
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DRIFT-NET: A SPECTRAL–COUPLED NEURAL OPER-
ATOR FOR PDES LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning PDE dynamics with neural solvers can significantly improve wall-clock
efficiency and accuracy compared with classical numerical solvers. In recent
years, foundation models for PDEs have largely adopted multi-scale windowed
self-attention, with the scOT backbone in POSEIDON serving as a representa-
tive example. However, because of their locality, truly globally consistent spec-
tral coupling can only be propagated gradually through deep stacking and win-
dow shifting. This weakens global coupling and leads to error accumulation
and drift during closed-loop rollouts. To address this, we propose DRIFT-Net.
It employs a dual-branch design comprising a spectral branch and an image
branch. The spectral branch is responsible for capturing global, large-scale low-
frequency information, whereas the image branch focuses on local details and
nonstationary structures. Specifically, we first perform controlled, lightweight
mixing within the low-frequency range. Then we fuse the spectral and im-
age paths at each layer via bandwise weighting, which avoids the width infla-
tion and training instability caused by naive concatenation. The fused result
is transformed back into the spatial domain and added to the image branch,
thereby preserving both global structure and high-frequency details across scales.
Compared with strong attention-based baselines, DRIFT-Net achieves lower er-
ror and higher throughput with fewer parameters under identical training settings
and budget. On Navier–Stokes benchmarks, the relative L1 error is reduced by
7%–54%, the parameter count decreases by about 15%, and the throughput re-
mains higher than scOT. Ablation studies and theoretical analyses further demon-
strate the stability and effectiveness of this design. The code is available at
https://anonymous.4open.science/r/DRIFT-Net-26D6.

1 INTRODUCTION

Partial differential equations (PDEs) underpin science and engineering. Repeated high-accuracy
simulations remain costly at scale (Trefethen, 2000; Benner et al., 2015). Neural operators address
this challenge by learning mappings directly between function spaces. This enables fast inference
across resolutions and inputs and supports cross-mesh generalization (Kovachki et al., 2023). Rep-
resentative models include the Fourier Neural Operator (FNO) (Li et al., 2021) and DeepONet (Lu
et al., 2021). Building on these advances, PDE foundation models adopt multi-scale windowed
self-attention. POSEIDON with its SCOT backbone is a representative example.

Nevertheless, windowed self-attention is local. Global dependencies emerge only gradually with
depth and shifted windows. This weakens globally consistent spectral coupling and can induce error
accumulation and drift during closed-loop autoregressive rollouts (Lippe et al., 2023). In practice,
naive cross-scale or cross-branch concatenation inflates channel width and destabilizes training.
Purely spectral operators are global but often overemphasize low-frequency structure and underfit
nonstationary local details.

Our approach. We introduce DRIFT-NET, a dual-branch neural operator. The spectral branch
performs controlled low-frequency global mixing. The image branch handles local interactions. The
two branches are fused bandwise through a non-expansive mechanism. This avoids width inflation
and preserves high-frequency detail. Implementation details, including the low-frequency mixing
and bandwise fusion, are presented in §4.
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Contributions.

• Modular operator unit. DRIFT-NET provides a dual-branch unit with controlled low-
frequency mixing and bandwise non-expansive fusion. It enhances global coupling, local-
detail fidelity, and training stability. The unit can be swapped in for windowed self-attention
blocks in multi-scale operator backbones.

• Performance and efficiency. Under matched training schedules and hardware, DRIFT-
NET reduces final-time relative L1 error by 7% to 54% on Navier–Stokes benchmarks. It
uses about 15% fewer parameters and achieves higher throughput than SCOT. See §5.

• Mechanism and reusability. Ablations and spectral analyses show how non-expansive
fusion and controlled low-frequency mixing support stable training and improved general-
ization. The design is reusable and modular for stronger PDE foundation models.

2 RELATED WORK

Neural operators. Neural operators learn PDE solution mappings directly between function
spaces. The Fourier Neural Operator (FNO) introduced spectral-domain convolutions to efficiently
capture global interactions (Li et al., 2021), while DeepONet adopts a branch and trunk factoriza-
tion grounded in operator approximation theory (Lu et al., 2021). Building on these paradigms,
several variants have broadened the applicability of neural operators. AFNO leverages low-rank
factorization for high-resolution efficiency (Guibas et al., 2022). U-NO deepens the U-Net style en-
coder–decoder hierarchy for multi-scale representations (Rahman et al., 2022). Geo-FNO extends
spectral operators to irregular geometries (Li et al., 2023), and CNO targets robust multi-scale ap-
proximation in challenging settings (Raonić et al., 2023). Beyond single-task settings, recent work
explores foundation models for scientific ML to improve scaling and transfer (Subramanian et al.,
2023).

