.67 -0.45 54.87 47.23 7.64 48.15 43.21 4.94 46.78 40.31 6.57
PGD-10+AMS 90.77 91.23 -0.46 60.86 60.03 0.83 56.21 55.52 0.69 53.02 52.57 0.45

TRADES 91.02 91.56 -0.54 60.23 58.31 1.92 53.33 50.11 3.22 41.56 39.07 2.49
TRADES+AMS 90.67 90.82 -0.15 60.45 59.84 0.61 56.07 55.67 0.40 52.64 51.77 0.87

the increased final test robust accuracy from 41.79% to 49.36% under Auto Attack. Compared
to other CL methods, our approach has larger improvement in robust accuracy, while maintaining
clean accuracy without decline; for example, the final test robust accuracy increases from 41.79% to
51.21% (+9.42%) under Auto Attack. Meanwhile, all these CL methods have shown their effect of
alleviating robust overfitting.

5.5 OTHER EMPIRICAL RESULTS IN APPENDIX B.6

We also compare our method with PGD (Madry et al., 2018) using PreActResNet-18 on CIFAR-
10/100 and SVHN, under the ℓ2 norm with ϵ = 128/255, as detailed in Table 10. Additionally,
we evaluate the performance of our method under black-box attacks in Table 11. These results
also indicate that our method can enhance robust accuracy to a certain extent, while maintaining
clean accuracy without any decrease. Furthermore, as illustrated in Table 12, we have empirically
validated the effectiveness of our method in mitigating forgetting. Specifically, compared to the
validation results of the vanilla AT method presented in Table 1, the results of our approach reveal
significant improvements in FAA and reductions in FF. Finally, we apply AMS to other structures
(VGG16 (Simonyan, 2014) and ViT (Dosovitskiy et al., 2021)) with normal adversarial training; the
results shown in Table 13 illustrate that our AMS method is effective on these architectures as well.

5.6 ABLATION EXPERIMENT.

Given that our proposed method incorporates a “Reweighting-based Loss Correction” (RLC) tech-
nique, a natural question arises: how effective is it in improving the final performance? To address
this question, we conducted an ablation experiment, and the results are shown in Table 14 in Ap-
pendix B.7. The results demonstrate that the use of RLC can enhance robust accuracy to a certain
extent. For example, when RLC is removed, the robust accuracy on CIFAR-100 decreases from
28.05% to 27.62% with TRADES+AMS, and from 28.31% to 27.58% with PGD-10+AMS, high-
lighting the contribution of the RLC component to improving adversarial robustness.

6 CONCLUSION AND OUTLOOK

In this paper, we address the problem of AT from a novel perspective by linking it to the forget-
ting phenomenon in CL. We first demonstrate that the phenomenon of forgetting indeed occurs in
AT. Following this observation, we propose a novel method called Adaptive Multi-teacher Self-
distillation (AMS), which employs a carefully designed adaptive regularizer to mitigate forgetting
by aligning model outputs between successive stages. Our approach can be seamlessly integrated
with several existing AT methods, leading to substantial improvements in robust accuracy. In ad-
dition, our experimental results also indicate that our method enjoys another benefit, where it can
significantly alleviates the issue of robust overfitting for AT. So we conjecture that robust overfitting
might be partly caused by the forgetting issue. As the future work, we think it is deserved to explore
the connection between forgetting and robust overfitting in greater depth, from both the theoretical
and empirical aspects.
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A ALGORITHM

In this section, we provide the vanilla AT algorithm (Madry et al., 2018; Zhang et al., 2019b) in
Subsection A.1 Algorithm 2. We also summarize the continual learning combine adversarial training
implementations, such as replay-based method (i.e., DER (Buzzega et al., 2020)), regularization-
based method (i.e., Lwf (Li & Hoiem, 2017)) in Subsection A.2 and Subsection A.3, respectively.

A.1 VANILLA AT ALGORITHM

In the following, we provide the vanilla adversarial training Algorithm 2.

