
Under review as submission to TMLR

Rollout Total Correlation for Deep Reinforcement Learning

Anonymous authors
Paper under double-blind review

Abstract

Learning task-relevant representations is crucial for reinforcement learning. Recent ap-
proaches aim to learn such representations by improving the temporal consistency in the
observed transitions. However, they only consider individual transitions and can fail to
achieve long-term consistency. Instead, we argue that capturing aspects of the state that
correlate with other states and actions of the trajectory—even more distant in the future—
could further help in extracting task-relevant information. Hence, in this paper we investi-
gate how to learn representations by maximizing the rollout total correlation, the correlation
among all learned representations and actions within the trajectories produced by the agent.
For improving rollout total correlation, we propose to combine two complementary lower
bounds based on a generative and a discriminative model, combined with a simple and ef-
fective technique of chunk-wise mini-batching. Furthermore, we propose an intrinsic reward
based on the learned representation for better exploration. Experimental evaluations on
a set of challenging image-based simulated control tasks show that our method achieves
better sample efficiency, and robustness to both white noise and natural video backgrounds
compared to leading baselines.

1 Introduction

Reinforcement learning (RL) has achieved impressive success by enabling robots to acquire skills directly
from high-dimensional images (Laskin et al., 2020). A critical ingredient in reinforcement learning from
images is to learn concise representations of high-dimensional images that are relevant to the task at hand.
Reinforcement learning agents can subsequently learn policies or Q-functions based on obtained task-relevant
representations. However, extracting such representations is challenging, since reinforcement learning objec-
tives have no direct incentive to filter out redundant or irrelevant information in image observations, such as
noise or changes in the background. Furthermore, representation learning in RL is deeply intertwined with
the problem of exploration (Yarats et al., 2021a; Yuan et al., 2023): learning representations requires diverse
observed data of the agent, while effective exploration can only be achieved with expressive representations.

Previous methods alleviate the above challenges by constructing both auxiliary representation learning ob-
jectives and reward functions. Particularly, extracting task-relevant representations of observations can be
achieved by constructing auxiliary representation learning objectives that capture temporal consistency in
collected transitions (Pathak et al., 2017; Sekar et al., 2020; Guo et al., 2022; Chiappa et al., 2023). An
effective technique to capture the temporal consistency is to preserve the mutual information related to
environment dynamics (Kim et al., 2019a; Tao et al., 2020; Bai et al., 2021), such as the mutual information
between the representation of the next state, and the representation of the current state and the action.
However, these prior methods based on mutual-information usually only capture predictive information in
individual transitions and may fail to model temporal coherency within sequential observations.

We argue that enforcing temporal consistency throughout longer sequences of states and actions is more
efficient for learning task-relevant representations. For example, the energy of an approximately closed
system is a very powerful feature, precisely due to its temporal consistency, which allows for long-term
predictions. By maximizing the correlation within whole trajectories, we aim to extract such important
representations from high-dimensional inputs.

1

Under review as submission to TMLR

max𝐶 𝑧ଵ;𝑎ଶ; … ; 𝑎்ିଵ; 𝑧்

𝑠ଵ

𝑧ଵ

𝑠ଶ

𝑧ଶ

𝑠்

𝑧்

𝑎ଵ 𝑎ଶ 𝑎்ିଵ

max𝐶 𝑧ଵ;𝑎ଶ; … ; 𝑎்ିଵ; 𝑧்

𝑠ଵ

𝑧ଵ

𝑠ଶ

𝑧ଶ

𝑠்

𝑧்

𝑎ଵ 𝑎ଶ 𝑎்ିଵ

max𝐶 𝑧ଵ; 𝑎ଵ; … ; 𝑎்ିଵ; 𝑧்

𝑠ଵ

𝑧ଵ

𝑠ଶ

𝑧ଶ

𝑠்

𝑧்

𝑎ଵ 𝑎ଶ 𝑎்ିଵ

Trajectory

Encoder

max𝐶 𝑧ଵ; 𝑎ଵ; … ; 𝑎்ିଵ; 𝑧்

𝑠ଵ

𝑧ଵ

𝑠ଶ

𝑧ଶ

𝑠்

𝑧்𝑎ଵ 𝑎ଶ 𝑎்ିଵ

𝑐ଵ 𝑐ଶ 𝑐்
Policy

Transition
model

Figure 1: Our rollout total correlation objective max-
imizes the overall interdependencies between latent
state embeddings Z and actions in a sequence for
learning representations, which are temporally consis-
tent throughout the sequence.

Hence, in this paper we propose the rollout total cor-
relation (ROTOC) objective to learn task-relevant
representations that capture temporal consistency
in sequences of states and actions (see Fig. 1). Our
rollout total correlation objective maximizes the to-
tal correlation among latent embeddings and actions
in the trajectories encountered by the agent. The
captured total correlation can be naturally inter-
preted as the overall information gain that is related
to the temporal evolution of the environment, allow-
ing us to effectively enforce temporal consistency on
sequences of the obtained embeddings. We show
that the total correlation objective can be lower-
bounded by a sum of per-step mutual information
objectives that are similar to previous objectives.
While this lower bound is more convenient for optimization than the total correlation, it misses the long-term
correlations that we want to capture. Still, we provide empirical evidence that suggests that representation
learning based on such per-step objectives can be biased towards capturing long-term correlation, using a sim-
ple technique that we refer to as “chunk-wise mini-batching”–ensuring that the mini-batches contain several
subsequent transitions. Our experiments show that this sampling strategy not only increases the long-term
predictability of the learned representations, but also increases the performance of the reinforcement learning
agent. Furthermore, we encourage the agent to explore novel states by constructing an auxiliary reward that
measures the task-relevant state novelty by a discriminative bound on the predictive information.

The main contributions of our work are summarized as follows. We introduce the rollout total correla-
tion objective for representation learning in RL, which aims to learn representations that capture long-term
temporal correlations within the trajectory. We simplify our objective into a sum of per-step mutual in-
formation, and derive a tractable lower bound of the rollout total correlation, by combining two different
lower-bounds of the per-step mutual information. We propose chunk-based mini-batching, a technique for
increasing multi-step correlation of the learned embeddings. We propose an intrinsic reward based on our
learned representations that quantifies the task-relevant state novelty for guiding exploration. We conduct
extensive experiments on a set of challenging image-based continuous control tasks, including standard Mu-
joco and Mujoco tasks with distractive backgrounds, where we use both, white noise and natural videos.
Empirical evaluations show that our method achieves better sample efficiency on high-dimensional Mujoco
tasks, while being more robust to observation perturbations than leading baselines.

The remainder of the paper is organized as follows. In Section 2, we discuss prior related work. In Section 4,
we present the proposed rollout total correlation objective. We present empirical evaluations in Section 5.
In Section 6, we draw a conclusion and discuss limitations and future work.

2 Related Work

Unsupervised representation learning methods in RL focus on extracting expressive state representations
based on which the agent makes decisions (Yarats et al., 2021b; Zhu et al., 2022; You & Liu, 2024; Tomar
et al., 2024; Ni et al., 2024). Particularly, task-relevant representations can be extracted from observations
by capturing the temporal consistency in collected transitions. An effective technique to capture temporal
consistency in transitions is to construct forward or inverse transition models of the environment in the latent
space of representations (Sekar et al., 2020; Guo et al., 2022; Zhao et al., 2023). Our work is more related
to another group, where capturing the temporal consistency is based on preserving the mutual information
related to environment dynamics (Lee et al., 2020; You et al., 2022; Bai et al., 2021; Lee et al., 2023), such
as maximizing the mutual information between the representation of the next state, and the representation
of the current state and the action. However, prior methods based on mutual information only capture the
temporal consistency in individual transitions involving two successive states given the action. Instead, we
aim to capture temporal consistency throughout a trajectory. To this end, we derive our method based on

2

Under review as submission to TMLR

a total correlation objective, propose chunk-based mini-batching for maximizing the total correlation, and
analyse the relation between long-term predictability and downstream performance of the RL agent.

Some recent works, DRIBO (Fan & Li, 2022) and RPC (Eysenbach et al., 2021), extend the mutual-
information objective to the sequential setting in RL for learning task-relevant representations. Fan et
al. (Fan & Li, 2022) maximize the task-relevant information shared between representations of the obser-
vations from different views and meanwhile filter out the task-irrelevant information not shared by the
multi-view observations by using a multi-view information bottleneck loss. While DRIBO also uses sequen-
tial data points during training, its objective is not related to the total correlation among embeddings and
actions. Eysenbach et al. (2021) maximize external rewards while minimizing the mutual information be-
tween a sequence of states and a sequence of its latent representations used by the policy, for limiting the
amount of observed information that affects the agent’s behavior. RPC introduces an upper bound on the
mutual information and use it to construct a new algorithm, which uses a common objective to optimize the
policy and the encoder. While our KL-based lower bound on the total correlation takes a similar form to the
upper bound used in RPC, we derived it from a different perspective. Furthermore, we combined it with a
lower bound based on a discriminative model, introduced and analyzed the simple yet powerful technique of
chunk-wise mini-batching, proposed an auxiliary reward for better exploration based on our total correlation
bound, and optimized the encoder and the policy using separate objectives.

Our work is also related to exploration with intrinsic motivation in RL (Yarats et al., 2021a; Huang et al.,
2024), since we use an intrinsic reward to incentivize the agent to collect diverse data, which our encoder is
based on to induce representations. Some exploration approaches are curiosity-driven, which usually build a
latent space of representations that filters out irrelevant information in raw states, and then use the difference
between predicted representations and true representations as novelty measurement (Sekar et al., 2020; Guo
et al., 2022; Hao et al., 2023). The most related approaches are those that apply the information theory
principle to distill task-relevant information from observations and then capture task-relevant state novelty
in the obtained representation space for better exploration (Tao et al., 2020; Kim et al., 2019b; Bai et al.,
2021). Different from existing (non-sequential) information-theoretic methods (Kim et al., 2019a; Tao et al.,
2020; Bai et al., 2021) that only capture temporal coherence in individual states or state representations,
our total correlation objective aims to enforce temporal consistency on sequential transitions.

The concept of total correlation was recently applied to reinforcement learning by You et al. (2025), albeit
as a novel regularizer, with the aim of biasing the policy toward simpler and more predictable behavior.
Instead, our work focuses on representation learning and exploration for reinforcement learning from images.
Furthermore, the work by You et al. (2025) optimizes policy and encoder using a loss based on two generative
models for latent state and action predictions, whereas, for representation learning, we focus on the latent
state predictability using a generative and discriminative bound, and use separate objectives for policy and
encoder. Furthermore, we introduce chunk-wise mini-batching sampling and a novel intrinsic reward based
on our discriminative total correlation lower bound.