Foundation models with multi-scale attention. Within PDE foundation models, POSEIDON em-
ploys a multi-scale windowed self-attention operator Transformer (SCOT) with a U-Net hierarchy
and time-conditioned normalization. It demonstrates strong transfer performance across hetero-
geneous equation families (Herde et al., 2024; Liu et al., 2021; 2022). Windowed self-attention
partitions the domain into local regions to compute attention efficiently, but its locality implies that
domain-wide dependencies are established only gradually via deep stacking and window shifts.
Empirically, this can weaken globally consistent spectral coupling and induce rollout drift over long
horizons (Lippe et al., 2023). In practice, naive cross-scale or cross-branch concatenation may in-
flate channel width and destabilize training, whereas purely spectral operators, while global, often
underfit nonstationary local details.

Positioning. DRIFT-Net augments a multi-scale attention backbone with an explicit spectral path
for controlled low-frequency mixing. It also introduces a non-expansive, bandwise fusion mecha-
nism that integrates the spectral and image branches without inflating the feature width. Method-
ological details and quantitative comparisons appear in Sections 4 and 5.

3 PROBLEM SETUP

Problem formulation. We consider a generic time-dependent partial differential equation on a
spatial domain D ⊂ Rd and time horizon T > 0:

∂tu(x, t) + L
(
u,∇xu,∇2

xu, . . .
)
= 0, ∀x ∈ D ⊂ Rd, t ∈ (0, T ),

B(u) = 0, ∀ (x, t) ∈ ∂D × (0, T ),

u(x, 0) = a(x), ∀x ∈ D.

(3.1)

Here L and B denote the differential and boundary operators, and a(x) is the initial datum. Time-
independent problems are also covered by this formulation. If a steady state exists, the long-time
limit (t→∞) yields the steady PDE

L
(
u(x),∇xu(x),∇2

xu(x), . . .
)

= 0, B(u) = 0, x ∈ D, (3.2)
which is the time-independent counterpart of equation 3.1.

2
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Solution operator. Let X denote the state space, for example a suitable function space on D.
The solution can be described by a map S : [0, T ] × X → X such that, for any t ∈ [0, T ] and
a ∈ X , u(t) = S(t, a). Equivalently, for each fixed t we define the flow map St : X → X with
St(a) = S(t, a).

Underlying operator learning task. Given a distribution µ over initial conditions a ∈ X , the
goal is to learn an approximate solution operator S⋆ that closely reproduces the true operator S.
For any a ∼ µ, the learned operator should generate the trajectory {S⋆(t, a)}t∈[0,T ] that approxi-
mates {S(t, a)}t∈[0,T ] for all t. The model is expected to produce the time evolution from a, given
boundary conditions, without relying on intermediate information, analogous to a classical solver.

Learning objective. On a discrete grid of size H ×W with C components, let ut ∈ RC×H×W

denote the state at discrete time t. We learn a one-step operator Fθ : ut 7→ ut+1 with teacher forcing
and a relative Lp objective with p ∈ {1, 2}. At test time, Fθ is composed autoregressively to produce
a full trajectory {ût}Tt=1. Details of the training schedule, data splits, rollout horizon, and evaluation
metrics are specified in Sec. 5.

4 METHOD

Existing neural operators suffer from weak global coupling and the loss of high-frequency de-
tail in long-horizon prediction (Lippe et al., 2023). We propose DRIFT-NET, a U-Net–style en-
coder–decoder (Ronneberger et al., 2015) with two parallel branches: a frequency path for cross-
scale global interaction and an image path for local, nonstationary structures (Wen et al., 2022). At
each scale, we fuse the branches by inverse-transforming the frequency output to the spatial domain
and adding it to the image output. The model hinges on three mechanisms: (1) controlled low-
frequency mixing to strengthen long-range dependencies without disturbing high-frequency modes;
(2) bandwise fusion with radial gating for smooth cross-band transitions (Rahaman et al., 2019;
Xu et al., 2020); and (3) a frequency-weighted loss to counter spectral bias. We first outline the
architecture and then detail each component.

Input

(a) (b) (c)

Embedding

DRIFT-Net

Stage

Patch Merging

Output

Recovery + Mixup

ConvNeXt Blocks

Patch Expansion

dt

Conv 3×3 Linear 1×1

dt

Reshape & rFFT2

Spectral Branch

Spectral Fusion and inverse FFT

Time-Conditioned LayerNorm

MLP

Time-Conditioned LayerNorm

Operator Learning

NS-PwC

NS-Tracer

-PwC

NS-SL

FNS-KF

Figure 1: Overall architecture of DRIFT-NET. (a) U-Net style encoder–decoder with ConvNeXt
blocks and patch merging/expansion. (b) Spectral branch (rFFT2, spectral fusion with radial gating)
fused additively with image branch via inverse FFT. (c) Example operator-learning tasks: NS-PwC,
NS-Tracer-PwC, NS-SL, FNS-KF.

