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ABSTRACT

Learning PDE dynamics with neural solvers can significantly improve wall-clock
efficiency and accuracy compared with classical numerical solvers. In recent
years, foundation models for PDEs have largely adopted multi-scale windowed
self-attention, with the scOT backbone in POSEIDON serving as a representative
example. However, because of their locality, truly globally consistent spectral
coupling can only be propagated gradually through deep stacking and window
shifting. This locality can weaken globally consistent spectral coupling, which
has been associated with increased error accumulation and drift during closed-
loop rollouts. To address this, we propose DRIFT-Net. It employs a dual-
branch design comprising a spectral branch and an image branch. The spec-
tral branch is responsible for capturing global, large-scale low-frequency infor-
mation, whereas the image branch focuses on local details and nonstationary
structures. Specifically, we first perform controlled, lightweight mixing within
the low-frequency range. Then we fuse the spectral and image paths at each
layer via bandwise weighting, which avoids the width inflation and training in-
stability caused by naive concatenation. The fused result is transformed back
into the spatial domain and added to the image branch, thereby preserving both
global structure and high-frequency details across scales. Compared with strong
attention-based baselines, DRIFT-Net achieves lower error and higher throughput
with fewer parameters under identical training settings and budget. On Navier—
Stokes benchmarks, the relative L; error is reduced by 7%—-54%, the parameter
count decreases by about 15%, and the throughput remains higher than scOT.
Ablation studies and theoretical analyses further demonstrate the stability and ef-
fectiveness of this design. The code is available at https://github.com/
cruiseresearchgroup/DRIFT-Net.

1 INTRODUCTION

Partial differential equations (PDEs) underpin science and engineering. Repeated high-accuracy
simulations remain costly at scale (Trefethen, 2000; Benner et al., |2015). Neural operators address
this challenge by learning mappings directly between function spaces. This enables fast inference
across resolutions and inputs and supports cross-mesh generalization (Kovachki et al [2023). Rep-
resentative models include the Fourier Neural Operator (FNO) (Li et al., [2021)) and DeepONet (Lu
et al) [2021). Building on these advances, PDE foundation models adopt multi-scale windowed
self-attention. POSEIDON with its scOT backbone is a representative example.

Nevertheless, windowed self-attention is local. Global dependencies emerge only gradually with
depth and shifted windows. This weakens globally consistent spectral coupling and can induce error
accumulation and drift during closed-loop autoregressive rollouts (Lippe et al., [2023). In practice,
naive cross-scale or cross-branch concatenation inflates channel width and destabilizes training.
Purely spectral operators are global but often overemphasize low-frequency structure and underfit
nonstationary local details.

Our approach. We introduce DRIFT-NET, a dual-branch neural operator. The spectral branch
performs controlled low-frequency global mixing. The image branch handles local interactions. The
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two branches are fused bandwise through a non-expansive mechanism. This avoids width inflation
and preserves high-frequency detail. Implementation details, including the low-frequency mixing
and bandwise fusion, are presented in §[Z_q

Contributions.

* Modular operator unit. DRIFT-NET provides a dual-branch unit with controlled low-
frequency mixing and bandwise non-expansive fusion. It enhances global coupling, local-
detail fidelity, and training stability. The unit can be swapped in for windowed self-attention
blocks in multi-scale operator backbones.

* Performance and efficiency. Under matched training schedules and hardware, DRIFT-
NET reduces final-time relative L; error by 7% to 54% on Navier—Stokes benchmarks. It
uses about 15% fewer parameters and achieves higher throughput than scOT. See §5|

* Mechanism and reusability. Ablations and spectral analyses show how non-expansive
fusion and controlled low-frequency mixing support stable training and improved general-
ization. The design is reusable and modular for stronger PDE foundation models.

2 RELATED WORK

Neural operators. Neural operators learn mappings between function spaces and approximate
solution operators of PDEs (Li et al., 2021} |Kovachki et al.| [2023). A recent survey categorizes
existing architectures into three main types: deep operator networks (DeepONets), integral-kernel
neural operators, and transformer-based neural operators (Liu et al.l 2025). DeepONet adopts a
branch—trunk factorization and comes with operator-approximation guarantees (Lu et al.| 2021J.
Integral-kernel neural operators model nonlocal interactions through parameterized kernels. FNO
implements the kernel operator in the Fourier domain (L1 et al.| [2021), and variants such as Geo-
FNO and U-FNO extend this idea to irregular geometries and multiphase flow (Li et al., 2023}
Wen et al., 2022); CNO and neural operators with localized integral or differential kernels further
emphasize multi-scale structure and local operators (Raonic et al., 2023 |Liu-Schiaffini et al.|[2024)).
Transformer-based neural operators treat grid points as tokens and use self-attention to approximate
data-dependent kernels, and are widely used in multi-task and pretraining settings (McCabe et al.,
2023 Hao et al., [2024} [Yang et al.,2023; Rahman et al.| 2024).

PDE foundation models and multi-scale attention. A recent line of work builds PDE founda-
tion models on top of transformer-based neural-operator backbones. Examples include MPP (a
spatio-temporal transformer surrogate trained autoregressively on multiphysics datasets), the opera-
tor transformer DPOT with Fourier attention, and attention-based neural operators such as ICON and
CoDA-NO; all of them perform large-scale pretraining on multi-dataset or multiphysics corpora and
transfer to downstream PDE tasks (McCabe et al., 2023} Hao et al., 2024} Yang et al.,[2023;|Rahman
et al.,2024). Within multi-scale attention frameworks, POSEIDON employs a multi-scale windowed
attention operator transformer (scOT) with a U-Net hierarchy and time-conditioned normalization,
and shows strong cross-task generalization on Navier—Stokes benchmarks (Herde et al.l [2024; [Liu
et al., 2021;2022). Windowed self-attention computes attention efficiently in local windows, but
global dependencies are established only gradually through depth and window shifts, which can
weaken global spectral coupling and contribute to rollout drift at long horizons (Lippe et al., 2023)).

Positioning. We propose DRIFT-Net as a spectral-spatial coupled integral-kernel neural-operator
backbone, which in the above taxonomy falls into the class of integral-kernel neural operators. Ar-
chitecturally, DRIFT-Net is composed of stacked DRIFT blocks: each block augments the multi-
scale attention backbone with an explicit spectral path for controlled low-frequency mixing and a
non-expansive bandwise fusion mechanism that integrates the spectral and image branches with-
out increasing the feature width. Methodological details and quantitative comparisons are given in
Sections [l and
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3 PROBLEM SETUP

Problem formulation. We consider a generic time-dependent partial differential equation on a
spatial domain D C R¢ and time horizon T > 0:

Opu(x,t) + E(u, Vou, Vau,.. ) =0, VezeDcCRY te(0,T),
B(u) =0, Y (z,t) € 0D x (0,T), (3.1
u(z,0) = a(x), VzeD.

