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ABSTRACT

Spiking Neural Networks (SNNs) represent a promising paradigm for energy-
efficient neuromorphic computing due to their bio-plausible and spike-driven
characteristics. However, the robustness of SNNs in complex adversarial environ-
ments remains significantly constrained. In this study, we theoretically demonstrate
that those threshold-neighboring spiking neurons are the key factors limiting the
robustness of directly trained SNNs. We find that these neurons set the upper
limits for the maximum potential strength of adversarial attacks and are prone to
state-flipping under minor disturbances. To address this challenge, we propose
a Threshold Guarding Optimization (TGO) method, which comprises two key
aspects. First, we incorporate additional constraints into the loss function to move
neurons’ membrane potentials away from their thresholds. It increases SNNs’
gradient sparsity, thereby reducing the theoretical upper bound of adversarial at-
tacks. Second, we introduce noisy spiking neurons to transition the neuronal firing
mechanism from deterministic to probabilistic, decreasing their state-flipping prob-
ability due to minor disturbances. Extensive experiments conducted in standard
adversarial scenarios prove that our method significantly enhances the robustness
of directly trained SNNs. These findings pave the way for advancing more reliable
and secure neuromorphic computing in real-world applications.

1 INTRODUCTION

Spiking Neural Networks (SNNs) (Maass, 1997; Gerstner & Kistler, 2002; Izhikevich, 2003; Masque-
lier et al., 2008) mimics biological information transmission mechanisms using discrete spikes as
the medium for information exchange, representing the cutting edge of neural computation (Cao
et al., 2020; Varghese et al., 2016). Spiking neurons fire spikes only upon activation and remain silent
otherwise. This event-driven mechanism (Liu & Yue, 2018) promotes sparse synapse operations
and avoids multiply-accumulate (MAC) operations, significantly enhancing energy efficiency on
neuromorphic platforms (Pei et al., 2019; DeBole et al., 2019; Ma et al., 2024; Pei et al., 2019).
Recently, directly training SNNs with surrogate gradient methods (Wu et al., 2018; 2019; Deng et al.,
2022; Li et al., 2021) has significantly reduced their performance gap with ANNs in classification
tasks (Yao et al., 2024a; Shi et al., 2024; Zhou et al., 2024). However, these directly trained SNNs rely
on Backpropagation Through Time (BPTT) (Werbos, 1990), thereby inheriting significant robustness
issues associated with ANNs.

Directly trained SNNs (Fang et al., 2021b; Zhou et al., 2023; Bu et al., 2022; Duan et al., 2022) using
surrogate gradient methods often exhibit a strong dependency on specific patterns or features (Ding
et al., 2022; Mukhoty et al., 2024), rendering them particularly sensitive to minor disturbances.
This characteristic reduces robustness in complex environments, especially against finely crafted
adversarial disturbances (Laskov & Lippmann, 2010). To enhance the robustness of SNNs against
adversarial attacks, researchers adapt strategies from ANNs, such as adversarial training (Ho et al.,
2022; Ding et al., 2022) and certified training (Zhang et al., 2019; Liang et al., 2022). Furthermore,
researchers develop optimization methods tailored to spike-driven mechanisms, , integrating with
adversarial training to enhance robustness. Some researchers (Sharmin et al., 2020; Ding et al., 2023;
El-Allami et al., 2021) utilize the temporal characteristics of SNNs to counteract environmental
white noise attacks. Additionally, Evolutionary Leak Factor (Xu et al., 2024) and gradient sparsity
regularization (SR) (Liu et al., 2024) significantly enhance the robustness of SNNs against gradient-
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based attacks. However, a comprehensive and unified analysis of the robustness bottlenecks in directly
trained SNNs remains lacking.

In this study, we theoretically demonstrate that threshold-neighboring spiking neurons are a key
factor influencing the robustness of directly trained SNNs under adversarial attacks. We find that
these neurons provide maximum potential pathways for adversarial attacks and are more prone
to state-flipping under minor disturbances. To address this, we propose a Threshold Guarding
Optimization (TGO) method. The TGO method aims to: (1) maximize the distance between neurons’
membrane potentials and their thresholds to enhance gradient sparsity; (2) minimize the probability
of state-flipping in neurons under minor disturbances. A series of experiments in standard adversarial
scenarios demonstrates that our TGO method significantly enhances the robustness of directly trained
SNNs. The contributions of this work are summarized as follows:

• We theoretically demonstrate that those threshold-neighboring spiking neurons are critical
in limiting the robustness of directly trained SNNs under adversarial attacks. These neurons
set the upper limits for the maximum potential strength of adversarial attacks and are prone
to state-flipping under minor disturbances.

• We propose a Threshold Guarding Optimization (TGO) method, aiming to minimize
threshold-neighboring neurons’ sensitivity to adversarial attacks. First, we integrate ad-
ditional constraints into the loss function, distancing the membrane potential from the
threshold. Second, we introduce noisy spiking neurons to transit neuronal firing from deter-
ministic to probabilistic, reducing the probability of state flips due to minor disturbances.

• We validate the effectiveness of the TGO method across various adversarial attack scenarios
using different training strategies. Extensive experiments demonstrate TGO method achieves
state-of-the-art (SOTA) performance in multiple adversarial attacks, significantly enhancing
the robustness of directly trained SNNs. Notably, under RFGSM adversarial attacks, TGO
combined with vanilla SNNs surpasses those adversarial training strategies for the first time.

2 RELATED WORK

Spiking Neural Networks: SNNs offer a promising solution for resource-constrained edge com-
puting (Zhang et al., 2023). To enhance the performance of SNNs, Wu et al. (2018) introduces the
spatial-temporal backpropagation (STBP) algorithm, an adaptation of BPTT from Recurrent Neural
Networks (RNNs) (Graves & Graves, 2012; Lipton, 2015). This method uses surrogate functions
to approximate the non-differentiable Heaviside step function in spiking neurons. Additionally,
researchers explore parallel training strategies (Fang et al., 2024) within the ResNet framework (He
et al., 2016), shortcut residual connections (Zheng et al., 2021; Hu et al., 2021; Lee et al., 2020; Fang
et al., 2021a), and Spike transformer (Li et al., 2022). Despite surrogate gradient methods (Deng
et al., 2023; Yang & Chen, 2023) significantly improve training efficiency, SNNs remain susceptible
to adversarial attacks as ANNs (Finlayson et al., 2019; Xu et al., 2020), limiting their applicability in
adversarial environments.