4.1 ARCHITECTURE OVERVIEW

DRIFT-NET follows a hierarchical encoder–decoder and augments each scale with an explicit spec-
tral path (Fig. 1). In the image branch, ConvNeXt-style blocks extract local and nonstationary struc-
tures; down/up-sampling is realized by patch merging/expansion to form a U-shaped hierarchy. In
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parallel, the spectral branch converts features at the same scale to the Fourier domain via rFFT2,
applies a controlled transformation only on low-frequency modes (Sec. 4.2), and fuses them back
by a smooth bandwise mechanism (Sec. 4.3). After iFFT2, the spectral output is added to the image
branch feature at that scale.

Two design choices are key. First, the spectral path provides immediate global receptive fields at ev-
ery resolution, so globally consistent coupling does not rely on deep stacking or large kernels. Sec-
ond, the additive cross-branch fusion is non-expansive in width (no concatenation), which avoids
channel inflation and empirically stabilizes optimization. Across scales, the network thus propa-
gates coarse global structure while preserving high-frequency details refined by local convolutions.
This decomposition mirrors the physical intuition that low-k modes control large-scale dynamics,
whereas high-k modes encode fine structures, discontinuities, and small eddies. For the architecture
pseudocode content, please refer to Appendix E.

4.2 CONTROLLED LOW-FREQUENCY MIXING

In complex physical scenarios, achieving global-range feature interaction is crucial for capturing
long-range correlated dynamic behavior. However, indiscriminately applying global convolutions
or frequency-domain operations across the entire frequency spectrum may overly amplify high-
frequency noise and disrupt local details, leading to model instability. Therefore, the frequency-
domain branch of DRIFT-NET performs controlled global mixing operations only on low-frequency
modes, focusing global coupling on large-scale structures. Low-frequency components represent the
field’s overall shape and long-term evolution trends and play a decisive role in the global dynamics.
In contrast, high-frequency components carry fine-grained local structures. By introducing global
mixing only in the low-frequency band, the model can effectively propagate large-scale information
at each layer to directly couple distant spatial locations, while maximally preserving high-frequency
details and avoiding unnecessary interference with small-scale structures.

Fourier-domain decomposition and motivation. At the feature level, low spatial frequencies
correspond to smooth, domain-wide basis functions whose coefficients modulate global structures;
high frequencies capture localized variations. Modifying only a bounded set of low-k coefficients
yields a global yet parsimonious interaction pattern that respects the separation of scales. This
aligns with classical spectral methods and with the observation that neural networks tend to fit low-
frequency components first (spectral bias) (Rahaman et al., 2019; Xu et al., 2020). Our design uses
this bias constructively by letting the network explicitly learn how to mix low-k channels, while
leaving high-k content intact.

Block computation. In each DRIFT-NET block, we apply a 2D real FFT (rFFT2) to the input
feature Xin to obtain its frequency-domain representation X̂(k); by Hermitian symmetry of real-
valued inputs, only half of the spectrum needs to be represented. We then use a learnable rectangular
low-frequency mask Mlow(kx, ky) to split the spectrum into a low-frequency part X̂low and a high-
frequency residual X̂high = X̂ − X̂low. Within the low-frequency range k ∈ Mlow, we introduce
a learnable channel-wise complex linear transformation W (acting per frequency, without cross-
frequency coupling) to mix the corresponding spectral coefficients (Rao et al., 2021):

V̂ (k) = W X̂(k) , k ∈Mlow ,

V̂ (k) = X̂(k) , k /∈Mlow .
(4.1)

For later use we denote V̂low(k)=⊮k∈Mlow V̂ (k) and keep X̂high(k)=X̂(k)−⊮k∈MlowX̂(k). In prac-
tice, W is unconstrained (no explicit spectral-norm clipping), which keeps the transform expressive.
We use rFFT2/iFFT2 and the inverse transform yields a real-valued field by construction (Cooley
& Tukey, 1965; Frigo & Johnson, 2005). This design focuses global mixing on large scales while
leaving high-frequency content intact. For implementation details, refer to Appendix C.

4.3 BANDWISE FUSION WITH RADIAL GATING

After the above low-frequency mixing, we need to fuse the modified low-frequency information
from the frequency branch with the complementary content to produce the final spectrum for the
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inverse transform back to the spatial domain. If one simply performs a hard band replacement or a
direct addition, discontinuities may occur at the frequency band boundaries or amplitude overshoot
may be introduced in certain bands. Therefore, we design a smooth and stable frequency-band fusion
mechanism that uses a radial gating coefficient varying with frequency to weight and combine the
two frequency-domain signals.