3 Preliminaries and Notation

3.1 Problem Statement and Notation

We consider a Markov decision process formulated by the tuple M = (S, A, P, r, γ), where S is the state
space, A is the action space, P (st+1|st,at) is the stochastic dynamic model, r(s,a) is the reward function
and γ ∈ (0, 1) is the discount factor. At each time step, the agent observes the current state st and selects its
actions at based on its stochastic policy π(at|st), and then receives the reward r(st,at). The RL objective
is to maximize the expected cumulative rewards ET

[∑T
t=1 γtrt

]
where T = (s1,a1, s2,a2, · · · ,aT−1, sT)

denotes the agent’s trajectory with horizon T . We focus on image-based reinforcement learning, where the
state space is in the form of images. We do not explicitly consider partial observability of single image
observations, but assume that stacking the j most recent images yields a high-dimensional but Markovian
state st = (ot,ot−1, · · · ,ot−j+1) where ot is the observed image at time step t.

3

Under review as submission to TMLR

3.2 Total Correlation

For multiple random variables {x1, x2, · · · , xn}, the total correlation (Watanabe, 1960; Studenỳ & Vejnarová,
1998) among these variable C(x1, x2, · · · , xn) is defined as the Kullback-Leibler divergence between the joint
distribution of all variables and the product of their marginal distributions p(x1)p(x2) · · · p(xn),

C(x1; x2; · · · ; xn) =
∫

x1,x2,··· ,xn

p(x1, x2, · · · , xn) log p(x1, x2, · · · , xn)∏n
t=1 p(xt)

dx1 · · · dxn.

Total correlation is an effective measure of the total statistical dependence between multiple random variables.
However, total correlation suffers from the same problem as mutual information, namely, that directly
computing total correlation is computationally intractable in general.

4 Rollout Total Correlation

We will now formulate our rollout total correlation objective, and derive a tractable lower bound. We also
describe how to generate intrinsic rewards, and how our method can be integrated with a RL algorithm.

4.1 The Rollout Total Correlation Objective

We introduce the rollout total correlation objective, ROTOC, for capturing temporal correlation within a
sequence of observations and actions. We first map a sequence of high-dimensional states (s1, s2, · · · , sT)
into compact deterministic representations (c1, c2, · · · , cT) using a deterministic convolutional network. We
further use a parameterized stochastic neural network that takes state representations as input and randomly
outputs latent samples Z. The goal of ROTOC is to find long-term temporally consistent representations
Z, given a sequence of states (s1, s2, · · · , sT) and actions (a1,a2, · · · ,aT−1).

The proposed objective of ROTOC aims to maximize the total correlation among a sequence of stochastic
representations and actions,

max C(z1;a1; · · · ;aT−1; zT) (1)

which can be defined as the Kullback-Leibler (KL) divergence between the joint distribution of all embeddings
and actions and the product of their marginals,

C(z1;a1; · · · ;aT−1; zT) = Ep(z1:T ,a1:T −1)

[
log p(z1:T ,a1:T−1)∏T

t=1 p(zt)
∏T−1
t=1 p(at)

]
. (2)

The total correlation C(z1;a1; · · · ;aT−1; zT) qualifies the total interdependencies among a sequence of
stochastic representations and actions, which can be intuitively viewed as the additional amount of in-
formation that needs to be transferred when encoding every random variable independently instead of using
an optimal code for transmitting the whole trajectory. Maximizing the total correlation among state embed-
dings and actions yields temporally consistent representations that correlate with the agent’s actions, and,
therefore, focus on task-relevant features.

4.2 Algorithm Overview

Unfortunately, maximizing the rollout total correlation directly is computationally intractable, and, hence,
we derive a tractable approximation. We use our approximation as an auxiliary loss during reinforcement
learning for learning representations. Furthermore, we build an intrinsic reward for guiding exploration.

Before introducing the concrete loss functions, the reward function and their derivations, we provide an
overview of the proposed network architecture in Fig. 2. We use an online deterministic encoder ϕo with
parameters ηo to extract the state representation ct from the state st at the current time step. An online
stochastic encoder with parameters θo is used to map the state representation ct into mean µo and standard
deviation σo of a diagonal Gaussian distribution go(zt|ct) = N (µo, diag(σ2

o)), which is used for sampling
the stochastic embedding. The sampled stochastic representation zt and action at are fed into a transition

4

Under review as submission to TMLR

𝑓𝑔

𝑠𝑡

𝑐𝑡

𝑠𝑡+1

𝑐𝑡+1 𝑔𝑚 ȁ𝑧𝑡+1 𝑐𝑡+1

𝑎𝑡

𝑞𝜓 ȁ𝑧𝑡+1 𝑧𝑡 , 𝑎𝑡

InfoNCE loss
𝜔

𝜙𝑜

KL divergence

ℎ𝜔 𝑧𝑡 , 𝑎𝑡, 𝑧𝑡+119𝑐𝑚

𝑧𝑡
𝜇𝑜
𝜎𝑜

𝑔𝑜 ȁ𝑧𝑡 𝑐𝑡

𝑧𝑡+1
𝜇𝑚
𝜎𝑚

𝜙𝑚

ⅆ𝑣 ⋅ 𝑓𝑜 ⋅

𝑓𝑚 ⋅

prediction

head

(FCN, Gaussian)

deterministic

encoder

(CNN)

projection

head

(FCN, Gaussian)

(FCN) (FCN)

stochastic encoder transition model

𝜇𝜓
𝜎𝜓

Figure 2: Our network framework. A stack of the most recent image frames is compressed using a determin-
istic CNN and then fed into a stochastic encoder that we use for sampling latent representations of the states.
Our lower bounds on the rollout total correlation objective involve learning a latent transition model with a
loss given by a KL divergence, and learning non-linear transformations of (zt,at) and zt+1 that are used by
the InfoNCE loss. For the deterministic and stochastic encoder (ϕ and g) and the nonlinear transformations
f , we use target networks when processing the state at the next time step t + 1, and online networks when
processing the state at the current time step t.

model with parameters ψ, which outputs the mean µψ and standard deviation σψ of a variational Gaussian
distribution qψ(zt+1|zt,at) = N (µψ, diag(σ2

ψ)) that we introduce for one of our lower bounds. A projection
head dυ with parameters υ and an online prediction head fo with parameters ρo are used to introduce a
nonlinear transformation to the stochastic representation zt and action at that are used for another lower
bound, which relates to InfoNCE (Oord et al., 2018). While determining the next representation ct+1
and stochastic representation zt+1, we use target networks for preventing gradients to flow through the
deterministic and stochastic encoders. We also use a target prediction head fm without gradient flow when
introducing a nonlinear transformation of the next representation zt+1 for the InfoNCE loss. The parameters
of the target networks are not optimized with respect to our objective functions, but follow their online
counterparts using an exponential moving average technique (He et al., 2020). The state representations and
their corresponding latent stochastic representations are, hence, created using the models,

ct = ϕo(st;ηo), ct+1 = ϕm(st+1;ηm), zt ∼ go(zt|ct;θo), zt+1 ∼ gm(zt+1|ct+1;θm). (3)

4.3 Lower-Bounding the Rollout Total Correlation

We will now construct a variational lower bound on the total correlation C(z1;a1; · · · ;aT−1; zT) suitable for
optimization. We first simplify our total correlation objective into step-wise losses,

C(z1;a1; · · · ;aT−1; zT) ≥ Ep(z1:T ,a1:T −1)

[
log p(z1)

∏T−1
t=1 p(zt+1|zt,at)

p(z1)
∏T−1
t=1 p(zt+1)

]
=
T−1∑
t=1

I(zt+1; zt,at). (4)

Please refer to Appendix A.1 for the derivation. Eq. 4 shows that the total correlation can be lower-bounded
by the sum of the per-step predictive information I(zt+1; zt,at) between the current representation zt paired
with the action at, and the next representation zt+1. Although for computationally tractable optimization
we obtained a lower bound in Eq. 4 that does not explicitly capture the long-term correlation, we propose
to maximize the lower bound in multiple consecutive transitions for retaining the long-term correlation
between representations. We will show in Section 5.3.1, that retaining the predictive information in at least
two sequential transitions helps to improve long-term predictability and overall performance.

4.4 Two Realizations of the Lower Bound

While the lower bound in Eq. 4 is much simpler compared to the exact total correlation objective, it is
still not tractable in computation. We will next show two realizations of the lower bound that use different

5

Under review as submission to TMLR

techniques to bound the per-step mutual information. The first objective is based on a generative transition
model and aims to increase the consistency of the representation, while the second objective is based on a
discriminative model, focusing on the representativeness of the representation.

4.4.1 Lower Bound Based on a Generative Model

We obtain a lower bound of the per-step mutual information by introducing a parameterized variational
distribution q(zt+1|zt,at) to approximate the dynamic model in the latent space p(zt+1|zt,at):

I(zt+1; zt,at) ≥ −Ep(ct+1,zt,at)

[
DKL

(
p(zt+1|ct+1) ∥ q(zt+1|zt,at)

)]
. (5)

The detailed derivation is available in Appendix A.2. The obtained lower bound is given in terms of the
expected KL divergence between our stochastic encoder and the transition model qψ(zt+1|zt,at). Minimizing
the bound encourages the transition model to approximate the dynamics of the representation Z to predict
the next representation well. The resulting latent representations are easily predicted by our transition
model. We compute the KL divergence analytically based on the means and standard deviations of two
diagonal Gaussian distributions gm(zt+1|ct+1) and qψ(zt+1|zt,at).

4.4.2 Lower Bound Based on a Discriminative Model

Using the KL-based lower bound in Eq. 5 alone could fail to induce meaningful stochastic representations,
since for any deterministic embedding, the KL divergence could always be zero for a constant encoding.
To alleviate this problem, we also use the InfoNCE lower bound on the local predictive information term
I(zt+1; zt,at), which is based on a discriminative model. While it would be possible to only use the InfoNCE
lower bound, we hypothesize that the InfoNCE lower bound, which favors discriminative representations is
less effective in capturing temporally consistent representations, compared to the KL lower bound, which
explicitly uses a transition model to predict the future.

Let (zt,at, zt+1) denote samples randomly sampled from the joint distribution p(zt,at, zt+1) which we refer
to as positive sample pairs, and let N denote a set of negative samples z∗

t+1 drawn from the marginal
distribution p(zt+1). Then, the InfoNCE loss Iω(zt+1; zt,at) is given as

Iω(zt+1; zt,at) = − E
p,N

[
log hω(zt,at, zt+1)∑

z∗
t+1∈N∪zt+1

hω(zt,at, z∗
t+1)

]
(6)

where the expectation is computed over the joint distribution p(zt,at, zt+1). The score func-
tion hω(zt,at, zt+1) transforming feature variables into scalar scores is given by hω(zt,at, zt+1) =
exp

(
fo

(
dυ

(
m(zt,at)

))⊤
ωfm

(
zt+1

))
. Here the function m(zt,at) concatenates zt and at and ω is a learn-

able weight transformation matrix. The projection head dυ(·) and the online prediction head fo(·) nonlinearly
transform m(zt,at), whereas the target prediction head fm introduces a nonlinear transformation to zt+1.
By maximizing the inner product between the nonlinear transformations of m(zt,at) and zt+1, the InfoNCE
loss with the score function forces our model to learn temporally predictive representations.

