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Abstract

Large language models (LLMs) often struggle
with context fidelity, producing inconsistent an-
swers when responding to questions based on
provided information. Existing approaches ei-
ther rely on expensive supervised fine-tuning to
generate evidence post-answer or train models to
perform web searches without necessarily improv-
ing utilization of the given context. We propose
CARE, a novel native retrieval-augmented reason-
ing framework that teaches LLMs to explicitly
integrate in-context evidence within their reason-
ing process with the model’s own retrieval capa-
bilities. Our method requires minimal labeled
evidence data while significantly enhancing both
retrieval accuracy and answer generation perfor-
mance through strategically retrieved in-context
tokens in the reasoning chain. Extensive experi-
ments on multiple real-world and counterfactual
QA benchmarks demonstrate that our approach
substantially outperforms supervised fine-tuning,
traditional retrieval-augmented generation meth-
ods, and external retrieval solutions. This work
represents a fundamental advancement in making
LLMs more accurate, reliable, and efficient for
knowledge-intensive tasks.

1. Introduction
Large language models (LLMs) have demonstrated im-
pressive performance in a wide range of natural language
tasks (Minaee et al., 2024; Liu et al., 2025a), yet continue to
struggle with a fundamental challenge: maintaining fidelity
to the context provided when answering questions (Taluk-
dar & Biswas, 2024). This context hallucination prob-
lem (Chang et al., 2024; Hu et al., 2024; Liu et al., 2025b) is
particularly pronounced in knowledge-intensive tasks where
precise information retrieval and accurate reasoning are
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paramount. When LLMs generate answers that contradict
or fabricate information relative to the input context, user
trust declines, and the practical utility of these systems de-
creases considerably.

Current approaches to address this challenge fall into two
categories with significant limitations. First, retrieval-
augmented generation (RAG) methods (Variengien & Win-
sor, 2023; Wang et al., 2024) improve explainability but
require expensive labeled datasets with ground-truth evi-
dence spans, limiting scalability. Second, external retrieval
mechanisms (Hsu et al., 2024; Nguyen et al., 2024) access
specialized information but underutilize the rich context
already provided by users, which often contains the most
relevant information for their queries.

In this paper, we introduce native retrieval-augmented rea-
soning, a fundamentally different approach where LLMs
dynamically identify and incorporate relevant evidence from
input context directly within their reasoning chain, rather
than treating retrieval and reasoning as separate processes.
This leverages LLMs’ inherent language understanding for
in-context retrieval without additional indexing or embed-
ding systems while enhancing reasoning through explicit
evidence integration. Based on this approach, we intro-
duce the Context-Aware Retrieval-Enhanced reasoning
(CARE) framework, which requires minimal labeled evi-
dence data and employs two-phase training: (1) supervised
fine-tuning (SFT) establishes evidence integration patterns,
(2) reinforcement learning (RL) refines self-retrieval through
retrieval-aware rewards. Crucially, a curriculum learning
schedule enables progressive adaptation from simple to com-
plex reasoning tasks, extending beyond the initial training
distribution without additional labeled data.

Our main contributions are as follows.

• We introduce native retrieval-augmented reasoning,
a novel paradigm that organically combines in-context
retrieval with structured reasoning to improve context
fidelity and reduce hallucinations.

• We present a curated dataset for training models to
perform evidence-integrated reasoning, which we will
open source to facilitate further research in this area.

• We propose CARE, a comprehensive implementation
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that combines native retrieval-augmented reasoning
with curriculum learning to handle diverse question-
answering scenarios without additional labeled data.

• Through extensive experiments across multiple real-
world and counterfactual QA benchmarks, we demon-
strate that our approach substantially outperforms
vanilla SFT, traditional RAG methods, and comparable
models lacking in-context retrieval mechanisms in both
evidence retrieval and answer accuracy.

2. The CARE Method
2.1. Overview

We present CARE, a reasoning framework that enables
LLMs to autonomously perform native retrieval from the in-
put context without external modules, integrating retrieved
evidence directly into reasoning instead of outputting them
independently. By performing native retrieval, CARE better
leverages LLMs’ powerful language understanding capa-
bilities while reducing expensive tool calling dependencies.
Native retrieval integration improves both context loyalty
and reasoning quality through curated evidence.