Robustness of SNNs in Adversarial Attacks While biologically event-driven mechanisms (Marchi-
sio et al., 2020; Hao et al., 2020) enhance SNNs’ adaptability in complex environments, empirical
studies (Liang et al., 2021; El-Allami et al., 2021) reveal that directly trained SNNs remain vulnerable
to adversarial attacks. Initial efforts to mitigate this vulnerability start with adapting Adversarial
Training (AT) (Goodfellow et al., 2014; Kundu et al., 2021) and subsequently advance to Regularized
Adversarial Training (RAT) (Ding et al., 2022) with Lipschitz analysis. However, these approaches
are constrained by additional training overhead and limited portability (Shafahi et al., 2019). Recently,
researchers have developed optimization methods tailored to spike-driven mechanisms of SNNs.
Such as Hao et al. (2023) enhances intrinsic robustness through rate-temporal information integration.
(Xu et al., 2024) introduces FEEL-SNN with random membrane potential decay and innovative
encoding mechanisms, and Ding et al. (2024b) develops gradient SR to strengthen defenses against
Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014) and Projected Gradient Descent
(PGD) (Madry, 2017). Despite these advances, these strategies achieve significant enhancements
only through synergistic integration with AT and RAT strategies. Moreover, a theoretical analysis
of SNNs’ inherent vulnerabilities in adversarial environments is still lacking. Thus, devising more
effective robustness optimization strategies for SNNs remains a focused research.
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3 PRELIMINARIES

3.1 SURROGATE GRADIENT FOR DIRECT TRAINED SNNS

SNNs effectively model the complex dynamics of biological neurons. Within the Leaky Integrate-
and-Fire (LIF) framework, the membrane potential transitions through three key stages: integration,
leakage, and firing. During integration, the membrane potential V [t] accumulates over time in
response to incoming spikes. When V [t] exceeds a predefined threshold Vth, it triggers a spike
that may influence downstream neurons. Following the spike, the membrane potential is reset to a
specified baseline Vreset, preparing the neuron for subsequent inputs, which can be described as:

V [t] = τU [t− 1] +WS[t], (1)

S[t] = Θ (V [t]− Vth) , (2)
U [t] = V [t] (1− S[t]) + VresetS[t], (3)

where τ is the membrane time constant, W represents the synaptic weights, S[t] denotes the spike
at time t, and Θ(·) is the Heaviside step function, indicating firing when V [t] exceeds Vth. In the
directly trained SNNs, the total loss L with respect to the weights W can be described as:

∂L

∂W
=
∑
t

∂L

∂S[t]

∂S[t]

∂V [t]

∂V [t]

∂W
. (4)

where ∂S[t]
∂V [t] represents the gradient of a non-differentiable step function involving the derivative

of the Dirac δ-function, which is typically replaced by surrogate gradients with derivable curves.
Various forms of surrogate gradients have been utilized, such as rectangular (Wu et al., 2018; 2019),
triangular (Esser et al., 2016; Rathi & Roy, 2020), and exponential (Shrestha & Orchard, 2018)
curves. Surrogate gradients provide a differentiable approximation to non-differentiable functions.

3.2 ADVERSARIAL ATTACKS

Adversarial attacks, including the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2014)and
Projected Gradient Descent (PGD) (Madry, 2017), rely on the model’s gradient information to
craft adversarial examples. FGSM generates such examples by applying a single-step perturbation
designed to maximize the model’s prediction error. The adversarial input is calculated as:

xadv = x+ ϵ · sign(∇xL(x, ytrue)), (5)

where xadv is the adversarial example, x is the original input, ϵ is the perturbation magnitude,
L(x, ytrue) is the loss function, and sign(∇xL(x, ytrue)) gives the sign of the gradient concerning
the input. This process leverages the model’s loss landscape to introduce minimal disturbances that
significantly increase the classification error. Building on this, PGD iteratively refines adversarial
examples by applying gradient updates and projecting them back into a bounded ϵ-ball centered on
the original input. The attack rule of PGD can be expressed as:

xt+1
adv = Clipx,ϵ

(
xt

adv + α · sign(∇xL(xt
adv, ytrue))

)
, (6)

where xt
adv is the adversarial example at iteration t, α is the step size, and Clipx,ϵ ensures that the

perturbation remains within the prescribed ϵ-ball. PGD employs a multi-step approach to more
precisely explore the disturbance space, producing adversarial examples closer to the optimal solution.
At the same time, it strictly constrains the magnitude of disturbances, ensuring the perturbed input
remains nearly indistinguishable from the original data to human observers. These two methods serve
as standard benchmarks for evaluating the adversarial defense capabilities of neural networks.

4 METHODS

4.1 ROBUSTNESS ANALYSIS OF DIRECTLY TRAINED SNNS

To explore the key factors affecting the adversarial robustness of SNNs, we conduct a detailed
analysis of the SNNs’ dynamic properties under adversarial attacks. Our findings highlight
two critical vulnerabilities associated with those threshold-neighboring spiking neurons. First,
they establish a theoretical upper bound for the maximum potential strength of adversarial at-
tacks. Second, they exhibit a higher probability of state-flipping under minor disturbances.
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Figure 1: Red traces represent membrane potential
dynamics of spiking neurons under adversarial at-
tack. Only membrane potentials near thresholds
undergo spike pattern transitions, while others re-
main unchanged.

Upper Bound of Adversarial Attack Potency:
Adversarial attacks maximize a model’s ex-
pected loss by introducing carefully crafted per-
turbations to the original input. These pertur-
bations are typically derived from the input’s
gradient information and applied as subtle yet
strategically critical modifications along the gra-
dient direction, thereby significantly degrading
model performance while remaining impercep-
tible. The metric Radv(f, x, ϵ) quantifies the
maximum potential strength of an adversarial at-
tack on the neural network f at a input x, where
the disturbances are constrained within a unit ℓp-
norm ball and scaled by the factor ϵ. We prove
the metric Radv(f, x, ϵ) of SNNs from two per-
spectives: surrogate gradient and spike pattern
activation transitions. Details are described in
Appendix.C and D.

Theorem 1 Gradient-based Adversarial Robustness Bound: For a differentiable mapping f : Rd →
Rm, the robustness measure Radv(f, x, ϵ) under ℓ2-bounded perturbations is upper-bounded as:

Radv(f, x, ϵ) ≤ ϵ2|Jf (x)|22 +O(ϵ2),

where Jf (x) ∈ Rm×d is the Jacobian matrix at x, with ∥Jf (x)∥22 = λmax(G(x)) for the gradient
Gram matrix G(x) =

∑m
i=1 ∇fi(x)∇fi(x)

⊤. The maximum eigenvalue λmax(G(x)) captures the
worst-case directional sensitivity, bounding adversarial vulnerability.

According to Theorem 1, the sensitivity of SNNs to adversarial attacks is correlated with the ℓ2
norm of their Jacobian matrix, where higher gradient ℓ2 norms indicate greater susceptibility to
adversarial attacks. Notably, directly trained SNNs rely on surrogate gradients, which exhibit peak
values near the Vth. As the number of threshold-neighboring spiking neurons increases, the ℓ2
norm of the gradients in SNNs also rises, thereby enlarging Radv(f, x, ϵ). Beyond the surrogate
gradient-based approximation analysis, we further derive adversarial robustness bounds for SNNs
from the perspective of activation pattern transitions.

Theorem 2 Activation-based Adversarial Robustness Bound: For a discrete spike pattern mapping
f : Rn → Rm, small perturbations εδ around input x induce a finite set of activation pattern
transitions. The adversarial robustness upper bound can be approximated as:

Radv(f, x, ε) ≤ ε2 max
1≤k≤K

∥AAk
∥2p→2,

where K denotes the number of activation regions intersecting the perturbation ball Bε(x), and
AAk

∈ Rm×n is the affine transformation matrix for activation pattern Ak = {(l, i) : ui(x) ≥ θi}.