Specifically, we assign each frequency k in the spectrum a weight α(k) ∈ [0, 1] to balance the
contributions of the low-frequency mapped component and the high-frequency residual. We com-
pute α(k) as a function of the frequency magnitude (radial frequency) using lightweight per-band
processing and expand it to per-frequency weights so that in the low-frequency region α(k) ≈ 1
(favoring the mixed global component), whereas in the high-frequency region α(k)≈0 (preserving
fine local details). The fusion is then computed as

Ŷ (k) = α(k) V̂low(k) +
(
1− α(k)

)
X̂high(k) , (4.2)

and since α(k) ∈ [0, 1], by convexity we have the pointwise magnitude bound∣∣Ŷ (k)
∣∣ ≤ max

{ ∣∣V̂low(k)
∣∣, ∣∣X̂high(k)

∣∣ } . (4.3)

This bandwise “clamping” effect avoids introducing energy larger than either source at any fre-
quency and empirically stabilizes training. Finally, we apply iFFT2 to obtain the spectral-path output
in the spatial domain and add it to the image branch at the same scale.

Why radial and why additive. Choosing α(k) as a radial function enforces isotropy in fusion
and prevents directional artifacts around the mask boundary. The convex combination above yields
a non-expansive operator in the frequency domain (no overshoot), which directly translates to fewer
ringing artifacts after iFFT2. In the spatial domain, we merge the spectral and image signals by
addition rather than concatenation. This preserves feature dimensionality and makes the fusion
behave as a residual correction that injects globally coupled information while letting the image
branch keep full control over high-frequency refinement. See Appendix C for details.

4.4 FREQUENCY-WEIGHTED LOSS

Despite the above architectural improvements in global coupling and local detail fidelity, the model
training stage still needs to address the issue of spectral bias. Conventional losses tend to be domi-
nated by low-frequency errors during optimization, causing the model to preferentially fit large-scale
structures while converging slowly on smaller-amplitude yet physically important high-frequency
details. As a result, fine structures in the predicted field may be underfitted and gradually become
blurred over time.

To mitigate spectral bias in a simple and stable manner, we add a frequency-weighted auxiliary term
in the Fourier domain. Let E = uθ − u be the prediction error and Ê its rFFT2 under the same
normalization. We reweight the error spectrum by a radial weight w(r)∝rα (with r the normalized
frequency magnitude) and minimize

L = Lbase + λE
[
w(r)

∣∣Ê(k)
∣∣2] , (4.4)

where Lbase is the standard Lp loss and (λ, α) are scalars. This radial weighting increases sensi-
tivity to high-|k| components and complements the bandwise fusion used in the frequency path,
thereby improving the fidelity of multi-scale structures in long-horizon predictions (Fuoli et al.,
2021; Jiang et al., 2021). From a functional-analytic perspective, this amounts to emphasizing
higher-order (roughness-related) components of the error—akin to moving from a pure Lp met-
ric toward a Sobolev-like metric—so that small-scale discrepancies are not overshadowed by low-
frequency energy during optimization. Practically, tuning λ controls the balance between coarse and
fine accuracy, while α modulates how aggressively high frequencies are emphasized; we find mod-
erate values suffice to counter underfitting of fine structures without degrading large-scale fidelity.
See Appendix B for details.

5 EXPERIMENTS

Protocol and metrics. We follow the POSEIDON evaluation protocol Herde et al. (2024) and
compare DRIFT-NET against two strong baselines: SCOT (multi-scale windowed self-attention)

5
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and FNO (a Fourier neural operator). All models use the same training/validation/test split and
preprocessing. They are trained with an identical data budget (approximately 20,000 trajectories
over 40 epochs) and identical optimization settings (the same optimizer, learning-rate schedule,
batch size, numerical precision, and hardware). On a discrete grid with C channels and H ×W
spatial points, we train a one-step operator Fθ : ut 7→ ut+1 using teacher forcing. At test time,
we apply Fθ autoregressively in a closed loop to reach the common target time T ∗. We report the
test-set mean relative L1 error at the final time:

erel-L1 =
∥ûT∗ − uT∗∥1
∥uT∗∥1

, ∥v∥1 :=
1

CHW

C∑
c=1

H∑
i=1

W∑
j=1

|vc,i,j |.

For tasks with multiple quantities of interest (QoIs)—for example, NS-Tracer-PwC predicts
(ux, uy, c) while NS-PwC, NS-SL, and FNS-KF output only (ux, uy)—we compute the relative
error for each QoI and then take an unweighted average:

etask =
1

|Q|
∑
q∈Q

∥û(q)
T∗ − u

(q)
T∗∥1

∥u(q)
T∗∥1

.

