
Under review as submission to TMLR

BoSS: A Best-of-Strategies Selector as an Upper Baseline
for Deep Active Learning

Anonymous authors
Paper under double-blind review

Abstract

Active learning (AL) aims to reduce annotation costs while maximizing model performance
by iteratively selecting valuable instances. While foundation models have made it easier
to identify these instances, existing selection strategies still lack robustness across different
models, annotation budgets, and datasets. To quantify the performance gains that are still
attainable and to establish a reference point for research, we explore oracle strategies, i.e.,
upper baseline strategies approximating the optimal selection by accessing ground truth
information unavailable in practical AL scenarios. Current oracle strategies, however, fail
to scale effectively to large datasets and complex deep neural networks. To tackle these
limitations, we introduce the Best-of-Strategy Selector (BoSS), a scalable oracle strategy
designed for large-scale AL scenarios. BoSS constructs a set of candidate batches through an
ensemble of selection strategies and then selects the batch yielding the highest performance
gain. As an ensemble of selection strategies, BoSS can be easily extended with new state-
of-the-art strategies as they emerge, ensuring it remains a reliable upper baseline in the
future. Our evaluation demonstrates that i) BoSS outperforms existing oracle strategies,
ii) state-of-the-art AL strategies have significant room for improvement, especially in large-
scale datasets with many classes, and iii) one possible solution to counteract the inconsistent
performance of AL strategies is to employ an ensemble-based approach for the selection.

1 Introduction

Despite the era of foundation models (Gupte et al., 2024), most machine learning applications still require
carefully annotated domain- or task-specific data (Rauch et al., 2024). Active learning (AL) (Settles, 2009)
aims to reduce annotation costs by prioritizing instances that maximize model performance. Selecting which
subset of instances to annotate is determined by a selection strategy, which is the most critical element of
AL. However, recent studies show that there is no single selection strategy that outperforms every other
alternative across different domains, model architectures, and budgets (Munjal et al., 2022; Lüth et al.,
2024; Werner et al., 2024). AL aims to maximize model performance, yet most strategies do not directly
select instances that optimize this goal. Instead, they rely on performance-related heuristics, which can be
suboptimal in some scenarios and highly effective in others. Moreover, once chosen, a selection strategy
typically remains fixed throughout the entire AL process, limiting the ability to adapt to distribution shifts
caused by iteratively annotating new instances. For example, some strategies, such as TypiClust, work well
in early stages of AL, but tend to fail in later stages (Hacohen et al., 2022). This inconsistency underscores
the challenge of identifying the instances that yield the greatest performance gains for a given budget.

Nevertheless, it is possible to conceptualize a selection strategy that approximates an optimal selection
(i.e., upper baseline) using a so-called oracle strategy that leverages ground truth information, including
instance labels or access to the test data. Although this information is unattainable in real AL applications,
such an oracle strategy offers a valuable upper bound for assessing state-of-the-art selection strategies.
Comparing the performance gap between selection strategies and the oracle strategy reveals how far these
approaches deviate from the ideal one and whether that deviation is concentrated in early, later, or across all
cycles. Moreover, analyzing how the oracle selects data may offer new insights for refining existing strategies
or guide the development of new, even more effective ones.

1

Under review as submission to TMLR

However, approximating the optimal selection strategy is inherently challenging due to the combinatorial
explosion in finding the best subset, along with the necessity of model retraining. Although some studies
have tried to approximate the optimal strategy (Sandrock et al., 2023; Zhou et al., 2021; Werner et al., 2024),
these methods are feasible only for small-scale models and datasets, mainly due to their high computational
demands, which arise from assessing the influence of each instance independently instead of in batches.
While Sandrock et al. (2023) focuses on kernel-based models with tabular data, Zhou et al. (2021) use
only small convolutional and recurrent architectures with small-scale datasets such as Fashion-MNIST (Xiao
et al., 2017). Although a more practical strategy was introduced by Werner et al. (2024) recently, it remains
computationally expensive for larger budgets. For example, due to high computational costs, the authors
extrapolated results for batch sizes above 500. Overall, current oracle strategies do not scale to more
challenging, larger datasets, making it impossible to compare them to state-of-the-art AL selection strategies
in these settings.

Random
Typiclust
Margin
DropQuery
CoreSets
BAIT
BADGE
AlfaMix
BoSS

Number of Labels
A

cc
ur

ac
y

Im
pr

ov
em

en
t

ImageNet

Figure 1: Accuracy improvement over ran-
dom sampling for BoSS and state-of-the-art AL
strategies using DINOv2-ViT-S/14.

In this article, we propose the Best-of-Strategies Selec-
tor (BoSS), a simple and scalable oracle strategy for
batch AL that approximates the optimal selection and can
be efficiently applied to large-scale deep neural networks
(DNNs) and datasets. BoSS first constructs a diverse pool
of candidate batches through an ensemble of selection
strategies. It then adopts a performance-based perspec-
tive, selecting the candidate batch that, once annotated,
leads to the highest performance improvement. For effi-
ciency, BoSS freezes the pretrained backbone and assesses
the performance improvement of candidate batches by re-
training only the final layer during selection. By combin-
ing a ensemble-based preselection of candidate batches, a
performance-based batch assessment, and a frozen back-
bone, BoSS serves as a batch oracle strategy that also works in large-scale deep AL settings, something that
previous oracles do not achieve (cf. Fig. 1). Our experiments on a variety of image datasets demonstrate that
i) BoSS outperforms existing oracle strategies under comparable computational constraints, ii) current state-
of-the-art AL strategies still leave considerable room for improvement, particularly in large-scale multiclass
scenarios, and iii) there is no single AL strategy consistently dominates across all AL cycles, highlighting
the potential for a robust ensemble-driven AL strategy. Our contributions can be summarized as follows:

Contributions
• Scalable Oracle: We introduce BoSS, the first batch oracle strategy scalable to large datasets and

complex DNNs. BoSS combines an ensemble of selection strategies with a performance-based selection,
efficiently realized by retraining only the final linear layer.

• Comprehensive Evaluation: Extensive experiments demonstrate that i) BoSS outperforms existing
oracle strategies and ii) current state-of-the-art AL strategies have substantial room for improvement.
Our implementation is publicly available at https://github.com/anonymousauthors/code.

• Insights into AL Development: Our analysis highlights i) that state-of-the-art selection strategies
underperform on large-scale, multiclass datasets and ii) that ensemble-based AL approaches can be a
potential solution for mitigating the inconsistencies of commonly employed single AL strategies.

2 Related Work

Selection strategies in AL are typically divided into uncertainty- and representativeness-based strategies.
While popular uncertainty-based strategies, such as Margin (Settles, 2009) or BADGE (Ash et al., 2020),
assume that a selection of difficult (or uncertain) instances improves performance, representativeness-based
strategies, such as Typiclust (Hacohen et al., 2022), favor instances that best represent the underlying data
distribution. In recent years, a combination of both has proven to work well (Ash et al., 2021; Gupte et al.,
2024) because both heuristics are partially related to model performance. Furthermore, as it is common to

2

https://github.com/anonymousauthors/code

Under review as submission to TMLR

select batches in deep learning, most strategies ensure diversity within a batch through clustering, avoiding
the selection of similar instances (Kirsch et al., 2023; Ash et al., 2020; Gupte et al., 2024).

Despite substantial progress in AL, selection strategies can still fail because heuristics such as uncertainty
or representativeness do not guarantee performance improvements (Zhao et al., 2021). Consequently, recent
studies have increasingly focused on evaluating the robustness of AL strategies, revealing significant
challenges in identifying the universally best strategy. Munjal et al. (2022) emphasize this difficulty by
demonstrating that no single selection strategy consistently outperforms others, with results heavily depen-
dent on experimental conditions and hyperparameter tuning during AL cycles. Similarly, Lüth et al. (2024)
and Rauch et al. (2023) further explore these inconsistencies and propose a standardized evaluation proto-
col, finding that BADGE generally performs best across diverse experimental setups. However, in contrast,
Werner et al. (2024) evaluate strategies across multiple domains, including images, text, and tabular data,
concluding that Margin yields the most consistent performance improvements. These conflicting findings
underscore the lack of coherence in experimental outcomes and emphasize the ongoing challenge of finding
a universally best AL strategy.