Algorithm 2 Vanilla Adversarial Training

Input: Training datasetsD = (xi, yi)
n
i=1, perturbation bound ϵ, learning rate τ , step size α, number

of epochs K in inner optimization, network architecture parameterized by θ
Output: Robust network with parameter θT

1: Initialize θ
2: for t = 1, . . . , T do
3: Sample xi from D
4: for i = 1, . . . , n do
5: x0

i ← xi + 0.001 · N (0, I)
6: for k = 1, . . . ,K do
7: x′

i = ΠBp(xi,ϵ) (x
′
i + α · sign (∇xi

L (hθ(x
′
i), yi)))

8: end for
9: θi+1 ← θi − τ · 1n

∑n
i=1∇Ladv

10: end for
11: end for

A.2 ADVERSARIAL TRAINING WITH DER ALGORITHM

Adversarial training with DER. Dark Experience Replay (DER) is a replay-based continual learn-
ing method that aligns the network’s logits sampled throughout the optimization trajectory and stored
in a memory buffer, thereby promoting consistency with its previous behavior. Specifically, the al-
gorithm employs the Reservoir Sampling strategy (Vitter, 1985) for buffer insertion. Below, we
present Algorithm 3, which integrates DER with AT.

A.3 ADVERSARIAL TRAINING WITH LWF ALGORITHM

Adversarial training with Lwf. Learning without Forgetting (Lwf) is a regularization-based con-
tinual learning method that trains the network exclusively on new task data while preserving its
original capabilities. Below, we present Algorithm 4, which integrates Lwf with AT.
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Algorithm 3 Adversarial training with DER

Input: Training datasetsD = (xi, yi)
n
i=1, perturbation bound ϵ, learning rate τ , step size α, number

of epochs K in inner optimization, network architecture parameterized by θ, memory bufferM,
regularization parameter λ

Output: Robust network with parameter θT
1: Initialize θ
2: M← {}
3: for t = 1, . . . , T do
4: Sample xi from D
5: for i = 1, . . . , n do
6: x0

i ← xi + 0.001 · N (0, I)
7: for k = 1, . . . ,K do
8: x′

i = ΠBp(xi,ϵ) (x
′
i + α · sign (∇xi

L (hθ(x
′
i), yi)))

9: end for
10: (x′

j , zj , yj)← sample(M)

11: zi ← hθ(x
K
i )

12: reg ← λ∥z′j − hθ(x
′
j)∥

13: θi+1 ← θi − τ · 1n
∑n

i=1∇[Ladv + reg]
14: M← reservior(M, (x′

i, zi, y))
15: end for
16: end for

Algorithm 4 Adversarial training with Lwf

Input: Training datasetsD = (xi, yi)
n
i=1, perturbation bound ϵ, learning rate τ , step size α, number

of epochs K in inner optimization, network architecture parameterized by θ, regularization
parameter λ

Output: Robust network with parameter θT
1: Initialize θ
2: M← {}
3: for t = 1, . . . , T do
4: Sample xi from D
5: for i = 1, . . . , n do
6: x0

i ← xi + 0.001 · N (0, I)
7: for k = 1, . . . ,K do
8: xk

i = ΠBp(xi,ϵ)

(
xk−1
i + α · sign

(
∇xi
L
(
hθ(x

k−1
i ), yi

)))
9: end for

10: Llwf = DKL(hθt−1
(x′

i) ∥ hθt
(x′

i))

11: θi+1 ← θi − τ · 1n
∑n

i=1∇[Ladv + λ · Llwf ]
12: end for
13: end for
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B FULL EXPERIMENTS

In this section, we first introduce another method to verify catastrophic forgetting in adversarial
training (AT) in Subsection B.1. We then employ t-SNE analysis (Van der Maaten & Hinton, 2008)
to visually demonstrate the dynamic nature of adversarial sample distributions during training in
Subsection B.2. Additionally, we present the experimental results for the sensitivity of hyperparam-
eters in Subsection B.3, for robust overfitting in Subsection B.4, and for continual learning (CL)
in Subsection B.5. Furthermore, we provide other empirical details and results in Subsection B.6.
Finally, we include the results of ablation experiments in Subsection B.7.