Here L and B denote the differential and boundary operators, and a(z) is the initial datum. Time-
independent problems are also covered by this formulation. If a steady state exists, the long-time
limit (¢ — oo) yields the steady PDE

Lu(z), Vyu(z), Vau(z),...) = 0, B(u) =0, x €D, (3.2)

which is the time-independent counterpart of equation[3.1]

Solution operator. Let X denote the state space, for example a suitable function space on D.
The solution can be described by a map S : [0,7] x X — X such that, for any ¢ € [0,7] and
a € X, u(t) = S(t,a). Equivalently, for each fixed t we define the flow map S; : X — X with
St(a) = S(t, CL).

Underlying operator learning task. Given a distribution x4 over initial conditions a € X, the
goal is to learn an approximate solution operator S* that closely reproduces the true operator S.
For any a ~ p, the learned operator should generate the trajectory {S*(t,a)}+c[o,7) that approxi-
mates {S(t, a)}+c[o,r) for all £. The model is expected to produce the time evolution from a, given
boundary conditions, without relying on intermediate information, analogous to a classical solver.

Learning objective. On a discrete grid of size H x W with C' components, let 1, € RC*XH*xW
denote the state at discrete time ¢. We learn a one-step operator Fy : us — w41 with teacher forcing
and a relative L, objective with p € {1, 2}. At test time, Fy is composed autoregressively to produce
a full trajectory {4, };_,. Details of the training schedule, data splits, rollout horizon, and evaluation
metrics are specified in Sec. [3

4 METHOD

Existing neural operators suffer from weak global coupling and the loss of high-frequency de-
tail in long-horizon prediction (Lippe et al. 2023). We propose DRIFT-NET, a U-Net-style en-
coder—decoder (Ronneberger et al.l [2015) with two parallel branches: a frequency path for cross-
scale global interaction and an image path for local, nonstationary structures (Wen et al., 2022)). At
each scale, we fuse the branches by inverse-transforming the frequency output to the spatial domain
and adding it to the image output. The model hinges on three mechanisms: (1) controlled low-
frequency mixing to strengthen long-range dependencies without disturbing high-frequency modes;
(2) bandwise fusion with radial gating for smooth cross-band transitions (Rahaman et al., 2019;
Xu et al., |2020); and (3) a frequency-weighted loss to counter spectral bias. We first outline the
architecture and then detail each component.

4.1 ARCHITECTURE OVERVIEW

DRIFT-NET follows a hierarchical encoder—decoder and augments each scale with an explicit spec-
tral path (Fig.[I). In the image branch, ConvNeXt-style blocks extract local and nonstationary struc-
tures; down/up-sampling is realized by patch merging/expansion to form a U-shaped hierarchy. In
parallel, the spectral branch converts features at the same scale to the Fourier domain via rFFT2,
applies a controlled transformation only on low-frequency modes (Sec. [d.2)), and fuses them back
by a smooth bandwise mechanism (Sec.[d.3). After iFFT2, the spectral output is added to the image
branch feature at that scale.

Two design choices are key. First, the spectral path provides immediate global receptive fields at ev-
ery resolution, so globally consistent coupling does not rely on deep stacking or large kernels. Sec-
ond, the additive cross-branch fusion is non-expansive in width (no concatenation), which avoids
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Figure 1: Overall architecture of DRIFT-NET. (a) U-Net style encoder—decoder with ConvNeXt
blocks and patch merging/expansion. (b) Spectral branch (tFFT2, spectral fusion with radial gating)
fused additively with image branch via inverse FFT. (¢) Example operator-learning tasks: NS-PwC,
NS-Tracer-PwC, NS-SL, FNS-KF.

Patch Merging

channel inflation and empirically stabilizes optimization. Across scales, the network thus propa-
gates coarse global structure while preserving high-frequency details refined by local convolutions.
This decomposition mirrors the physical intuition that low-k modes control large-scale dynamics,
whereas high-k modes encode fine structures, discontinuities, and small eddies. For the architecture
pseudocode content, please refer to Appendix E.

4.2 CONTROLLED LOW-FREQUENCY MIXING

In complex physical scenarios, achieving global-range feature interaction is crucial for capturing
long-range correlated dynamic behavior. However, indiscriminately applying global convolutions
or frequency-domain operations across the entire frequency spectrum may overly amplify high-
frequency noise and disrupt local details, leading to model instability. Therefore, the frequency-
domain branch of DRIFT-NET performs controlled global mixing operations only on low-frequency
modes, focusing global coupling on large-scale structures. Low-frequency components represent the
field’s overall shape and long-term evolution trends and play a decisive role in the global dynamics.
In contrast, high-frequency components carry fine-grained local structures. By introducing global
mixing only in the low-frequency band, the model can effectively propagate large-scale information
at each layer to directly couple distant spatial locations, while maximally preserving high-frequency
details and avoiding unnecessary interference with small-scale structures.

Fourier-domain decomposition and motivation. At the feature level, low spatial frequencies
correspond to smooth, domain-wide basis functions whose coefficients modulate global structures;
high frequencies capture localized variations. Modifying only a bounded set of low-k coefficients
yields a global yet parsimonious interaction pattern that respects the separation of scales. This
aligns with classical spectral methods and with the observation that neural networks tend to fit low-
frequency components first (spectral bias) (Rahaman et al.l 2019; Xu et al., 2020). Our design uses
this bias constructively by letting the network explicitly learn how to mix low-k channels, while
leaving high-£ content intact.

Block computation. In each DRIFT-NET block, we apply a 2D real FFT (tFFT2) to the input

feature Xj, to obtain its frequency-domain representation X (k); by Hermitian symmetry of real-
valued inputs, only half of the spectrum needs to be represented. We then use a learnable rectangular

low-frequency mask Mo (k,, ky) to split the spectrum into a low-frequency part Xiow and a high-

frequency residual Xpigp = X — Xjo. Within the low-frequency range k € Mg, we introduce
a learnable channel-wise complex linear transformation W (acting per frequency, without cross-
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frequency coupling) to mix the corresponding spectral coefficients (Rao et al., [2021):
V(k):WX(k)’ kEMlowa
V(k) = X(k> ) k ¢ Mlow .

For later use we denote ﬂow(k) :H‘keMlowf/(k) and keep Xhigh(k) :X(k) —H‘keA4IOWX(k). In prac-
tice, W is unconstrained (no explicit spectral-norm clipping), which keeps the transform expressive.
We use rFFT2/iFFT2 and the inverse transform yields a real-valued field by construction (Cooley
& Tukeyl [1965; [Frigo & Johnsonl [2005). This design focuses global mixing on large scales while
leaving high-frequency content intact. For implementation details, refer to Appendix C.