To minimize reliance on expensive supporting fact labels,
CARE employs two-phase training: supervised fine-tuning
(SFT) followed by reinforcement learning (RL).

2.2. The Supervised Fine-Tuning Phase

The SFT phase establishes evidence integration by injecting
retrieval tokens within structured reasoning steps. Using
existing QA datasets with labeled supporting facts, this
phase addresses the RL training ”cold-start” problem while
familiarizing the model with the target output format, na-
tive retrieval process, and chain-of-thought reasoning with
retrieved evidence.

Our data generation pipeline operates on Doriginal =

{(Qi, Ci, Ai, Si)}
Noriginal
i=1 containing queries, contexts, an-

swers and supporting facts through three sequential stages:
reasoning step generation, evidence integration, and re-
trieval token insertion (Figure 1, top).

Reasoning Step Generation. A reasoning model MR

generates an initial reasoning chain Ri,A = MR(Ci, Qi).
We retain only responses with correct answers and extract
reasoning chains Ni from within the ⟨ THINK ⟩ ⟨ /THINK ⟩
tokens.

Evidence Integration. To ground reasoning in context
rather than internal knowledge, a non-reasoning model
MI integrates ground-truth supporting facts: Ri,I =
MI(Qi, Ni, Si). We keep instances where all supporting
facts appear in Ri,I , yielding evidence-grounded chains Ei.

Retrieval Marking. We insert ⟨ RETRIEVAL ⟩ ⟨ /RE-
TRIEVAL ⟩ tokens around evidence segments in Ei to create
structured responses E∗

i , which serves as the ground-truth
output for the SFT dataset.

The final dataset DSFT = {(Qi, Ci, Ai, E
∗
i )}

NSFT
i=1 provides

context-grounded reasoning chains with explicit evidence
marking for subsequent RL training.

2.3. Reinforcement Learning Phase.

We refine the self-retrieval mechanism from SFT using
Group Relative Policy Optimization (GRPO) with curricu-
lum learning to transition from basic to advanced reasoning
tasks. A detailed training algorithm is provided in Algo-
rithm 1.

The GRPO algorithm. GRPO evaluates multiple sam-
pled outputs at the group level. Given query q and outputs
{o1, . . . , oG} sampled from πθold , the objective is:

JGRPO(θ) = Eq,{oi}Gi=1∼πθold

[[ 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

min
[
ri,tÂi,t, clip (ri,t, 1− ϵ, 1 + ϵ) Âi,t

]
− βDKL (πθ ∥ πref )

]]
(1)

where ri,t =
πθ(oi,t|q,oi,<t)

πθold
(oi,t|q,oi,<t)

is the importance ratio,
clipped to [1− ϵ, 1 + ϵ]. The KL divergence term prevents
excessive divergence from the reference policy.

Reward Design. We design three reward components to
encourage context-grounded reasoning:

1. Retrieval Reward (Rret): Rewards correct use of ⟨
RETRIEVAL ⟩ ⟨ /RETRIEVAL ⟩ pairs when enclosed
text exists in the context, enabling dynamic context
integration without ground-truth retrieval data.

2. Format Reward (Rfmt): Ensures structural consis-
tency with both ⟨ THINK ⟩ ⟨ /THINK ⟩ and ⟨ RETRIEVAL
⟩ ⟨ /RETRIEVAL ⟩ pairs.

3. Accuracy Reward (Racc): Measures correctness
through the token F1 score between the generated and
ground-truth answers.

The total reward combines these components: Rtotal =
λ1Racc + λ2Rfmt + λ3Rret, where coefficients λ1, λ2, λ3

balance factual precision, structural consistency, and context
fidelity.

Curriculum Learning Strategy. QA datasets exhibit sig-
nificant variation in context and answer lengths. To gradu-
ally adapt our model to diverse dataset characteristics other
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<think>
The ticket price was $15. In
general ... that movie tickets
often fall into a $12-$15
price range... Therefore, It
is reasonable.
</think>

<think>
The context states John watched the
latest superhero movie... This
description aligns with the
characteristics of a "special release."
...  The ticket price paid was $15.
 The context provides price ranges:
...ticket prices range from $10 to
$12 ... and ... rom $13 to $16 for
special releases. ...Therefore, the
price is reasonable.</think>
Answer: Reasonable.