B.1 ANOTHER METHOD TO VERIFY CATASTROPHIC FORGETTING

In this part, we introduce another method to verify the phenomenon of forgetting in adversarial
training. The specific experimental process is as follows:

• Step 1. We train a model by an AT method (e.g., PGD or TRADES) on benchmark dataset.
We divide the training process into S stages with each stage containing m epochs. In the
final epoch of the s-th stage, we collect all adversarial samples and form a new “adversarial
dataset”, which is denoted byDadv

s . This process continues until the end of the training pe-
riod, resulting in a collection of adversarial datasets denoted asDadv = {Dadv

1 , . . . ,Dadv
S }.

• Step 2. After collecting the adversarial dataset, we initialize the AT model. Then, train the
initialized model to convergence on eachDadv

s in sequence. Importantly, we do not include
samples from Dadv

<s while training on Dadv
s . After training on dataset Dadv

s , we evaluate
the accuracy of generated examples that are correctly classified by the classifier on Dadv

≤s .

(a) CIFAR-10 (ℓ∞) (b) SVHN (ℓ∞)

(c) CIFAR-100 (ℓ∞) (d) TinyImageNet (ℓ∞)

Figure 3: Catastrophic forgetting verification in the AT scenario on datasets CIFAR-10 (ℓ∞), SVHN
(ℓ∞), CIFAR-100 (ℓ∞), TinyImageNet (ℓ∞). The horizontal axis represents a timestamp, where
each number indicates the order of the current task.
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From Figure 3, it is obvious that the phenomenon of forgetting is very clear, with the classifier abil-
ity on Dadv

<t sharply decreasing after fine-tuning on Dadv
t . For instance, the test accuracy of Dadv

1
dropped from 93.30% to 42.24% at the end of training on CIFAR-10. We consistently find that for-
getting occurs across a variety of datasets (i.e., SVHN, CIFAR-10, CIFAR-100, and TinyImageNet),
indicating that it is a general property of the adversarial training and not specific to a particular
problem.

B.2 CONNECTIONS BETWEEN AT AND CL

To visually demonstrate the dynamic nature of adversarial sample distributions during training, we
employed t-SNE analysis (Van der Maaten & Hinton, 2008), a technique that effectively captures
the complexity of high-dimensional data in a reduced-dimensional space. Specifically, we trained a
PGD-10 model on the MNIST dataset using the PreActResNet-18 architecture under the ℓ∞ norm
with ϵ = 8/255. We then performed t-SNE visualizations on test adversarial samples at 20-epoch
intervals, from the beginning to the end of training. The results, shown in Figure 4, reveal distinct
shifts in the data distribution of adversarial samples across epochs. This progression is similar to
the challenges faced in continual learning, where models must adapt to evolving data distributions
without forgetting previous states. This analysis visually substantiates the similarities between AT
and continual learning processes.

(a) Clean samples (b) Epoch 20 (c) Epoch 40 (d) Epoch 60 (e) Epoch 80

(f) Epoch 100 (g) Epoch 120 (h) Epoch 140 (i) Epoch 160 (j) Epoch 180

Figure 4: The t-SNE visualization of sample distributions, showing clean samples in (a) and ad-
versarial samples from epoch 20 (b) to epoch 180 (j). Each plot illustrates the dynamic changes in
the representation of adversarial samples as training progresses. we trained a PGD-10 model on the
MNIST dataset under the ℓ∞ norm with ϵ = 8/255, using the PreActResNet-18 architecture.