Given these challenges, it is natural to explore how an optimal selection strategy would look like. For this
reason, oracle strategies (or oracle policies) have been introduced. Oracle strategies (Zhou et al., 2021;
Sandrock et al., 2023) aim to approximate the optimal selection in a feasible time by leveraging ground
truth information typically unavailable to conventional AL selection strategies (e.g., access to all labels).
Despite their potential, oracle strategies remain underexplored in the literature, and existing methods often
struggle with scalability issues. Zhou et al. (2021) introduced an oracle strategy that employs a simulated
annealing search (SAS) to identify an optimal selection order given a fixed budget. Even though they
achieve impressive performance, the high number of search steps implies high computational cost, limiting
an application to large datasets. Sandrock et al. (2023) introduced an iterative, non-myopic oracle strategy
that selects instances based on both immediate and long-term performance improvements through a look-
ahead approach. In their experiments, they mainly work with tabular data and employ a kernel-based
classifier for fast retraining. Recently, Werner et al. (2024) proposed an oracle strategy as part of an AL
benchmark, which we refer to as cross-domain oracle (CDO). Their approach greedily selects the instance,
leading to the highest performance gain from a fixed number of randomly chosen instances. If no instance
increases test performance, the selection is performed according to Margin. Due to selecting a single instance
at a time, this approach requires retraining after each selection, significantly limiting its scalability for larger
budgets.

Methodologically, our oracle strategy positions itself between the strategies of Zhou et al. (2021) and Werner
et al. (2024). While Zhou et al. (2021) optimize the selection over the entire labeled pool, and Werner et al.
(2024) adopt a greedy, single-instance strategy, BoSS focuses explicitly on batch acquisitions. Consequently,
our oracle strategy provides a less greedy perspective than (Werner et al., 2024) by considering the collective
performance improvement of instances within a batch. Additionally, our oracle searches more efficiently than
(Zhou et al., 2021) by focusing on batch-level performance improvements instead of the entire labeled pool
(cf. Section 4). Searching for an optimal batch from a large pool is considerably simpler than searching for a
(much larger) labeled pool. Consequently, BoSS demonstrates superior scalability, remaining effective even
on large-scale datasets such as ImageNet.

3 Notation

We consider classification tasks in a pool-based AL setting. Let x ∈ X be an instance and y ∈ Y = {1, . . . , K}
denote its corresponding label, where K is the number of classes. Further, let U ⊂ X be the large unlabeled
pool and L ⊂ X × Y be the labeled pool. While U is assumed to be sampled i.i.d. from distribution p(x), L
is typically biased towards instances a selection strategy considers informative. Additionally, since our focus
is on oracle strategies for evaluation, we consider an evaluation dataset E . At the start of AL, we initialize
L by randomly sampling b instances from U . Then, we perform a total of A AL cycles, selecting b instances
to label in each cycle. The total labeling budget is denoted by B = b + A · b. As our model, we consider a
DNN consisting of a feature extractor hϕ : X → RD and a classification head gθ : RD → RK , where ϕ and
θ are trainable parameters. Hence, a DNN is a function fω = (gθ ◦ hϕ)(x) mapping an instance to the logit

3

Under review as submission to TMLR

space, where ω = {ϕ, θ}. The conditional distribution p(y|x, ω) = [softmax(fω(x))]y is modeled through
the output of the DNN. We additionally consider the posterior distribution over parameters p(ω|L) and the
predictive distribution p(y|x, L) = Ep(ω|L)[p(y|x, ω)].

4 A Formalization of Performance-based Active Learning

The main goal of AL is to acquire the labeled pool that minimizes the model’s error (or maximizes its
performance) on unseen instances. We formalize the corresponding optimization problem by

L⋆ = arg min
L⊂U

Ep(x,y)
[
ℓ
(
y, p(y|x, L)

)]
subject to |L| = B, (1)

where ℓ(y, p(y|x, L)) denotes a loss function that quantifies the discrepancy between the true label y and
the probabilistic prediction p(y|x, L). Note the slight abuse of notation L ⊂ U to signify that instances
in L are seen as a subset of those in U , even though L includes labels and U does not. Solving Eq. (1) is
computationally infeasible due to the enormous number of possible combinations of instances for L and, more
importantly, the absence of labels. Focusing on oracle strategies, we consider a supervised subset selection
problem, i.e., the labels for all instances in U are accessible to the oracle.

While most AL selection strategies address the optimization problem in Eq. (1) indirectly (e.g., through
uncertainty), some traditional strategies aim to optimize this objective directly (Roy & McCallum, 2001).
To this end, they employ a greedy approach, simplifying the problem of choosing L to acquiring a single
label per cycle. More specifically, for B cycles, they select the instance xc for annotation that leads to the
lowest error when added to the labeled pool:

x⋆ = arg min
xc∈U

Ep(x,y)
[
ℓ
(
y, p(y|x, L+)

)]
, (2)

where L+ = L ∪ {(xc, yc)} is the extended labeled pool. This new optimization problem resolves the
combinatorial problem by sequentially extending the labeled pool L.

However, the acquisition of a single instance per cycle poses several challenges when working with DNNs.
The greedy selection in Eq. (2) only considers the immediate reduction in error rather than considering the
long-term impact of instances (Zhao et al., 2021). This is particularly problematic for DNNs, where retraining
with a single additional instance has little influence on the model’s predictions (Sener & Savarese, 2018).
Furthermore, retraining the model after each label acquisition is computationally impractical, especially in
deep learning, where model training can take hours or even days (Huseljic et al., 2025).

To address this problem, we reformulate the optimization problem in Eq. (2) to allow for batch selection.
Specifically, over ⌈B/b⌉ cycles, we select a batch B = {xc1 , . . . , xcb

} of b instances that minimize the error
according to

B⋆ = arg min
B⊂U

Ep(x,y)
[
ℓ
(
y, p(y|x, L+)

)]
, (3)

where L+ = L ∪ {(xi, yi) | i = c1, . . . , cb}. Although this formulation introduces a combinatorial problem of
selecting the batches B, it is simpler than the one in Eq. (1), as batch acquisition sizes are typically much
smaller than the labeled pool in deep AL.1

While evaluating all possible sets of B remains infeasible, our idea is to effectively approximate the opti-
mization problem by only considering a subset of the most promising batches. The idea of directly selecting
a batch from a set of batches is mostly avoided in deep AL Ash et al. (2021); Hacohen et al. (2022); Gupte
et al. (2024). Typically, as heuristic strategies often yield batches with highly similar instances (Kirsch et al.,
2023), the batch selection process is simplified through clustering of representations, emphasizing diversity
by selecting informative instances from each cluster (Ash et al., 2020; Hacohen et al., 2022; Gupte et al.,
2024). This is especially important in early cycles of AL. However, it enforces diversity at every cycle, even

1The complexity of this combinatorial problem depends on the acquisition size b. By assuming 1 < b ≪ |U|
2 , we obtain a

problem that is less complex than the worst-case with
(|U|

|U|/2

)
subsets.”

4

Under review as submission to TMLR

when it is not beneficial (Hacohen et al., 2022). In contrast, directly searching for the best batch, as done
in Eq. (3), allows the model itself to determine the most effective batch each cycle. While early cycles may
benefit from diverse batches, later stages might favor more uncertain and less diverse ones. Additionally,
directly considering promising batches rather than instances better captures the instances’ long-term impact
by evaluating how they collectively influence performance, leading to less greedy behavior.

5 An Efficient Oracle Strategy for Deep Neural Networks

We consider the objective in Eq. (3) to build an oracle strategy approximating optimal batch selection that
can be efficiently applied in deep learning settings. Our proposed solution can be expressed as follows:

B⋆ = arg min
B⊂U︸ ︷︷ ︸

Batch Selection

Ep(x,y)︸ ︷︷ ︸
Performance Estimation

[
ℓ
(
y, p(y|x, L+)︸ ︷︷ ︸

Retraining

)]
≡ arg min

B∈{B1,...,BT }

∑
(x,y)∈E

1
[
y ̸= arg max

c∈Y
p(c|x, L+)

]
(4)

The optimization problem comprises three key components: Batch selection involves identifying an optimal
batch B that yields the largest performance improvement, performance estimation considers how to eval-
uate the model’s performance when trained with additional data, including evaluation dataset E and loss
function ℓ, and retraining refers to the process of efficiently retraining the DNN and computing updated
predictions p(y|x, L+). In this section, we focus on how to efficiently implement each of these components.

5.1 Batch Selection

As described in Section 4, searching for the optimal batch introduces a combinatorial problem. For example,
with an unlabeled pool of 1,000 instances and an acquisition size of 10, the number of possible batches is(|U|

b

)
=

(1000
10

)
= 2.63 · 1023, making it computationally infeasible to iterate over all batches. In BoSS, we

address this by restricting the search space to a fixed subset of T ≪
(|U|

B

)
candidate batches {B1, . . . , BT }.