The transformation matrix AAk
in Theorem.2 is structurally defined as: AAk

= W (L) ·diag(s(L−1)
k ) ·

W (L−1) · · · diag(s(1)k ) ·W (1). s(l)k = (s
(l)
k,1, s

(l)
k,2, . . .) denotes the binary activation vector for activa-

tion pattern Ak at layer l, diag(s(l)k ) operator constructs a diagonal matrix from the activation vector
s
(l)
k ∈ 0, 1nl , and s

(l)
k,i ∈ {0, 1} indicating the activation state of neuron i in layer l. As shown in

Fig. 1, when all neurons’ membrane potential are sufficiently distant from their thresholds, small
perturbations εδ fail to induce activation state transitions. Only a few membrane potentials near the
threshold undergo state changes. In conclusion, these neurons significantly increase the theoretical
upper limit of adversarial perturbation strength. How to effectively reduce the influence of these
neurons will be crucial in enhancing the robustness of SNNs.

Strong State-flipping Probability: Adversarial attacks introduce carefully crafted small disturbances
into the input data, achieving their disruptive effects. In multi-layer SNNs, these disturbances
propagate through the networks, causing state-flipping in spiking neurons and ultimately altering
the final output. Due to the spike-driven nature of SNNs, changes occur only when spiking neurons’

4
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membrane potential crosses the threshold. Thus, the robustness of SNNs is directly linked to
state-flipping in spiking neurons, which can be modeled as follows:

Theorem 3 Let V [t] be the membrane potential, Vth the threshold, and η[t] ∼ N (0, σ2) random
perturbation. The probability Pflip of each neuron’s flipping is given by:

Pflip =

Φ
(

Vth−V [t]
σ

)
, if V [t] ≥ Vth,

1− Φ
(

Vth−V [t]
σ

)
, if V [t] < Vth.

where Φ denotes the cumulative distribution function (CDF) of the standard normal distribution.

Theorem 3 defines the relationship between neuronal membrane potential and their state-flipping
probability. Specifically, when V [t] ≥ Vth, the neuron output switches from 1 to 0, and when
V [t] < Vth, it flips from 0 to 1. Since the CDF of the standard normal distribution Φ(·) is increasing
monotonically, Pflip increases as the membrane potential V [t] approaches the threshold potential Vth,
whether V [t] is above or below Vth. Those neurons are the primary targets of adversarial attacks.

In summary, threshold-neighboring spiking neurons play a crucial role in the adversarial robustness
of SNNs. To address this, we propose an optimization strategy designed to mitigate their impact,
thereby strengthening the overall resilience of SNNs in adversarial environments.

Figure 2: Mechanism and working principle of the TGO method. (a) The TGO method combines
membrane potential constraints with noisy LIF neuron models for adversarial defense. (b) Gradient-
based adversarial attacks illustrate how disturbances affect input images. (c) The joint optimization
of the objective and constraint functions drives neuron membrane potentials away from the firing
threshold. (d) The noisy LIF model effectively reduces the probability of state flips caused by small
input disturbances, enhancing model stability.

4.2 THRESHOLD GUARDING OPTIMIZATION METHOD

4.2.1 MEMBRANE POTENTIAL CONSTRAINTS

The surrogate gradients of threshold-neighboring spiking neuron, significantly influence the ∥Jf (x)∥22
of SNNs. To mitigate this effect, we propose additional constraints at each spiking neuron layer to
optimize the membrane potential distribution, ensuring it remains as distant as possible from the
threshold. The membrane potential constraint function can be described as:

C(V (t)l) =
1

TN

n∑
i=1

max(0, δ − |V (t)i − Vth|)2, (7)

5
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C(V (t)l) computes the average quadratic penalty when membrane potentials V (t)i of neurons in layer
l approach the firing threshold Vth. N and T represent the number of time steps and the total number
of layers in the SNNs, respectively. The hyperparameter δ establishes a margin around V th where
proximate potentials incur proportional penalties. Subsequently, we integrate this constraint with the
target loss function, defining the overall loss within the framework of Lagrangian constraints (Kim &
Jeong, 2021; Yoo & Jeong, 2023), which can be expressed as:

L(x, λ) = Loss(x) + λ
∑
l

C(V (t)l). (8)

Here, Loss(x) is the original loss function, C(V (t)l) represents the penalty term for the membrane
potentials across all layers, and λ is a dynamically adjusted parameter that controls the significance
of the constraint. We reveal that using a fixed magnitude for λ hinders network convergence and
constraint satisfaction. Specifically, a larger λ leads to significant performance degradation and
poor convergence during the initial training phase, while a smaller λ fails to enforce the constraint
effectively. Therefore, to achieve an optimal balance between gradients sparsity and performance, we
propose dynamic λ, which can be described as:

λ = 0.5× λmax ×
(
1− cos

(
π × epoch
epochmax

))
. (9)

In the dynamic adjustment strategy, λ is initially set low to allow extensive exploration of parameter
space and prevent premature constraints on V [t] distributions. As λ increases, constraints intensify,
pushing V [t] further from Vth and ensuring strict adherence to the operational threshold. Membrane
potential constraints effectively reduce the number of threshold-neighboring neurons, thereby decreas-
ing |Jf (x)|22 of SNNs. However, during training, some neurons inevitably remain near the threshold
due to their significant impact on the loss function. Therefore, additional strategies are required to
enhance the robustness of these critical neurons.

4.2.2 NOISY SPIKE NEURONS FOR MITIGATING STATE-FLIP PROBABILITY

As previously mentioned, these neurons exhibit high sensitivity to minor disturbances, readily under-
going state flipping by crossing the firing threshold. Such flipping not only increases output instability
but can also severely disrupt the network’s overall output through cascade effects. Consequently,
we introduce the Noisy-LIF neuron model (Gerstner et al., 2014) as a complementary mechanism
to membrane potential constraints, significantly reducing the probability of state flipping in critical
neurons and thereby enhancing the robustness of directly trained SNNs against adversarial attacks.
The dynamics of Noisy-LIF can be described as:

V [t] = τU [t− 1] +WS[t] + ξ[t], (10)

where ξ[t] denotes Gaussian white noise, V [t] = τU [t − 1] + WS[t] is the membrane potential
of the LIF model before the addition of noise. In the traditional LIF model, spike generation is
deterministic: neurons emit a spike whenever the membrane potential V [t] surpasses the firing
threshold Vth. Details are described in Appidex.F. As a result, even small noise perturbations can
cause significant output flips if they drive the membrane potential above the threshold. By introducing
ξ[t], the output transitions to an expected value rather than a binary outcome. For small changes
∆V [t] around Vth, the change in spike probability, interpreted as the flipping probability, can be
approximated using a Taylor expansion with the first order:

∆P (Sl = 1 | V [t], ξ[t]) ≈ 1

σ
ϕ (z)∆V [t], (11)

where z = Vth−V [t]−µ
σ and ϕ(·) represents the PDF of the standard normal distribution. Then the

derivative of the approximated flipping probability ∆P (Sl = 1 | V [t], ξ[t]) with respect to σ, denoted
as ∂(∆P )

∂σ can be expressed as:

∂(∆P )

∂σ
= ∆V [t]

ϕ(z)

σ2

(
z2 − 1

)
. (12)

For values of V [t] close to Vth, an appropriate choice of σ can ensure that z2 < 1. Under these
conditions, ∂(∆P )

∂σ is negative, implying that the flipping probability decreases monotonically with
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increasing σ. This observation indicates that increasing the noise level σ reduces the sensitivity of
the flipping probability to small perturbations in the membrane potential V [t], thereby enhancing the
buffering effect of the Noisy-LIF neuron against such disturbances. Overall, the membrane potential
constraints and noisy-LIF neurons in the TGO method work synergistically. The constraints ensure
that most neuronal potentials are distanced from the threshold, while the noisy-LIF neurons further
reduce the probabilities of state flipping in those threshold-neighboring spiking neurons.