<think>
... Therefore, It is not
reasonable.
</think>

Fact Injection
Model

F3 F4

Step 2

Supporting FactsJohn went to the movies with his mom last week. They watched
the latest superhero movie, which was quite popular. ...The
ticket price was $15. ... According to the local cinema's website,
ticket prices vary depending on the time of day and the type of
movie. ... Generally, ticket prices range from $10 to $12 for
regular screenings. ... Ticket prices range from $13 to $16 for
special releases. ... Some customers have complained about
rising prices...

Was the ticket price John’s mom paid for the movie reasonable?

Insert '<retrieval>' and
'</retrieval>' Token

<think>
The context states John watched
<retrieval>...</retrieval> This
description aligns with the
... <retrieval>...</retrieval> ...
<retrieval>...</retrieval> ...
<retrieval>...</retrieval> ... the
price is reasonable.</think>
Answer: Reasonable.

Reasoning
Model

F1 F2

Step 1 Step 3

LLM

Accuracy Reward Format Reward Retrieval Reward

Total Reward

SFT Phase

Reasoning and 
Retrieval Dataset 

Easy Dataset

Hard Dataset

Reforcement Learning

<think> 
The context states <retrieval> ...(correct
retrieved context from original
context) </retrieval> This description aligns
with the characteristics of a <retrieval> ...
(correct retrieved context from original
context) </retrieval> ... Moreover, the
context provides <retrieval> (correct
retrieved context from original
context) </retrieval> indicates ... Therefore,
given ... The answer is ...
 </think>

Format

Accuracy

Retrieval 

Training Pipeline

Supervised Fine-Tuning Data Generation

Figure 1. A schematic illustration of the training data and training process. The upper part depicts the SFT data generation pipeline
including fact injection and special tokens insertion within the reasoning content, while the lower part illustrates the SFT training process
and the reinforcement learning (RL) training with multiple rewards.

Model Method MFQA HotpotQA 2WikiMQA MuSiQue Average

LLaMA-3.1 8B

Original 45.57 54.64 45.87 32.08 44.54
ReSearch / / / / /
R1-Searcher 28.44 53.71 67.10 41.41 47.67
CRAG / / / / /
CARE 49.94 63.09 75.29 51.00 59.83

Qwen2.5 7B

Original 46.94 58.47 46.96 30.78 45.79
ReSearch 32.45 54.24 55.78 47.61 47.52
R1-Searcher 28.36 55.43 65.79 47.09 49.17
CRAG 47.90 43.97 33.00 28.44 38.33
CARE 48.11 63.45 70.11 45.57 56.81

Qwen2.5 14B

Original 47.58 61.94 59.05 37.99 51.64
ReSearch / / / / /
R1-Searcher / / / / /
CRAG 50.89 44.74 34.68 28.17 39.62
CARE 48.81 67.75 78.68 51.27 61.63

Table 1. Evaluation on the real-world long-sequence QA datasets. The results are grouped by the base LLM used. The best and second-best
results for each base model and dataset are labeled in bold and underline, respectively. Slash (/) indicates that the method does not have
an official checkpoint or support for this model.

Settings SFT RL Ret. Cur. MFQA HotpotQA 2WikiMQA MuSiQue CofCA Average

Baseline ✗ ✗ ✗ ✗ 46.64 58.47 46.96 30.78 58.38 48.25
SFT Only ✓ ✗ ✗ ✗ 42.24 47.08 61.51 33.82 59.21 48.77
No Ret. ✓ ✓ ✗ ✗ 37.66 62.59 70.57 43.85 57.26 54.39
No Cur. ✓ ✓ ✓ ✗ 38.33 64.10 70.69 47.49 60.60 56.24
CARE ✓ ✓ ✓ ✓ 48.11 63.45 70.11 45.57 64.56 58.36

Table 2. Ablation studies on the QA tasks based on Qwen2.5 7B. The best and second-best results for each base model and dataset are
labeled in bold and underline, respectively. “Ret.” stands for retrieval reward, and “Cur.” stands for curriculum learning in Algorithm 1.

than the one used for SFT, we implement a curriculum learn-
ing strategy transitioning from short-context / short-answer
QA to long-context / multihop long-answer QA. This struc-

tured progression mitigates catastrophic forgetting while
enhancing retrieval capabilities across multiple task com-
plexity.
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Model Method CofCA

LLaMA-3.1 8B
Original 48.14
R1-Searcher 45.25
CARE 61.83

Qwen2.5 7B

Original 58.38
ReSearch 47.32
R1-Searcher 43.61
CRAG 56.01
CARE 64.56

Qwen2.5 14B
Original 64.40
CRAG 51.99
CARE 67.75

Table 3. Evaluation on the counterfactual QA task CofCA. The
results are grouped by the base LLM used. The best and second-
best results for each base model and dataset are labeled in bold
and underline, respectively.