B.3 ADDITIONAL EXPERIMENT RESULTS FOR SENSITIVITY OF HYPER-PARAMETER

In Table 4, we provide the test accuracy of our method (AMS) with different regularization parame-
ter λ = 0.05, 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 3.0 and interval parameter m = 10, 20, 30, 50 on CIFAR-10
with ℓ∞ and ϵ = 8/255 threat model using PreActResNet-18. In Table 5, we present the robust ac-
curacy, clean accuracy, memory usage, and computation time for various values of m. Additionally,
the corresponding curves are shown in Figure 5.
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Table 4: Test accuracy (%) of the proposed method with different regularization parameter λ =
0.05, 0.1, 0.2, 0.3, 0.5, 1.0, 2.0, 3.0 and interval parameter m = 10, 20, 30, 50 on CIFAR-10 with
ℓ∞ and ϵ = 8/255 threat model for PreActResNet-18. We highlight the best results in bold.

m λ Clean PGD-20 CW-20 AA λ Clean PGD-20 CW-20 AA

10

0.05 83.45 55.32 52.30 50.31 0.5 83.78 55.67 53.43 51.32
0.1 83.76 55.21 52.77 51.06 1.0 83.63 55.41 53.31 49.82
0.2 84.25 55.36 52.64 51.03 2.0 83.34 55.21 53.14 49.79
0.3 83.91 55.38 52.76 50.96 3.0 83.20 55.01 52.99 49.63

20

0.05 83.98 55.13 52.23 50.30 0.5 84.86 55.59 53.31 51.22
0.1 84.12 55.20 52.70 51.03 1.0 84.45 55.06 53.24 49.78
0.2 84.50 55.28 52.53 50.87 2.0 84.67 55.11 53.08 50.17
0.3 84.93 55.41 52.78 50.95 3.0 84.21 54.78 52.89 49.94

30

0.05 84.03 55.01 52.15 50.27 0.5 84.91 55.36 53.01 50.97
0.1 84.15 55.18 52.63 50.89 1.0 84.20 54.82 52.91 49.33
0.2 84.58 55.19 52.66 50.95 2.0 84.36 54.93 52.87 49.36
0.3 85.01 55.28 52.50 50.63 3.0 84.30 54.47 52.35 49.06

50

0.05 83.21 54.88 52.07 50.16 0.5 85.12 55.34 53.16 51.04
0.1 84.13 55.08 52.53 50.67 1.0 84.58 55.03 53.00 49.52
0.2 84.38 54.96 52.34 50.59 2.0 84.35 54.82 52.79 49.25
0.3 84.97 55.04 52.58 50.49 3.0 84.30 54.63 52.51 49.57

Table 5: Robust and clean accuracy, memory usage, and computation time for different values of m.

m AA (%) Clean (%) Memory (MB) Time (h)
10 51.32 83.78 853.6 23.12
20 51.22 84.86 426.8 17.56
30 50.97 84.91 256.08 15.77
50 51.04 85.12 170.72 13.01

Figure 5: Evaluation of interval parameter from: memory usage, time consumption, clean accuracy,
and robust accuracy.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.4 ADDITIONAL EXPERIMENT RESULTS FOR ROBUST OVERFITTING

Comparison with Related Works. In Table 6 and Table 7, we compare the performance of our
method in terms of robust overfitting with a number of related works, such as AWP (Wu et al., 2020),
SAT (Huang et al., 2020),TE (Dong et al., 2022), and LS (Pang et al., 2021). To empirically com-
pare with these methods, we conduct experiments on CIFAR-10 with the PreActResNet-18 network
under ℓ∞ threat model. The results are presented under PGD-20, CW-20, and Auto Attacks. The
findings indicate that, while various methods can mitigate robust overfitting, our approach demon-
strates superior robustness compared to others. This suggests that our method effectively alleviates
robust overfitting by addressing forgetting. We also show the learning curves of our method in
Figure 6.

Table 6: Test accuracy (%) of our proposed method and other related works on the CIFAR-10 dataset,
employing a PreActResNet-18 model within an ℓ∞ threat model where ϵ = 8/255. We chose the
best checkpoint based on the highest robust accuracy achieved on the test set under PGD-20. The
best results are highlighted in bold.