5 EXPERIMENTS

5.1 EXPERIMENTS SETTING

In this study, the TGO method is evaluated in image classification tasks using the CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009) datasets. The employed network architectures include VGG-11 and
WideResNet-16 with a width of 4 and depth of 16 (Xu et al., 2024; Ding et al., 2024a;b). We employ
multiple adversarial attack methods, including FGSM (Goodfellow et al., 2014) and RFGSM (Wong
et al., 2020) and PGD (Madry, 2017). They are all assessed using a fixed attack intensity of 8/255,
with the number of iterations specified in the attack name (e.g., PGD 10). Notably, RFGSM refers to
introducing a small random disturbance samples before applying FGSM. Moreover, three training
strategies are implemented: first, a vanilla training strategy (BPTT) (Wu et al., 2018) using original
images, which incurs no additional training costs; second, AT (Kundu et al., 2021) strategy involves
training with white-box PGD attacks (attack intensity of 2/255 and step size k = 2); third, RAT
incorporates Lipschitz penalties (Ding et al., 2022) into the adversarial training.

Table 1: Comparative results of model robustness across different methods and conditions in CIFAR-
100. SOTA performances are marked in gray .

Model Train Method Adversarial Attacks
Clean FGSM RFGSM PGD7 PGD10 PGD20 PGD40

V
G

G
-1

1

BPTT

Vanilla (Deng et al.,
2022)

71.42 5.92 24.95 0.18 0.07 0.04 0.02

DLIF (Ding et al., 2024a) 70.79 6.95 - 0.08 0.05 0.00 0.00
StoG (Ding et al., 2024b) 70.44 8.27 - 0.49 - - -

TGO(Ours) 69.47 17.20 38.23 2.30 1.33 0.69 0.42

AT
AT (Kundu et al., 2021) 66.27 17.20 45.13 8.30 9.62 8.16 7.52

StoG (Ding et al., 2024b) 66.37 23.45 - 14.42 - - -
TGO(Ours) 65.93 24.16 47.90 12.83 10.12 8.72 6.59

RAT
RAT (Ding et al., 2022) 67.76 20.87 46.21 11.14 9.34 7.66 6.90

StoG (Ding et al., 2024b) 62.26 33.40 - 23.15 - - -
TGO(Ours) 65.64 33.84 51.44 18.84 14.59 10.57 8.90

W
R

N
-1

6

BPTT

Vanilla (Deng et al.,
2022)

73.46 6.36 11.15 0.01 0.00 0.00 0.00

DLIF (Ding et al., 2024a) 73.85 8.08 - 0.00 0.00 0.00 0.00
SR (Liu et al., 2024) 67.67 11.15 18.18 - - - -

TGO(Ours) 69.04 23.90 41.17 3.26 1.84 0.67 0.35

AT

AT (Kundu et al., 2021) 68.57 21.18 46.60 11.14 9.22 7.50 6.72
DLIF (Ding et al., 2024a) 65.86 25.90 - 15.20 14.03 13.37 13.30

SR (Liu et al., 2024) 60.37 25.76 36.93 - 19.76 - -
TGO(Ours) 64.49 41.99 55.01 27.78 22.75 15.99 12.91

RAT
RAT (Ding et al., 2022) 67.59 25.07 48.92 13.60 11.41 9.07 8.35

SR (Liu et al., 2024) 60.37 25.76 36.93 - - -
TGO(Ours) 64.22 40.35 54.53 25.79 20.93 14.02 10.77

5.2 COMPARE WITH THE SOTA METHODS

To evaluate the effectiveness of the proposed TGO method, we implement three training strategies
(BPTT, AT, and RAT) and compare them with other SOTA robustness methods. Specifically, we
replicate the AT and RAT configurations. Table.1 reports the classification accuracy of various
network architectures under different attack scenarios on the CIFAR-100 datasets. Our results show
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that the TGO method consistently achieves SOTA performance across nearly all tested architectures.
Significantly, under the BPTT training strategy, our TGO method enhances performance by 10-20%
in FGSM and RFGSM attack scenarios. It outperforms other robustness methods and even surpasses
those adversarial training methods. Additionally, the TGO strategy is highly compatible with both
AT and SAT approaches, achieving approximately 10% performance improvement under PGD10,
PGD20, and PGD40 attacks in the WRN-16 model. Similar to other constraint-based approaches,
our method incurs minimal performance loss on clean data while achieving a 3%-5% increase in
performance under adversarial attacks.

Table 2: Comparative results under APGD and MTPGD Attacks with WideResNet-16 on CIFAR-100.

Model Attack Iteration Steps

10 20 30 40 50 80 100

AT (Kundu et al., 2021) APGDDLR 9.74 7.69 7.42 6.92 6.53 6.21 6.09
APGDCE 5.73 4.34 3.85 3.60 3.38 3.18 3.02
MTPGD 11.61 9.59 9.27 8.97 8.57 8.49 8.49

SR(Liu et al., 2024)+AT APGDDLR 18.87 16.73 16.02 15.03 15.08 14.89 14.71
APGDCE 15.40 13.48 12.78 12.48 12.04 11.55 11.17
MTPGD 23.17 21.79 21.54 21.39 21.45 21.28 20.81

TGO+AT (Ours) APGDDLR 35.60 31.53 29.84 28.72 28.15 25.80 24.83
APGDCE 29.19 27.85 24.24 22.32 21.32 21.28 21.30
MTPGD 43.49 36.88 34.04 31.45 30.70 30.10 29.76

Furthermore, we conducted experiments across various perturbation magnitudes ϵ (2, 4, 6, 8/255). As
shown in Fig. 3, TGO outperforms SR across all perturbation levels. Moreover, we evaluated the TGO

Figure 3: Performance comparison of TGO (ours) and SR with AT across different perturbation
budgets ϵ. Experiments are conducted on CIFAR-100 dataset using WRN-16 architecture.

method against more advanced attack strategies: Auto-PGD (APGD) (Croce & Hein, 2020) and Multi-
Targeted PGD (MTPGD) (Gowal et al., 2019). For APGD, we employed a dual-loss configuration
using both Difference of Logits Ratio (DLR) and cross-entropy losses, where DLR directly targets
the margin between correct and runner-up classes, providing a more challenging evaluation. MTPGD
presents unique challenges due to its multi-targeted nature, simultaneously considering multiple
misclassification objectives. We implemented MTPGD with random initialization to avoid gradient
masking and gradient clipping for stable optimization. Table 2 presents our comparative analysis of
TGO against standard Adversarial Training (AT) and SR+AT (Liu et al., 2024), maintaining consistent
hyperparameters across all methods (momentum=0.9, ϵ=8/255) to ensure fair comparison. Finally,
we also conduct extensive evaluations on neuromorphic datasets (Li et al., 2017). The details these
part are presented in Appendix A. Results across all attack scenarios conclusively demonstrate TGO’s
significant robustness improvements against diverse adversarial threats.