Benchmark tasks. We evaluate DRIFT-NET on four canonical unsteady Navier–Stokes bench-
marks from the POSEIDON suite Herde et al. (2024). NS-SL (shear layer) tests vortex roll-up and
mixing from a perturbed interface. NS-PwC (piecewise-constant vorticity) stresses the advection
of sharp discontinuities. NS-Tracer-PwC extends NS-PwC by introducing a passive scalar c, which
requires accurate coupling between the velocity and tracer fields. FNS-KF (forced Kolmogorov
flow) sustains two-dimensional turbulence via steady forcing, challenging long-horizon stability and
multi-scale fidelity.

In addition to these four benchmarks, we also consider two ApeBench-generated forced Kolmogorov
variants constructed using a high-accuracy pseudo-spectral solver Koehler et al. (2024). These two
variants share the same PDE setup and preprocessing but differ in physical parameters: one is more
turbulent, whereas the other is comparatively smoother. To emphasize long-horizon robustness, we
evaluate on both variants with a closed-loop rollout length of T = 100 and, for these two datasets,
compare DRIFT-NET against SCOT under identical settings.

Main results. Table 1 reports the final-time relative L1 errors under matched training conditions
and evaluation protocol. On all four POSEIDON benchmarks, DRIFT-NET attains the lowest error
among the compared methods. The table also includes the two long-horizon ApeBench-based Kol-
mogorov variants (rollout to T=100): on the turbulent variant, DRIFT-NET achieves a lower final
error than SCOT; on the smoother variant, DRIFT-NET again yields a lower final error, indicating
improved robustness across physical regimes. For completeness, we further summarize the mean
error across the rollout and the linear growth rate in the paragraph following the table, and present
the corresponding error–time curves in Figure 2.

Table 1: Final-time relative L1 error (lower is better). Closed-loop rollouts to the common target
time T ∗ for POSEIDON benchmarks, and to T=100 for our two ApeBench-based long-horizon
Kolmogorov datasets. Values are test-set means. Best in bold.

Task SCOT FNO DRIFT-NET

NS-SL (POSEIDON) 3.96 3.69 3.40
NS-PwC (POSEIDON) 2.35 4.57 1.09
NS-Tracer-PwC (POSEIDON) 5.18 9.46 4.19
FNS-KF (POSEIDON) 4.65 4.43 4.32
KF-Long (turbulent, ApeBench, T=100) 114.14 – 110.87
KF-Long (smoother, ApeBench, T=100) 62.99 – 57.17

For the two ApeBench-based datasets, we also report the mean relative L1 error across the rollout and
a linear growth slope obtained by a least-squares fit of error versus time. On the turbulent variant,
DRIFT-NET attains a mean error of 69.89 compared with 74.76 for SCOT, and an error growth

6
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slope of 1.154 compared with 1.185 for SCOT. On the smoother variant, the mean error is 31.07
compared with 35.41 for SCOT, and the slope is 0.581 compared with 0.641 for SCOT. Figure 2
depicts the corresponding error–time curves (left: turbulent; right: smoother), showing consistently
lower curves and flatter tails for DRIFT-NET.

Long-horizon behavior. Although final-time metrics are informative, the full closed-loop trajec-
tory over a long horizon provides additional insight into cumulative drift. Figure 3 presents the
test-set mean relative L1 error at each time step for NS-Tracer-PwC. DRIFT-NET achieves a final-
time error of 4.193, whereas SCOT achieves 5.182 (a reduction of 19.1%). The average error across
the rollout is 1.99 for DRIFT-NET and 2.46 for SCOT, and the linear growth slopes are 0.176 and
0.229, respectively. These results are consistent with the objective of strengthening global low-k
coupling while maintaining high-k fidelity.

Figure 2: Error vs. time on ApeBench-based long-horizon Kolmogorov datasets (T=100). Left:
turbulent; Right: smoother. Solid line: DRIFT-NET; dashed line: SCOT.

Figure 3: Error vs. time on NS-Tracer-PwC. Solid line with circles: DRIFT-NET; dashed line
with squares: SCOT. We plot the test-set mean relative L1 at each time step under closed-loop
rollouts.

Additional final-time results (subset) and context. For the tasks where error time-series are
available for both models, the final-time results confirm the advantage of DRIFT-NET over SCOT
(Table 2). For completeness, we also include NS-PwC, on which DRIFT-NET achieves a final error
of 1.090 compared with 2.350 for SCOT (as reported in prior results).

Table 2: Additional final-time results (subset). Final-time relative L1 (lower is better) where both
series are available, and percent improvement of DRIFT-NET vs. SCOT. Best in bold.