4.5 The Loss Function and Optimization

By plugging both the KL lower bound in Eq. 5 and the InfoNCE lower bound in Eq. 6 into Eq. 4, we can
maximize the rollout total correlation (Eq. 1) by minimizing the loss

arg min
ηo,θo,ψ,υ,ρo,ω

L = E
p(c1:T ,z1:T ,a1:T −1)

[
T−1∑
t=1

α log gm(zt+1|ct+1)
qψ(zt+1|zt,at)

− E
N

[
log hω(zt,at, zt+1)∑

z∗
t+1∈N∪zt+1

hω(zt,at, z∗
t+1)

]]
.

(7)
The derived loss contains a summation over time steps and enables us to preserve predictive information in
time-series observations. We optimize the loss via sampling during training. The learnable parameters of
our ROTOC model are simultaneously optimized by minimizing this loss.

6

Under review as submission to TMLR

4.5.1 Chunk-Wise Mini-Batching

The loss function (Eq. 7) is optimized using stochastic gradient descent based on mini-batches sampled
from the replay buffer of the agent. When sampling individual transitions independently, we would only
use a single transition for many trajectories, which may prevent us from capturing longer-term correlations.
Instead, we propose to sample a minibatch of sequence chunks (st,at, st+1)L+k−1

t=k with chunk length L
from the replay buffer. While our loss (Eq. 7) decomposes additively across time steps, implying that
chunk-wise sampling does not alter the optimized loss, it intuitively biases the optimization toward local
optima with better long-term consistency by ensuring the mini-batch contains subsequent time steps. This is
because gradients from independent single-step transitions can steer the model into local optima exhibiting
only local temporal consistency, suboptimal for multi-step prediction. Even if subsequent time steps are
eventually sampled in other minibatches, escaping such local optima can be difficult. Instead, chunk-wise
mini-batching ensures the aggregated gradient of subsequent transitions will agree on pushing towards a
globally consistent representation, effectively canceling out signals that might otherwise lead to merely
locally consistent solutions.

4.6 Intrinsic Reward for Exploration

By minimizing the loss (Eq. 7), we can induce a compact latent space of stochastic representations that filters
out distractive information. These representations by themselves can help the agent to more consistently and
efficiently explore the environment because filtered information can no longer affect its policy. In this section,
we discuss how we can further improve exploration using the task-specific novelty measured in the learned
latent space for constructing an intrinsic reward. Our intrinsic reward function is based on curiosity-driven
exploration (Guo et al., 2022) where the agent is driven to visit novel states with high prediction errors.
More precisely, we provide an additional reward to the agent based on the InfoNCE loss, which measures how
difficult it is to predict the next stochastic representation zt+1 given the current stochastic representation
zt and the action at. The intrinsic reward at the current time step is given by

r∗(st,at) = − E
p(zt,at,zt+1)

[
E
N

[
log hω(zt,at, zt+1)∑

z∗
t+1∈N∪zt+1

hω(zt,at, z∗
t+1)

]]
. (8)

(a) Cartpole (b) Ball-in-cup
Catch

(c) Reacher
easy

(d) Walker
Walk

(e) Cheetah
Run

(a) Cartpole (b) Ball-in-cup
Catch

(c) Reacher
easy

(d) Walker
Walk

(e) Cheetah
Run

8cm

9cm

Figure 3: Image-based control tasks used
in our experiments. The images show task
observations of standard Mujoco tasks (top
row), noisy Mujoco tasks (middle) and natu-
ral Mujoco tasks (bottom).

Intuitively, the intrinsic rewards encourage the agent to
choose the actions that result in transitions that our model
is not able to predict well. We use the discriminative model
instead of the generative model q(zt+1|zt,at) to compute the
intrinsic reward, because discriminative models are typically
easier to learn. Combing the environment reward r(st,at)
with the intrinsic reward r∗(st,at), we obtain the augmented
reward raug(st,at) = r(st,at)+λr∗(st,at) where λ is a scal-
ing factor.

4.7 Plugging into a Reinforcement Learning Algorithm

We train our representation jointly with a soft actor-critic
agent (SAC) (Haarnoja et al., 2018). We only feed the first
transitions of the sampled sequence chunks into the actor
and critic for optimizing the agent. Following prior work
(Lee et al., 2020; Bai et al., 2021), the actor takes the deter-
ministic state representations ct as input, which empirically
outperforms using the stochastic embeddings zt. We refer to
Algorithm 1 for the training procedure.

7

Under review as submission to TMLR

5 Experimental Evaluation

5.1 Experimental Setup

We evaluate the ROTOC on a set of challenging standard Mujoco tasks from the Deepmind control
suite (Tassa et al., 2018) (Fig. 3 top row). Specifically, we evaluate our method in six mujoco tasks with high-
dimensional observations: Ball-in-cup Catch, Cartpole Swingup-sparse, Reacher Easy, Cartpole Swingup,
Walker Walk, and Cheetah Run.

We further carry out our evaluation in two more settings for testing the robustness of our algorithm: the
noisy setting and the natural video setting. We refer to Mujoco tasks in the noisy setting and the natural
video setting as noisy Mujoco tasks and natural Mujoco tasks, respectively. In the noisy setting, each
background image is filled with pixel-wise Gaussian white noise (see Fig. 3 middle row) that is regarded as a
strong state distractor for reinforcement learning tasks (Zhou et al., 2023). Furthermore, in order to simulate
robots in natural environments with complex observations, in the natural video setting (see Fig. 3 bottom
row) the background of the Mujoco tasks is replaced by natural videos (Zhang et al., 2020) sampled from
the Kinetics dataset (Kay et al., 2017). The backgrounds of natural Mujoco tasks are continuously changing
during training and evaluation, which introduces realistic and strong perturbations to observation images.

We compare ROTOC with the following leading baselines in our experiments: 1) Proto-RL (Yarats et al.,
2021a), which extracts prototypical representations from observations and builds an entropy-based intrinsic
reward for exploration, 2) DB (Bai et al., 2021), which learns dynamic-relevant compressed representations by
using an information bottleneck objective and constructs an intrinsic reward function based on information
gain to boost exploration, 3) Plan2Explore (Sekar et al., 2020), which learns task-relevant representations
by modeling dynamics and utilizes the disagreement in the predicted next state representations as intrinsic
rewards, 4) RPC (Eysenbach et al., 2021), which learns predictable representations from observations and
constructs an intrinsic reward function based on the KL divergence, 5) SAC (Haarnoja et al., 2018), which
learns policies by maximizing the policy entropy and rewards. We use the same codebase of the SAC
algorithm for DB, Proto-RL, RPC, and SAC to ensure a fair comparison to other model-free methods, while
following the original implementation of the model-based method Plan2explore. The implementation details
of our method and baselines are available in Appendix B. We select the coefficients α and λ, and the chunk
length L by performing hyperparameter tuning on the standard Cartpole Swingup task and subsequently
fix them for all other tasks. We refer to Appendix B for more details on determining hyperparameters.

5.2 Performance Evaluation

In our first set of experiments we evaluate the final performance and sample efficiency of the different methods
in Mujoco tasks in the standard, noisy and natural setting.

5.2.1 Standard Setting

We first study whether ROTOC can succeed in challenging Mujoco benchmark tasks when using unperturbed
images. In Fig. 4 we compare our algorithm with DB, Proto-RL, Plan2explore, RPC, and SAC on six
standard Mujoco tasks from the Deepmind control suite. ROTOC achieves better sample efficiency compared
to all baselines on five out of six tasks. The results indicate that the learned representations and the intrinsic
reward learned by ROTOC significantly help to learn good policies on challenging image-based tasks.

5.2.2 Robustness to Noisy Observations

To study the robustness to white noise, we corrupt the image observations in the Mujoco tasks with Gaussian
noise (Fig. 3 middle row), introducing random task-irrelevant patterns to the raw observations. In the top
half of Table 1, we compare the performance at a fixed number of environment interactions on the noisy
Mujoco tasks. ROTOC achieves competitive asymptotic performance at 500K environment steps compared
to the baselines across all tasks. Scores in Table 1 are average rewards and standard errors over 10 seeds.
Learning curves and an additional plot and table to compare performance drops caused by the presence of
white noise are shown in Appendix C. The performance of our method remains consistent when handling

8

Under review as submission to TMLR

0.0 0.05 0.10 0.15 0.20
0

200

400

600

800

Ep
iso

de
 re

wa
rd

Cartpole Swingup

0.0 0.05 0.10 0.15 0.20

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Ball-in-cup Catch

0.0 0.1 0.2 0.3 0.4 0.5

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Reacher Easy

0.0 0.2 0.4 0.6 0.8 1.0
Envinronment steps(x106)

0

200

400

600

800

Ep
iso

de
 re

wa
rd

Cheetah Run

0.0 0.05 0.10 0.15 0.20 0.25 0.30
Envinronment steps(x106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Walker Walk

0.0 0.1 0.2 0.3 0.4 0.5
Envinronment steps(x106)

0

200

400

600

800

Ep
iso

de
 re

wa
rd

Cartpole Swingup_sparse

ROTOC DB Proto-RL Plan2explore RPC SAC

Figure 4: Learning curves of our method and baselines. The plot shows the average reward over 10 seeds
and 90% confidence interval. ROTOC outperforms the baselines on the majority of the six standard tasks
from the Deepmind control suite in terms of sample efficiency.

Table 1: Scores (mean and standard error for 10 seeds) achieved by our method and baselines at 500k
environment steps on six noisy Mujoco tasks and the natural Mujoco tasks. Our method achieves better or
at least comparable performance to baselines.