4.1

4.3 BANDWISE FUSION WITH RADIAL GATING

After the above low-frequency mixing, we need to fuse the modified low-frequency information
from the frequency branch with the complementary content to produce the final spectrum for the
inverse transform back to the spatial domain. If one simply performs a hard band replacement or a
direct addition, discontinuities may occur at the frequency band boundaries or amplitude overshoot
may be introduced in certain bands. Therefore, we design a smooth and stable frequency-band fusion
mechanism that uses a radial gating coefficient varying with frequency to weight and combine the
two frequency-domain signals.

Specifically, we assign each frequency k& in the spectrum a weight a(k) € [0, 1] to balance the
contributions of the low-frequency mapped component and the high-frequency residual. We com-
pute (k) as a function of the frequency magnitude (radial frequency) using lightweight per-band
processing and expand it to per-frequency weights so that in the low-frequency region a(k) = 1
(favoring the mixed global component), whereas in the high-frequency region « (k) 0 (preserving
fine local details). The fusion is then computed as

Y(k) = alk) Viw(k) + (1 —a(k)) Xne(k), (4.2)
and since a(k) € [0, 1], by convexity we have the pointwise magnitude bound
| Kiign ()| } . (4.3)

This bandwise “clamping” effect avoids introducing energy larger than either source at any fre-
quency and empirically stabilizes training. Finally, we apply iFFT2 to obtain the spectral-path output
in the spatial domain and add it to the image branch at the same scale.

’)A/(k:)| < max{ |‘7]0W(k)

Why radial and why additive. Choosing «(k) as a radial function enforces isotropy in fusion
and prevents directional artifacts around the mask boundary. The convex combination above yields
a non-expansive operator in the frequency domain (no overshoot), which directly translates to fewer
ringing artifacts after iFFT2. In the spatial domain, we merge the spectral and image signals by
addition rather than concatenation. This preserves feature dimensionality and makes the fusion
behave as a residual correction that injects globally coupled information while letting the image
branch keep full control over high-frequency refinement. See Appendix C for details.

4.4 FREQUENCY-WEIGHTED LOSS

Despite the above architectural improvements in global coupling and local detail fidelity, the model
training stage still needs to address the issue of spectral bias. Conventional losses tend to be domi-
nated by low-frequency errors during optimization, causing the model to preferentially fit large-scale
structures while converging slowly on smaller-amplitude yet physically important high-frequency
details. As a result, fine structures in the predicted field may be underfitted and gradually become
blurred over time.

To mitigate spectral bias in a simple and stable manner, we add a frequency-weighted auxiliary term

in the Fourier domain. Let ¥ = wuy — u be the prediction error and F its rFFT2 under the same
normalization. We reweight the error spectrum by a radial weight w(r) ocr® (with r the normalized
frequency magnitude) and minimize

L = Lue + AE[w(r) |[E(®)]], (4.4)



Published as a conference paper at ICLR 2026

where Ly is the standard L, loss and (A, a) are scalars. This radial weighting increases sensi-
tivity to high-|k| components and complements the bandwise fusion used in the frequency path,
thereby improving the fidelity of multi-scale structures in long-horizon predictions (Fuoli et al.
2021} Jiang et al. |2021). From a functional-analytic perspective, this amounts to emphasizing
higher-order (roughness-related) components of the error—akin to moving from a pure L, met-
ric toward a Sobolev-like metric—so that small-scale discrepancies are not overshadowed by low-
frequency energy during optimization. Practically, tuning A controls the balance between coarse and
fine accuracy, while a modulates how aggressively high frequencies are emphasized; we find mod-
erate values suffice to counter underfitting of fine structures without degrading large-scale fidelity.
See Appendix B for details.

5 EXPERIMENTS

Protocol and metrics. We follow the POSEIDON evaluation protocol (Herde et al., 2024). All
models, including DRIFT-NET and all baselines, use the same train/validation/test splits and pre-
processing, and are trained under a shared data budget and training protocol: the same number of
supervised trajectories per task, identical epoch budgets, and a common optimizer and learning-rate
schedule inherited from the POSEIDON scOT configuration (see Appendix F.4). On a discrete grid
with C channels and H x W spatial points, we train a one-step operator Fy : u; +— u;11 with
single-step teacher forcing. At test time, we apply Fjy autoregressively in a closed loop to reach the
common target time T*. We report the test-set mean relative L' error at the final time:

~ cC H W
R e R 9 3 ) B
rel-L1 ‘ ) 1- CHW pi o [SX2VAN

UT*Hl

For tasks with multiple quantities of interest (Qols)—for example, NS-Tracer-PwC predicts
(ugz, uy, c) while NS-PwC, NS-SL, and FNS-KF output only (u,,u,)—we compute the relative
error for each Qol and then take an unweighted average:

o oL 2% — u$2|l,
Q|

LA

Baselines. We compare DRIFT-NET with scOT (Herde et al., |2024), FNO (L1 et al., 2021)), U-
NO (Rahman et al., [2022)), a U-Net—-ConvNeXt baseline, and a Refiner U-Net baseline adapted from
PDE-Refiner (Lippe et al.2023)); see Appendix for detailed configurations.

Benchmark tasks. We evaluate DRIFT-NET on four canonical unsteady Navier—Stokes bench-
marks from the POSEIDON suite (Herde et al.,|2024). NS-SL (shear layer) tests vortex roll-up and
mixing from a perturbed interface. NS-PwC (piecewise-constant vorticity) stresses the advection
of sharp discontinuities. NS-Tracer-PwC extends NS-PwC by introducing a passive scalar ¢, which
requires accurate coupling between the velocity and tracer fields. FNS-KF (forced Kolmogorov
flow) sustains two-dimensional turbulence via steady forcing, challenging long-horizon stability and
multi-scale fidelity.

To cover different types of PDEs, we additionally include three tasks: Poisson—Gauss describes a
stationary Poisson equation with Gaussian forcing and assesses performance on elliptic problems.
The Allen-Cahn equation (ACE) models interface evolution and phase separation, representing a
prototypical reaction-diffusion process. Wave-Gauss simulates two-dimensional wave propagation
in a Gaussian medium and tests the modeling of hyperbolic wave phenomena.

In addition to these four benchmarks, we also consider two ApeBench-generated forced Kolmogorov
variants constructed using a high-accuracy pseudo-spectral solver (Koehler et al.| [2024). These two
variants share the same PDE setup and preprocessing but differ in physical parameters: one is more
turbulent, whereas the other is comparatively smoother. To emphasize long-horizon robustness, we
evaluate on both variants with a closed-loop rollout length of 7" = 100 and, for these two datasets,
compare DRIFT-NET against scOT under identical settings.
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Main results. Table 1| reports the final-time relative L' errors across all seven PDE benchmarks
under the matched training protocol described above. On the four POSEIDON Navier—Stokes tasks,
DRIFT-NET consistently attains the lowest error among all compared architectures, reducing the
error of scOT by between 7% and 54% while using fewer parameters. Among the baseline models,
scOT is typically the strongest, whereas FNO underperforms on most unsteady flow tasks.