We train with two QA datasets: Deasy = {(Qi, Ci, Ai)}
Neasy
i=1

and Dhard = {(Qi, Ci, Ai)}Nhard
i=1 , where Dhard contains

longer contexts, longer answers, and requires more com-
plex reasoning than Deasy. Training begins exclusively with
Deasy, then gradually incorporates instances from Dhard.

At each training step t, we sample instances using a
Bernoulli trial with a time-varying probability. The mixing
ratio αt decreases linearly according to αt = max(0, 1 −
η · t

T ), where η is a scaling factor that controls the speed
of transition. The sampling probabilities are peasy = αt and
phard = 1− αt, ensuring the model maintains short-context
retrieval capabilities while learning to aggregate evidence
across multiple paragraphs.

3. Experiments
We evaluate our proposed CARE method through compre-
hensive experiments across multiple LLM families and sizes
in two distinct QA categories: real-world long-context QA
and counterfactual multi-hop QA. Detailed settings are pre-
sented in Appendix C.

3.1. Long-Sequence QA Performance

Table 1 shows that CARE consistently outperforms base-
lines in all model sizes. With LLaMA-3.1 8B, we achieve
+15.29% average F1 improvement, with strongest gains on
multi-hop tasks (2WikiMQA +29.42%, MuSiQue +18.92%).
Qwen2.5 models show similar patterns. When not achiev-
ing top performance, CARE remains competitive with the
best baselines. These results demonstrate that CARE sig-
nificantly enhances performance by effectively integrating
in-context evidence during reasoning, particularly for com-
plex multi-hop questions. Appendix D shows that CARE
also achieves significantly higher evidence retrieval accu-
racy on HotpotQA compared to the baselines.

3.2. Counterfactual QA Performance

In Table 3, we report the results on the CofCA counterfac-
tural QA task. CARE consistently delivers the strongest
performance, with significant gains on LLaMA-3.1 8B
(+13.69%). In particular, traditional online search meth-
ods underperform compared to original models on this task,
suggesting that external retrieval can be counterproductive
when context contradicts parametric knowledge. CARE
demonstrates superior context fidelity by explicitly integrat-
ing natively extracted in-context evidence in the reasoning
process, and can make even greater gains compared to the
baselines when encountering unseen information in the con-
text.

3.3. Ablation Studies

Table 2 presents the ablation results in Qwen2.5 7B in three
settings: (1) SFT only (without the RL training phase),
(2) No retrieval reward (GRPO with DeepSeek-R1-like
reasoning reward without retrieval reward), and (3) No cur-
riculum learning (RL in Deasy only).

SFT alone provides marginal gains, while RL training sub-
stantially improves performance, confirming reinforcement
learning’s importance for QA reasoning. Both native in-
context reasoning methods (“No Cur.” and CARE) con-
sistently outperform vanilla R1-like GRPO (“No Ret.”),
demonstrating that retrieval-augmented reasoning improves
performance by grounding reasoning in contextual evidence.
While “No Cur.” excels on multihop datasets, curriculum
learning achieves better balance across diverse QA types,
particularly improving long-form answering (MFQA) and
counterfactual scenarios (CofCA). This shows that curricu-
lum learning successfully adapts the model to various types
of question while maintaining strong complex reasoning
performance, all without additional labeled data beyond the
initial SFT.