Method Clean PGD-20 CW-20 AA
Best Final Diff Best Final Diff Best Final Diff Best Final Diff

PGD-10 (Madry et al., 2018) 85.29 85.74 -0.45 52.31 45.08 7.23 51.67 44.36 7.31 47.70 41.79 5.91
AWP (Wu et al., 2020) 83.54 84.23 -0.69 54.91 53.88 1.03 52.05 50.83 1.22 50.58 49.65 0.93
SAT (Huang et al., 2020) 82.92 82.07 0.85 53.11 52.74 0.37 52.23 51.86 0.37 50.25 49.68 0.57
PGD-10+TE (Dong et al., 2022) 82.41 82.93 -0.52 54.85 53.41 1.44 52.47 51.88 0.59 50.62 49.74 0.88
PGD-10+LS (Pang et al., 2021) 82.88 85.22 -2.34 53.34 48.66 4.68 51.06 47.83 3.23 49.11 44.52 4.59
PGD-10+AMS 85.45 85.79 -0.34 55.83 55.17 0.66 53.17 52.74 0.43 51.63 51.21 0.42

Table 7: Test accuracy (%) of our proposed method and related works on the CIFAR-10 dataset
using a PreActResNet-18 model within an ℓ∞ threat model and ϵ = 8/255. This experiment was
conducted under the TRADES framework. We chose the best checkpoint based on the highest robust
accuracy achieved on the test set under PGD-20. The best results are highlighted in bold.

Method Clean PGD-20 CW-20 AA
Best Final Diff Best Final Diff Best Final Diff Best Final Diff

TRADES (Zhang et al., 2019b) 83.25 84.36 -1.11 53.29 50.01 3.28 49.98 48.03 1.95 49.11 46.37 2.74
AWP (Wu et al., 2020) 83.27 84.88 -0.61 54.33 53.02 1.31 51.74 50.12 1.62 50.39 49.27 1.12
SAT (Huang et al., 2020) 82.97 82.36 0.61 53.24 52.86 0.38 52.35 51.88 0.47 50.46 49.87 0.59
TRADES+TE (Dong et al., 2022) 82.65 83.21 -0.56 55.07 54.11 0.96 52.64 52.16 0.48 50.83 49.82 1.01
TRADES+LS (Pang et al., 2021) 83.05 84.14 -1.09 53.86 51.65 2.21 51.35 50.24 1.11 49.76 47.82 1.94
TRADES+AMS 84.86 85.27 -0.41 55.59 55.01 0.58 53.31 52.86 0.45 51.22 50.57 0.65
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Figure 6: The clean and robust test accuracy curves of PGD-10 and the extension by integrating the
proposed AMS approach. The models are trained on CIFAR-10 under the ℓ∞ norm with ϵ = 8/255
based on the PreActResNet-18 architecture.

B.5 ADDITIONAL EXPERIMENT DETAILS AND RESULTS FOR CL

Details for experimental setup. Most of the comparison methods (CL) in our experiments use
the implementation of Mammoth1. For replay-based method such as ER (Chaudhry et al., 2019),
DER (Buzzega et al., 2020), GCR (Tiwari et al., 2022) and DGC-ER (Lin et al., 2024), we set
the memory size to 500,000, which allows us to store 500,000 samples. For regularization-based
methods such as EWC (Kirkpatrick et al., 2017) and Lwf (Li & Hoiem, 2017), we set the interval
parameter m to 20, the same as our method. Additionally, for the GCR method, we utilize the
implementation provided by Google-research2. In Table 9, we provide the test accuracy of our
proposed method and other CL methods on CIFAR-10 with an ℓ∞ and ϵ = 8/255 threat model
using PreActResNet-18 under the TRADES framework.

Table 8: Test accuracy (%) of the proposed methods and other continual learning methods on
CIFAR-10 with an ℓ∞ and ϵ = 8/255 threat model for PreActResNet-18. The best results are
highlighted in bold.