Consequently, the effectiveness of this approximation depends on the particular choice of those candidate
batches. A naive approach is to solely draw batches randomly from the unlabeled pool

Bt ∼ Unif
(
[U]b

)
, (5)

where Unif(·) denotes uniform sampling and [U]b denotes all possible subsets of U with size b. However, this
approach might be inefficient because randomly selecting batches from the unlabeled pool ignores information
about the data distribution or the model. In the example above, even if billions of near-optimal batches exist,
the probability that a random sample of 100 candidate batches contains one of them is almost negligible.

For this reason, we suggest selecting a set of candidate batches through existing selection strategies. Recent
studies (Hacohen et al., 2022; Munjal et al., 2022; Werner et al., 2024) have shown that most strategies
lack robustness across varying AL scenarios (e.g., a strategy effective for low budgets may not perform
well for higher budgets). Given these insights, we leverage a variety of state-of-the-art selection strategies.
By incorporating strategies that prioritize diversity or representativeness, we enhance exploration for lower
budgets. Similarly, emphasizing uncertainty or model change supports exploitation for higher budgets.
Constructing candidate batches {B1, . . . , BT } in this manner, and then selecting the one that minimizes the
error, naturally balances exploration and exploitation. In principle, all strategies from the literature are
potentially suitable for our oracle strategy. Furthermore, our oracle is highly flexible, since newly proposed
strategies can be seamlessly integrated. Here, we focus on a carefully chosen set of state-of-the-art strategies
(cf. Table 1) that are selected based on three jointly considered key criteria:

• Coverage of relevant heuristics: The selection strategies encompass all heuristics discussed in
Section 2.

• State-of-the-art performance: These selection strategies have consistently demonstrated strong
performance in research.

• Efficient computation: Each strategy is associated with low computational costs to ensure scal-
ability to large-scale datasets with many instances, classes, and/or feature dimensions.

5

Under review as submission to TMLR

Additionally, for two clustering-based strategies, we also include a supervised version that exploits labels
to ensure each cluster corresponds to a class. We found that this is particularly valuable in tasks with
suboptimal representations when clustering is difficult.

Preselecting candidate batches helps solving Eq. (3) more effectively, yet the number of batches T that can
be considered for the search is constrained by the available deterministic strategies. Furthermore, despite
their computational efficiency, some selection strategies still can become costly for large unlabeled pools.
To address this, we propose to select multiple candidate batches by applying each strategy to randomly
sampled candidate pools C1, . . . , CT ⊂ U , each constrained by a maximum pool size kmax. This reduces
computational cost and memory requirements while allowing us to increase the number of candidate batches,
even for deterministic selection strategies. Furthermore, we found it useful to vary the size of the candidate
pools, as some strategies are prone to outliers or selecting similar instances (cf. Appendix B). The proposed
algorithm is detailed in Algorithm 1.

Algorithm 1 Candidate Batch Selection
Require: Batch size b, number of batches T , selection strategies S =
{s1, . . . , so}, maximum candidate pool size kmax, unlabeled pool U , la-
beled pool L, model ω

1: Bcand ← ∅
2: for each selection strategy s ∈ S do
3: T̂ ← ⌊T/|S|⌋ ▷ Determine the number of batches per strategy
4: for repeat T̂ times do
5: k ← Unif({b, . . . , kmax}) ▷ Sample the size k of the candidate pool
6: C ← Unif([U]k) ▷ Sample a candidate pool C ⊂ U of size k
7: B ← s(C,L, b, ω) ▷ Apply selection strategy s on candidate pool C
8: Bcand ← Bcand ∪ {B} ▷ Extend Bcand with batch B
9: end for

10: end for
11: return Bcand

Table 1: Employed selection
strategies for sampling candidate
batches with their main character-
istics. Strategies marked with *
use labels as clusters.

AL Strategy Unc Repr Div

Random (2009) ✗ ✓ ✓
Margin (2009) ✓ ✗ ✗

CoreSets (2018) ✗ ✗ ✓
BADGE (2020) ✓ ✗ ✓

FastBAIT (2024) ✓ ✓ ✓
TypiClust (2022) ✗ ✓ ✓

AlfaMix (2022) ✓ ✓ ✓
DropQuery (2024) ✓ ✓ ✓
TypiClust* (2022) ✓ ✓ ✓

DropQuery* (2024) ✓ ✓ ✓

5.2 Performance Estimation

Evaluating the model performance after retraining with every candidate batch is essential to determine
how much the model has improved. In a supervised setting, this evaluation is typically performed using
a labeled validation dataset. However, in AL, such labeled validation datasets are typically not available.
Consequently, performance estimation becomes an unsupervised problem and requires alternative methods
to assess the model’s effectiveness. Performance-based selection strategies, such as expected error reduc-
tion (Roy & McCallum, 2001), address this challenge by estimating the expected error that considers the
factorization of the joint distribution p(x, y).

For BoSS, we aim to establish an upper baseline, i.e., approximating the best possible strategy that leverages
all available information. Thus, it is justified to utilize the test split of a given dataset as our evaluation
dataset E to estimate model performance. This ensures that the performance of the retrained model is
accurately captured, and that the selected batches indeed result in the highest gain. Additionally, for
the loss function ℓ(·), the zero-one loss works best. This is because AL strategies are typically evaluated
via accuracy learning curves and the zero-one loss directly corresponds to the accuracy. Additionally, our
experiments in Section 8 show that the Brier score also works well. This is likely due to being a proper
scoring rule, leading to a fine-grained assessment of probabilistic predictions (Ovadia et al., 2019).

5.3 Retraining

Retraining, particularly with DNNs, is the most time-consuming step in performance-based AL. Generally,
batch selection is employed to avoid frequent training after each AL cycle. In our oracle strategy, however, the
DNN is to be retrained for each candidate batch, resulting in T retraining repetitions per selection. Although

6

Under review as submission to TMLR

this is faster than retraining after a single instance, the computational overhead is still considerable and
limits the size and the number of candidate batches that can be evaluated. For larger-scale datasets such as
ImageNet, this process gets increasingly expensive as the labeled pool L grows, making naive retraining with
each candidate batch computationally infeasible. Moreover, retraining must accurately reflect changes in L
to capture which batches truly improve performance. Specifically, even small changes in L can considerably
alter the training dynamics of large DNNs (e.g., change of optimal hyperparameters) potentially yielding
noisy and unreliable performance estimates.

For this reason, we propose a selection-via-proxy approach (Coleman et al., 2020) that decouples the re-
training process during the selection from the usual cyclic training in AL. Specifically, we freeze the feature
extractor’s parameters ϕ and only retrain the final linear layer θ. This not only significantly reduces retrain-
ing time but also enhances stability by restricting parameter updates to a much simpler model. Furthermore,
to assess the candidate batches during the selection, we reduce the number of retraining epochs from 200 (as
used in our experiments after selection) to 50. As shown in Section 8, this is sufficient to identify influential
candidate batches while reducing computation substantially.

While this approach enables the efficient use of BoSS, there are additional approaches to improve retraining
efficiency. For instance, by employing continual learning strategies (Huseljic et al., 2025), the retraining time
of the DNN scales only with the new batch B, making the process largely independent of the size of the
extended dataset L+. As these approaches involve new training hyperparameters, we opt for the simpler
variant of retraining only the last layer and leave the exploration of more complex alternatives for future
work.

6 Comparison of Time Complexity

We investigate BoSS’s time complexity of selecting a batch in comparison to existing oracle strategies.
Specifically, we consider SAS (Zhou et al., 2021) and the recently introduced CDO (Werner et al., 2024).
The time complexities in O-notation are summarized in Table 2, where train-eval(θ, L, E) denotes the cost
of retraining model θ on dataset L and then evaluating it on dataset E . Since all oracle strategies primarily
differ in terms of retraining and evaluation frequency, we also report the hyperparameters recommended by
the respective approaches along with the resulting number of retrainings and evaluations per batch.

CDO (Werner et al., 2024) greedily selects the instance with the highest performance improvement from m
randomly sampled instances. This requires b · m retrainings for a batch of size b. Due to its greedy nature,
CDO acquires instances sequentially and retrains each time on a labeled pool expanded by one instance,
denoted as L+i. SAS (Zhou et al., 2021) performs simulated annealing and greedy refinement search steps,
represented by parameters s and g, respectively. Their approach requires s + g retrainings, whereby the
labeled pool L+b has been extended by a batch of b instances. Additionally, as SAS evaluates the entire
learning curve at each search step (rather than the improvement of a batch), retraining and evaluation times
are multiplied by the total number of AL cycles A. In contrast to these strategies, BoSS depends solely on
the number of candidate batches T , determined by the number of batches per strategy s ∈ S. Consequently,
the retraining frequency remains independent of batch size b and the number of cycles A, offering a significant
advantage in terms of scalability.