4. Conclusion
We introduce CARE, a native retrieval-augmented reasoning
framework that improves context fidelity in LLMs by teach-
ing models to dynamically identify and integrate evidence
within their reasoning process. This approach improves how
LLMs interact with context while requiring minimal labeled
evidence. Experiments on multiple general and counterfac-
tual QA benchmarks demonstrated that CARE consistently
outperforms existing approaches, including the vanilla SFT
method and traditional RAG methods on both answer gen-
eration and evidence extraction. This work represents an
important step toward more reliable AI systems that make
better use of available context without requiring expensive
retrieval infrastructure.
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Goyal, N., Küttler, H., Lewis, M., Yih, W., Rocktäschel,
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A. Related Work
A.1. LLM Reasoning on Question-Answering Tasks

Large language models (LLMs) have demonstrated impressive capabilities in complex reasoning tasks (Wei et al., 2022;
Cobbe et al., 2021; Ouyang et al., 2022). Recent work has explored various prompting strategies to improve reasoning,
including chain of thought prompting (Wei et al., 2022), which guides models to generate intermediate reasoning steps
before producing final answers, and its variants such as zero-shot-CoT (Kojima et al., 2022) and self-consistency (Wang
et al., 2022). More structured approaches include tree-of-thought (Yao et al., 2023a), graph-of-thought (Besta et al., 2024),
ReAct (Yao et al., 2023b), and least-to-most prompting (Zhou et al., 2022). Despite these advances, LLMs still struggle with
maintaining context coherence when reasoning over long or noisy inputs (Xu et al., 2023; Li et al., 2024; Fei et al., 2024).

A.2. Retrieval-Augmented Generation

Traditional retrieval-augmented generation (RAG) methods (Guu et al., 2020; Lewis et al., 2020) enhance LLM by retrieving
relevant passages from external corpora, alleviating the limitations of fixed parametric memory. This framework has been
widely adopted for knowledge-intensive tasks (Xiong et al., 2024; Wang et al., 2025). Recent work has improved retrieval
quality through techniques such as query expansion (Wang et al., 2023), re-ranking (Vu et al., 2024), and filtering (Asai
et al., 2024), while others focus on robustness to noisy retrievals (Yoran et al., 2024). In-context retrieval methods aim to
reuse relevant spans from the input sequence itself (Variengien & Winsor, 2023; Wang et al., 2024). However, both external
and in-context RAG fundamentally rely on indexing and embedding-based retrieval pipelines, limiting their adaptability to
complex or evolving contexts.

A.3. RL-Enhanced LLM Retrieval

Reinforcement learning (RL) has emerged as a powerful paradigm for optimizing LLM retrieval strategies (Humphreys
et al., 2022; Tu et al., 2024; Hsu et al., 2024). Unlike traditional retrieval methods, RL-based approaches can learn adaptive
retrieval policies that optimize for task-specific rewards (Kulkarni et al., 2024; Zhuang et al., 2025; Jin et al., 2025). Recent
work has explored using RL to train retrieval policies that maximize answer correctness (Hsu et al., 2024; Nguyen et al.,
2024), combining the strengths of parametric knowledge and nonparametric retrieval (Mallen et al., 2022; Humphreys
et al., 2022; Farahani & Johansson, 2024). Several approaches have used feedback mechanisms to improve retrieval quality,
including relevance feedback (Zhou et al., 2023) and iterative refinement (Chen et al., 2024). However, most existing
approaches still maintain a separation between the retrieval mechanism and the core reasoning process, potentially limiting
the model’s ability to integrate retrieved information in a context-aware manner.

B. The CARE RL Training Algorithm
Below, we present the RL training algorithm with curriculum learning of CARE in Algorithm 1.

C. Experiment Settings
C.1. Datasets, Benchmarks and Metrics

Training Datasets. We generate the SFT data mentioned in Section 2.2 based on the HotpotQA training set (Yang et al.,
2018) thanks to its supporting facts annotations. During SFT data generation, DeepSeek-R1 (DeepSeek-AI et al., 2025) and
DeepSeek-V3 (DeepSeek-AI et al., 2024) are used as the reasoning model MR and the fact injection model MI , respectively.
The resulting SFT dataset contains 7,739 instances with the retrieval-augmented reasoning chain labeled. For RL training,
we select DROP (Dua et al., 2019) as Deasy and MS MARCO (Nguyen et al., 2016) as Dhard.

Evaluation Datasets. We assess in-context retrieval accuracy and whether learned retrieval-augmented reasoning im-
proves answer quality using both single-passage and multi-passage datasets from LongBench (Bai et al., 2024), including
MultiFieldQA-En (Bai et al., 2024), HotpotQA (Yang et al., 2018), 2WikiMQA (Ho et al., 2020), and MuSiQue (Trivedi
et al., 2022). Following LongBench’s protocol, we report F1 scores for all datasets.