500K step scores ROTOC(Ours) DB Proto-RL Plan2Explore RPC

Noisy Mujoco tasks

Cartpole Swingup 869± 6 851 ± 7 846± 5 773±28 814±13
Ball-in-cup Catch 964± 7 782 ± 155 922± 16 892±43 928±20

Reacher Easy 947± 20 939 ± 19 869± 63 851± 132 930± 29
Cheetah Run 332± 20 265 ± 20 268± 13 251± 22 282±18
Walker Walk 935± 11 886 ± 30 915± 15 752±36 893±14

Cartpole Swingup-sparse 768± 14 450 ± 133 571± 95 680± 51 72± 91

Natural Mujoco tasks

Cartpole Swingup 844± 6 803 ± 16 748± 28 143±28 812±10
Ball-in-cup Catch 947± 12 916 ± 17 727± 53 133±136 838±72

Reacher Easy 399± 57 327 ± 65 257± 39 362± 192 327 ± 73
Cheetah Run 308± 16 294 ± 16 296± 8 193± 32 279± 12
Walker Walk 886± 15 841 ± 31 882± 20 557±54 714±66

Cartpole Swingup-sparse 118± 45 9 ± 5 65± 27 0± 0 5± 4

noisy Mujoco tasks, whereas the baselines show a clear decline in performance. For example, ROTOC
achieves similar performance in standard and noisy Ball-in-cup Catch and Cartpole Swingup-sparse tasks,
while the performance of strong baselines DB, RPC, and Proto-RL clearly decreases due to the noise.

5.2.3 Robustness to Natural Background

We further investigate the robustness of our method on the natural Mujoco tasks (Fig. 3 bottom row), where
the natural backgrounds of the observations are constantly changing. The performance at 500K environment
steps is shown in the bottom half of Table 1 and additional plots of the results are provided in Appendix C.
Our method achieves better or at least comparable performance across all tasks compared to the baselines.
Moreover, the performance of baselines (e.g. Proto-RL and Plan2Explore) declines significantly more than
our method on the majority of natural Mujoco tasks. The experimental results in the natural video setting
show that ROTOC is more robust to task-irrelevant background than baselines.

9

Under review as submission to TMLR

Table 2: Performance of our model ROTOC for 4 different chunk lengths L on the standard Cartpole
Swingup-sparse and Ball-in-cup Catch. The bold font indicates the highest average rewards among all
methods. Overall, using larger chunk lengths achieves higher average rewards.

Scores L=1 L=2 L=3 L=5
Cartpole Swingup-sparse 601 ± 96 793 ± 10 804 ± 10 796 ± 12

Ball-in-cup Catch 953 ± 4 957 ± 3 965 ± 2 963 ± 4

Table 3: Ablation of ROTOC over chunk length L and batch size BS. The table shows the mean and
standard error for 10 seeds. When using the same amount of training samples, e.g. 512, 768, and 1280, using
sequential transitions achieves better performance than using individual transitions (L = 1).

Configurations 512 samples 768 samples 1280 samples
L=1, BS=512 L=2, BS=256 L=1, BS=768 L=3, BS=256 L=1, BS=1280 L=5, BS=256

Scores 707± 25 793± 10 696± 18 804± 10 712± 24 796± 12

Table 4: Future predictability of the learned representations with different chunk length L and batch size
BS. For one-step predictions (n = 1), the representations of an encoder that was trained with chunk length
L = 1 can be better predicted in terms of log-likelihood. However, higher chunk lengths yield representations
that are better suited for multi-step predictions (n ≥ 2).

Log-likelihood n=1 n=2 n=3 n=5
L=1,BS=256 -78.9 ± 0.6 -98.3 ± 0.3 -106.1 ± 0.2 -114.2 ± 0.4
L=1,BS=512 -78.8 ± 0.2 -97.3 ± 0.6 -105.6 ± 0.1 -115.6 ± 0.5
L=2,BS=256 -80.9 ± 0.4 -91.9 ± 0.4 -99.6 ± -0.1 -109.3 ± 0.4
L=3,BS=256 -82.5 ± 0.3 -92.5 ± 0.4 -98.9 ± 0.1 -107.1 ± 0.1
L=5,BS=256 -118.3 ± 0.4 -125.4 ± 0.3 -131.4 ± 0.0 -139.8 ± 0.8

5.3 Ablation Studies

We performed several evaluations to investigate the effect of chunk-wise mini-batching, the intrinsic reward,
and the different lower bounds. We also visualize the learned embeddings to investigate which features are
encoded. We perform 5 independent runs for all ablation studies in this section, unless otherwise specified.

5.3.1 Chunk-wise Mini-batching

We performed ablations to inspect whether preserving predictive information in sequential transitions im-
proves the performance compared to using individual transitions. In all previous experiments we used the
fixed chunk length L = 2. In the following experiments we first evaluated the performance of ROTOC when
using the same batch size, but different chunk lengths. When the chunk length L is set to 1, ROTOC only
uses individual transitions. Using at least two sequential transitions outperforms ROTOC with chunk length
L = 1 (See Table. 2). We also observe that ROTOC using a chunk length of 5 does not further improve
performance. We hypothesize that a large chunk length either decreases the variability within the batches
(if we compensate for the chunk length by decreasing batch size) or leads to too large batches (if we do not
compensate), which may result in convergence to worse local optima (Keskar et al., 2017; LeCun et al., 2002).
Furthermore, we investigated the performance of ROTOC when using the same amount of data samples, but
different chunk lengths. We ran experiments with L = 1 using doubled, tripled, and 5-times larger batch
sizes, and compared them to L = 2, L = 3 and L = 5 with a fixed batch-size on the Cartpole Swingup-sparse
task. The only difference to our experiment with larger chunk lengths is that the latter guarantees that
the minibatch contains consecutive time steps. We can still observe a significant performance benefit of
chunk-wise mini-batching (see Table. 3), suggesting that the different composition of the mini-batches is the
driving factor for the improved performance of ROTOC. These results are in line with our hypothesis that
chunk-wise mini-batching can increase total correlation and thereby increases performance.

10

Under review as submission to TMLR

We further analyze why using sequential transitions improves the performance. To test our hypothesis that
using larger chunk lengths increases correlation between more distant time steps, we first learn different
encoders using different chunk lengths, and then evaluate the predictability of the learned representations
in terms of the log-likelihood loss of a neural network that we train on the respective data sets. The neural
network takes the current stochastic or deterministic representations at time step t as inputs and predicts
their corresponding embeddings in the future time step t + n with prediction step n. Please note, that
the different data sets only differ due to the different encoders, as we use the same underlying data set of
states S, which is taken from the replay buffer of the agent that was trained with chunk length L = 1.
Table 4 and additional results in Appendix D.1 compare the future predictability of the learned stochastic
and deterministic representations with different chunk lengths on the natural Cartpole Swingup-sparse task.
Experimental results show that the stochastic and deterministic embeddings learned by using chunk length
L = 2, 3 are better suited for multi-step prediction, but worse for single-step prediction. We attribute
the performance gain achieved by using the larger chunk length to improved long-term predictability of
the learned embeddings by preserving predictive information in multiple consecutive time steps. With a
larger chunk length L = 5, the future predictability of the learned embeddings degrades compared to using
individual transitions. As we discussed above, we hypothesize that too large chunk lengths lead to too small
variance in the stochastic gradient estimates, which may hurt the performance.

5.3.2 Intrinsic Reward

0.2 0.4 0.6 0.8 1.0
Envinronment steps(x106)

0.00

0.05

0.10

0.15

0.20

In
tri

ns
ic

re
wa

rd

 in [355 ,5] and p in [-0.25, 0.25]
 in [175 ,185] and p in [-0.25, 0.25]

Figure 5: Our intrinsic reward function allocates
higher intrinsic rewards to the novel states with po-
sition in the range of [−0.25, 0.25] and pole angle in
the range of [355°, 5°] compared to the frequently
visited states with position in the same range and
pole angle in the range of [175°, 185°] on the Cart-
pole Swingup-sparse task with natural background.

We also study whether the intrinsic reward function ef-
fectively guides the agent to explore novel states in the
presence of natural backgrounds. Specifically, on the
natural Cartpole Swingup-sparse task, we store snap-
shots of our intrinsic reward function every 100,000
steps and evaluate the rewards on a fixed data set.
We split the data set into two subsets, where one of
the subsets only contains particularly relevant transi-
tions and the other subset contains all remaining tran-
sitions. We consider states with a pole angle in the
range of [355°, 5°], which corresponds to an upright po-
sition, as particularly relevant (see more details in Ap-
pendix D.4.1). Fig. 5 shows the mean and standard de-
viation of the intrinsic for the two subsets, each for the
same 10 different snapshots of the intrinsic reward func-
tion. We also show the evolution of intrinsic rewards
along near-optimal trajectories sampled from the fixed
data set in Appendix D.4.2. The results show that our
intrinsic reward function allocates higher reward values
to the novel states than the frequently visited states, in-
dicating that our intrinsic reward can effectively guide
exploration in the presence of natural backgrounds.

5.3.3 Individual Contributions of Each Component

We analyze the effects of the individual contributions on three ablations: No-Reward ROTOC lacks the
intrinsic reward signal, No-KL ROTOC lacks the first terms in Eq. 7, and No-InfoNCE ROTOC lacks the
second terms in Eq. 7 and does not use intrinsic rewards. We also evaluate vanilla SAC, which uses the same
convolutional encoder and SAC architecture as ROTOC, without any additional representation learning loss,
intrinsic rewards, or chunk-wise mini-batching. Fig. 6 shows the results (mean and 90% confidence interval
over 5 seeds) on the standard Cartpole Swingup-sparse task with raw images, white noise, and natural video
background. Appendix D.2 shows the results of all three sparse-reward tasks. ROTOC achieves better or
comparable performance than its ablations on all tasks. In Appendix D.3, we also show the effect of the KL
lower bound on the long-term predictability akin to the experiments for Table 4. The results suggest that
our lower bound based on a generative predictive model further increases total correlation.

11

Under review as submission to TMLR

0.0 0.1 0.2 0.3 0.4 0.5
Environment steps(x106)

0

200

400

600

800

Ep
iso

de
 re

wa
rd

Cartpole Swingup-sparse

0.0 0.1 0.2 0.3 0.4 0.5
Environment steps(x106)

0

200

400

600

800

Ep
iso

de
 re

wa
rd

Cartpole Swingup-sparse (White Noise)

0 0.2 0.4 0.6 0.8 1.0
Environment steps(x106)

0

200

400

600

800

Ep
iso

de
 re

wa
rd

Cartpole Swingup-sparse (Natural Video)

ROTOC No-InfoNCE ROTOC No-KL ROTOC No-Reward ROTOC Vanilla SAC

Figure 6: Performance of ablations on Cartpole Swingup-sparse task in the standard setting (left), noisy
setting (middle) and natural setting (right).

Figure 7: We visualize the representations learned by our method on the Walker Walk task with natural
background using t-SNE on a 20 × 15 grid. The two images marked in red squares that have different robot
configurations and similar backgrounds are far away from each other, while the image pair marked by green
squares that have similar robot configurations but different backgrounds, are close to each other.