For CDO, Werner et al. (2024) recommend setting m = 20, resulting in 20 retrainings per instance selection
within a batch. This quickly becomes infeasible with larger batch sizes that are common for more complex
datasets requiring higher budgets. For example, a batch size of b = 100 would require to retrain 2,000 times,
which becomes especially expensive towards the end of the AL process, as the labeled pool L increases in
size. Similarly, SAS recommends s = 25,000 simulated annealing steps and g = 5,000 greedy refinement
steps. However, these parameters determine the frequency of retrainings to obtain the final optimized pool,
i.e., |L| = B. As we compare the frequency of retraining per batch, we divide these values by the total
number of AL cycles used in our experiments (A = 20). This results in 20 · 1,500 retrainings, which is even
less scalable to larger datasets.

While our approach involves less frequent retraining, it additionally requires preselecting candidate batches
using specific selection strategies. This step introduces extra computational overhead for batch selection.

7

Under review as submission to TMLR

Table 2: Summary of time complexities of oracle strategies.

Time Complexity Recommended # Retrains/EvalsOracle Strategy per Batch Hyperparameters per Batch

CDO (Werner et al., 2024) O(m ·
∑b

i=1
train-eval(θ, L+i, E)) m = 20 20 · b

SAS (Zhou et al., 2021) O((s + g) · A · train-eval(θ, L+b, E)) s = 1,250, g = 250 1,500 · A

BoSS O(T · train-eval(θ, L+b, E)) T = 100 10 · |S|

However, with the set of efficient selection strategies we proposed in Table 1, combined with sampling candi-
date pools significantly smaller than the entire unlabeled pool, this computational burden remains negligible
(cf. Section 7). Nevertheless, it is important to highlight that when extending BoSS with more contemporary
selection strategies, one must ensure that the computational cost associated with these strategies is consid-
ered. In our experiments, we analyzed how the number of candidate batches per strategy affects performance
and, in general, increasing this number will always lead to an improvement. However, in Section 8, we found
that increasing the number of candidate batches beyond 10 did not yield notable benefits. Thus, we adopt
10 batches per strategy, resulting in a total of T = 100 candidate batches.

7 Empirical Evaluation of BoSS: Oracle-Level and State-of-the-art AL Comparisons

We evaluate our oracle strategy for the task of image classification. After detailing the experimental setup, we
begin with a comparison of BoSS to other oracle strategies. Afterward, we benchmark our approach against
state-of-the-art selection strategies across ten image datasets. Our evaluation is driven by four research
questions:

RQ1: Given comparable computational resources, can BoSS match or exceed the accuracy improvements
of state-of-the-art deep AL oracle strategies (CDO, SAS)?

RQ2: Does BoSS consistently match or surpass the highest test accuracy that any current state-of-the-art
AL strategy achieves at every cycle, making it a practical upper baseline?

RQ3: Where lies the greatest potential for improving state-of-the-art AL strategies when comparing them
to BoSS across cycles, datasets of varying complexity, and different models?

RQ4: What insights regarding AL research can we get by analyzing which selection strategy’s candidate
batch has been chosen by BoSS?

In a nutshell, we find that BoSS not only ties or outperforms CDO/SAS in most settings (RQ1) but also serves
as a reliable upper baseline (RQ2), with the biggest performance gaps appearing in large-scale multiclass
settings (RQ3). Moreover, our results highlight that each AL strategy contributes to the selection of BoSS
and that there is no single best strategy across datasets or cycles within a dataset (RQ4), emphasizing
advantages in using an ensemble-based AL approaches that combine multiple strategies (Donmez et al.,
2007).

7.1 Experimental Setup

We evaluate our oracle strategy on ten image datasets of varying complexity. For each dataset, we conduct
20 AL cycles, starting with a randomly selected initial pool of b instances, and selecting an additional batch
of b new instances in each subsequent cycle. Batch sizes were determined by analyzing the convergence of
learning curves obtained via Random sampling. Consequently, the complexity of each dataset is indicated
not only by the number of classes K but also by the respective batch size. Table 3 summarizes these datasets,
their number of classes K, and the employed AL batch sizes b.

We employ two pretrained Vision Transformers (ViTs) (Dosovitskiy et al., 2020) that are com-
plemented by a randomly initialized fully connected layer. Specifically, we use DINOv2-ViT-
S/14 (Oquab et al., 2024) (22M parameters) and SwinV2-B (Liu et al., 2022) (88M parameters),
whose final hidden layers provide feature dimensions of D = 384 and D = 1024, respectively.

8

Under review as submission to TMLR

Table 3: Overview of datasets, showing
number of classes K and batch size b.

Dataset # Classes (K) Batch Size (b)

CIFAR-10 (2009) 10 10
STL-10 (2011) 10 10
Snacks (2021) 20 20
Flowers102 (2008) 102 25
Dopanim (2024) 15 50
DTD (2014) 47 50
CIFAR-100 (2009) 100 100
Food101 (2014) 101 100
Tiny ImageNet (2015) 200 200
ImageNet (2015) 1000 1000

The two differ both in size and in training paradigm: The for-
mer was trained via self-supervised learning, while the latter
was pretrained on ImageNet in a supervised manner. After
a batch is selected, each DNN is trained by fine-tuning the
last layer on frozen representations for 200 epochs, employ-
ing SGD with a training batch size of 64, a learning rate of
0.01, and weight decay of 0.0001. In addition, we utilize a co-
sine annealing learning rate scheduler. These hyperparameters
were determined empirically across datasets by investigating
the loss convergence on validation splits. Note that the num-
ber of epochs here applies to training after an AL cycle once a
batch is selected. In contrast, the retraining epochs described
in Section 4 refer to those we use to assess candidate batches.

To evaluate the AL process, we examine the resulting learning curves of oracle and selection strategies.
These include relative learning curves, which represent the accuracy difference of each strategy compared
to Random sampling, and the area under the absolute learning curves (AULC). The corresponding absolute
learning curves can be found in Appendix F. All reported scores are averaged over ten trials. For visual
clarity, standard errors have been omitted from the figures.

7.2 Benchmark Results

To answer RQ1, we first align hyperparameters of CDO and SAS to closely match the empirical runtime of
BoSS, and then compare the resulting learning curves. In principle, with a longer runtime we consider more
combinations to solve the combinatorial problem, inevitably improving each oracle’s performance. Accord-
ingly, we ensure a fair comparison by approximately equalizing runtimes. Due to the high computational
effort of oracle strategies, we focus on four datasets using the DINOv2-ViT-S/14 model. When aligning
hyperparameters, we made sure that CDO and SAS have at least as much compute as BoSS, ensuring that
any performance advantage is not due to differing computational resources. The employed hyperparameter
settings are summarized in Table 4, while the associated empirical runtimes can be found in Table 5.

Table 4: Hyperparameters of oracle strategies under runtime constraints equivalent to BoSS.

Oracle Default CIFAR-10 (b = 10) Snacks (b = 20) Dopanim (b = 50) DTD (b = 50)

BoSS T = 100 T = 100 T = 100 T = 100 T = 100
CDO m = 20 m = 20 m = 10 m = 4 m = 3
SAS s = 25,000, g = 5,000 s = 250, g = 10 s = 225, g = 10 s = 215, g = 10 s = 150, g = 10

Figure 2 presents the learning curves reporting the relative accuracy improvement of each oracle strategy
over Random sampling. Absolute learning curves together with learning curves that report the performance
using default hyperparameters can be found in Appendix F. All oracle strategies outperform random selection
in terms of accuracy. However, unlike the other oracles, SAS yields only marginal accuracy improvements
as the number of search steps were reduced considerably in comparison to the authors’ recommendation.

Table 5: Empirical runtimes of oracle strategies
with adapted and default hyperparameters.