Furthermore, to evaluate context fidelity when presented with information contradicting the model’s parametric knowledge,
we utilize CofCA (Wu et al., 2025), a benchmark containing modified counterfactual Wikipedia snippets. This directly tests
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Algorithm 1 Curriculum RL with CARE Rewards
Require: Datasets Deasy, Dhard, policy πθ , reference policy πref, clip range ϵ, KL coefficient β, initial ratio α = 1.0, total steps T
Ensure: Updated policy parameters θ
1: for each training step t do
2: Sample query q with probability α from Deasy and 1− α from Dhard

3: Sample outputs {oi}Gi=1 from πθold(q)
4: for each output oi do
5: Extract retrieval spans S from oi
6: Compute the Retrieval, Format and Accuracy Rewards defined in Section 2.3
7: for each token t in oi do
8: Compute importance ratio ri,t =

πθ(oi,t)

πθold
(oi,t)

9: Update objective with Equation 1
10: end for
11: end for
12: Apply KL penalty: JGRPO ← JGRPO − β

∑
t πθ(ot) log

(
πθ(ot)
πref(ot)

)
13: Update parameters: θ ← θ + η∇θJGRPO
14: Adjust curriculum ratio α← max(0, 1− ηt/T )
15: end for
16: return θ

whether our native retrieval-augmented reasoning improves adherence to provided context regardless of pre-trained biases.
We report F1 performance consistent with CofCA’s original evaluation metrics.

C.2. Models and Baselines

We compare CARE with a series of learned reasoning strategies and RAG methods based on three commonly used public
LLMs: Qwen-2.5 7B and 14B and LLaMA-3.1 8B, which covers different model families and sizes.

Original Model. For each dataset, we test the performance of the original LLM with their corresponding default system
prompt and chat template.

RL-Based Online Retrieval. Existing dynamic retrieval approaches typically leverage reinforcement learning to train
models to autonomously conduct web searches rather than directly extract from provided context. We compare our method
against two recent RL-based online search methods: ReSearch (Chen et al., 2025) and R1-Searcher (Song et al., 2025),
both of which enable models to strategically access external knowledge during reasoning. Note that in our model selection,
ReSearch only provides a checkpoint for Qwen2.5 7B, and R1-Searcher only provides checkpoint for LLaMA-3.1 8B and
Qwen2.5 7B.

RAG Methods. We also compare with CRAG (Yan et al., 2024), a corrective RAG method that uses a lightweight evaluator
to enhance in-context retrieval with online searching. Note that in our model selection, CRAG only provides a checkpoint
for Qwen2.5 7B and 14B.

C.3. Implementation Details

All models are implemented based on the pretrained checkpoints provided by the Huggingface Transformers library (Wolf
et al., 2019). We use LLaMA-Factory (Zheng et al., 2024) for the SFT phase. In this phase, we train each model on our
curated SFT dataset for 3 epochs with the AdamW optimizer (Loshchilov & Hutter, 2019). The training progress adopts
a warmup cosine scheduler with maximum learning rate 0.0001 and warmup ratio 0.1. The effective batch size is 64.
LoRA (Hu et al., 2022) is applied with r = 8 and α = 16. The training process uses ZeRO-2 optimizer (Rajbhandari et al.,
2019). For the RL phase, we adopt the verl framework (Sheng et al., 2024) for GRPO training. We used a training batch size
of 1024. The Adam optimizer was employed with a learning rate of 1e-6. For policy optimization, we use GRPO as the
advantage estimator, and incorporated KL divergence regularization with a coefficient of 0.001 using the low-variance KL
estimator. We set the mini-batch size to 256. The model was trained for 350 steps with 5 response samples per prompt. For
distributed training, we deployed Fully Sharded Data Parallel (FSDP) (Zhao et al., 2023) across 8 GPUs on a single node
with tensor parallelism of size 2. All experiments are done with either 8×A800-SXM4-80GB or 8×H100 80GB.
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Figure 2. Comparison of models’ retrieval accuracy across different settings in terms of BLEU and ROUGE-L metrics. Our proposed
methods, CARE, demonstrate improved scores.