Task DRIFT-NET (erel-L1@T ∗) SCOT (erel-L1@T ∗) % Improvement

NS-Tracer-PwC 4.193 5.182 19.1%
FNS-KF 4.315 4.647 7.2%
NS-SL 3.402 3.956 14.0%
NS-PwC 1.090 2.350 53.6%

7
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Efficiency comparison. We also evaluate model size and inference speed under identical inference
conditions (same hardware, numerical precision, batch size, and sequence length; excluding data-
loading overhead). DRIFT-NET contains approximately 17 million parameters (about 15% fewer
than SCOT’s 20 million) and achieves roughly 158 time-step predictions per second, whereas SCOT
achieves about 118 steps/s (Table 3). The Conclusion reports 158 vs. 118 steps/s under a different
resolution and precision configuration; both measurements reflect a similar relative advantage for
DRIFT-NET, and we include both for completeness.

Table 3: Model size and inference throughput (higher throughput is better). Throughput measured
under identical inference settings.

Model Parameters (M) Throughput (steps/s)

DRIFT-NET 17 158
SCOT 20 118

Ablation studies. We assess the contribution of each major component of DRIFT-NET: Low-
Frequency Mixing (LFM), Radial Gating (RG), and Frequency-Weighted Loss (FWL). We train
ablated variants on NS-PwC and NS-Tracer-PwC, holding all other hyperparameters fixed and using
the same training budget and evaluation protocol as the full model. Removing LFM or RG notice-
ably worsens final-time accuracy; removing FWL also degrades performance, although to a smaller
degree (Table 4). Specifically, relative to the full model, eliminating LFM increases the final error
by 0.56 on NS-PwC and by 2.13 on NS-Tracer-PwC. Removing RG increases the error by 0.61 and
2.36 on these tasks, respectively. Dropping FWL yields smaller increases of 0.27 and 1.17.

Table 4: Ablation of DRIFT-NET components. Numbers are final-time relative L1 errors (lower is
better) on NS-PwC and NS-Tracer-PwC under the same training and evaluation protocol. Best in
bold.

Model variant NS-PwC NS-Tracer-PwC

Full DRIFT-NET (ours) 1.09 4.19
w/o Low-Frequency Mixing (LFM) 1.65 6.32
w/o Radial Gating (RG) 1.70 6.55
w/o Frequency-Weighted Loss (FWL) 1.36 5.36

Spectral analysis for ablations. To characterize scale-dependent effects, we analyze the evolution
of bandwise errors over time (normalized RMSE per frequency band). Figure 4 compares four model
variants (the full DRIFT-NET, no FWL, no RG, and no LFM), each showing error-versus-time
curves for multiple wavenumber bands. The full model most effectively suppresses error growth
in the mid- and high-frequency bands (those with k ≥ 16). In contrast, removing RG leads to
the earliest and most pronounced increase in the highest-frequency band. Removing FWL yields a
marked late-stage increase in high-frequency error. Removing LFM increases both mid- and high-
frequency errors, consistent with weakened low-frequency global coupling.

Figure 4: Bandwise nRMSE vs. step for ablations. Left to right: full DRIFT-NET, no HF loss, no
gating, no LF-Mix.
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6 LIMITATIONS AND FUTURE WORK

DRIFT-Net has limitation. It uses a mask to select low frequencies. The initial band is hand tuned.
The mask learns weights later, but the cutoff can be task specific. The model applies FFTs in many
blocks. This adds memory traffic and latency on very large grids. Our tests target two dimensional
flow. Three dimensional flow and coupled multi-physics may bring new training issues and higher
cost. Future work will learn spectral partitions end to end. We will study 3D and multi-physics
PDEs. We will pair the model with adaptive resolution and mesh refinement. We will also test
irregular domains and complex boundary conditions.

7 CONCLUSION

We introduced DRIFT-Net for operator learning. The model couples a spectral branch with an
image branch. It applies controlled low frequency mixing in the spectrum. It fuses branches with
bandwise radial gating in a stable way. A frequency weighted loss reduces spectral bias. On Navier–
Stokes benchmarks, DRIFT-Net lowers final time relative L1 error across all tasks. The reductions
range from 7% to 54%. The model uses about 15% fewer parameters than SCOT and keeps higher
throughput. For example, it reaches 158 steps per second while SCOT reaches 118 under the same
setup. The unit is modular and can replace windowed attention blocks in existing backbones.
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APPENDIX

A THEORETICAL PROOFS AND BOUNDS

A.1 SETUP AND NOTATION

Let Ω = T2 be a periodic domain. Denote by F the 2-D rFFT with forward normalization
(norm=forward). For a real-valued tensor u ∈ RH×W×C , write û = F(u). Two learnable
Nyquist-scaled cut-offs κx, κy ∈ (0, 0.5] define a low-frequency rectangle

ûlow = û · 1{ |kx|<κx, |ky|<κy }, ûhigh = û− ûlow,

with area σLF = κxκy ≤ 0.25. The spectral half-plane is partitioned into concentric radial bands
{Bj}J−1

j=0 for gating.