Oracle Cifar-10 Snacks Dopanim DTD

BoSS 10:07 13:19 30:47 22:07

CDO (Adapted) 10:26 14:11 33:25 24:56
SAS (Adapted) 10:20 13:24 31:56 22:14

CDO (Default) 10:26 28:22 2:47:08 2:46:14
SAS (Default) 17:22:39 24:19:42 61:52:42 62:34:13

Restoring the recommended number improves accuracy
but at the cost of much higher computation. In contrast,
CDO and BoSS are much more effective, achieving ap-
proximately up to 20% accuracy improvement on CIFAR-
10 and Snacks, and around 10% on Dopanim and DTD.
We see that especially in larger scale settings with higher
batch sizes, BoSS outperforms the other oracle strategies.
As shown by the hyperparameters of CDO in Table 4,
increasing the AL batch size (b = 50) results in a con-
siderable reduction of its hyperparameter (m = 4 and
m = 3). Since m denotes the number of randomly sam-
pled instances from which CDO selects the best, further increasing the batch size would prevent aligning

9

Under review as submission to TMLR

its runtime to that of BoSS, highlighting CDO’s inefficiency with larger batch sizes. Overall, BoSS consis-
tently matches or surpasses the performance of other competing oracle strategies across all datasets under
comparable computational resources.

Snacks DTD

Number of Labels Number of Labels Number of Labels Number of Labels

A
cc

ur
ac

y
Im

pr
ov

em
en

t

CIFAR-10 Dopanim

CDO SASBoSSRandom

Figure 2: Relative learning curves of oracle strategies with aligned runtimes using DINOv2-ViT-S/14.

To answer RQ2, we consider the learning curves in Figure 3, depicting relative accuracy improvements over
Random sampling. They clearly demonstrate that BoSS consistently outperforms existing AL strategies
across all cycles and datasets, for both DINOv2 and SwinV2. Consequently, we assume BoSS to be a reliable
upper baseline for deep AL selection strategies. Notably, while the overall accuracy improvement provided
by BoSS across the entire AL cycle is modest for simpler datasets such as CIFAR-10 and STL-10, it becomes
substantially more pronounced with more challenging datasets, particularly those with more than 20 classes.

A
cc

ur
ac

y
Im

pr
ov

em
en

t
A

cc
ur

ac
y

Im
pr

ov
em

en
t

Number of Labels Number of LabelsNumber of Labels Number of Labels Number of Labels

CIFAR-10 STL-10 Snacks Flowers102 Dopanim

DTD Food101 CIFAR-100 Tiny ImageNet ImageNet

Random
TypiClust

Margin
DropQuery

CoreSets
BAIT

BADGE
AlfaMix BoSS

(a) DINOv2-ViT-S/14

A
cc

ur
ac

y
Im

pr
ov

em
en

t
A

cc
ur

ac
y

Im
pr

ov
em

en
t

Number of Labels Number of LabelsNumber of Labels Number of Labels Number of Labels

CIFAR-10 STL-10 Snacks Flowers102 Dopanim

DTD Food101 CIFAR-100 Tiny ImageNet ImageNet

Random
TypiClust

Margin
DropQuery

CoreSets
BAIT

BADGE
AlfaMix BoSS

(b) SwinV2-B

Figure 3: Relative learning curves achieved by BoSS and state-of-the-art selection strategies at each anno-
tation cycle for different pretrained models.

10

Under review as submission to TMLR

To answer RQ3, we compare BoSS to the best-performing AL strategies per dataset. In Fig. 3, we see
substantial accuracy differences across all stages of AL. Taking ImageNet with DINOv2 as an example, BoSS
achieves approximately twice the accuracy improvement compared to the best-performing AL strategy. The
significant gap during the initial exploration phase shows that there is still much room to address the cold-
start problem more effectively. Similarly, the performance gap at later cycles highlights shortcomings during
the exploitation phase, suggesting that current state-of-the-art AL strategies struggle to effectively identify
instances most valuable for further refinement. Comparisons across datasets reveal that the potential for
improvement of AL strategies significantly correlates with dataset complexity. For example, on less complex
datasets such as CIFAR-10, STL-10, or Snacks, AL strategies generally perform closer to the upper baseline.
Conversely, more challenging datasets such as Food101, CIFAR-100, Tiny ImageNet, and ImageNet exhibit
substantial gaps. This finding indicates a crucial need for targeted research focusing on developing AL
strategies specifically for large-scale multiclass settings. Finally, examining AL strategies across different
models demonstrates variability in their effectiveness. For instance, strategies that perform closely to the
upper baseline with DINOv2 on datasets like Snacks or Flowers102 exhibit notably larger performance gaps
when used with SwinV2. This discrepancy underscores the importance of developing robust and model-
agnostic AL strategies capable of maintaining strong performance across diverse models. Alternatively, any
newly proposed strategy should include detailed analyses of its failure cases (e.g., being limited to a specific
architecture), enabling practitioners to understand the specific scenarios in which it may underperform.

DINOv2-ViT-S/14 SwinV2-B

Relative Pick Frequency

TypiClust*
DropQuery*

BAIT

Random

TypiClust

DropQuery
AlfaMix

CoreSets

Margin
BADGE

Cycle Cycle

Figure 4: Average relative pick frequency of AL strategies by BoSS across cycles averaged over all datasets.

Finally, to answer RQ4, we examine which AL strategy was selected by BoSS across cycles. For this purpose,
Figure 4 depicts the relative pick frequency of the strategies for both models, each averaged over all datasets.
We notice that each strategy is considered at a certain point in the AL cycle, which indicates their respective
contribution to the overall performance of BoSS. However, especially at the beginning of AL, the strategies
DropQuery* and TypiClust* with supervised cluster assignments dominate, underscoring the importance of
representativeness instances at that stage. Considering the more detailed dataset-specific pick frequencies
in Appendix D reveals that this effect is particularly pronounced for large-scale multiclass settings. This
confirms both the need for more sophisticated AL strategies in these scenarios and the importance of super-
vised selection strategies in BoSS. Nevertheless, other strategies such as BAIT are also selected regularly.
Notably, towards the end of the AL process, as we approach the convergence region of the learning curves,
Random sampling is increasingly taken into account. This suggests that in certain stages none of the spe-
cialized AL strategies provide effective candidate batches, which is why more investigation of strategies for
exploitation could be beneficial. Similarly, the tendency towards the supervised selection strategies such as
DropQuery in the beginning of AL indicates that current strategies lack in identifying effective batches for
exploration. However, most importantly, no single AL strategy consistently outperforms others across all
phases of AL. This indicates that the best strategy at a given cycle can vary significantly depending on the
context and stage of the AL process. Consequently, we believe that advancing AL research requires a stronger
focus on ensemble-based AL strategies (Donmez et al., 2007; Hacohen & Weinshall, 2023). These strategies
integrate multiple strategies and adaptively select the most suitable strategy for the current context, thereby
leveraging the specific strengths of each individual strategy.

11

Under review as submission to TMLR

8 Analytical Evaluation: Ablations and Sensitivity Analyses

To better understand the contributions of each component in Eq. (4), we conduct a series of ablation studies
and experiments on a representative subset of datasets while fixing the backbone to DINOv2-ViT-S/14. These
analyses aim to isolate the impact of each design choice, evaluate robustness under different conditions, and
provide deeper insight into the mechanisms that determine performance.

8.1 Selection of Candidate Batches

Number of Labels

Random BoSS Naive

A
cc

ur
ac

y
Im

pr
ov

em
en

t CIFAR-10

Number of Labels

DTD

Figure 5: Relative learning curves of BoSS with
naively selected candidate batches vs. our algo-
rithm.

We compare the proposed selection of candidate batches
from Algorithm 1 against the naive selection from Eq. (5).
Unlike Random sampling, which directly selects B⋆ at
random, the naive selection generates the candidate
batches randomly. Relative learning curves for CIFAR-10
and DTD are shown in Figure 5. While the naive selec-
tion of candidate batches leads to a better performance
than Random sampling, Algorithm 1 considerably im-
proves performance, indicating the importance of a proper
candidate batch selection. Moreover, as shown in Table 6,
increasing the number of candidate batches T yields fur-
ther performance gains. Since improvements beyond 10
batches per strategy were negligible, we opted for this
value in our experiments, resulting in a total of T = 100 candidate batches. Finally, varying the size of
candidate pools leads to further improvements, as demonstrated in Appendix B.

Additionally, we examine influence of selection strategies S. For this, we first applied BoSS with all selection
strategies from Table 1 on CIFAR-10, analyzing the frequency with which each strategy’s candidate batch
was selected. This analysis enables us to identify the most influential strategies specifically for CIFAR-10.
Subsequently, we iteratively applied BoSS to the Dopanim dataset, progressively incorporating the next most
influential strategy according to the order established earlier. This way, we avoid data-specific overfitting
since, in reality, the optimal order for a given task is unknown before running the experiments. Throughout
this process, we maintain a constant total candidate batch size T . Consequently, the addition of each
new strategy proportionally decreased the number of candidate batches generated by previously included
strategies. As shown in Table 8, this sequential inclusion of strategies consistently improves the resulting
AULC. These findings suggest that integrating more strategies generally enhances overall performance, and
thus, we opt to include a variety of strategies when using BoSS. Intuitively, the more selection strategies we
incorporate, the better the robustness of BoSS should be across models, datasets, and domains.