D. Evidence Retrieval Evaluation
In this section, we evaluate CARE’s ability to accurately retrieve and incorporate supporting evidence for question-answering.
Due to the lack of ground-truth supporting fact annotations in standard QA datasets, we focus our evaluation on the
LongBench HotpotQA benchmark. For this analysis, we align each instance in LongBench’s HotpotQA test set with its
corresponding entry in the original HotpotQA dataset, using the original supporting fact annotations as ground truth for
evaluation. We report SacreBLEU (Post, 2018) and ROUGE-L F1 (Lin, 2004). Figure 2 presents our comparative results in
different model configurations. Across all settings, CARE consistently achieves the highest BLEU and ROUGE-L scores.
We observe that performance scales with model size across all methods, with Qwen2.5 14B showing the strongest results.
However, the relative improvement from CARE remains consistent regardless of model scale and family, suggesting that our
approach effectively enhances context fidelity regardless of underlying model architecture.

E. System Prompts
We provide the system prompts used in the dataset creation process and the CARE below.

Prompt used for MR’s generation of reasoning chains for SFT data creation.

You’re an expert reader. Your goal is to read a context to answer a question. Note that during your thinking process,
before you make *any reasoning step that requires retrieving information from the context*, summarize what information
you would need to complete this reasoning step, such as ”I need to know X for this” or similar phrases before you
reason about the context. This will help you to be more systematic in your reasoning process. Put your final answer as a
minimum phrase or word at the end after “Answer:”.
Context: {context}
Question: {question}

Prompt used for MI ’s evidence integration for SFT data creation.

I’ll provide you with a question, a reasoning process to solve this question, and several evidence sentences. Insert *all*
evidence sentences into the reasoning process at appropriate locations and give me the updated reasoning process. Each
evidence sentence usually should be placed just before any conclusions or deductions that depend on it. The evidence
sentences may need to be distributed throughout different parts of the reasoning and may appear more than once. *Do
not modify any evidence sentences* - insert them exactly as provided. Return only the completed reasoning process
without explanations or additional text scaffolds.
Question: {question}
Reasoning process: {reasoning content}
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Evidence sentences (One sentence per line): {evidence sentence string}
The rewritten reasoning process:

System prompt for CARE. The actual system prompt for each model prepends the corresponding model’s original system
prompt before this prompt.

You FIRST think about the reasoning process as an internal monologue and then provide the final answer. The reasoning
process MUST BE enclosed within ⟨ think ⟩ ⟨ /think ⟩ tags. WITHIN the thinking process, make reference to the relevant
texts in the prompt that provide critical information to move the reasoning process forward. The referenced texts MUST
BE enclosed within ⟨ retrieval ⟩ ⟨ /retrieval ⟩ tags, and MUST BE placed within the reasoning process only. The final
answer MUST BE put at the end of the response after “Answer:”.

F. Case Study
We select two samples from LongBench’s HotpotQA dataset and provide the complete question, answer, supporting facts,
prediction, and whether the generated answer is correct.
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Question Answer Supporting Facts Prediction Correct

The song
that came
out ahead
of The
Wanted’s
“Lightning”
on the UK
Singles
Chart was
featured
on which
album?

Talk
That
Talk

["“We Found Love” is
a song recorded by Bar-
badian singer Rihanna
from her sixth studio
album, “Talk That
Talk” (2011).", "It was
written and produced by,
and features Scottish DJ
Calvin Harris; the song
was also featured on his
third album “18 Months”
(2012).", "“We Found
Love” premiered on
September 22, 2011,
on the Capital FM
radio station in the
United Kingdom, and
was made available
to download on the
same day as the lead
single from “Talk That
Talk”.", "“We Found
Love” is an uptempo
electro house song,
with elements of techno
and Europop.", "The
song’s lyrics speak of a
couple who “found love
in a hopeless place”."]