A.2 PER-BLOCK LIPSCHITZ UPPER BOUND

Core DRIFT operator. Inside the low rectangle a shared complex matrix W ∈ CC×C mixes
channels:

ûlow-mix(k) = W ûlow(k), k ∈Mlow.

Let the three parallel branches of a DRIFT layer be: (i) low-band mixer S, (ii) depth-wise 3 × 3
convolution C, (iii) 1×1 linear map L. With forward-normalized FFT, Parseval on the low rectangle
yields a fixed scaling absorbed into operator constants.

Lemma A.1 (Core DRIFT operator bound). For the residual-free core RDRIFT = S + C + L,
∥RDRIFT∥Lip ≤

√
σLF ρW +Kconv +Klin,

where ρW = ∥W∥2, and Kconv,Klin are operator norms of the depth-wise conv and the 1 × 1
linear, respectively. If the block is wrapped by an outer residual I +RDRIFT, then ∥I +RDRIFT∥Lip ≤
1 + ∥RDRIFT∥Lip.

Swin-style reference bound. A Swin-style block with identity shortcut decomposes as x 7→ x +
Aattn(x) +Amlp(x), hence

∥FSWIN∥Lip ≤ 1 + ∥Aattn∥2 + ∥Amlp∥2.

A.3 RELATIVE NETWORK-LEVEL BOUND

Proposition A.2 (Tighter cumulative bound). Suppose both DRIFT and Swin-style blocks use
the same outer residual I + ·. If for every depth

√
σLF ρW +Kconv +Klin < ∥Aattn∥2 + ∥Amlp∥2,

then for any number of layers L,
L∏

ℓ=1

∥F (ℓ)
DRIFT∥Lip <

L∏
ℓ=1

∥F (ℓ)
SWIN∥Lip.

Consequently, DRIFT-Net admits a strictly smaller worst-case gain than an equally deep Swin-style
stack without requiring either network to be contractive (< 1).

Discrete Grönwall implication. Let em+1 ≤ K̄θ em + ηm with one-step defect ηm. Replacing
K̄SWIN

θ by K̄DRIFT
θ < K̄SWIN

θ flattens the geometric factor in the discrete Grönwall inequality:

em ≤ K̄m
θ e0 +

1− K̄m
θ

1− K̄θ
η̄, η̄ = max

i<m
ηi.

A.4 RADIAL-BAND GATING IS ENERGY NON-EXPANSIVE

Lemma A.3 (Pointwise amplitude bound). For any fixed α ∈ [0, 1] and Fourier location k,

v̂(k) = α ûlow-mix(k) +
(
1− α

)
ûhigh(k)⇒ |v̂(k)| ≤ max{ |ûlow-mix(k)|, |ûhigh(k)| }.

Proof. Convexity: |αa+ (1− α)b| ≤ α|a|+ (1− α)|b| ≤ max{|a|, |b|}. □

11
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Remark (input-dependent gates). When α depends on the input via a band-statistics MLP, the
amplitude bound still holds pointwise; the Lipschitz constant additionally includes a term from
∂α/∂u. In practice, one may detach gradients through α in the stability analysis or constrain the
gate MLP by spectral normalization.

A.5 OPERATOR-NORM CONTROLS FOR CONV/LINEAR

Depth-wise 3 × 3 conv. On a periodic grid, the depth-wise conv is block-circulant and diago-
nalized by the DFT. Hence ∥Tk∥2 = maxh,w |k̂h,w|. Ensuring

∑
i,j |kij | ≤ 1 or projecting to

maxh,w |k̂h,w| ≤ 1 yields Kconv ≤ 1.

1× 1 linear. If W ∈ RC×C is orthogonally initialized and projected each step to the spectral ball
of radius cL ≤ 1, then ∥W∥2 ≤ cL, giving Klin ≤ cL.

B SOBOLEV-WEIGHTED ONE-STEP DEFECT BOUND

Theorem B.1 (Sobolev-closed defect). Fix s > 0, λhf > 0 and define LSob(u, û) = λhf∥Λs(u−
û)∥22 with Λs = (I − ∆)s/2. If ELSob ≤ ε, then the expected one-step defect ηm = ∥ ûm+1 −
Φθ(ûm) ∥2 satisfies

E ηm ≤ λ
1

2+s

hf ε
1

2+s =: η̄.