Method Clean PGD-20 CW-20 AA
Best Final Diff Best Final Diff Best Final Diff Best Final Diff

PGD-10 85.29 85.74 -0.45 52.31 45.08 7.23 51.67 44.36 7.31 47.70 41.79 5.91
PGD-10+ER 82.72 83.45 -0.73 52.44 49.28 3.16 50.85 46.97 3.88 47.81 43.36 4.45
PGD-10+DER 82.78 83.16 -0.38 52.51 49.44 3.07 50.93 47.21 3.72 48.02 43.68 4.34
PGD-10+GCR 82.21 82.92 -0.71 51.39 48.36 3.03 49.85 46.63 3.22 47.11 42.81 4.30
PGD-10+EWC 83.21 83.94 -0.73 53.87 53.16 0.71 51.24 50.36 0.88 49.53 48.78 0.75
PGD-10+Lwf 83.84 84.45 -0.61 54.76 54.02 0.74 52.82 52.05 0.77 50.45 49.36 1.09
PGD-10+DGC-ER 82.95 83.46 -0.51 52.58 49.47 3.09 51.10 47.28 3.38 48.11 43.74 4.37
PGD-10+AMS 84.45 85.79 -0.34 55.83 55.17 0.66 53.17 52.74 0.43 51.63 51.21 0.42

1https://github.com/aimagelab/mammoth
2https://github.com/google-research/google-research/tree/master/

gradient_coreset_0replay
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Table 9: Test accuracy (%) of the proposed methods and other continual learning methods on
CIFAR-10 with an ℓ∞ and ϵ = 8/255 threat model for PreActResNet-18 under the TRADES frame-
work. We chose the best checkpoint based on the highest robust accuracy achieved on the test set
under PGD-20. The best results are highlighted in bold.

Method Clean PGD-20 CW-20 AA
Best Final Diff Best Final Diff Best Final Diff Best Final Diff

TRAEDS 83.25 84.36 -1.11 53.29 50.01 3.28 49.98 48.03 1.95 49.11 46.37 2.74
TRAEDS+ER 80.86 81.74 -0.88 53.47 51.53 1.94 50.33 48.46 1.87 49.82 47.21 2.61
TRAEDS+DER 81.01 81.68 -0.67 53.55 51.69 1.86 50.47 48.82 1.63 50.05 47.54 2.51
TRAEDS+GCR 80.92 81.73 -0.81 53.31 51.58 1.73 49.84 48.23 1.61 48.64 46.25 2.39
TRAEDS+EWC 83.75 84.63 -0.88 54.15 53.67 0.48 51.73 50.82 0.91 50.37 49.29 1.08
TRAEDS+Lwf 84.32 85.01 -0.69 54.99 54.31 0.68 52.86 52.45 0.41 50.68 49.81 0.87
TRAEDS+DGC-ER 81.17 82.25 -1.08 53.69 51.64 2.05 50.53 48.90 1.63 50.12 47.69 2.43
TRAEDS+AMS 84.86 85.27 -0.41 55.59 55.01 0.58 53.31 52.86 0.45 51.22 50.57 0.65

B.6 OTHER EMPIRICAL DETAILS AND RESULTS

Adversarial training with ℓ2 threat model. In Table 10, we present the test accuracy of the pro-
posed method and PGD-10 on the CIFAR-10, CIFAR-100, and SVHN datasets under an ℓ2 threat
model with ϵ = 128/255, using the PreActResNet-18 architecture within the PGD framework.

Robustness under black-box attacks. We train a PreActResNet-18 model under the ℓ∞ threat
model on the CIFAR-10, CIFAR-100, and SVHN datasets. Black-box adversarial examples are
generated using a surrogate adversarial training model with identical settings, employing PGD-20
and CW-20 attacks. As shown in Table 11, the result demonstrate that our method can effective
defense black-box attacks.

Alleviate forgetting. In Table 12, we validate the effectiveness of our method in mitigating forget-
ting. Compared to Table 1, it is evident that our method significantly alleviates forgetting.

Table 10: Test accuracy (%) of the proposed methods and PGD-10 on CIFAR-10/100 and SVHN
with an ℓ2 and ϵ = 128/255 threat model for PreActResNet-18. The results of our methods are in
bold.