On all three additional PDE benchmarks (Poisson—Gauss, Allen—Cahn, and Wave—-Gauss), DRIFT-
NET achieves the best test error, with modest gains on Poisson—Gauss and more pronounced im-
provements on Allen—Cahn and Wave—Gauss. These results indicate that replacing windowed-
attention blocks with DRIFT blocks improves accuracy not only on Navier—Stokes benchmarks but
also on elliptic, parabolic, and hyperbolic PDEs.

Table 1: Final-time relative L' error (lower is better). Closed-loop rollouts to the common target
time 7™ on all benchmarks. Values are test-set means. Best in bold.

Task scOT FNO U-NO U-Net-ConvNeXt Refiner U-Net DRIFT-NET
NS-SL 3.96 3.69 3.57 3.89 3.48 3.40
NS-PwC 2.35 4.57 1.62 2.22 1.95 1.09
NS-Tracer-PwC  5.18 9.46 10.15 9.63 4.59 4.19
FNS-KF 4.65 443 11.70 5.94 4.38 4.32
Poisson—-Gauss 0.87 1.29 1.76 1.92 - 0.86
Allen—Cahn 1.10 1.53 1.27 1.61 1.11 1.03
Wave—Gauss 12.34  16.97 13.94 16.02 13.33 12.15

Long-horizon behavior. Although final-time metrics are informative, a full closed-loop trajec-
tory over a long horizon provides additional insight into cumulative drift. We therefore analyse two
ApeBench-generated forced Kolmogorov variants constructed with a high-accuracy pseudo-spectral
solver (Koehler et al., 2024)). Both datasets share the same PDE setup but differ in physical parame-
ters, with one being more turbulent and the other comparatively smoother. For both variants we run
closed-loop rollouts up to 7=100 and compare DRIFT-NET against scOT under identical settings.

Table[2]summarizes the final-time relative L' error at 7=100. On the turbulent variant, DRIFT-NET
attains a lower final error than scOT (110.87 vs. 114.14). On the smoother variant, the improvement
is more pronounced (57.17 vs. 62.99), indicating increased robustness across different flow regimes.

Table 2: Forced Kolmogorov flows from ApeBench. Final-time relative L' error (lower is better) at
T'=100. Values are test-set means. Best in bold.

Task scOT  DRIFT-NET
KF-Long (turbulent, ApeBench, 7=100) 114.14 110.87
KF-Long (smoother, ApeBench, 7=100)  62.99 5717

Beyond the final-time value, we also consider the mean relative L' error across the rollout and
a linear growth slope obtained by a least-squares fit of error versus time. On the turbulent variant,
DRIFT-NET attains a mean error of 69.89 compared with 74.76 for scOT, and an error-growth slope
of 1.154 compared with 1.185 for scOT. On the smoother variant, the mean error is 31.07 compared
with 35.41 for scOT, and the slope is 0.581 compared with 0.641 for scOT. Figure 2 shows the
corresponding error—time curves, which remain consistently lower for DRIFT-NET with slightly
flatter tails at large ¢.

Finally, to better visualise how errors accumulate, we plot in Figure 3 the instantaneous error growth
on the smoother Kolmogorov variant, defined as the difference between consecutive relative !
values. DRIFT-NET exhibits smaller instantaneous growth than scOT for most of the rollout, es-
pecially in the early and mid-range time steps, and only converges to similar values near the end of
the horizon. This pattern is consistent with the design goal of DRIFT blocks, namely strengthening
global low-frequency coupling while maintaining high-frequency fidelity and avoiding rapid error
amplification.
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Figure 2: Error vs. time on ApeBench-based long-horizon Kolmogorov datasets (7=100). Left:
turbulent; Right: smoother. Solid line: DRIFT-NET; dashed line: scOT.
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Figure 3: Instantaneous error growth on the smoother ApeBench Kolmogorov dataset. We plot
the per-step change in relative L' error over a rollout of length T=100. Solid line: DRIFT-NET;
dashed line: scOT.

Efficiency comparison. We compare the computational cost of scOT and DRIFT-NET on FNS-
KF (Table E]) Under identical hardware and inference settings, the 1.0x DRIFT-NET uses 17M
vs. 20M parameters for scOT, reduces peak training memory from 17.25 GB to 10.87 GB, shortens
training time per epoch from 17.30 to 14.91 minutes, and increases inference throughput from 118
to 158 steps/s. At 0.5x width, both models become cheaper, and DRIFT-NET still has lower mem-
ory and higher throughput (224 vs. 175 steps/s). Overall, on FNS-KF, DRIFT-NET is both more
accurate and more efficient than scOT.

Table 3: Computational cost on FNS-KF. Parameter count, peak training memory, training time per
epoch, and inference throughput (higher is better) for scOT and DRIFT-NET at two width settings.
Measurements are taken under identical inference and training settings.

Model Params (M) Peak train mem (GB) Train time / epoch (min) Throughput (steps/s)
scOT 20 17.25 17.30 118
scOT-0.5 x 10 8.58 15.81 175
DRIFT-NET 17 10.87 14.91 158
DRIFT-NET-0.5 % 9 6.82 13.96 224

Ablation studies. We assess the contribution of each major component of DRIFT-NET: Low-
Frequency Mixing (LFM), Radial Gating (RG), Frequency-Weighted Loss (FWL), and the two op-
erators in the image branch, namely the 3 x3 depth-wise convolution and the 1x1 pointwise linear
layer. We train ablated variants on NS-PwC and NS-Tracer-PwC, holding all other hyperparameters
fixed and using the same training budget and evaluation protocol as the full model. Removing LFM
or RG noticeably worsens final-time accuracy; removing FWL also degrades performance, although
to a smaller degree. Dropping the 3 x3 depth-wise convolution or the 1x 1 pointwise linear layer fur-
ther increases the error, showing that the ConvNeXt-style image branch is also important (Table ).
Concretely, relative to the full model, removing LFM increases the final error by 0.56 and 2.13 on
NS-PwC and NS-Tracer-PwC, respectively; removing RG increases it by 0.61 and 2.36; removing
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FWL yields smaller increases of 0.27 and 1.17; removing the depth-wise convolution adds 0.02 and
0.17; and removing the pointwise linear layer adds 0.22 and 0.02.

Table 4: Ablation of DRIFT-NET components. Numbers are final-time relative L' errors (lower is
better) on NS-PwC and NS-Tracer-PwC under the same training and evaluation protocol. Best in
bold.