Proof sketch. Parseval (with norm=forward) gives LSob = λhf

∑
k(1 + ∥k∥2)s|ek|2, ek =

uk − ûk. Split the spectrum at radius r: η2m =
∑

∥k∥≤r |ek|2 +
∑

∥k∥>r |ek|2; the HF term ≤ (1 +

r2)−sλ−1
hf LSob. Optimizing r yields the stated bound; insert into the discrete Grönwall inequality.□

C SPECTRAL PIPELINE DETAILS

Low/high split (implementation). Given input size (H,W ), the rFFT has size (Hfft,Wfft) =
(H, W/2 + 1). Two learnable scalars κx = σ(θx), κy = σ(θy) define

Mlow = { |kx| < κxHfft, |ky| < κyWfft }, ûlow = û · 1Mlow
, ûhigh = û− ûlow.

Radial gate (energy-fraction driven). Let rij =
√

(i/(Hfft − 1))2 + (j/(Wfft − 1))2 and bands
Bj = {(i, j) : ⌊Jrij⌋ = j}, j = 0, . . . , J − 1. Define a high-frequency energy fraction

EHF(k) =
|ûhigh(k)|2

|ûlow(k)|2 + |ûhigh(k)|2 + ε
.

Average within each band to obtain f̄n,c(j), pass through a two-layer MLP with sigmoid output, and
broadcast back: αn,c(k) = σ(MLP(f̄n,c(⌊Jrij⌋))) ∈ (0, 1].

Spectral fusion and inference-only taper. Blend as

v̂(k) = α(k) ûlow-mix(k) +
(
1− α(k)

)
ûhigh(k), v = F−1(v̂).

At evaluation time, a lightweight outer-band taper may be applied on the outermost ring: v̂(k) ←
(1−β ᾱ(k)) v̂(k) with β ∈ (0, 1/2] and ᾱ the channel-wise mean gate. Because 0 ≤ α ≤ 1 and the
taper factor ≤ 1, every Fourier mode is non-expansive.

D COMPLEXITY AND THROUGHPUT PROTOCOL

Asymptotic costs per DRIFT block. rFFT/iFFT pair: O(HW log(HW )); band statistics &
broadcast: O(HW ); low-band mixing: O(|Mlow|C2) with |Mlow| ≪ HW . Thus DRIFT-Net
matches the asymptotic complexity of window attention while eliminating dense projections in at-
tention blocks.

12
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Algorithm 1 DRIFT-NET one-step forward and training loss (code-aligned)

Require: current field ut ∈ RC×H×W ; #scales L; learnable LF mask params (kx, ky); complex
mixers {Wℓ}Lℓ=1; radial band gates {BandGateℓ}Lℓ=1; base loss Lbase; spectral weights w(r);
coefficient λ

1:
Ensure: predicted next field ût+1; loss L (if training)

2: x← Embed(ut)
3: for ℓ = 1 to L do
4: X̂ ← rFFT2(x)

5: (Hfft,Wfft)← shape(X̂); kx ← ⌊σ(θx)Hfft⌋, ky ← ⌊σ(θy)Wfft⌋
6: X̂low ← X̂ ⊙ 1[:kx,:ky ]; X̂high ← X̂ − X̂low

7: V̂low(k)←Wℓ X̂(k) for k ∈ [: kx, : ky]; V̂low(k)← 0 otherwise
8: feat←

∣∣|X̂high| − |X̂low|
∣∣

9: α(k)← BandGateℓ
(
Poolr(feat), ∥k∥

)
10: Ŷ (k)← α(k) V̂low(k) +

(
1− α(k)

)
X̂high(k)

11: yspec ← iFFT2(Ŷ )
12: ylocal ← DWConvℓ(x) + PointwiseLinearℓ(x)
13: z ← Normℓ

(
yspec + ylocal, time

)
14: x← x+ z
15: if ℓ < L then
16: x← Downsample(x)

17: for ℓ = L down to 1 do
18: if ℓ < L then
19: x← Upsample(x)

20: x← ConvNeXtBlockℓ(x)

21: ût+1 ← Recover(x)
22: if training then
23: E ← ût+1 − ut+1; Ê ← rFFT2(E)
24: Lbase ← ∥E∥p ▷ p ∈ {1, 2}
25: Lfreq ← λ · Ek

[
w(∥k∥) |Ê(k)|2

]
26: L← Lbase + Lfreq

27: return ût+1 (and L if training)

E PSEUDOCODE

F FORCED KOLMOGOROV FLOW (KF) VISUALIZATION
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Channel 0

Channel 1

Channel 2

Figure 5: FNS-KF qualitative visualization. Each panel shows GT / scOT / DRIFT at t=0 (top)
and t=20 (bottom) for a single channel. Example is illustrative (not a main result).
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