⟨ think ⟩\nOkay, let’s try to figure out the answer to this question. The question
is asking which album featured the song that came out ahead of The Wanted’s
“Lightning” on the UK Singles Chart.\n\nFirst, I need to find out the details
about The Wanted’s “Lightning” from the passages provided. Looking at the
passage for The Wanted’s discography, it mentions that their third single from
the second album “Battleground” was “Lightning,” released in October 2011.
⟨ retrieval ⟩The song debuted at number two on the UK Singles Chart, behind
Rihanna’s “We Found Love”.⟨ /retrieval ⟩ So, that means the song that was
number one before “Lightning” was “We Found Love” by Rihanna.\n\nNow,
the question is about the album that features “We Found Love.” I need to check
where “We Found Love” is mentioned. In the passages, there’s a section about
Rihanna’s “We Found Love” from her album “Talk That Talk (2011.” The album
is listed as her sixth studio album. The song itself is part of that album. ⟨ retrieval
⟩“We Found Love” is a song by Barbadian singer Rihanna from her sixth studio
album, Talk That Talk (2011.⟨ /retrieval ⟩ So the answer should be “Talk That
Talk.”\n\nWait, but let me confirm. The relevant information from the third
passage (The Rihanna section for “We Found Love” clearly states that it’s from
“Talk That Talk (2011),” and that’s her sixth studio album. The song’s debut
was with Rihanna’s album. Therefore, the answer is “Talk That Talk.”\n⟨ /think
⟩\n\nAnswer: Talk That Talk

Yes

Yau Ma Tei
North is a
district of
a city with
how many
citizens?

7.2
mil-
lion

["Hong Kong, officially
the Hong Kong Spe-
cial Administrative Re-
gion of the People’s
Republic of China, is
an autonomous terri-
tory south to Main-
land China and east to
Macao in East Asia.",
" With around 7.2 mil-
lion Hong Kongers of
various nationalities in
a territory of 1,104
km, Hong Kong is
the world’s fourth most
densely populated coun-
try or territory."]

⟨ think ⟩\nOkay, let’s tackle this question. The question is asking how many
citizens Yau Ma Tei North is a district of. First, I need to figure out which city
Yau Ma Tei North is a district of. From the context, the term “Yau Ma Tei North”
is mentioned in several passages. Let me check.\n\nLooking at the passages,
the one titled “Yau Ma Tei North (constituency)” states that Yau Ma Tei North is
one of the 19 constituencies in the Yau Tsim Mong District of Hong Kong. \n⟨
retrieval ⟩Yau Ma Tei North is one of the 19 constituencies in the Yau Tsim Mong
District of Hong Kong which was first created in 1982 and recreated in 2015.⟨
/retrieval ⟩\nThat’s in the context of Hong Kong’s administrative divisions. The
next step would be to find out the population of Hong Kong. \n\nI recall that
there’s a detailed section in the “Hong Kong” passages about the population. Let
me check that part. The Hong Kong entry mentions that the Census and Statistics
Department estimated Hong Kong’s population at 7,413,070 in 2021.\n⟨ retrieval
⟩The Census and Statistics Department estimated Hong Kong’s population at
7,413,070 in 2021. The overwhelming majority (91.6%) is Han Chinese, most of
whom are Taishanese, Teochew, Hakka, and other Cantonese peoples.⟨ /retrieval
⟩\n\nWait, but the question is about Yau Ma Tei North, which is a district within
Hong Kong. The population of Hong Kong as a whole is 7.4 million, but the
key point here is whether Yau Ma Tei North itself has a population figure. The
Yau Ma Tei North constituency’s entry says it covers Yau Ma Tei and has an
estimated population of 12,817. \n⟨ retrieval ⟩The constituency loosely covers
Yau Ma Tei with the estimated population of 12,817.⟨ /retrieval ⟩\nSo that’s
12,817 people. But the question is phrased as “Yau Ma Tei North is a district of
a city with how many citizens?” So the target is the parent city of Yau Ma Tei
North. Since Yau Ma Tei North is a district in Hong Kong, Hong Kong is the city.
Therefore, the population of Hong Kong is the answer, which is 7,413,070 as per
the latest data provided.\n⟨ /think ⟩\n\nTo determine the population of the city
(Hong Kong) containing Yau Ma Tei North, I need to know the administrative
level of Yau Ma Tei North. The “Yau Ma Tei North (constituency)” section
states it belongs to Yau Tsim Mong District. Next, the “Hong Kong” passages
mention the district is part of the Yau Tsim Mong District and its population.
The main Hong Kong entry (under “Demographics”) gives the 2021 population
as 7,413,070. However, Yau Ma Tei North is a specific constituency (the 19th out
of 19) within Yau Tsim Mong District, with an estimated population of 12,817.
The question likely refers to the broader city of Hong Kong’s population, not the
smaller constituency. \nAnswer: 7413070

No
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