Model variant NS-PwC  NS-Tracer-PwC
Full DRIFT-NET (ours) 1.09 4.19
w/o Low-Frequency Mixing (LFM) 1.65 6.32
w/o Radial Gating (RG) 1.70 6.55
w/o Frequency-Weighted Loss (FWL) 1.36 5.36
w/o 3x3 depth-wise conv 1.11 4.36
w/o 1x1 pointwise linear 1.31 421

Spectral analysis for ablations. To characterize scale-dependent effects, we analyze the evolution
of bandwise errors over time (normalized RMSE per frequency band). Figure[d]compares four model
variants (the full DRIFT-NET, no FWL, no RG, and no LFM), each showing error-versus-time
curves for multiple wavenumber bands. The full model most effectively suppresses error growth
in the mid- and high-frequency bands (those with £ > 16). In contrast, removing RG leads to
the earliest and most pronounced increase in the highest-frequency band. Removing FWL yields a
marked late-stage increase in high-frequency error. Removing LFM increases both mid- and high-
frequency errors, consistent with weakened low-frequency global coupling.

DRIFT-NET No HF loss No gating No LF-Mix

Bandwise nRMSE vs Step Bandwise nRMSE vs Stej D

Figure 4: Bandwise nRMSE vs. step for ablations. Left to right: full DRIFT-NET, no HF loss, no
gating, no LF-Mix.

6 LIMITATIONS AND FUTURE WORK

DRIFT-Net has limitations. It uses a mask to select low frequencies. The initial band is hand-tuned.
The mask learns weights later, but the cutoff can be task specific. The model applies FFTs in many
blocks. This adds memory traffic and latency on very large grids. Our tests target two-dimensional
flow. Three-dimensional flow and coupled multi-physics may bring new training issues and higher
cost. Future work will learn spectral partitions end to end. We will study 3D and multi-physics
PDEs. We will pair the model with adaptive resolution and mesh refinement. We will also test
irregular domains and complex boundary conditions.

7 CONCLUSION

We introduced DRIFT-NET, a spectral-spatial coupled integral-kernel neural-operator backbone.
Each DRIFT block combines a spectral branch with controlled low-frequency mixing and a
ConvNeXt-style image branch, and fuses them via bandwise radial gating in a non-expansive way. A
frequency-weighted loss further mitigates spectral bias. On four POSEIDON Navier—Stokes bench-
marks, DRIFT-NET reduces final-time relative L! error by 7% -54% compared to scOT, while
using about 15% fewer parameters and achieving higher inference throughput. Additional results on
Poisson—Gauss, Allen—Cahn, and Wave—Gauss show that these gains extend beyond Navier—Stokes
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to elliptic, parabolic, and hyperbolic PDEs. Because DRIFT blocks are modular and architecture-
agnostic, they can replace windowed attention blocks in existing multi-scale operator backbones and
may be integrated into future PDE foundation models.
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APPENDIX

A THEORETICAL PROOFS AND BOUNDS

A.1 SETUP AND NOTATION

Let Q = T2 be a periodic domain. Denote by F the 2-D rFFT with forward normalization
(norm=forward). For a real-valued tensor u € R¥>*WXC write 4 = F(u). Two learnable
Nyquist-scaled cut-offs k., &, € (0,0.5] define a low-frequency rectangle

ﬁlow :a'l{\km\<nm, lky|<ky }> ﬁ/high :a_ﬁ10W7
with area o ,p = Kkzky < 0.25. The spectral half-plane is partitioned into concentric radial bands
{B; }3]:_01 for gating.

A.2 PER-BLOCK LIPSCHITZ UPPER BOUND

Core DRIFT operator. Inside the low rectangle a shared complex matrix W € C©*¢ mixes
channels:

’alow_mix(k‘) = W@low(k), k € Miow.
Let the three parallel branches of a DRIFT layer be: (i) low-band mixer S, (ii) depth-wise 3 x 3
convolution C, (iii) 1 x 1 linear map L. With forward-normalized FFT, Parseval on the low rectangle
yields a fixed scaling absorbed into operator constants.

Lemma A.1 (Core DRIFT operator bound). For the residual-free core Rpgipr = S +C + L,

||RDRIFTHLip S \/HPW + Kconv + Klina
where py = |[|[W]|2, and Kcony, Kiin are operator norms of the depth-wise conv and the 1 x 1
linear, respectively. If the block is wrapped by an outer residual I 4+ Rpgier, then || + Rpgrier||Lip <
1 + || Rorier || Lip-

Swin-style reference bound. A Swin-style block with identity shortcut decomposes as x +— = +
Agitn (2) + Amip(2), hence

||stm||Lip < 14 ||Aatm||2 + HAmlpH2~

A.3 RELATIVE NETWORK-LEVEL BOUND

Proposition A.2 (Tighter cumulative bound). Suppose both DRIFT and Swin-style blocks use
the same outer residual [ + -. If for every depth

VoLr pw + Keonv + Kiin < || Aaunll2 + || Amipl|25
then for any number of layers L,

L L

[T 1ES e s < TT I ESO -

(=1 £=1
Consequently, DRIFT-Net admits a strictly smaller worst-case gain than an equally deep Swin-style
stack without requiring either network to be contractive (< 1).

Discrete Gronwall implication. Let e,,; < Kypen, + Nm With one-step defect 7,,,. Replacing
K3¥™ by KPRt < K3W™ flattens the geometric factor in the discrete Gronwall inequality:
_ 1—-K™ _ _
€m§K9m€0+1_7[—(00777 1 = maxqy;.

A.4 RADIAL-BAND GATING IS ENERGY NON-EXPANSIVE

Lemma A.3 (Pointwise amplitude bound). For any fixed o € [0, 1] and Fourier location k,
f}(k) = aalow-rnix(k) + (1 - Oé) ahigh(k‘) = |@(k)‘ S max{ |alow—mix(k)|a ‘ahigh(k‘)‘ }
Proof. Convexity: |aa + (1 — a)b| < alal + (1 — «)|b| < max{|al, |b|}. O

12
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Remark (input-dependent gates). When a depends on the input via a band-statistics MLP, the
amplitude bound still holds pointwise; the Lipschitz constant additionally includes a term from
Oa/Ou. In practice, one may detach gradients through « in the stability analysis or constrain the
gate MLP by spectral normalization.

A.5 OPERATOR-NORM CONTROLS FOR CONV/LINEAR

Depth-wise 3 x 3 conv. On a periodic grid, the depth-wise conv is block-circulant and diago-
nalized by the DFT. Hence [T |2 = maxp,, |kn,w|. Ensuring 37, . [ki;| < 1 or projecting to

maxy,  [knw| < 1 yields Keony < 1.