Finally, we examine the impact of batch size b, which directly affects the search space of potential candidate
batches. As b increases, the number of possible subsets generated from U grows, making the combinatorial
problem in Eq. (3) more difficult. To investigate this impact, we run BoSS with different batch sizes b on the
same datasets multiple times. The AULCs in Table 7 on CIFAR-10 demonstrate that increasing the batch
size by a factor of four (4b = 40) results in a marginal performance decrease. Similarly, for DTD, this batch
size (4b = 200) yields a slightly more noticeable decline from 64.83 to 63.19. These findings highlight that
the effectiveness of solving the combinatorial problem and identifying optimal candidate batches remains
sensitive to the chosen batch size b. Nonetheless, the results presented in Section 7 show a substantial
improvement over all considered state-of-the-art strategies. To further enhance BoSS with even larger batch
sizes, increasing the number of candidate batches T seems to be an effective strategy to mitigate potential
performance losses.

8.2 Estimation of Performance

Here, we examine how different loss functions ℓ(·) affect the performance of BoSS. In principle, the choice of
ℓ will influence the estimation of the performance gain of potential candidate batches. Next to the zero–one
loss, which corresponds to the accuracy and therefore has direct relevance for our target metric, we also

12

Under review as submission to TMLR

Table 6: AULC of BoSS with vary-
ing number of batches per strategy.

Batches per
Strategy CIFAR-10 DTD

1 89.90±0.11 70.45±0.12
5 90.45±0.10 71.55±0.14

10 90.70±0.11 71.79±0.11
20 90.83±0.15 71.91±0.15

Table 7: AULC of BoSS for different
batch sizes.

Batch Size CIFAR-10 DTD

0.5 · b 85.71±0.32 68.41±0.14
b 85.62±0.30 67.95±0.16

2 · b 85. 36±0.31 67.37±0.16
4 · b 84.95±0.30 66.82±0.12

Table 8: AULC on Dop-
anim when incorporating
additional AL strategies.

Strategies AULC

Random 75.24±0.15
+DropQuery 75.82±0.17
+AlfaMix 76.01±0.16
+TypiClust 76.08±0.17
+BAIT 76.28±0.16
+CoreSet 76.29±0.20
+Margin 76.26±0.18
+BADGE 76.35±0.18
+DropQuery* 76.48±0.20
+TypiClust* 76.52±0.18

Table 9: AULC of BoSS using different
loss functions.

Loss (ℓ) CIFAR-10 DTD

Zero-one Loss 90.70±0.11 71.79±0.10
Cross Entropy 90.53±0.12 71.21±0.13

Brier Score 90.67±0.10 71.79±0.18

Table 10: AULC of BoSS across varying
numbers of retraining epochs.

Epochs CIFAR-10 DTD

5 90.00±0.10 70.77±0.11
10 90.57±0.12 71.13±0.13
25 90.71±0.13 71.62±0.12
50 90.70±0.11 71.80±0.11

100 90.67±0.12 71.72±0.11
200 (Full) 90.60±0.12 71.84±0.07

evaluate two proper scoring rules: cross-entropy and Brier score (Zhao et al., 2021). Similar to the zero–one
loss, both loss functions correlate with accuracy, but also quantify the model’s probabilistic calibration. As
a result, they not only give insights about the performance, but also measure the reliability of the predicted
probabilities. Table 9 shows that zero-one loss, Brier score and cross-entropy yield similar performance,
with cross-entropy slightly lagging behind. For BoSS, we opted for the zero-one loss due to its link to the
accuracy, but we can equally use proper scoring rules such as the Brier score. Thus, BoSS is also suitable
for scenarios were probabilistic calibration might be important. Accordingly, when employing BoSS, we
recommend selecting the metric of interest appropriate for the task at hand.

8.3 Retraining

To lower retraining cost within BoSS, we adopt a selection-via-proxy approach, which involves assessing
candidate batches by exclusively retraining the final layer for 50 epochs. The impact of different numbers
of retraining epochs on the performance of BoSS is detailed in Table 10. We see that reducing this number
yields nearly identical AL performance compared to utilizing full retraining with 200 epochs. Consequently,
these results suggest that a reduced number of retraining epochs during the selection is sufficient to identify
effective candidate batches. Since we recognize a slight decrease in performance going from 10 to 5, and we
want to ensure reliable candidate batch assessment, we select 50 retraining epochs as the default for BoSS.
However, we additionally investigate the scenario of constructing a highly efficient oracle. To this end, in
Appendix E, we show how BoSS performs when both the number of candidate batches and the number of
retraining epochs are greatly reduced.

9 Conclusion

We introduced BoSS, an efficient oracle strategy for batch AL that scales with large datasets and complex
DNNs. BoSS achieves a tractable approximation of the optimal selection by: (i) restricting the search space
to candidate batches through an ensemble of selection strategies, (ii) assessing performance improvements
of those batches by retraining only the final layer, and (iii) selecting batches with the highest performance
improvement. Our experiments on ten image classification datasets demonstrate that BoSS outperforms
existing oracle strategies and establishes a reliable upper baseline, consistently exceeding the performance
of state-of-the-art AL selection strategies. Notably, the largest performance improvements emerge on large-
scale multiclass datasets, highlighting both the necessity for targeted research in these settings and the
importance of robust, model-agnostic batch selection strategies. The analysis of which selection strategies
were chosen showed that BoSS uses a wide range of selection strategies over several AL cycles to achieve
both high performance and robustness. This suggests that future AL strategies should increasingly focus on

13

Under review as submission to TMLR

ensemble-based approaches, which, ideally, automatically identify and apply the most appropriate selection
strategy in a given cycle.

Although we focus on DNNs in this work, BoSS can easily be combined with other machine learning models.
For example, kernel-based approaches are particularly well suited, as retraining can be performed easily
and efficiently by updating the kernel matrix. Furthermore, since BoSS consists of an ensemble of selection
strategies, it can be easily extended to include new, state-of-the-art AL strategies. As a result, it will continue
to provide a reliable upper baseline in future research. In this context, we envision BoSS as a practical way
to assess how closely new selection strategies approach an empirical upper performance limit and to identify
performance gaps across cycles. Specifically, whenever a new selection strategy is introduced, we recommend
integrating it directly into the ensemble of BoSS. At the same time, we suggest to include the authors’ existing
(already implemented) comparison strategies as well. This setup provides a straightforward, efficient way to
establish an upper baseline against which novel strategies can be systematically evaluated. An exemplary
study demonstrating this procedure can be found in Appendix A.

References
Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Sham Kakade. Gone fishing: Neural active learning

with fisher embeddings. In NeurIPS, 2021.

Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep Batch
Active Learning by Diverse, Uncertain Gradient Lower Bounds. In ICLR, 2020.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative components
with random forests. In ECCV, 2014.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing textures in the wild. In CVPR,
2014.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised feature
learning. In AISTATS, 2011.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy Liang,
Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep learning. In ICLR,
2020.

Pinar Donmez, Jaime G Carbonell, and Paul N Bennett. Dual strategy active learning. In ECML PKDD,
2007.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is worth 16x16
words: Transformers for image recognition at scale. In ICLR, 2020.

Sanket Rajan Gupte, Josiah Aklilu, Jeffrey J. Nirschl, and Serena Yeung-Levy. Revisiting Active Learning
in the Era of Vision Foundation Models. TMLR, 2024.

Guy Hacohen and Daphna Weinshall. How to select which active learning strategy is best suited for your
specific problem and budget. In NeurIPS, 2023.

Guy Hacohen, Avihu Dekel, and Daphna Weinshall. Active learning on a budget: Opposite strategies suit
high and low budgets. In ICML, 2022.

Marek Herde, Denis Huseljic, Lukas Rauch, and Bernhard Sick. dopanim: A dataset of doppelganger animals
with noisy annotations from multiple humans. In NeurIPS, 2024.

Denis Huseljic, Paul Hahn, Marek Herde, Lukas Rauch, and Bernhard Sick. Fast fishing: Approximating
bait for efficient and scalable deep active image classification. In ECML PKDD, 2024.