5.3 ABLATION STUDY

In this study, we evaluate the two core components of the TGO method: membrane potential constraint
(MC) and the noisy-LIF (NLIF) model through a series of ablation experiments. The experiments
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are performed using two training strategies: vanilla BPTT and RAT, with the CIFAR-100 dataset
and VGG-11 architecture ensuring result reliability. The results show that our method significantly
outperforms pure AT and SR method against APGD and MTPGD attacks. Although it may not
yet match the latest ANN methods, it represents a meaningful effort to explore the robustness of
spiking neurons. As shown in Table.3, our experimental results reveal several key findings. First, the

Table 3: Ablation study of our TGO method on CIFAR-100 with VGG-11.

BPTT RAT
MC NLIF Clean FGSM RFGSM PGD40 Clean FGSM RFGSM PGD40
✗ ✗ 71.4 5.9 25.0 0.0 67.8 20.9 46.2 6.9
✓ ✗ 64.3 (-7.2) 17.1 (+11.2) 25.9 (+0.9) 0.5 (+0.5) 61.4 (-6.4) 26.2 (+5.3) 42.7 (-3.5) 6.2 (-0.7)
✗ ✓ 70.6 (-0.8) 8.1 (+2.1) 31.7 (+6.6) 0.1 (+0.1) 68.1 (+0.4) 25.2 (+4.3) 50.1 (+3.9) 9.1 (+2.2)
✓ ✓ 66.9 (-4.6) 21.5 (+15.5) 39.1 (+14.1) 0.5 (+0.5) 63.3 (-3.8) 33.8 (+13.0) 50.8 (+4.6) 9.3 (+2.4)

vanilla SNN exhibits significant vulnerability to FGSM attacks, achieving only 5.92% classification
accuracy, highlighting the urgent need to improve its adversarial robustness. Second, each individual
component of TGO significantly improves network performance in adversarial attacks, confirming
their efficacy in strengthening the robustness of SNNs. Notably, MC and NLIF enhance each other
synergistically rather than functioning independently, which further confirms that TGO is a holistic
protection strategy specifically targeting neurons near the threshold.

Figure 4: Comparison of membrane potential distributions and loss landscapes: The TGO-optimized
SNN decreases membrane potentials near the threshold by approximately 40% and effectively
circumvents adversarial traps during RFGSM attacks.

To better understand TGO’s regulatory mechanism on the dynamics of spiking neurons, we analyze the
membrane potential distributions of both vanilla and TGO-optimized SNNs. As shown in Fig.4, TGO
reduces the number of threshold-neighboring neurons by approximately 40%, strongly supporting
our hypothesis that threshold-neighboring neurons are key to adversarial robustness in SNNs.

Additionally, we compare the loss landscapes of vanilla and TGO-optimized SNNs under RFGSM
attacks with the BPTT training strategy. The loss landscape of our TGO method exhibits smoother
gradient trajectories, while the vanilla SNNs show multiple local optima and peaks, demonstrating the
effectiveness of TGO in defending against gradient-based adversarial attacks. Moreover, we employ
expectation over transformations (EoT) (Athalye et al., 2018) to validate the random introduced by
Noisy-LIF, details are described in the Appendix. B. The results indicate that while it introduces
some randomness, it still significantly enhances the adversarial robustness of the SNNs.

6 CONCLUSION

This study thoroughly analyzes the vulnerabilities of directly trained SNNs under adversarial attack
conditions and theoretically confirms that threshold-neighboring spiking neurons define the upper
limits of adversarial attack effectiveness. To address this issue, we propose a TGO method, which
consists of two aspects. First, membrane potential constraints distance neurons from their thresholds,
thereby reducing the upper limits of adversarial attacks. Second, noisy-LIF model transitions the
neuronal firing mechanism from deterministic to probabilistic, effectively reducing the probability
of state flips caused by minor disturbances. Extensive experiments prove that our TGO method
significantly enhances the robustness of directly trained SNNs against various adversarial attacks.

9
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A ROBUSTNESS OF OUR TGO METHOD FOR NEUROMORPHIC DATASETS

Table 4 illustrates the performance comparison between our proposed TGO+AT method and the
standard Adversarial Training (AT) baseline with WideResNet-16 on the DVS-CRIAF10 neuromor-
phic dataset. In this study, we integrated TGO with conventional adversarial training, resulting in
consistent improvements across all evaluation metrics. As evidenced in the table.4, TGO+AT not
only enhances clean sample accuracy by 1.9% but also significantly improves robustness against
various adversarial attacks, with particularly notable gains against stronger iterative attacks such
as PGD7 (+4.1%) and PGD30 (+3.6%). Furthermore, we evaluated the efficacy of our approach

Table 4: Performance Comparison on DVS-CRIAF10 Dataset

Model Clean FGSM RFGSM PGD7 PGD10 PGD30 PGD50
AT 72.2 57.4 65.2 46.9 45.6 45.2 44.2
TGO+AT 74.1 59.7 68.0 51.0 48.1 48.8 46.2

against event-based attacks (Yao et al., 2024b) using WideResNet-16 on DVS-CRIAF10 (Li et al.,
2017). The Attack Success Rate (ASR) for standard AT was measured at 44.32%, whereas AT+TGO
achieved a substantially lower ASR of 31.0%. This reduction in ASR indicates enhanced robustness,
further demonstrating the effectiveness of the TGO methodology in mitigating event-based adversarial
attacks.

B EXPECTATION OVER TRANSFORMATIONS EXPERIMENT FOR RANDOMNESS

we implemented the expectation over transformations (EoT) test to assess the impact of the random
noise component on our TGO method’s robust performance. In each iteration, we compute the
expected loss to eliminate randomness from single inference steps and use this expectation to
compute attack gradients. Finally, we compare the performance of TGO with AT (baseline) and the
SR method with with WideResNet-16 on CIFAR-100, as shown below:

Table 5: Performance Comparison of TGO with AT and SR[2]+AT under Different PGD Attacks

Model FGSM PGD10 PGD20 PGD30 PGD40 PGD50 PGD80
AT 21.18 9.22 7.50 7.06 6.72 6.82 6.67
SR[2]+AT 28.27 20.46 19.28 18.80 18.78 18.69 18.51
TGO+AT(EoT) 42.86 26.59 24.57 22.68 22.43 22.28 21.96

Table 6: Performance Comparison of TGO with AT and SR+AT under the APGD Attack (CELoss)

Model (CELoss) APGD20 APGD30 APGD40 APGD50 APGD80 APGD100
AT 4.34 3.85 3.60 3.38 3.18 3.02
SR[2]+AT 13.48 12.78 12.04 11.55 11.17 10.77
TGO+AT(EoT) 22.15 21.40 20.66 19.92 19.38 19.09

The experimental results show that our method indeed introduces a random component. However,
even with this, under the EoT-PGD and EoT-APGD tests, our TGO method also can improve the
robustness of SNNs.

C GRADIENT-BASED UPPER BOUND OF ADVERSARIAL ATTACK

Theorem: Let f : Rn → Rm be a continuously differentiable neural network function at point x,
and let ϵ > 0 be sufficiently small. The adversarial perturbation measure Radv(f, x, ϵ) satisfies:

Radv(f, x, ϵ) ≤ ϵ2∥Jf (x)∥22 +O(ϵ3), (13)
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where Jf (x) is the Jacobian matrix of function f(·) at point x.