1 x 1linear. If W € RE*Y is orthogonally initialized and projected each step to the spectral ball
of radius ¢, < 1, then |W||2 < ¢y, giving Ky, < ¢

B SOBOLEV-WEIGHTED ONE-STEP DEFECT BOUND

Theorem B.1 (Sobolev-closed defect). Fix s > 0, A,s > 0 and define Lgop, (u, @) = Ape||A®(u —
@)]|3 with A* = (I — A)*/2. If E Lo, < ¢, then the expected one-step defect 1,, = || @pmi1 —
Dy (i) ||2 satisfies

1 —

1
En, <A e =1

Proof sketch. Parseval (with norm=forward) gives Lsop = Anr (1 + [|k[|?)%]ex]?, ex =
uy, — {y. Split the spectrum at radius 7: 15, = 32, <, |exl* + 32> lex|*; the HF term < (1 +

TQ)_S)\}jt-lLsob. Optimizing r yields the stated bound; insert into the discrete Gronwall inequality.l]

C SPECTRAL PIPELINE DETAILS

Low/high split (implementation). Given input size (H, W), the rFFT has size (Hg, W) =
(H, W/2+ 1). Two learnable scalars k, = o (), £, = o(6,) define

Mlow - { |kz| < HmHﬁ'ta |ky| < Hny‘ft }7 ﬁflow =1u- 1M10W7 7-ALhigh =1- ﬁ10w~

Radial gate (energy-fraction driven). Letr;; = \/(i/(Hg — 1))2 + (j/(Wg — 1))2 and bands
B; ={(i,j) : |Jri;] =4}, 7=0,...,J — 1. Define a high-frequency energy fraction

|nign (k)|
E k) = .
e (k) = O + Jamgn (B T 2

Average within each band to obtain ﬁz (7). pass through a two-layer MLP with sigmoid output, and
broadcast back: v, o(k) = o(MLP(fy,([Jri5]))) € (0,1].

Spectral fusion and inference-only taper. Blend as
(k) = a(k) tow-mix (k) + (1 — a(k)) Unigh (k), v=F10).

At evaluation time, a lightweight outer-band taper may be applied on the outermost ring: 6(k)
(1—-Ba(k))o(k) with 8 € (0,1/2] and & the channel-wise mean gate. Because 0 < o < 1 and the
taper factor < 1, every Fourier mode is non-expansive.

D COMPLEXITY AND THROUGHPUT PROTOCOL

Asymptotic costs per DRIFT block. rFFT/iFFT pair: O(HW log(HW)); band statistics &
broadcast: O(HW); low-band mixing: O(|Moy| C?) with |Mio,,| < HW. Thus DRIFT-Net
matches the asymptotic complexity of window attention while eliminating dense projections in at-
tention blocks.
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E PSEUDOCODE

Algorithm 1 DRIFT-NET one-step forward and training loss (code-aligned)

Require: current field u; € REXHXW. gscales L; learnable LF mask params (ky, ky); complex

Ensure: predicted next field 4,4 1; loss L (if training)
2: z + Embed(u;)
3: for{ =1to L do

X + rFFT2(x)

(!{fﬂ, Wfft) < shape(X); . /{ix < \_g(ew)AHfﬂJ, kiy < I_O'(ey) WfftJ
Xiow < X O 11k, k)5 Xnigh ¢ X — Xiow

View(k) = Wy X (k) for k € [: ky,: kyl; View(k) < 0 otherwise
feat < || Xnigh| — [Xiow!|

a(k) + BandGatey(Pool, (feat), || k||)

Y (k) < a(k) View(k) + (1 — a(k)) Xnign(k)

Yspec  IFFT2(Y)

Yiocal < DWConv,(x) 4+ PointwiseLineary(x)

Z Normf(yspec ~+ Yiocal s time)
T4~ T+ 2
if / < L then

2 + Downsample(z)

: for / = L downto 1 do

if { < L then
x < Upsample(x)
x < ConvNeXtBlock,(x)

: Gy41 < Recover(x)
. if training then

E ¢ figp1 — uss1; E < rFFT2(E)
Lipase + ”EHP =R

Lig A Exfuw([[k]) | E(k) ]

L+ Lbase + Lfreq

: return u;4; (and L if training)

mixers {Wg}l?:l; radial band gates {BandGateg}g‘:l; base 10ss Ly,se; spectral weights w(r);
coefficient A
1:

>pe{l,2}

F EXPERIMENTAL SETUP AND HYPERPARAMETERS

F.1

OVERALL PROTOCOL

We follow the POSEIDON downstream evaluation protocol (Herde et al., 2024) and use the public
Poseidon datasets: NS-SL, NS-PwC, NS-Tracer-PwC, FNS-KF, Allen—Cahn (ACE), Wave—Gauss,
and Poisson—Gauss. All fields are provided on a fixed 128 x 128 Cartesian grid; we train and evaluate

directly on this grid without any additional spatial interpolation or resampling.

For all time-dependent tasks (NS-SL, NS-PwC, NS-Tracer-PwC, FNS-KF, ACE, Wave—Gauss),

each trajectory consists of a sequence of states {ut}fﬁo sampled at a fixed time step. We train a
one-step operator

Fg DU U,

acting on grids in RC*128%128 'where C is the number of physical channels (e.g., C=2 for velocity,
C=3 for velocity plus tracer). Training uses single-step teacher forcing: we sample a time index
t from each trajectory, feed wu; into the model, and minimize the one-step prediction error to 1.
In Wave—Gauss the spatially varying wave speed is provided as an additional static input channel.
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Poisson—Gauss is time-independent; there we directly learn the mapping from source field f(z,y)
to steady-state solution u(x, y) on the same grid.

At test time we use the learned one-step map in closed loop. Given an initial state uy we generate
an autoregressive rollout {at}til by iteratively applying Fy and compare the final prediction -«
with the ground truth up- at the standard target snapshot 7 used in POSEIDON for each task. For
Poisson—Gauss we evaluate directly on the steady-state solution.

Unless otherwise stated, we report the mean test relative L error at the evaluation time: for a
single-quantity task,

g~ — ur~||1
rel-L; = |UT”1 ol = epw Z |veijl,

[2aV)

averaged over all test trajectories. For tasks with multiple quantities of interest (e.g., NS-Tracer-
PwC), we compute the relative error per quantity and take an unweighted average. All models
(DRIFT-Net and baselines) use the same train/validation/test splits and the same number of training
trajectories as in the Poseidon releases.

F.2 DOWNSTREAM DATASETS AND TASKS

We evaluate DRIFT-NET and all baselines on seven downstream tasks from the Poseidon collection
and on two additional long-horizon Kolmogorov-flow benchmarks generated with APEBench. All
datasets use a fixed 128 x 128 Cartesian grid.

NS-SL. NS-SL is a two-dimensional incompressible Navier—Stokes benchmark with double shear-
layer initial conditions. The Poseidon NetCDF file provides a single variable velocity with shape
40000 x 21 x 2 x 128 x 128 (trajectories x time steps x channels x H x W), where the two channels
are horizontal and vertical velocity. Trajectories are simulated on the unit square up to 7' = 1 with 21
uniformly spaced snapshots; the official split is 39640/120/240 trajectories for train/validation/test.