5.3.4 Visualization

We visualize our learned representations Z on the natural Mujoco tasks using the Stochastic Neighbor Em-
bedding technique (t-SNE) (Van der Maaten & Hinton, 2008) for projecting the representations into 2D plots.
To avoid overlapping, we quantize t-SNE points into a 2D grid of size 20×15 using RasterFairy (Klingemann,
2015). Fig. 7 shows the visualization of the representations learned by ROTOC on the Natural Walker Walk
task. Visualizations for the deterministic embeddings and the baselines are shown in Appendix F. The latent
space of the learned compressed representation organizes the variation in robot configurations even with nat-
ural backgrounds. Specifically, images with similar robot configurations and clearly different backgrounds
appear close to each other (e.g. the image pair marked in green), while observations with different robot
configurations but similar backgrounds are far away from each other (e.g. the two images marked in red),
indicating that the learned representations meaningfully capture task-relevant information related to robot
configurations, while filtering out task-irrelevant perturbations.

12

Under review as submission to TMLR

6 Conclusion and Discussion

We presented an information-theoretic representation learning method based on rollout total correlation for
image-based RL, ROTOC. By preserving the overall interdependencies among a sequence of observations and
actions, ROTOC can learn temporally consistent representations that focus on task-relevant information,
increasing the robustness to noise. For achieving a tractable optimization, we derived a lower-bound on
the rollout total correlation, which is given by the sum of per-step mutual information. Pursuing our
original objective of maximizing rollout total correlation, we proposed chunk-wise mini-batching and adding
a more explicit lower bound based on a generative model on top of the discriminative InfoNCE bound.
Our experiments show that ROTOC indeed outperforms leading methods in the challenging setting of RL
from noisy images. More importantly, our experiments suggest a connection between chunk-based mini-
batching, long-term predictability and downstream performance, supporting our hypotheses that chunk-wise
mini-batching can increase total correlation, and that maximizing total correlation can result in better
representations.

However, by approximating rollout total correlation by a sum of per-step mutual information, our lower
bounds may lose some incentive to capture long-term correlations. While the per-step objectives are easier
to integrate in existing RL frameworks and the learned transition model could be used for model-based RL
in future work, it would also be interesting to explore objectives that better capture multi-step correlations
based on multi-step prediction models.

References

Chenjia Bai et al. Dynamic bottleneck for robust self-supervised exploration. Proc. Int. Conf. Neural Inf.
Process. Syst., 34, 2021.

Alberto Silvio Chiappa, Alessandro Marin Vargas, Ann Huang, and Alexander Mathis. Latent exploration
for reinforcement learning. Advances in Neural Information Processing Systems, 36, 2023.

Ben Eysenbach, Russ R Salakhutdinov, and Sergey Levine. Robust predictable control. Proc. Int. Conf.
Neural Inf. Process. Syst., 34, 2021.

Jiameng Fan and Wenchao Li. Dribo: Robust deep reinforcement learning via multi-view information
bottleneck. In International Conference on Machine Learning, pp. 6074–6102. PMLR, 2022.

Zhaohan Guo, Shantanu Thakoor, Miruna Pîslar, Bernardo Avila Pires, Florent Altché, Corentin Tallec,
Alaa Saade, Daniele Calandriello, Jean-Bastien Grill, Yunhao Tang, et al. Byol-explore: Exploration by
bootstrapped prediction. Advances in neural information processing systems, 35:31855–31870, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Proc. Int. Conf. Mach. Learn., pp.
1861–1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2019a.

Danijar Hafner et al. Learning latent dynamics for planning from pixels. In Proc. Int. Conf. Mach. Learn.,
pp. 2555–2565. PMLR, 2019b.

Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Zhaopeng Meng, Peng Liu, and Zhen
Wang. Exploration in deep reinforcement learning: From single-agent to multiagent domain. IEEE
Transactions on Neural Networks and Learning Systems, 2023.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proc. IEEE Conf. Comput. Vis. Patter Recognit., pp. 9729–9738, 2020.

Kaichen Huang, Shenghua Wan, Minghao Shao, Hai-Hang Sun, Le Gan, Shuai Feng, and De-Chuan Zhan.
Leveraging separated world model for exploration in visually distracted environments. Advances in
Neural Information Processing Systems, 37:82350–82374, 2024.

13

Under review as submission to TMLR

Will Kay et al. The kinetics human action video dataset. arXiv:1705.06950, 2017.

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and Mikhail Smelyanskiy.
On large-batch training for deep learning: Generalization gap and sharp minima. In 5th International
Conference on Learning Representations, ICLR 2017, 2017.

Hyoungseok Kim, Jaekyeom Kim, Yeonwoo Jeong, Sergey Levine, and Hyun Oh Song. Emi: Exploration
with mutual information. In Proc. Int. Conf. Mach. Learn., pp. 3360–3369. PMLR, 2019a.

Youngjin Kim, Wontae Nam, Hyunwoo Kim, Ji-Hoon Kim, and Gunhee Kim. Curiosity-bottleneck: Ex-
ploration by distilling task-specific novelty. In Proc. Int. Conf. Mach. Learn., pp. 3379–3388. PMLR,
2019b.

Mario Klingemann. Rasterfairy, 2015. URL https://github.com/Quasimondo/RasterFairy.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations for
reinforcement learning. In Proc. Int. Conf. Mach. Learn., pp. 5639–5650. PMLR, 2020.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In Neural
networks: Tricks of the trade, pp. 9–50. Springer, 2002.

Kuang-Huei Lee et al. Predictive information accelerates learning in rl. Proc. Int. Conf. Neural Inf. Process.
Syst., pp. 11890–11901, 2020.

Young Jae Lee, Jaehoon Kim, Mingu Kwak, Young Joon Park, and Seoung Bum Kim. Stacore: Spatio-
temporal and action-based contrastive representations for reinforcement learning in atari. Neural Net-
works, 160:1–11, 2023.

Tianwei Ni, Benjamin Eysenbach, Erfan Seyedsalehi, Michel Ma, Clement Gehring, Aditya Mahajan, and
Pierre Luc Bacon. Bridging state and history representations: Understanding self-predictive rl. In 12th
International Conference on Learning Representations, ICLR 2024, 2024.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv:1807.03748, 2018.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In Proc. Int. Conf. Mach. Learn., pp. 2778–2787. PMLR, 2017.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak. Plan-
ning to explore via self-supervised world models. In Proc. Int. Conf. Mach. Learn., pp. 8583–8592.
PMLR, 2020.

Milan Studenỳ and Jirina Vejnarová. The multiinformation function as a tool for measuring stochastic
dependence. Learning in graphical models, pp. 261–297, 1998.

Ruo Yu Tao, Vincent François-Lavet, and Joelle Pineau. Novelty search in representational space for sample
efficient exploration. Proc. Int. Conf. Neural Inf. Process. Syst., 33, 2020.

Yuval Tassa et al. Deepmind control suite. arXiv:1801.00690, 2018.

Manan Tomar, Riashat Islam, Matthew Taylor, Sergey Levine, and Philip Bachman. Ignorance is bliss:
Robust control via information gating. Advances in Neural Information Processing Systems, 36, 2024.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. J. Mach. Learn. Res., (11),
2008.

Satosi Watanabe. Information theoretical analysis of multivariate correlation. IBM Journal of research and
development, 4(1):66–82, 1960.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with prototypical
representations. In Proc. Int. Conf. Mach. Learn., pp. 11920–11931. PMLR, 2021a.

14

https://github.com/Quasimondo/RasterFairy

Under review as submission to TMLR

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improving
sample efficiency in model-free reinforcement learning from images. In Proc. AAAI Conf. Artif. Intell.,
number 12, pp. 10674–10681, 2021b.

Bang You and Huaping Liu. Multimodal information bottleneck for deep reinforcement learning with multiple
sensors. Neural Networks, 176:106347, 2024.

Bang You, Oleg Arenz, Youping Chen, and Jan Peters. Integrating contrastive learning with dynamic models
for reinforcement learning from images. Neurocomput., 2022.

Bang You, Puze Liu, Huaping Liu, Jan Peters, and Oleg Arenz. Maximum total correlation reinforcement
learning. arXiv preprint arXiv:2505.16734, 2025.

Mingqi Yuan, Bo Li, Xin Jin, and Wenjun Zeng. Automatic intrinsic reward shaping for exploration in deep
reinforcement learning. In International Conference on Machine Learning. PMLR, 2023.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning in-
variant representations for reinforcement learning without reconstruction. In Proc. Int. Conf. Learn.
Representations, 2020.

Yi Zhao, Wenshuai Zhao, Rinu Boney, Juho Kannala, and Joni Pajarinen. Simplified temporal consistency
reinforcement learning. In International Conference on Machine Learning, pp. 42227–42246. PMLR,
2023.

Ziyuan Zhou, Guanjun Liu, and Mengchu Zhou. A robust mean-field actor-critic reinforcement learning
against adversarial perturbations on agent states. IEEE Transactions on Neural Networks and Learning
Systems, 2023.

Jinhua Zhu, Yingce Xia, Lijun Wu, Jiajun Deng, Wengang Zhou, Tao Qin, Tie-Yan Liu, and Houqiang Li.
Masked contrastive representation learning for reinforcement learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(3):3421–3433, 2022.

15

Under review as submission to TMLR

A Bound Derivation

A.1 Derivation on Eq. 4

In this section we show how to obtain the lower bound in Eq. 4. We first introduce the entropy H(a1:T−1)
to the definition of the total correlation in Eq. 2,

C(z1;a1; · · · ;aT−1; zT) = Ep(z1:T ,a1:T −1)

[
log p(z1:T ,a1:T−1)∏T

t=1 p(zt)
∏T−1
t=1 p(at)

]
+ H(a1:T−1) − H(a1:T−1)

= Ep(z1:T ,a1:T −1)

[
log p(z1:T ,a1:T−1)

p(a1:T−1)
∏T
t=1 p(zt)

]
+ DKL

(
p(a1:T−1) ∥

T−1∏
t=1

p(at)
)

≥ Ep(z1:T ,a1:T −1)

[
log p(z1:T |a1:T−1)∏T

t=1 p(zt)

] (9)

where the inequality follows from the non-negativity of the KL divergence. We then introduce a variational
distribution

q(z1:T |a1:T−1) = p(z1)
T−1∏
t=1

p(zt+1|zt,at), (10)

which corresponds to a Markovian approximation of the conditional distribution p(z1:T |a1:T−1). We intro-
duce Eq. 10 into Eq. 9 to obtain step-wise losses,

C(z1;a1; · · · ;aT−1; zT) ≥ Ep(z1:T ,a1:T −1)

[
log q(z1:T |a1:T−1)∏T

t=1 p(zt)

]

= Ep(z1:T ,a1:T −1)

[
log p(z1)

∏T−1
t=1 p(zt+1|zt,at)

p(z1)
∏T−1
t=1 p(zt+1)

]
=
T−1∑
t=1

I(zt+1; zt,at).
(11)

A.2 Derivation on Eq. 5

For obtaining a lower bound of the per-step mutual information, we start by replacing the entropy H(zt+1)
with the conditional entropy H(zt+1|ct+1),

I(zt+1; zt,at) = H(zt+1) − H(zt+1|zt,at) ≥ H(zt+1|ct+1) − H(zt+1|zt,at)

= Ep(zt+1,ct+1,zt,at)

[
log p(zt+1|zt,at)

p(zt+1|ct+1)

]
,

(12)

where the inequality holds because additional information can not increase entropy, H(zt+1) ≥ H(zt+1|ct+1).