14

Under review as submission to TMLR

Denis Huseljic, Marek Herde, Lukas Rauch, Paul Hahn, Zhixin Huang, Daniel Kottke, Stephan Vogt, and
Bernhard Sick. Efficient bayesian updates for deep learning via laplace approximations. In ECML PKDD,
2025.

Andreas Kirsch, Sebastian Farquhar, Parmida Atighehchian, Andrew Jesson, Frédéric Branchaud-Charron,
and Yarin Gal. Stochastic Batch Acquisition: A Simple Baseline for Deep Active Learning. TMLR, 2023.

Daniel Kottke, Marek Herde, Christoph Sandrock, Denis Huseljic, Georg Krempl, and Bernhard Sick. Toward
optimal probabilistic active learning using a Bayesian approach. ML, 110(6):1199–1231, 2021.

Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. Master’s thesis, University of
Toronto, 2009.

Ya Le and Xuan Yang. Tiny ImageNet Visual Recognition Challenge. CS231N Course Project Report, 2015.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang,
Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In CVPR, 2022.

Carsten Lüth, Till Bungert, Lukas Klein, and Paul Jaeger. Navigating the pitfalls of active learning evalua-
tion: A systematic framework for meaningful performance assessment. NeurIPS, 36, 2024.

Matthijs. Snacks dataset. https://huggingface.co/datasets/Matthijs/snacks, 2021. Accessed: 2024-
05-20.

Prateek Munjal, Nasir Hayat, Munawar Hayat, Jamshid Sourati, and Shadab Khan. Towards robust and
reproducible active learning using neural networks. In CVPR, 2022.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes.
In ICVGIP, 2008.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual
features without supervision. TMLR, 2024.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua Dillon, Balaji
Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? Evaluating predictive
uncertainty under dataset shift. In NeurIPS, 2019.

Amin Parvaneh, Ehsan Abbasnejad, Damien Teney, Gholamreza Reza Haffari, Anton Van Den Hengel, and
Javen Qinfeng Shi. Active learning by feature mixing. In CVPR, 2022.

Lukas Rauch, Matthias Aßenmacher, Denis Huseljic, Moritz Wirth, Bernd Bischl, and Bernhard Sick. Ac-
tiveglae: A benchmark for deep active learning with transformers. In ECML PKDD, 2023.

Lukas Rauch, Denis Huseljic, Moritz Wirth, Jens Decke, Bernhard Sick, and Christoph Scholz. Towards
deep active learning in avian bioacoustics. In IAL @ ECML PKDD, 2024.

Nicholas Roy and Andrew McCallum. Toward Optimal Active Learning through Monte Carlo Estimation of
Error Reduction. In ICML, 2001.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. ImageNet Large Scale Visual Recognition Challenge.
IJCV, 115:211–252, 2015.

Christoph Sandrock, Marek Herde, Daniel Kottke, and Bernhard Sick. Exploring the Potential of Optimal
Active Learning via a Non-myopic Oracle Policy. In DS, 2023.

Ozan Sener and Silvio Savarese. Active Learning for Convolutional Neural Networks: A Core-Set Approach.
In ICLR, 2018.

15

https://huggingface.co/datasets/Matthijs/snacks

Under review as submission to TMLR

Burr Settles. Active Learning Literature Survey. Technical report, University of Wisconsin, Department of
Computer Science, 2009.

Thorben Werner, Johannes Burchert, Maximilian Stubbemann, and Lars Schmidt-Thieme. A cross-domain
benchmark for active learning. In NeurIPS, 2024.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Benchmarking
Machine Learning Algorithms. arXiv preprint arXiv:1708.07747, 2017.

Guang Zhao, Edward Dougherty, Byung-Jun Yoon, Francis Alexander, and Xiaoning Qian. Uncertainty-
aware active learning for optimal bayesian classifier. In ICLR, 2021.

Yilun Zhou, Adithya Renduchintala, Xian Li, Sida Wang, Yashar Mehdad, and Asish Ghoshal. Towards
Understanding the Behaviors of Optimal Deep Active Learning Algorithms. In AISTATS, 2021.

16

Under review as submission to TMLR

A Practical Recommendations

BoSS is best employed as an upper baseline for evaluating and comparing AL strategies. It allows for
assessments such as “How far away is my newly proposed AL strategy from the optimal performance?” or
“At which stage of AL (e.g., early vs. late cycles) does my strategy underperform?”. If a new AL strategy is
close to that upper baseline, it is a reliable indicator for a well working selection.

When employing BoSS in experiments, we recommend a simple procedure for efficiently establishing an upper
baseline without needing to implement each AL strategy listed in Table 1. Specifically, if an author has
developed a novel AL strategy and intends to evaluate it alongside four additional state-of-the-art strategies,
we suggest to simply use the already implemented AL strategies for candidate batch generation. Any further
hyperparameters can be set to the default values presented in this work. Regarding the budget for a given
dataset, we recommend determining it by performing Random sampling until the learning curve reaches
convergence. This ensures that both low- and high-budget scenarios are accounted for in the evaluation,
which can potentially reveal issues in exploration and exploitation. Furthermore, although our experiments
demonstrated minimal sensitivity to the choice of loss function, employing an alternative loss function may
be beneficial if the evaluation metric significantly differs from classification accuracy.

Number of Labels
10 50 100 150 200

0.00

0.05

0.10

0.15

0.20

50 250 500 750 1000

0.00

0.03

0.06

0.09

0.12

Number of Labels

A
cc

ur
ac

y
Im

pr
ov

em
en

t
BoSSDropQuery

CIFAR-10 DTD

Random

Figure 6: Explanatory plot of the "new" strategy Drop-
Query in relation to both random and BoSS.

To illustrate this, we consider an experimental sce-
nario where we assume a novel AL strategy (i.e.,
DropQuery) and seek to evaluate its performance
against established state-of-the-art strategies (i.e.,
BADGE, BAIT, TypiClust). Accordingly, we con-
struct BoSS by defining the set S to include Drop-
Query, BADGE, BAIT, TypiClust, and Random
sampling, with 10 candidate batches per strategy.
Comparing the new AL strategy DropQuery with
BoSS in Fig. 6 provides multiple insights: On
CIFAR-10, a clear performance difference emerges
in the initial cycles, after which both DropQuery and BoSS behave similarly. This suggests DropQuery
struggles to identify influential instances early on but continues to perform well for the rest of the experi-
ment. On DTD, a more complex dataset, although the initial performance gap is smaller, the gap between
DropQuery and BoSS continuously increases in subsequent cycles. This indicates that while effective in the
beginning, exploitation is not working properly in later cycles.

B Varying Candidate Pool Size

0.375

0.400

0.425

0.450

0.475

0.500

0.63

0.37

0.43

0.57

Random

Margin

No Vary Vary

R
el

at
iv

e
Pi

ck
 F

re
qu

en
cy

50 250 500 750 1000
0.02

0.00

0.02

0.04

0.06

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Number of Labels

BoSS
BoSS (No Vary)

Random

DTD

Figure 7: Relative learning curves and pick frequencies with
(Vary) and without (No Vary) varying the subset size for
candidate batch generation.

Here, we examine the influence of varying the
size of the candidate pools from which can-
didate batches are selected. In general, sam-
pling candidate pools enables deterministic AL
selection strategies to generate multiple dis-
tinct candidate batches. Moreover, selecting
batches from smaller subsets rather than from
the entire unlabeled pool improves computa-
tional efficiency. However, choosing the ap-
propriate subset size presents a trade-off. On
one hand, the subset must be sufficiently large
to ensure the presence of influential instances.
On the other hand, overly large subsets may re-
duce randomness, resulting in deterministic strategies repeatedly selecting similar candidate batches. Smaller
subset sizes introduce more randomness into batch selection, whereas larger subset sizes emphasize the in-
trinsic characteristics of the employed AL strategies. Thus, identifying the optimal subset size is difficult.

17

Under review as submission to TMLR

For this reason, we vary the subset size of candidate pools in BoSS. When the subset size is small, candidate
batches exhibit more randomness. In contrast, when the subset size is large, the selection of candidate
batches is increasingly driven by the heuristics of the employed selection strategies. Due to the performance-
based view of BoSS, we ensure that low-performing candidate batches from unsuitable subset sizes do not
influence the oracles overall AL performance. Figure 7 demonstrates this effect. For this experiment, we
include only Random and Margin as BoSS’s selection strategies and focus on DTD with the DINOv2-ViT-
S/14 model. We observe that without varying candidate pool sizes, BoSS remains strongly biased toward
randomly sampled batches. In contrast, varying pool sizes shifts selection toward Margin and yields an
increase in performance.