Proof: We begin by defining our objective as the maximization of the squared difference between
f(x+ ϵδ) and f(x), subject to the constraint ∥δ∥p ≤ 1:

Radv(f, x, ϵ) = argmax
δ

{
∥f(x+ ϵδ)− f(x)∥22 : |δ|p ≤ 1

}
. (14)

Next, we apply Taylor’s theorem with the Lagrange remainder for the vector-valued function f(x+ϵδ)
around point x. Specifically, for δ with ∥δ∥p ≤ 1, there exists ξ ∈ (0, 1) such that:

f(x+ ϵδ) = f(x) + Jf (x)(ϵδ) +
(ϵδ)

2

2
Hf (x+ ξϵδ), (15)

where Jf (x) is the Jacobian matrix of the function f (·) at the point x, and Hf is the Hessian tensor
of second derivatives. Substituting this expansion into the squared difference, we obtain:

∥f(x+ ϵδ)− f(x)∥22 =

∥∥∥∥Jf (x)(ϵδ) + (ϵδ)2

2
Hf (x+ ξϵδ)

∥∥∥∥2
2

(16)

≤
(
∥Jf (x)(ϵδ)∥2 +

1

2
∥(ϵδ)2Hf (x+ ξϵδ)∥2

)2

. (17)

Combining Eq. 14 and the Cauchy-Schwarz inequality, we can systematically expand each component
of the Eq. 17. For the first term, it can be expand as follows:

∥Jf (x)(ϵδ)∥2 ≤ ∥Jf (x)∥2∥ϵδ∥2 ≤ ϵ∥Jf (x)∥2, (18)

For the second term of Eq. 17, we can expand it by utilizing the ℓ2 norm characteristic of the Hessian
matrix. It can be defined as follows:

∥Hf (x+ ξϵδ)(ϵδ)2∥2 ≤ ∥λHmax(ϵδ)
2∥2 ≤ λHmaxϵ

2, (19)

where λHmax is the maximum eigenvalue of the Hessian matrix. Substituting these bounds into the
expression for the squared difference, we obtain:

∥f(x+ ϵδ)− f(x)∥22 ≤ ϵ2∥Jf (x)∥22 + ϵ3λHmax∥Jf (x)∥2 +
ϵ4λ2

Hmax

4
, (20)

Thus, the adversarial perturbation measure satisfies the following upper bound:

Radv(f, x, ϵ) ≤ ϵ2∥Jf (x)∥22 +O(ϵ2), (21)

where O(ϵ2) represents a higher-order infinitesimal of ϵ2. Since ϵ is a very small quantity, the term
O(ϵ2) in the formula can be neglected. Consequently, the theoretical upper bound of the adversarial
perturbation is primarily dependent on the ℓ2 norm of Jf (x). Specially, Jf (x) can be expressed as
the collection of gradients of each component of the function:

Jf (x) =


∇f1(x)

T

∇f2(x)
T

...
∇fm(x)T

 . (22)

The ℓ2 norm of the Jacobian matrix is related to the gradients through the following expression:

∥Jf (x)∥22 = λJmax(Jf (x)
TJf (x)) = λJmax

(
m∑
i=1

∇fi(x)∇fi(x)
T

)
. (23)

Where λJmax denotes the maximum eigenvalue of the matrix, which reflects the largest possible
stretching effect of the Jacobian matrix, directly linking the gradient magnitudes to the overall
sensitivity of the network’s output.
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D ACTIVATION-BASED UPPER BOUND OF ADVERSARIAL ATTACK

Theorem: For a discrete spike pattern mapping f : Rn → Rm, small perturbations εδ around input
x induce a finite set of activation pattern transitions. The adversarial robustness upper bound can be
approximated as:

Radv(f, x, ε) ≤ ε2 max
1≤k≤K

∥AAk
∥2p→2,

where K denotes the number of activation regions intersecting the perturbation ball Bε(x), and
AAk

∈ Rm×n is the affine transformation matrix for activation pattern Ak = {(l, i) : ui(x) ≥ θi}.

Proof: Consider an SNN represented by the function f : Rn → Rm, where Rn denotes the input
space and Rm denotes the output space. The adversarial perturbation measure at an input point
x ∈ Rn with a perturbation radius ε > 0 is defined as:

Radv(f, x, ε) = max
∥δ∥p≤1

∥f(x+ εδ)− f(x)∥22, (24)

where δ represents the perturbation direction vector constrained by the p-norm unit ball. Given the
piecewise-linear nature of the SNN, small perturbations εδ around an input x lead to a finite set of
possible activation pattern changes. Specifically, the activation pattern at any input x can be defined
as:

A(x) = {(l, i) : u(l)
i (x) ≥ θ

(l)
i }, (25)

where u(l)
i (x) denotes the membrane potential of neuron i at layer l, and θ

(l)
i denotes the correspond-

ing firing threshold. Consequently, each distinct activation pattern A corresponds uniquely to a
convex polyhedral region in the input space defined as:

RA = {x ∈ Rn : A(x) = A}. (26)

Within any such region RA, the network behaves as an affine transformation described by:

f(x) = AAx+ bA, (27)

where AA ∈ Rm×n and bA ∈ Rm are determined entirely by the network’s weights and biases under
the specific activation pattern A. For sufficiently small perturbations δ ensuring x+ εδ ∈ RA, the
network’s output change can explicitly be expressed as:

f(x+ εδ)− f(x) = εAAδ. (28)

Utilizing the properties of operator norms, we bound the change in network output within the given
region by:

G(x) = ∥f(x+ εδ)− f(x)∥22, G(x) ≤ ε2∥AA∥2p→2, (29)

where ∥AA∥p→2 denotes the operator norm of the matrix AA defined with respect to the input
p-norm and output 2-norm. Considering all possible regions intersecting the perturbation ball
Bε(x) = {x+ εδ : ∥δ∥p ≤ 1}, we derive the global bound for the adversarial perturbation measure
as:

Radv(f, x, ε) ≤ ε2 max
1≤k≤K

∥AAk
∥2p→2, (30)

where K represents the finite number of distinct activation regions intersecting Bε(x). Further
analyzing the structure of the matrices AAk

, one observes that the sensitivity of these matrices
primarily depends on neurons whose membrane potentials u(l)

i (x) are near their firing thresholds
θ
(l)
i . Consequently, larger distances between membrane potentials and thresholds indicate greater

activation stability, leading to smaller variations in the affine transformation AAk
and ultimately

reducing the operator norm ∥AAk
∥p→2. Formally stated, as the absolute difference between the

membrane potential u(l)
i (x) and the threshold θ

(l)
i increases, the adversarial perturbation measure

strictly decreases:

|u(l)
i (x)− θ

(l)
i | ↑ =⇒ Radv(f, x, ε) ↓ . (31)
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E PROOF OF THE PROBABILITY FOR SPIKING NEURONS’ STATE FLIPPING

Theorem: Consider a spiking neuron with membrane potential V [t] at time t, firing threshold Vth,
and subject to Gaussian white noise perturbation η[t] ∼ N (0, σ2). The probability Pflip of the
neuron’s state transition (flipping) is given by:

Pflip =

Φ
(

Vth−V [t]
σ

)
, if V [t] ≥ Vth,

1− Φ
(

Vth−V [t]
σ

)
, if V [t] < Vth,

where Φ(·) denotes the cumulative distribution function (CDF) of the standard normal distribution.