Then, we use a variational distribution q(zt+1|zt,at) to approximate the conditional distribution
p(zt+1|zt,at), and then we obtain a KL-based lower bound in Eq. 5:

I(zt+1; zt,at) ≥ Ep(zt+1,ct+1,zt,at)

[
log q(zt+1|zt,at)

p(zt+1|ct+1)

]
+ DKL

(
p(zt+1|zt,at) ∥ q(zt+1|zt,at)

)
≥ −Ep(zt+1,ct+1,zt,at)

[
log p(zt+1|ct+1)

q(zt+1|zt,at)

]
= −Ep

[
DKL

(
p(zt+1|ct+1) ∥ q(zt+1|zt,at)

)]
.

(13)

B Implementation Details

In this Section, we explain the implementation details for ROTOC in the Deepmind Control suite setting.

16

Under review as submission to TMLR

B.1 Pixels Preprocessing

Following (Yarats et al., 2021b), we obtain an individual state by stacking 3 consecutive frames, where each
frame is an RGB rendering image with size 84 × 84 × 3 from the 0th camera. The pixel values range from
[0, 255] and we divide each pixel value by 255 to scale it down to [0, 1) range. We follow Proto-RL (Yarats
et al., 2021a) by performing data augmentation by randomly shifting the image by [−4, 4], before we feed
states into the encoders.

B.2 Network Architecture

The network architecture for ROTOC consists of five modules: deterministic encoder, stochastic encoder,
transition model, projection head and prediction head. All five modules are built based on common prac-
tice (Yarats et al., 2021a; You et al., 2022; Eysenbach et al., 2021) without specific hyperparameter tuning.
We also did not tune the network architectures for the baseline methods, but either used the architectures
from the original implementation or the same architecture that we used for testing ROTOC. Deviating from
the original network architectures was in some cases necessary, particularly when the baseline method was
not evaluated for RL from images. In the following, we list and motivate our choice of network architectures
and also indicate with which baseline methods they are shared.

• Deterministic encoder (ROTOC, Proto-RL, DB, RPC). We employ the convolutional encoder archi-
tecture from Proto-RL (Yarats et al., 2021a) to parametrize both the online and target deterministic
encoders, ϕo and ϕm. Each deterministic encoder consists of four convolutional layers following a
single fully connected layer with Conv(filter=32, kernel-size=3, stride=2) → Conv(filter=32, kernel-
size=3, stride=1) → Conv(filter=32, kernel-size=3, stride=1) → Conv(filter=32, kernel-size=3,
stride=1) → FCN(units=50) architecture. The ReLU activation function is used after each con-
volutional layer.

• Stochastic encoder (ROTOC, RPC, DB). The architecture of the stochastic encoder is based on the
state encoder from RPC (Eysenbach et al., 2021) with a modified hidden dimension. We change
the hidden dimension from 256 to larger 1024 since ROTOC focuses on extracting embeddings
from high-dimensional images rather than low-dimensional proprioception states in RPC. Specifi-
cally, the online stochastic encoder go is parameterized by a 2-layer fully-connected network with
FCN(units=1024) → FCN(units=100) architecture and ReLU hidden activations. Its output is
divided into the mean µo ∈ R50 and the standard deviation σo ∈ R50 of the diagonal Gaussian
distribution go(zt|ct). The target stochastic encoder gm shares the same network architecture as the
online stochastic encoder.

• Transition model (ROTOC, RPC, DB). We employ the architecture of the transition model from
CoDy (You et al., 2022) with one minor difference to parametrize the transition model. Namely,
to match the output dimension of the stochastic encoder, we change the output dimension from 50
to 100 for outputting the mean and standard deviation vectors of a diagonal Gaussian distribution.
Specifically, the transition model qψ consists of three fully connected layers with FCN(units=1024)
→ FCN(units=1024) → FCN(units=100) architecture and ReLU hidden activations. Its output
is divided into the mean µψ ∈ R50 and standard deviation σψ ∈ R50 of the diagonal Gaussian
distribution qψ(zt+1|zt,at).

• Projection head (ROTOC, Proto-RL). The projection head dυ is just a single linear layer which
maps the concatenated bottleneck variable zt ∈ R50 and action at ∈ R|A| into a 50-dimensional
vector. The projection head is based on the projector from Proto-RL, but accounts for the different
input dimensions.

• Prediction head(ROTOC, Proto-RL). The architecture of prediction heads is based on the predic-
tor from Proto-RL (Yarats et al., 2021a) with modified hidden dimension. The online and target
prediction heads, fo and fm, both consist of two fully-connected layers with FCN(units=1024) →
FCN(units=50) architecture and ReLU hidden activations.

17

Under review as submission to TMLR

B.3 SAC Architecture (ROTOC, RPC, ...)

We employ the publicly released standard Pytorch implementation (Yarats et al., 2021b) of SAC. We use all
hyperparameters of SAC from (Yarats et al., 2021b), except for the replay buffer capacity, which we set to
a smaller 105 by following common practice in image-based RL (Yarats et al., 2021a; You et al., 2022). A
smaller buffer can decrease memory costs for storing image observations. All hyperparameters of SAC are
fixed across tasks and shown in Table B.1. We refer to (Yarats et al., 2021b) for more detailed descriptions
of the implementation of SAC.

Table B.1: Shared hyperparameters across tasks

Parameter Value
Replay buffer capacity 100 000

Optimizer Adam
Critic Learning rate 10−3

Critic Q-function EMA 0.01
Critic target update freq 2

Actor learning rate 10−3

Actor update frequency 2
Actor log stddev bounds [-10 2]

Temperature learning rate 10−3

Initial steps 1000
Discount 0.99

Initial temperature 0.1
Learning rate for ϕo, go, qψ, dυ and fo 10−4

Encoder and projection model EMA τ 0.05
Coefficient α 0.1
Coefficient λ 0.001
Chunk length 2

B.4 The Deepmind Control Suite Setting

We evaluate our method ROTOC on a set of challenging continuous control tasks from the commonly used
benchmark Deepmind Control Suite. We set the episode length of each task to 1000 steps. Following
PlaNet (Hafner et al., 2019b), we treat the number of action repeats as a hyperparameter of the agent. We
use the number of action repeats from PlaNet (Hafner et al., 2019b) for each task, which is shown in Table
B.2.

Table B.2: Task-specific hyperparameters

Task ActionRepeats Batchsize
Ball-in-cup Catch 4 256

Cartpole Swingup-sparse 8 256
Reacher Easy 4 256

Cartpole Swingup 8 256
Walker Walk 2 128
Cheetah Run 4 256

B.5 Other Hyperparameters

Following Proto-RL, the learning rate for optimizing networks ϕo, go, qψ, dυ and fo is set to 10−4, and the
coefficient of the exponential moving average used for updating target networks ϕm, gm and fm is set to
0.05. Following CoDy (You et al., 2022), we treat batch size as a hyperparameter to the agent. We tested

18

Under review as submission to TMLR

ROTOC with two batch sizes, 128 and 256, for each task. Based on empirical results, we use a batch size of
256 for all tasks, except for the Walker Walk task, which uses a batch size of 128 (see Table A.2).

There are three specific hyperparameters of ROTOC which are chosen by performing hyperparameter tuning
on standard Cartpole Swingup task and subsequently fixed for all tasks, namely coefficient α and λ as well as
the chunk length L. We provide a comprehensive overview of all hyperparameters of ROTOC in Table B.1
and Table B.2.

B.6 InfoNCE Bound Implementation

In practice, we randomly sample a minibatch of (sequential) transitions (st, at, st+1), and obtain a minibatch
of positive samples (zt, at, zt+1) by encoding the minibatch using our models. For a given positive sample,
the negative sample set z∗

t+1 is constructed by using all other embeddings zt+1 of the same mini-batch.

B.7 Baseline Implementation

• Proto-RL We obtain the results for Proto-RL by performing the original implementation provided
by (Yarats et al., 2021a) with one difference. We do not allow task-agnostic pre-training of Proto-RL
to facilitate fair comparison to our setup. Instead, we perform the gradient updates of the repre-
sentations and SAC agent from the first step of training by jointly optimizing Proto-RL objectives
(LSSL and LRL) given the task information.

• DB We adapt DB to the off-policy continuous control setting. Similar to ROTOC, we employ
the convolutional encoder architecture from Proto-RL (Yarats et al., 2021a) to parametrize the
observation encoder for DB. The representation posterior and the prediction head of DB are based
on the transition model from CoDy (You et al., 2022) with modified output dimension 100. To achieve
as good performance as possible for DB, we perform hyperparameter tuning to select suitable α2
and α3 in the information bottleneck objective LDB of DB and an additional hyperparameter β
which augments DB bonus with environment rewards.

• RPC As RPC do not provide an official implementation for image-based control tasks, we implement
it by ourselves by following (Eysenbach et al., 2021) as close as possible. Similar to ROTOC, we also
employ the convolutional encoder architecture from Proto-RL (Yarats et al., 2021a) following the
original stochastic state encoder architecture from RPC to parametrize pixel observation encoder for
RPC. The dynamic model of RPC is based on the transition model from CoDy (You et al., 2022) with
modified output dimension 100. We select the KL constraint for RPC by hyperparameter tuning
to achieve good performance. Specifically, we define a set of the KL constraint values, [1.0, 3.0, 5.0],
and perform a grid search over it on the Cartpole Swingup task, and find the optimal KL constraint
for RPC is 3.0.

• Plan2explore We use the official implementation provided by (Pathak et al., 2017) to acquire the
results for Plan2explore.

To ensure a fair comparison, we use the above mentioned implementation of SAC for all methods in our
experiments, except for Plan2Explore which follows its original implementation and learns a policy based on
a model-based RL method Dreamer (Hafner et al., 2019a). The performance of each algorithm is evaluated
by computing an average return over 10 episodes every 10K environment steps. For each method, we perform
one gradient update per environment step for all tasks to ensure a fair comparison. Notably, we use the
fixed chunk length L = 2 for our method across all tasks and the number of samples we used per gradient
update step is always twice the batch size. We set the batch size to 512 for Proto-RL by following the official
implementation (Yarats et al., 2021a). We set the batch size to 512 for DB and RPC by following Proto-RL
and CURL. For Plan2explore, we use the amount of data per gradient step from its official implementations.
Our method uses the same amount of samples per gradient step as all model-free baselines on the majority
of tasks, except for the Walker Walk task where we use a smaller number of samples.