C Analysis of AL Strategies: Uncertainty vs. Representativeness

In addition to its strong performance, BoSS’s performance-based selection of candidate batches enables us
to assess which AL strategy is most effective at each cycle. Specifically, by looking at which candidate
batch was selected by BoSS, we can identify whether a particular AL strategy excels early, later, or across all
stages of the AL process. To illustrate this, we run BoSS on CIFAR-100 and Food101 with the DINOv2-ViT-
S/14 model using three selection strategies for candidate batch generation. We include Random sampling,
the representativeness-based strategy TypiClust, and the uncertainty-based strategy Margin. Following
the intuitions from (Kottke et al., 2021; Hacohen & Weinshall, 2023), early cycles should benefit from
representative instances to capture the task’s underlying distribution, while later cycles should benefit from
uncertain instances. Figure 8 shows the average pick frequency of BoSS over ten runs on both datasets. The
selection pattern reveals a clear preference for representative candidate batches in the first three cycles, as
TypiClust is primarily picked at that stage. Contrary to the intuitions, however, BoSS does not exclusively
focus on uncertain instances later on but continues to select a mix of random, uncertain, and representative
batches. This suggests that either Margin may be less effective at identifying truly challenging instances
on these datasets or that the intuition that AL should pivot solely to uncertain instances may be overly
simplistic. Furthermore, the fact that randomly sampled candidate batches are chosen suggests that none
of the selection strategies provide influential batches at a given stage.

0.0 0.2 0.4 0.6 0.8 1.0

Cycle Cycle

Relative Pick Frequency

Random
Margin

TypiClust

CIFAR-100 Food101

Figure 8: Average pick choices of BoSS with three selection strategies on CIFAR-100 and Food101.

D Pick Choices Per Datasets

Supplementing RQ4, we present the average relative pick frequencies for each dataset. Figure 9 shows how
often each selection strategy was chosen as the best candidate batch across datasets. Three main insights
emerge. First, although DropQuery* and BAIT achieve the highest pick frequencies on several datasets,
every selection strategy contributes influential candidate batches at various stages of the AL process. This
underscores the value of including each selection strategy in BoSS. Second, not only does every selection
strategy get selected at least once, confirming that no single strategy dominates an entire AL cycle, but there
is also no consistently preferred selection strategy across all datasets. This highlights that the ensemble of
AL strategies itself is critical for maintaining strong, dataset-agnostic performance. Third, for datasets with
larger batch sizes (≥ 100), pick frequencies mostly concentrate on two selection strategies. This pattern
suggests that the other AL strategies struggle to propose effective candidate batches as dataset complexity
grows. Moreover, since DropQuery* cannot be simply applied in AL (labels in the unlabeled pool are
unavailable), BAIT emerges as a promising alternative in that context.

18

Under review as submission to TMLR

0.07

0.07

0.17

0.07

0.08

0.08

0.11

0.05

0.06

0.23

0.06

0.05

0.19

0.14

0.12

0.14

0.08

0.05

0.05

0.12

0.09

0.08

0.12

0.17

0.07

0.07

0.05

0.06

0.08

0.20

0.02

0.13

0.07

0.29

0.07

0.15

0.06

0.09

0.04

0.07

0.12

0.08

0.08

0.12

0.08

0.12

0.01

0.07

0.09

0.24

0.07

0.14

0.08

0.12

0.10

0.06

0.11

0.04

0.08

0.20

0.02

0.04

0.02

0.26

0.03

0.04

0.03

0.04

0.08

0.46

0.04

0.04

0.01

0.30

0.06

0.06

0.06

0.03

0.06

0.35

0.03

0.02

0.02

0.13

0.01

0.03

0.06

0.01

0.08

0.62

0.01

X

0.01

0.15

0.02

0.04

0.01

0.07

0.08

0.63
0.0

0.1

0.2

0.3

0.4

0.5
CIFA

R-10

Random

TypiClust

STL-10
Sna

cks
Flow

ers1
02

Dopa
nim

DTD
Foo

d10
1

CIFA
R-100

Tiny
Image

Net

Image
Net

DropQuery

BAIT

AlfaMix

BADGE

CoreSet

Margin

TypiClust*

DropQuery*

R
el

at
iv

e
Pi

ck
 F

re
qu

en
cy

Figure 9: Relative pick frequencies of selection strategies by BoSS per dataset averaged over cycles, here
given with the numeric value (in %).

E Minimal Oracle

In Section 8, we investigated various factors influencing the performance of BoSS and settled for a good trade-
off between runtime and effectiveness. Here, we aim to examine how BoSS’s performance decreases when
prioritizing runtime only. Therefore, we introduce three different runtime-optimized variants of our original
oracle, namely BoSS (S) with T = 50 and 25 retraining epochs, BoSS (XS) with T = 25 and 10 retraining
epochs, and BoSS (XXS) with T = 10 and 5 retraining epochs. The results in Fig. 10 show that while these
runtime-optimized variants yield slightly reduced performance, BoSS still performs reasonably. Especially
considering the simpler dataset CIFAR-10, even BoSS (XXS) establishes an upper bound compared to all
considered state-of-the-art AL strategies. Thus, we want to emphasize that the values chosen in Section 8
are guideline values and that BoSS can also work well when runtime needs to be significantly reduced.

10 50 100 150 200

0.00

0.05

0.10

0.15

0.20

25 125 250 375 500
0.00

0.08

0.16

0.24

50 250 500 750 1000

0.00

0.04

0.08

0.12

100 500 1000 1500 2000

0.00

0.04

0.08

0.12CIFAR-10 Flowers102 DTD CIFAR-100

A
cc

ur
ac

y
Im

pr
ov

em
en

t

Number of Labels Number of Labels Number of Labels Number of Labels

BoSS BoSS (S) BoSS (XS) BoSS (XXS)Random

Figure 10: Relative learning curves of BoSS and its runtime-optimized variants.

F Absolute Learning Curves

In addition to the relative learning curves presented in the main part of the paper, we also show the associated
absolute learning curves here. Figure 11 depicts the absolute learning curves that correspond to the relative
curves reported in Fig. 2. Similarly, in Fig. 13 we report the corresponding absolute learning curves of the
state-of-the-art experiments from Fig. 3. Additionally, we also report the absolute learning curves of all
oracle strategies with default hyperparameters in Fig. 12.

19

Under review as submission to TMLR

CIFAR-10 Snacks Dopanim DTD

Number of Labels Number of Labels Number of Labels Number of Labels

A
cc

ur
ac

y

CDO SASBoSSRandom

Figure 11: Absolute learning curves of oracle strategies with aligned runtimes using DINOv2-ViT-S/14.

CDO SASBoSSRandom

Snacks DTDCIFAR-10 Dopanim

Figure 12: Relative learning curves of oracle strategies with default hyperparameters using DINOv2-ViT-
S/14.

A
cc

ur
ac

y
A

cc
ur

ac
y

Number of Labels Number of LabelsNumber of Labels Number of Labels Number of Labels

CIFAR-10 STL-10 Snacks Flowers102 Dopanim

DTD Food101 CIFAR-100 Tiny ImageNet ImageNet

Random
TypiClust

Margin
DropQuery

CoreSets
BAIT

BADGE
AlfaMix BoSS

(a) DINOv2-ViT-S/14

Number of Labels Number of LabelsNumber of Labels Number of Labels Number of Labels

A
cc

ur
ac

y
A

cc
ur

ac
y

CIFAR-10 STL-10 Snacks Flowers102 Dopanim

DTD Food101 CIFAR-100 Tiny ImageNet ImageNet

Random
TypiClust

Margin
DropQuery

CoreSets
BAIT

BADGE
AlfaMix BoSS

(b) SwinV2-B

Figure 13: Absolute learning curves achieved by BoSS and state-of-the-art selection strategies at each anno-
tation cycle for different pretrained models.

20

	Introduction
	Related Work
	Notation
	A Formalization of Performance-based Active Learning
	An Efficient Oracle Strategy for Deep Neural Networks
	Batch Selection
	Performance Estimation
	Retraining

	Comparison of Time Complexity
	Empirical Evaluation of BoSS: Oracle-Level and State-of-the-art AL Comparisons
	Experimental Setup
	Benchmark Results

	Analytical Evaluation: Ablations and Sensitivity Analyses
	Selection of Candidate Batches
	Estimation of Performance
	Retraining

	Conclusion
	Practical Recommendations
	Varying Candidate Pool Size
	Analysis of AL Strategies: Uncertainty vs. Representativeness
	Pick Choices Per Datasets
	Minimal Oracle
	Absolute Learning Curves