Proof: Let us consider the stochastic dynamics of the neuron’s membrane potential under noise
perturbation. Define the noise-perturbed membrane potential as H ′ = V [t] + η[t], where η[t] ∼
N (0, σ2) represents additive Gaussian white noise. The neuron’s state transition probability depends
on whether this perturbed potential crosses the threshold Vth. We analyze this probability by
considering two distinct cases.

For Case 1, when V [t] ≥ Vth, the deterministic dynamics would result in the neuron firing (output
state = 1). However, the presence of noise can induce a transition to the non-firing state (0). This flip
occurs if and only if the perturbed potential falls below threshold:

H ′ < Vth ⇐⇒ V [t] + η[t] < Vth ⇐⇒ η[t] < Vth − V [t]. (32)

Since η[t] follows a normal distribution with mean 0 and variance σ2, we can standardize this
inequality. The probability of transition from state 1 to 0 is:

P1→0 = P (η[t] < Vth − V [t]) = Φ

(
Vth − V [t]

σ

)
, (33)

where the last equality follows from the definition of the standard normal CDF.

For Case 2, when V [t] < Vth, the deterministic dynamics would result in no firing (output state = 0).
A transition to the firing state (1) occurs when noise pushes the membrane potential above threshold:

H ′ ≥ Vth ⇐⇒ V [t] + η[t] ≥ Vth ⇐⇒ η[t] ≥ Vth − V [t]. (34)

Following the same probabilistic reasoning, and noting that P (η[t] ≥ x) = 1− P (η[t] < x) for any
x, the probability of transition from state 0 to 1 is:

P0→1 = P (η[t] ≥ Vth − V [t]) = 1− Φ

(
Vth − V [t]

σ

)
. (35)

Combining these cases yields the desired expression for Pflip. Note that this result naturally captures
the intuition that the probability of state transition decreases as the membrane potential moves further
from the threshold in either direction, due to the monotonicity properties of Φ.

F PROOF OF THE PROBABILITY FOR NOISY-LIF’S STATE FLIPPING

Theorm: Consider a Noisy-LIF neuron with membrane potential V [t], Gaussian noise ξ[t] ∼
N (0, σ2), and threshold Vth. The probability of firing can be expressed as:

P (Sl = 1 | V [t], ξ[t]) = 1− Φ

(
Vth − (V [t] + ξ[t])

σ

)
,

where Φ(·) is the CDF of the standard normal distribution. As the σ increases, the probability density
function ϕ becomes broader, reducing the sensitivity to small variations in V [t].

Proof: The firing condition in the Noisy-LIF neuron model is given by the inequality V [t]+ξ[t] ≥ Vth.
To analyze the firing probability conditioned on the membrane potential V [t] and the noise ξ[t], we
start by rewriting the firing condition in terms of the standard normal distribution:

P (Sl = 1 | V [t], ξ[t]) = P (ξ[t] ≥ Vth − V [t]) = 1− Φ

(
Vth − V [t]

σ

)
. (36)
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Differentiating this probability with respect to V [t] gives us the sensitivity of the firing probability to
changes in the membrane potential:

∂P (Sl = 1 | V [t], ξ[t])

∂V [t]
=

1

σ
ϕ

(
Vth − V [t]

σ

)
, (37)

where ϕ is the probability density function of the standard normal distribution. This derivative
indicates how a small change in V [t] affects the probability of firing. To understand the impact of σ
on the sensitivity, consider that as σ increases, the width of ϕ also increases, making it flatter. This
change results in a decrease in the magnitude of the derivative, indicating reduced sensitivity to small
changes in V [t].

Table 7: Performance of the proposed TGO method on VGG11 under different λMax. The attack
perturbation ϵ = 2/255 for all attacks, iterative step k = 4, step size α = 0.01.

Datasets networks λMax clean FGSM RFGSM PGD7 PGD10 PGD20 PGD40

C
IF

A
R

10
0

BPTT

0.2 68.47 17.20 38.23 2.30 1.33 0.69 0.42
0.4 67.68 19.25 39.12 2.57 1.47 0.62 0.39
0.6 67.79 19.76 38.04 2.55 1.48 0.72 0.39
0.8 66.86 21.46 39.06 3.09 1.73 0.76 0.53

AT

0.2 65.40 23.06 46.81 12.56 10.11 7.78 6.69
0.4 64.93 24.14 47.90 12.83 10.12 7.72 6.59
0.6 64.42 25.05 47.71 13.05 10.23 7.37 6.75
0.8 63.44 26.98 46.47 14.42 10.79 7.47 6.49

RAT

0.2 66.78 28.68 51.77 17.08 13.27 9.96 9.06
0.4 66.41 30.54 51.61 17.59 13.86 9.61 8.28
0.6 65.64 31.90 51.44 18.84 14.59 10.57 8.90
0.8 63.32 33.84 50.79 20.60 16.12 11.16 9.32

G MORE EXPERIMENT DETAILS

In this research, the training process for all experiments extends over a duration of 300 epochs. To
address potential vanishing or exploding gradients, batch normalization techniques are integrated
throughout the network architecture. The LIF neurons in the experiments are configured with a decay
factor of 0.5 and a threshold of 1. The proposed noisy LIF neurons incorporate Gaussian noise with
a mean of 0 and a variance of 0.4. All experiments were conducted with 300 training iterations,
repeated thrice, and the reported results are the averages of these three runs. For optimization, we
implement the stochastic gradient descent (SGD) algorithm, starting with a learning rate set at 0.1.
The adjustment of the learning rate follows a cosine annealing strategy. All experiments are performed
on a PyTorch framework, facilitated by the computational power of an NVIDIA RTX 4090 GPU.

G.1 MORE EXPERIMENTAL RESULTS

We integrate the proposed TGO method into the BPTT, AT, and RAT training of SNNs. We observe
that the TGO method effectively and consistently enhances the robustness of vanilla models against
various attacks across different networks, such as VGG11 and WideResNet16, on CIFAR-10 and
CIFAR 100. This further validates the effectiveness of our approach.

G.2 EFFECT OF λMax ON ROBUSTNESS.

To further examine the impact of different values of λMax on the performance of SNNs, we conduct
a series of sensitivity experiments. As shown in the right part of Fig.5, the results indicate that as
λMax increases, there is a substantial enhancement in adversarial robustness.

However, this improvement is accompanied by a notable degradation in performance in clean
environments when λMax exceeds 0.5, highlighting a clear trade-off between adversarial robustness
and clean performance. To further refine the evaluation of the trade-off between performance and
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robustness for different settings of λMax, especially considering multiple attack scenarios, the
utility function U(λ) can be expanded into a summation form. This modified utility function more
comprehensively accounts for performance under various types of perturbations. Here is the updated
formulation:

U(λ) = α · P (λ) + (1− α) ·
n∑

i=1

Ri(λ). (38)

Where P (λ) denotes the performance on clean data, and Ri(λ) represents robustness under the
i-th adversarial attack. n is the total number of attack types, and α is a weighting coefficient that
balances the importance of clean data performance relative to adversarial robustness. Adjusting α and
considering all types of attack n, this formulation allows for a nuanced evaluation of λMax, ensuring
optimal performance and robustness in various real-world perturbations. As shown in Table 7, we
analyzed the impact of different values λMax on the performance of the TGO algorithm. Our results
indicate that λMax = 0.4 achieves the best balance between performance and robustness. Although
increasing λMax to 0.6 and 0.8 improves adversarial robustness, it significantly reduces performance
in clean data scenarios. This suggests that higher λMax values while improving stability under
perturbations compromise efficiency under normal conditions. Based on these findings, we selected
λMax = 0.4 for all subsequent experiments, as it offers the optimal trade-off between adversarial
resilience and performance in clean environments.