19

Under review as submission to TMLR

B.8 Robustness to Noisy Observations

For this experiment, we add pixel-level Gaussian white noise to the background of each rendered image. The
main body of the manipulated object in each task remains undisturbed for efficient observation.

B.9 Robustness to Natural Background

Following (Zhang et al., 2020), the background of the Mujoco tasks are replaced with by videos randomly
sampled from the driving car class in the Kinetics dataset. The backgrounds of the Mujoco tasks are
constantly changing during training and evaluation.

B.10 Algorithm

The training procedure of MTC is presented in Algorithm 1. The algorithm alternates between collecting
new experiences from the environment, and updating the parameters of the ROTOC model, the actor and
critic networks of SAC.

Algorithm 1: Training Algorithm for ROTOC
Initialize: The ROTOC model, actor and critic networks, replay buffer D, Batch size B, Chunk length
L

for each training step do
collect experience (st,at, rt, st+1) and add it to the replay buffer
for each gradient step do

Sample a minibatch of sequence chunks {(sit,ait, rit, s
i
t+1)L+k−1

t=k }Bi=1 ∼ D from replay buffer.
Generate {(cit, cit+1, zit, z

i
t+1)L+k−1

t=k }Bi=1 following Eq.3.
Compute augmented reward raug(st,at) by following Eq. 8.
Update the online deterministic and stochastic encoders, the latent transition model, the
projection head, the online prediction model and the weight transformation matrix by following
Eq. 7.

Update the actor and critic networks of SAC.
Update the target deterministic and stochastic encoders and the target prediction head.

end
end

20

Under review as submission to TMLR

C Additional Performance and Robustness Evaluation

Fig. C.1 and Fig. C.2 show the performance of our method and baselines on noisy and natural Mujoco tasks,
respectively. Fig. C.3 shows the performance of our method and baselines on all six Mujoco tasks in all three
settings to see the performance drops caused by the distractive information.

0.0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

Ep
iso

de
 re

wa
rd

Cartpole Swingup

0.0 0.1 0.2 0.3 0.4 0.5

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Ball-in-cup Catch

0.0 0.1 0.2 0.3 0.4 0.5

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Reacher Easy

0.0 0.2 0.4 0.6 0.8 1.0
Envinronment steps(x106)

0

100

200

300

400

Ep
iso

de
 re

wa
rd

Cheetah Run

0.0 0.1 0.2 0.3 0.4 0.5
Envinronment steps(x106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Walker Walk

0.0 0.1 0.2 0.3 0.4 0.5
Envinronment steps(x106)

0

200

400

600

800

Ep
iso

de
 re

wa
rd

Cartpole Swingup_sparse

ROTOC DB Proto-RL Plan2Explore RPC

Figure C.1: Robustness comparisons on six noisy Mujoco tasks. Our method performs best on all tasks
compared to the baselines.

0.0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

Ep
iso

de
 re

wa
rd

Cartpole Swingup

0.0 0.1 0.2 0.3 0.4 0.5

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Ball-in-cup Catch

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Reacher Easy

0.0 0.2 0.4 0.6 0.8 1.0
Envinronment steps(x106)

0

100

200

300

400

Ep
iso

de
 re

wa
rd

Cheetah Run

0.0 0.1 0.2 0.3 0.4 0.5
Envinronment steps(x106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Walker Walk

0.0 0.2 0.4 0.6 0.8 1.0
Envinronment steps(x106)

0

200

400

600

800

Ep
iso

de
 re

wa
rd

Cartpole Swingup_sparse

ROTOC DB Proto-RL Plan2Explore RPC

Figure C.2: Performance comparisons on six natural Mujoco tasks. Our method outperforms other methods
in robustness to natural video backgrounds.

We also compare the performance achieved by our method and baselines at 500K environment steps on the
noisy or natural tasks with the final performance evaluated on the standard tasks for directly checking the

21

Under review as submission to TMLR

0.0 0.1 0.2 0.3 0.4 0.5
0

200

400

600

800

Ep
iso

de
 re

wa
rd

Cartpole Swingup

0.0 0.1 0.2 0.3 0.4 0.5

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Ball-in-cup Catch

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Reacher Easy

0.0 0.2 0.4 0.6 0.8 1.0
Envinronment steps(x106)

0

200

400

600

800

Ep
iso

de
 re

wa
rd

Cheetah Run

0.0 0.1 0.2 0.3 0.4 0.5
Envinronment steps(x106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Walker Walk

0.0 0.2 0.4 0.6 0.8 1.0
Envinronment steps(x106)

0

200

400

600

800

Ep
iso

de
 re

wa
rd

Cartpole Swingup_sparse

ROTOC
ROTOC (Noise)
ROTOC (Video)

DB
DB (Noise)
DB (Video)

Proto-RL
Proto-RL (Noise)
Proto-RL (Video)

Plan2explore
Plan2Explore (Noise)
Plan2Explore (Video)

RPC
RPC (Noise)
RPC (Video)

Figure C.3: We show the performance of our method and baselines on all six Mujoco tasks in all three
settings to directly compare the performance drops caused by the presence of distractive information (both
white noise and natural video backgrounds).

Table C.1: Scores achieved by our method (mean and standard error for 10 seeds) and baselines at 500k
environment steps on noisy Mujoco tasks and natural Mujoco tasks, with the bracketed scores achieved by the
corresponding methods at 500K environment steps or the last values we evaluated on standard Mujoco tasks.
The dagger (†) indicates that the scores in parentheses are achieved at less than 500K environmental steps.
The bold font indicates that the lower-bound on the reward (based on the given standard error intervals) for
the given method, is larger or equal than the respective upper bound for every other exploration method.

500K step scores ROTOC(Ours) DB Proto-RL Plan2Explore RPC

Noisy
Mujoco
tasks

Cartpole Swingup 869± 6 (870 ± 3†) 851 ± 7 (860 ± 5†) 846± 5 (823 ± 24†) 773±28 (541 ± 63†) 814±13 (861 ± 6†)
Ball-in-cup Catch 964 ± 7 (957 ± 3†) 782 ± 155 (957 ± 5†) 922± 16 (913 ± 26†) 892±43 (904 ± 50†) 928±20 (947 ± 8†)

Reacher Easy 947± 20 (969 ± 14) 939 ± 19 (927 ± 36) 869± 63 (896 ± 76) 851± 132 (892 ± 6) 930± 29 (949 ± 20)
Cheetah Run 332± 20 (570 ± 79) 265 ± 20 (577 ± 91) 268± 13 (631 ± 20) 251± 22 (430 ± 25) 282±18 (498 ± 74)
Walker Walk 935± 11 (952 ± 3†) 886 ± 30 (687 ± 120†) 915± 15 (885 ± 41†) 752±36 (546 ± 72†) 893±14 (858 ± 41†)

Cartpole Swingup-sparse 768± 14 (793 ± 10) 450 ± 133 (653 ± 94) 571± 95 (757± 23) 680± 51 (667 ± 51) 72± 91 (177 ± 107)

Natural
Mujoco
tasks

Cartpole Swingup 844± 6 (870 ± 3†) 803 ± 16 (860 ± 5†) 748± 28 (823 ± 24†) 143±28 (541 ± 63†) 812±10 (861 ± 6†)
Ball-in-cup Catch 947± 12 (957 ± 3†) 916 ± 17 (957 ± 5†) 727± 53 (913 ± 26†) 133±136 (904 ± 50†) 838±72 (947 ± 8†)

Reacher Easy 399± 57 (969 ± 14) 327 ± 65 (927 ± 36) 257± 39 (896 ± 76) 362± 192 (892 ± 6) 327 ± 73 (949 ± 20)
Cheetah Run 308± 16 (570 ± 79) 294 ± 16 (577 ± 91) 296± 8 (631 ± 20) 193± 32 (430 ± 25) 279±12 (687 ± 120†)
Walker Walk 886± 15 (952 ± 3†) 841 ± 31 (687 ± 120†) 882± 20 (885 ± 41†) 557±54 (546 ± 72†) 714±66 (858 ± 41†)

Cartpole Swingup-sparse 118± 45 (793 ± 10) 9 ± 5 (653 ± 94) 65± 27 (757± 23) 0± 0 (667 ± 51) 5± 4 (177 ± 107)

performance drops. Notably, we just evaluated sample efficiency in the small data regime on some standard
tasks, which was enough for our method to converge, but not enough for some of the baselines. In Table C.1
we indicate when the scores are computed at different numbers of steps to avoid wrong conclusions.

22

Under review as submission to TMLR

D Ablation Studies

D.1 Investigating Chunk Lengths

To evaluate the future predictability of the learned stochastic representations, we first learn representations
on the Cartpole Swingup-sparse task with natural backgrounds, and then fix the representations. While
using different chunk lengths, we use the same amount of data for sampling from the replay buffer per
gradient step. For the fixed stochastic embeddings, we build a forward prediction model parameterized by
a neural network, which takes the fixed embedding of the current state at time step t, zt, and outputs the
mean and the standard deviation of the diagonal Gaussian distribution d(zt+n|zt) with prediction step n.
We set the prediction step to 1, 2, 3, or 5. The prediction model consists of three fully connected layers with
FCN(units=512) → FCN(units=512) → FCN(units=100) architecture and ReLU hidden activations. We
train the prediction model by maximum-likelihood estimation. We did the same for evaluating the future
predictability of the learned deterministic representations.

Table D.1 compares the future predictability of the learned deterministic representations with different
chunk lengths on the Cartpole Swingup-sparse task. Compared to using individual transitions, the learned
representations by using larger chunk lengths L = 2, 3 achieve better prediction at distant prediction steps
n = 3, 5, while achieving worse prediction at prediction steps 1, 2. This indicates that maximizing our
objective doesn’t improve the one-step correlation between latent deterministic embeddings, but causes an
increase in the long-term correlations.

Table D.1: We test the future predictability of the learned deterministic representations by optimizing a
multi-step predictive model on a data set of latent representations. We obtain larger log-likelihoods with
prediction step t = 3, 5 and smaller log-likelihoods with prediction step t = 1, 2 when using an encoder that
was trained with chunk length L = 2, 3, compared to using an encoder with chunk length L = 1.