NS-PwC and NS-Tracer-PwC. NS-PwC and NS-Tracer-PwC share the same Poseidon dataset.
The NetCDF file contains a velocity variable of shape 20000 x 21 x 3 x 128 x 128. The three
channels correspond to horizontal velocity, vertical velocity, and a passive tracer convected by the
flow. We treat the first two channels as the NS-PwC task (predicting only the velocity field) and all
three channels as NS-Tracer-PwC (velocity plus tracer). All trajectories are simulated upto 7’ = 1
with 21 snapshots, and we use the standard 19640/120/240 train/validation/test split.

FNS-KF. FNS-KF is a forced incompressible Navier—Stokes benchmark with piecewise constant
vorticity initial conditions and steady Kolmogorov forcing. The dataset provides a single variable
solution with shape 20000 x 21 x 2 x 128 x 128 for the two velocity components. Simulations
run on the unit square up to 7' = 1 with 21 snapshots and use a time- and sample-independent
forcing field f(z,y) = 0.1sin(27(x + y)). We adopt the official 19640/120/240 split.

ACE. ACE contains trajectories of the Allen—Cahn reaction—diffusion equation. The NetCDF file
has a single variable solut ion of shape 15000 x 20 x 128 x 128, representing a scalar concentration
field. The equation is solved on the unit square up to 7 = 2 x 10~* with 20 uniformly spaced
snapshots. We use the default 14700/60/240 trajectories for training, validation, and testing.

Wave-Gauss. Wave—Gauss is a second-order wave equation with spatially varying wave speed.
The dataset provides two variables: solution of shape 10512 x 15 x 128 x 128 for the scalar wave
field, and c of shape 10512 x 128 x 128 for the static wave-speed field. We treat c as an additional
static input channel that is concatenated to the dynamic field at every time step. Trajectories are
simulated on the unit square up to 7" = 1 with 15 snapshots, and the official split is 10212/60/240
trajectories.

Poisson—Gauss. Poisson—Gauss is a time-independent benchmark based on the Poisson equation
with Gaussian source terms. The NetCDF file contains two variables of shape 20000 x 128 x
128: source, the right-hand side f(x,y), and solution, the corresponding steady-state solution
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u(x,y). We learn the operator mapping f — w directly on the 128 x 128 grid, using the default split
of 19640/120/240 samples.

ApeBench Kolmogorov flows. For long-horizon evaluation we generate two Kolmogorov-flow
datasets with APEBench. Both are based on the periodic 2D vorticity formulation of the incom-
pressible Navier—Stokes equations with drag and single-mode Kolmogorov forcing,

wt—l—u-Vw:VAw—’yw—&-f(x,y), u:(ay¢»—am¢)7 A¢:w7

discretized with a pseudo-spectral solver on a 128 x 128 grid. We consider two parameter sets:

* KF-Long (turbulent). Corresponds to the NS-2D-Forced BASE configuration with v =
1072, v = —0.1, forcing mode kforce = 4, and forcing scale 1.0.

* KF-Long (smoother). Corresponds to the NS-2D-Forced VARB configuration with the
same forcing mode but higher viscosity and drag: v = 1.5 x 1072, v = —0.15, kforee = 4,
and forcing scale 1.0.

For each configuration we procedurally generate 4,000 trajectories with the APEBench code and
split them into 3,700 training, 200 validation, and 100 test trajectories. Unless otherwise stated,
long-horizon results on these benchmarks are reported for closed-loop rollouts of length 7' = 100
time steps.

F.3 MODEL CONFIGURATIONS AND PARAMETER COUNTS

All models are instantiated in a “base” configuration on 128 x 128 grids with comparable capacity.
DRIFT-NET has about 17M parameters, while all baselines are scaled to about 20M parameters.

DRIFT-NET. DRIFT-NET is a four-level U-Net encoder—decoder with feature widths
(do,dy,d2,ds) = (d,2d,4d,4d) and two DRIFT blocks per resolution. Each block contains an
image branch (ConvNeXt-style block with depthwise 3 x 3 convolution, pointwise 1 X 1 convolu-
tion, MLP, LayerNorm, and GELU) and a spectral branch that applies a 2-D FFT, restricts mixing to
a learnable low-frequency mask, and maps back with an inverse FFT. Radial-band gating partitions
Fourier modes into J radial bands and uses a small MLP per band to blend the image and spectral
features. We choose d such that the total parameter count is = 17M on 128 x 128; the “0.5x” variant
used in the FNS-KF ablation halves all channel widths.

scOT. The scOT baseline follows the official POSEIDON implementation (code: https://
github.com/camlab-ethz/poseidon): a multiscale Swin-style operator transformer with
ConvNeXt bridges and time-conditioned layer norms (Herde et al., 2024). We use the Poseidon-T
(scOT-T) configuration for all from-scratch runs, i.e., the tiny model used as the backbone of Po-
seidon, which has about 20M parameters. We keep the architectural hyperparameters (number of
levels, Swin blocks per level, window size, patch size) identical to the released scOT-T config and
only adapt the input/output channel dimensions to each task.

FNO. Our Fourier Neural Operator baseline follows Li et al. (Li et al.| 202 1)) and uses the 2-D time-
dependent FNO architecture from the official codebase (https://github.com/1i-Pingan/
fourier—-neural-operator). The network consists of a lifting layer that maps the physical
input channels to a width of dg, = 96, followed by L = 5 Fourier layers with m, = m, = 16
retained complex Fourier modes per spatial dimension, and a projection layer back to the physical
channels. We keep L and (m,, m, ) fixed across all tasks and only tune ds, to control capacity; with
dfno = 96 the model has about 19M parameters on 128 x 128 grids. All other architectural choices
(complex Fourier weights, FFT-based convolutions, and nonlinearity placement) follow the official
implementation.

U-NO. The U-NO baseline uses the official U-shaped Neural Operator implementation (https:
//github.com/ashig24/UNO) (Rahman et al., 2022). We employ a simplified 2-D UNO
configuration with two resolution levels. At the finest resolution an operator block maps the physical
channels to width,;,,, we then downsample by a factor of two and apply an operator block with output
width 2 width,,,, and finally upsample and fuse encoder and decoder features with an operator block
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that maps 3 width,;,, back to width,,, before a 1 x 1 convolution to the output channels. We set
width,,, = 88 and use m, = m, = 16 Fourier modes in each operator block. This yields a total
parameter count of about 20M on 128 x 128 grids.

U-Net-ConvNeXt. The U-Net—-ConvNeXt baseline shares the same four-level encoder—decoder
hierarchy as DRIFT-NET (down/up-sampling operators and skip connections), but contains only a
spatial branch. We use the UNet 2d backbone from PDEBench with ConvNeXt-style blocks (code:
https://github.com/pdebench/PDEBench) and set the base widthto init_features
= 50, which determines the channel widths at each level via the standard U-Net doubling rule. With
this setting the model has approximately 20M parameters on 128 x 128 grids. We do not include
any spectral path or radial-band gating.