Figure 5: Loss landscape visualization and ablation experiments on λmax. The loss landscape of a
vanilla SNN and our TGO-optimized SNN under the RFGSM attack, trained using the BPTT method.
Notably, the vanilla SNN exhibits significant instability under the RFGSM attack, with its loss curve
demonstrating reverse local peaks, leading to substantial errors during inference. In contrast, the
TGO-optimized SNN maintains robust performance, with its global optimum loss remaining largely
unaffected by the attack. The right part shows CIFAR-100 results on WideResNet16 for clean, FGSM,
and RFGSM attacks with varying λmax.

H VISUALIZATION OF GRADIENT SPARSITY AND LOSS LANDSCAPE

To assess the effectiveness of TGO in adversarial environments, we visualized the Gradient Sparsity
and loss landscape of the BPTT-based WR16 model under RFSGM attack, comparing TGO optimiza-
tion with the vanilla SNN. The Gradient Sparsity quantifies the gradient ∇xfy between the label and
the input image.

Gradient Sparsity: The gradient visualization begins with an input image Ii ∈ RC×H×W , where C
denotes the number of channels (e.g., RGB), and H ×W represents the image’s spatial resolution.
A pre-trained model f(I; θ), parameterized by θ, maps the input image to a probability distribution
over K classes, denoted as p ∈ RK . The prediction process is given by:

p = f(Ii; θ), p[yi] =
exp(zyi

)∑K
k=1 exp(zk)

, (39)

where zk is the pre-activation value for class k prior to the application of the softmax function. The
model is optimized using the cross-entropy loss between the predicted probability distribution and
the true label yi, formulated as:

L(Ii, yi) = − logp[yi] = − log

(
exp(zyi)∑K
k=1 exp(zk)

)
. (40)
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To assess the sensitivity of the model’s predictions to the input, the gradient of the loss with respect
to the input image is computed, resulting in a gradient tensor gi ∈ RC×H×W , expressed as:

gi =
∂L(Ii, yi)

∂Ii
, gi[c, x, y] =

∂

∂Ii[c, x, y]
(− logp[yi]) , (41)

where c, x, and y correspond to the channel and spatial coordinates of the image. We compute
the gradient ∇xfy(x) under two scenarios: (1) a vanilla SNN, and (2) a TGO-optimized SNN,
both trained using BPTT. As shown in Fig.6, we visualize ∇xfy(x) for both models on CIRAF00.
The experimental results clearly indicate that, compared to the vanilla SNN, the TGO-optimized
SNN exhibits sparser gradients with respect to the input image, demonstrating the effectiveness of
membrane potential constraints in increasing gradient sparsity in SNNs. These findings also validate
that sparse gradients contribute to enhancing the robustness of SNNs.

Figure 6: Heatmaps of ∇xfy, where f denotes a vanilla SNN (top) or our TGO-optimized SNN
(bottom).

Loss Landscape: The process of visualizing the loss landscape starts with a pre-trained model
parameterized by θ ∈ RM , where M represents the total number of parameters in the model. The
performance of the model is quantified using a loss function L(θ), defined over a dataset of N
samples as:

L(θ) = 1

N

N∑
i=1

ℓ(f(Ii; θ), yi), ℓ(f(Ii; θ), yi) = − logp[yi], (42)

where f(Ii; θ) denotes the output of the model for input Ii, ℓ is the sample-wise loss (e.g., cross-
entropy), and (Ii, yi) are the input and label for the i-th sample. The predicted probability distribution
p ∈ RK is computed via softmax as:

p[yi] =
exp(zyi

)∑K
k=1 exp(zk)

, zk = fk(Ii; θ), (43)

where zk is the pre-activation value for class k, and K is the total number of classes. To visualize the
local geometry of L(θ) around a specific parameter set θ, two directions d1,d2 ∈ RM are defined,
satisfying:

∥d1∥ = ∥d2∥ = 1, d⊤
1 d2 = 0. (44)

Typically, d1 is chosen as the gradient direction:

d1 =
∇θL(θ)
∥∇θL(θ)∥

, ∇θL(θ) =
∂L(θ)
∂θ

, (45)

while d2 is sampled randomly and orthogonalized to d1. The perturbed parameter vector is then
expressed as:

θ′ = θ + αd1 + βd2, (46)
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where α, β ∈ R control the magnitudes of the perturbations along d1 and d2. At each perturbation
point (α, β), the loss is computed as:

L(θ′) = 1

N

N∑
i=1

ℓ(f(Ii; θ + αd1 + βd2), yi). (47)

The parameter space is discretized into a grid of perturbation values α ∈ [−αmax, αmax] and β ∈
[−βmax, βmax], such that the loss values form a matrix:

L = [L(θ + αd1 + βd2)] ∈ Rnα×nβ , (48)

where nα and nβ are the number of grid points along the α and β directions, respectively. Finally, L
is visualized as either a 3D surface or a 2D contour plot:

L(α, β) = L(θ + αd1 + βd2) ∈ R3, (49)

where the gradient of the loss surface can reveal the flatness, sharpness, or other geometric properties
of L(θ) in the vicinity of the parameter set. As shown in the left part of Fig. 5, the 3D loss landscape
reveals that the TGO-optimized model maintains stable loss convergence, demonstrating robust
performance. In contrast, the vanilla SNN exhibits localized reverse peaks in the loss landscape under
attack. This instability is due to the FGSM gradient-based attack, which perturbs the input along the
loss gradient, causing significant fluctuations in the loss. Specifically, FGSM computes the gradient
of the loss with respect to the input image and perturbs the input to maximize the loss, pushing the
vanilla SNN into regions of the loss landscape that are highly sensitive to small perturbations. In
contrast, the TGO-optimized model exhibits smoother transitions in the loss landscape, indicating
that its optimization enhances stability against adversarial attacks.

I LIMITATIONS

The limitations of this study include the performance evaluation of Our TGO method on larger
model architectures, primarily because existing research predominantly utilizes these specific network
structures and their corresponding datasets. For comparative consistency, we maintained these
established architectures. Additionally, we have not addressed deployment challenges related to
hardware transitions, nor conducted robustness testing in authentic edge-computing adversarial
environments. These limitations will be addressed in future research. The experimental results
presented in this paper are reproducible, with detailed explanations of model training and configuration
provided in the main text and supplemented in the appendix. Our code and models will be made
publicly available on GitHub upon acceptance of this paper.

J USE OF LARGE LANGUAGE MODEL

In preparing this manuscript, we utilize a large language model (LLM) solely to aid and polish the
writing. The LLM is used for grammar checking, language refinement, and improving clarity of
expression. It does not contribute to the formulation of research ideas, methodology, experiments,
data analysis, or conclusions. All presented in this paper is entirely the work of the authors.
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