Prediction Steps 1 2 3 5
L=1,BS=256 19.2 ± 0.3 14.6 ± 0.1 7.6 ± 0.1 3.6 ± 0.2
L=1,BS=512 22.8 ± 0.2 15.1 ± 0.1 6.4 ± 0.1 -2.4 ± 0.1
L=2,BS=256 17.0 ± 0.3 14.4 ± 0.2 6.9± 0.0 3.7± 0.2
L=3,BS=256 16.0 ± 0.2 14.3± 0.1 8.6 ± 0.1 4.6 ± 0.2
L=5,BS=256 0.5 ± 0.3 -4.2± 0.1 -11.6 ± 0.1 -18.4 ± 0.4

D.2 Full Results on Three Reward-sparse Tasks

We show the performance of ROTOC and its three ablations, and vanilla SAC on three reward-sparse tasks
in three settings in Fig. D.1. ROTOC achieves better or at least comparable performance to its own ablations
across all tasks. Moreover, ROTOC significantly outperforms vanilla SAC across all tasks.

D.3 Effect of KL-based Bound on Improving Predictability

We also compare the future predictability of the learned stochastic and deterministic representations with or
without the KL-based lower bound on the standard Cartpole Swingup-sparse task. The results in Table D.2
show that the learned stochastic and deterministic representations by ROTOC are better suited for future
prediction compared to the representations learned by Non-KL ROTOC that lacks the KL-based lower
bound, indicating that using the KL-based lower bound improves the correlations between the learned
representations.

D.4 Investigating Intrinsic Rewards

D.4.1 Intrinsic Rewards on Two Subsets of States

Fig. D.2 shows the initial cart position and pole angle in the Cartpole Swingup-sparse task with a random
natural background. A pole angle in the range of [355°, 5°] corresponds to an upright pole position, while an

23

Under review as submission to TMLR

0.0 0.1 0.2 0.3 0.4 0.5
Envinronment steps(x106)

0

200

400

600

800
Ep

iso
de

 re
wa

rd

Cartpole Swingup-sparse

0.0 0.05 0.10 0.15 0.20
Envinronment steps(x106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Ball-in-cup Catch

0.0 0.1 0.2 0.3 0.4 0.5
Envinronment steps(x106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Reacher Easy

0.0 0.1 0.2 0.3 0.4 0.5
Envinronment steps(x106)

0

200

400

600

800

Ep
iso

de
 re

wa
rd

Cartpole Swingup-sparse (White Noise)

0.0 0.05 0.10 0.15 0.20
Envinronment steps(x106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Ball-in-cup Catch (White Noise)

0.0 0.1 0.2 0.3 0.4 0.5
Envinronment steps(x106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Reacher Easy (White Noise)

0 0.2 0.4 0.6 0.8 1.0
Envinronment steps(x106)

0

200

400

600

800

Ep
iso

de
 re

wa
rd

Cartpole Swingup-sparse (Natural Video)

0.0 0.1 0.2 0.3 0.4 0.5
Envinronment steps(x106)

0

200

400

600

800

1000

Ep
iso

de
 re

wa
rd

Ball-in-cup Catch (Natural Video)

0.0 0.1 0.2 0.3 0.4 0.5
Envinronment steps(x106)

0

100

200

300

400

500

Ep
iso

de
 re

wa
rd

Reacher Easy (Natural Video)

ROTOC No-InfoNCE ROTOC No-KL ROTOC No-Reward ROTOC Vanilla SAC

Figure D.1: Performance of ablations on three standard Mujoco tasks (top row), noisy Mujoco tasks (middle
row) and natural Mujoco tasks (bottom row). Each subplot shows the average reward for 5 seeds with 90%
confidence intervals shading.

Table D.2: The future predictability of the representations learned by ROTOC and Non-KL ROTOC,
respectively. The stochastic and deterministic representations learned with the KL bound are better suited
for future prediction.

Prediction Steps 1 2 3 5

Stochastic Representation ROTOC -80.9 ± 0.4 -91.9 ± 0.4 -99.6 ± -0.1 -109.3 ± 0.4
Non-KL ROTOC -86.5 ± 0.3 -94.3± 0.3 -100.6 ± 0.2 -109.8± 0.2

Deterministic Representation ROTOC 17.0 ± 0.3 14.4 ± 0.2 6.9± 0.0 3.7± 0.2
Non-KL ROTOC 9.6 ± 0.1 7.4± 0.2 3.3 ± 0.3 0.3 ± 0.1

angle in the range of [175°, 185°] corresponds to a pole pointing downwards. The cart position in the range
of [−0.25, 0.25] corresponds to a middle position.

To investigate the effectiveness of our intrinsic reward function, we save the intrinsic reward function every
100,000 steps during training. We then save the replay buffer after training our model from scratch on the
task to ensure that the obtained replay buffer is independent of the saved reward function. We sampled a
fixed data set from the replay buffer, and split the data set into two, where one of the subsets only contains
states with a pole angle in the range of [355°, 5°], and the other subset only contains states with a pole angle
in the range of [175°, 185°]. For each subset, we sample a minibatch of states and compute the intrinsic
rewards of the drawn samples by using the saved reward function.

24

Under review as submission to TMLR

(a) Cartpole (b) Ball-in-cup
Catch

(c) Reacher
easy

(d) Walker
Walk

(e) Cheetah
Run

(a) Cartpole (b) Ball-in-cup
Catch

(c) Reacher
easy

(d) Walker
Walk

(e) Cheetah
Run

8cm

9cm

5°355°

180°
185°

െ1 െ0.25 0.25 1

𝛼

p

(b) Cheetah Run
Figure D.2: The pole is initialized pointing downwards with the pole angle α = 180◦ and located in the
middle with the position p = 0 in the Cartpole Swingup-sparse task.

D.4.2 Intrinsic Rewards on Trajectories

We also compute the intrinsic rewards along trajectories sampled from the saved replay buffer. We sample a
trajectory and then compute the intrinsic rewards of this trajectory by using the reward functions saved at
the different phases of the training. Specifically, we use the reward function saved at 200K environment steps
where the policy achieves a reward of around 0 (see Fig. C.2), the reward function saved at 600K environment
steps where the reward achieved by the policy is increasing rapidly, and the reward function saved at 1000K
environment steps where the policy becomes good at balancing the pole. Fig. D.3, Fig. D.4 and Fig. D.5
show the evolution of the intrinsic reward along an near-optimal trajectory. Regardless of the distractive
backgrounds, the reward functions at 200K and 600K environment steps tend to allocate higher intrinsic
rewards to images that show an upright pole position, than images that show a pole pointing downwards.
The reward function saved at 1000K steps does not show this tendency anymore, since these images that
show an upright pendulum become more common in the replay buffer.

Figure D.3: Evolution of intrinsic rewards along the first of three near-optimal trajectories sampled from the
replay buffer for the CartPole Swingup-sparse task. The dots along the x-axis correspond to observations
in the sampled trajectory per 80 time steps. Initially (blue curve), higher rewards are assigned to states
with an upright pendulum, which are rarely observed. As training progresses (orange and green curves), the
intrinsic rewards for such states decrease as they become less novel.

25

Under review as submission to TMLR

Figure D.4: Evolution of intrinsic rewards along the second of three near-optimal trajectories sampled from
the replay buffer for the CartPole Swingup-sparse task. The dots along the x-axis correspond to observations
in the sampled trajectory per 80 time steps. Initially (blue curve), higher rewards are assigned to states
with an upright pendulum, which are rarely observed. As training progresses (orange and green curves), the
intrinsic rewards for such states decrease as they become less novel.

Figure D.5: Evolution of intrinsic rewards along the second of three near-optimal trajectories sampled from
the replay buffer for the CartPole Swingup-sparse task. The dots along the x-axis correspond to observations
in the sampled trajectory per 80 time steps. Initially (blue curve), higher rewards are assigned to states
with an upright pendulum, which are rarely observed. As training progresses (orange and green curves), the
intrinsic rewards for such states decrease as they become less novel.

26

Under review as submission to TMLR

E Model Complexity

We evaluate the model complexity of ROTOC and other methods. Table E.3 shows the number of learnable
parameters for all methods. The model complexity of ROTOC is higher than RPC, but is lower than DB
and Proto-RL.

Table E.3: Comparison of model complexity. ROTOC has 3.5 million learnable parameters, slightly higher
than DB (3.4 million) and lower than DB and Proto-RL.

Method ROTOC (Ours) RPC DB Proto-RL
Number of Parameters 3.5M 3.4M 4.6M 5.2M

27

Under review as submission to TMLR

F Representation Visualization

Fig. F.1, Fig. F.2 and Fig. F.3 visualize the learned representations by RPC, Proto-RL and DB on the
natural Walker Walk task, respectively. We also visualize the learned deterministic representation learned
by our method on the natural Walker Walk task in Fig F.4. We evaluate learned representations by seeing if
representations that have similar robot configurations and clearly different backgrounds appear close to each
other. The representations learned by Proto-RL and RPC look worse, but the representations learned by
DB and our deterministic embeddings are comparable to the stochastic embedding learned by our method.

Figure F.1: The representations learned by RPC are visualized using t-SNE on a 20 × 15 grid.

28

Under review as submission to TMLR

Figure F.2: The representations learned by Proto-RL are visualized using t-SNE on a 20 × 15 grid.

Figure F.3: The representations learned by DB are visualized using t-SNE on a 20 × 15 grid.

29

Under review as submission to TMLR

Figure F.4: The deterministic representation learned by our method on the Walker Walk task with natural
background are visualized using t-SNE on a 20 × 15 grid.

30

	Introduction
	Related Work
	Preliminaries and Notation
	Problem Statement and Notation
	Total Correlation

	Rollout Total Correlation
	The Rollout Total Correlation Objective
	Algorithm Overview
	Lower-Bounding the Rollout Total Correlation
	Two Realizations of the Lower Bound
	Lower Bound Based on a Generative Model
	Lower Bound Based on a Discriminative Model

	The Loss Function and Optimization
	Chunk-Wise Mini-Batching

	Intrinsic Reward for Exploration
	Plugging into a Reinforcement Learning Algorithm

	Experimental Evaluation
	Experimental Setup
	Performance Evaluation
	Standard Setting
	Robustness to Noisy Observations
	Robustness to Natural Background

	Ablation Studies
	Chunk-wise Mini-batching
	Intrinsic Reward
	Individual Contributions of Each Component
	Visualization

	Conclusion and Discussion
	Bound Derivation
	Derivation on Eq. 4
	Derivation on Eq. 5

	Implementation Details
	Pixels Preprocessing
	Network Architecture
	SAC Architecture (ROTOC, RPC, ...)
	The Deepmind Control Suite Setting
	Other Hyperparameters
	InfoNCE Bound Implementation
	Baseline Implementation
	Robustness to Noisy Observations
	Robustness to Natural Background
	Algorithm

	Additional Performance and Robustness Evaluation
	Ablation Studies
	Investigating Chunk Lengths
	Full Results on Three Reward-sparse Tasks
	Effect of KL-based Bound on Improving Predictability
	Investigating Intrinsic Rewards
	Intrinsic Rewards on Two Subsets of States
	Intrinsic Rewards on Trajectories

	Model Complexity
	Representation Visualization