Dataset Method Clean PGD-20
Best Final Diff Best Final Diff

CIFAR-10 PGD-10 (Madry et al., 2018) 87.85 88.03 -0.18 70.28 67.54 2.74
PGD-10+AMS 88.21 88.69 -0.48 72.95 72.13 0.82

CIFAR-100 PGD-10 (Madry et al., 2018) 60.05 62.54 -1.49 43.52 38.21 5.31
PGD-10+AMS 64.88 65.67 -0.79 45.02 43.96 1.04

SVHN PGD-10 (Madry et al., 2018) 92.95 93.21 -0.26 72.85 70.68 1.83
PGD-10+AMS 93.25 93.96 -0.71 73.10 72.58 0.52

Table 11: Black-box test accuracy (%) of the proposed methods and PGD-10 on CIFAR-10/100 and
SVHN with an ℓ∞ and ϵ = 8/255 threat model for PreActResNet-18. The results of our methods
are in bold.

Method CIFAR-10 CIFAR-100 SVHN
Clean PGD CW Clean PGD CW Clean PGD CW

PGD-10 (Madry et al., 2018) 85.29 58.52 56.31 58.12 36.15 33.07 89.12 58.92 54.46
PGD-10+AMS 85.45 62.38 60.47 58.87 39.73 37.56 90.77 66.23 63.64
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Table 12: Verification results of the forgetting phenomenon in adversarial training across different
datasets and perturbation threat models, integrating with our AMS approach. It is important to note
that the adversarial datasets accumulated at each phase are initially classified with perfect accuracy,
thereby presenting an initial accuracy rate of 100% for each dataset.

Dataset Norm Robust Test Accuracy (%) FAA (%) FF (%)
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

CIFAR-10 ℓ∞ 92.54 94.28 95.77 97.82 98.20 95.72 4.28
ℓ2 90.83 96.71 97.84 95.82 96.25 95.49 4.51

CIFAR-100 ℓ∞ 86.17 96.59 96.35 93.13 95.17 93.48 6.52
ℓ2 87.75 95.73 95.34 96.40 97.65 94.57 5.43

SVHN ℓ∞ 92.17 97.36 97.67 98.20 97.89 96.66 3.34
ℓ2 94.62 94.42 97.64 97.74 98.14 96.51 3.49

TinyImageNet ℓ∞ 72.53 86.81 83.18 87.59 88.56 83.73 16.27
ℓ2 75.37 86.90 85.63 88.93 92.23 85.81 14.19

Table 13: Test accuracy (%) on CIFAR-10 with ℓ∞ and ϵ = 8/255 threat model for ViT and VGG16.

Method clean AA
ViT (TRADES) 85.11 47.04

ViT (TRADES+AMS) 85.36 49.62
VGG16 (TRADES) 79.66 44.19

VGG16 (TRADES+AMS) 81.03 45.79

B.7 ABLATION EXPERIMENT RESULTS.

To address the effectiveness of “Reweighting-based Loss Correction” (RLC), we conducted an ab-
lation experiment, and the results are shown in Table 14. These experiments specifically evalu-
ate the impact of the RLC component on the robust and clean accuracies of models trained with
TRADES+AMS and PGD-10+AMS.

Table 14: Test accuracy (%) of TRADES+AMS and PGD-10+AMS with or without (w/o) the
“Reweighting-based Loss Correction” (RLC) term under the ℓ∞ norm with ϵ = 8/255 based on
the PreActResNet-18 architecture.

Method CIFAR-10 (clean) CIFAR-10 (AA) CIFAR-100 (clean) CIFAR-100 (AA)
TRADES+AMS 84.86 51.22 60.03 28.05

TRADES+AMS w/o RLC 84.72 50.08 60.11 27.62
PGD-10+AMS 85.45 51.63 58.87 28.31

PGD-10+AMS w/o RLC 85.66 50.31 58.83 27.58
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