Refiner U-Net. The Refiner U-Net baseline is adapted from PDE-Refiner (https://
phlippe.github.io/PDERefiner/) (Lippe etal.[2023). We use a modern four-level convo-
lutional U-Net backbone with channel widths (48, 96,192, 384) and two residual 3 x 3 convolutional
blocks per level, similar to the Unetmod backbone employed for Kolmogorov flow in PDE-Refiner.
On top of this backbone we apply three refinement steps, each implemented as a lightweight resid-
ual update on the current prediction; all refinement steps share the same U-Net parameters. This
configuration yields a total parameter count of approximately 20M on 128 x 128 grids.

F.4 TRAINING AND OPTIMIZATION

All models are trained from scratch on each downstream task using the official Poseidon
train/validation/test splits. For time-dependent datasets we train a one-step map Fp : uy — Usy1
with single-step teacher forcing and evaluate closed-loop rollouts as described in Appendix F.1.
After each epoch we save a checkpoint and report test metrics for the checkpoint with the lowest
validation relative L error.

Optimizer and schedule. For all architectures (DRIFT-Net and all baselines) we use the same
optimizer and learning-rate schedule, following the from-scratch scOT setup in POSEIDON (Herde
et al., 2024; [Li et al., |2021). Specifically, we use AdamW with an initial learning rate 3 x 104,
a cosine decay schedule with warm-up, and weight decay 10~%. These hyperparameters are fixed
across all models and datasets and are not tuned per architecture; they were originally chosen for
scOT rather than for DRIFT-NET.

Epoch budgets and batch size. On each task all models are trained for the same fixed number of
epochs: 20 epochs on NS-SL, 100 epochs on Poisson—Gauss, and 40 epochs on all other Poseidon
and ApeBench benchmarks. We do not use early stopping; the best-validation checkpoint is selected
from these fixed budgets. Unless otherwise stated we use a mini-batch size of 40 trajectories for all
models and all datasets, matching the batch size used for scOT and FNO in POSEIDON.

Hardware and precision. All experiments are run on a single NVIDIA H200 GPU in full single
precision (FP32) without mixed-precision or low-precision training. Random seeds are fixed for
each run so that our results are reproducible given the released code and configuration.

G ADDITIONAL EXPERIMENTS

In this section we collect additional experiments that were used to address reviewer questions in the
rebuttal but are not shown in the main text.

G.1 WIDTH SCALING ON FNS-KF

To study the effect of model capacity, we train scOT and DRIFT-NET on FNS-KF with two width
factors. Table[5]reports the parameter counts and test relative L errors.

Reducing the width by a factor of two degrades performance for both models, but DRIFT-NET
consistently achieves lower error than scOT at the same width (both at 0.5x and 1.0x).
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Table 5: Width scaling on FNS-KF.

Model Width factor Params (M) FNS-KF (rel-L)
scOT-0.5 % 0.5x 10 5.98
scOT-1.0x 1.0x 20 4.65
DRIFT-NET-0.5x 0.5x% 9 5.96
DRIFT-NET-1.0x 1.0x 17 4.32

G.2 SENSITIVITY TO LEARNING RATE AND SCHEDULE

We next study the sensitivity of scOT and DRIFT-NET to the base learning rate and the learning-rate
schedule on FNS-KF. We train both models with AdamW for 40 epochs under a small grid of base
learning rates {1 x 1074, 3 x 107, 1 x 1073} and two schedules (cosine decay and step decay).
Results are shown in Tables[6] and [7]

Table 6: FNS-KF: sensitivity to base learning rate under cosine schedule.

Model LR Schedule FNS-KF (rel-Lq)
scOT 1x1074 cosine 4.78
scOT 3x107%  cosine 4.65
scOT 1x1073 cosine 4.75
DRIFT-NET 1x10=*  cosine 4.45
DRIFT-NET 3 x 10~* cosine 4.32
DRIFT-NET 1 x 1073  cosine 4.42

Table 7: FNS-KF: sensitivity to base learning rate under step schedule.

Model LR Schedule FNS-KF (rel-L)
scOT 1x1074 step 4.83
scOT 3x 1074 step 4.70
scOT 1x1073 step 4.80
DRIFT-NET 1x10~%  step 4.50
DRIFT-NET 3x 1074  step 438
DRIFT-NET 1 x 1073 step 4.48

Across this grid, performance varies only moderately with the base learning rate and schedule, and
DRIFT-NET consistently outperforms scOT in all tested configurations.

G.3 SAMPLE EFFICIENCY ON FNS-KF

To characterise sample efficiency, we train DRIFT-NET on FNS-KF with different numbers of
supervised training trajectories while keeping the model and optimisation settings fixed. Table [§]
reports the test relative L; error as a function of the number of training trajectories.

As expected, test error decreases monotonically with the number of training examples, and DRIFT-
NET remains stable as the data budget varies.

G.4 CROSS-RESOLUTION BEHAVIOUR ON FNS-KF

To directly assess cross-resolution behaviour, we train DRIFT-NET on FNS-KF at 128 x 128 and
evaluate the same model, without retraining, at 64 x 64, 96 x 96, and 128 x 128. Inputs and outputs
are mapped between resolutions using standard interpolation operators. Table [9]shows the resulting
test relative Lq errors.
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Table 8: FNS-KF: sample efficiency of DRIFT-NET.

# training trajectories DRIFT-NET (rel-L;)

2.5k 6.25
ok 5.48
10k 4.96
20k 4.32

Table 9: FNS-KF: cross-resolution evaluation of DRIFT-NET.

Resolution DRIFT-NET (rel-Lq)

64 x 64 4.328
96 x 96 4.331
128 x 128 4.324

The errors are nearly identical across resolutions, indicating that in this experimental setup DRIFT-
NET exhibits approximately mesh-agnostic behaviour.

G.5 RESOLUTION SCALING WITH FFTS

Finally, we study how the computational cost of DRIFT-NET scales with spatial resolution on the
ApeBench Kolmogorov-flow benchmark. We train DRIFT-NET on 128 x 128 and 256 x 256 grids
with the same batch size and optimisation settings and measure the time per training step and peak
GPU memory usage on a single H200. Table [I0] summarises the results.

Table 10: Resolution scaling of DRIFT-NET on ApeBench Kolmogorov.

Resolution Time / step (ms) Peak GPU memory (GB)

128 x 128 114 11.7
256 x 256 387 23.8

Runtime and memory both increase smoothly with resolution and remain well within the capacity
of a single H200 in the resolution regime considered in our experiments.

H FORCED KOLMOGOROV FLOW (KF) VISUALIZATION
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Figure 5: FNS-KF qualitative visualization. Each panel shows GT / scOT / DRIFT at t=0 (top)
and t=20 (bottom) for a single channel. Example is illustrative (not a main result).
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