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ABSTRACT

The inputs and/or outputs of some neural nets are weight matrices of other neural
nets. Indirect encodings or end-to-end compression of weight matrices could help
to scale such approaches. Our goal is to open a discussion on this topic, start-
ing with recurrent neural networks for character-level language modelling whose
weight matrices are encoded by the discrete cosine transform. Our fast weight
version thereof uses a recurrent neural network to parameterise the compressed
weights. We present experimental results on the enwik8 dataset.

1 INTRODUCTION

Many modern neural nets (NNs) are big. Their number of trainable parameters may easily exceed a
few hundred million. This is a bottleneck for end-to-end differentiable systems that manipulate some
NN’s weights as input or output variables of another NN, i.e., fast weight programmers (Schmidhu-
ber, 1991; 1992b). This concept has seen a revival under various names such as “hyper-networks”
(Ha et al., 2017), and also in the context of Transformers with linear attention (Katharopoulos et al.,
2020; Schlag et al., 2021). The former were presented as NNs that produce a weight matrix of
another NN, but practical implementations only generate a vector that scales the rows of a weight
matrix, instead of generating a de novo weight matrix. In the original work (Schmidhuber, 1991;
1992b) and related fast weight variants (Schmidhuber, 1993d; Ba et al., 2016; Schlag & Schmid-
huber, 2017), the matrix size bottleneck is addressed through outer products of two NN-invented
vectors of activations which generate rank-one weight matrices at each time step.

For small NNs, the whole weight matrix can be directly parametrised as the output of another NN
(e.g. Schmidhuber (1991); Sitzmann et al. (2020)), which is a natural way of generating context-
dependent weight matrices. If we had a differentiable compression method for weight matrices, we
could scale up such direct approaches. Compact weight matrix representations could also be useful
in scenarios which require a NN to read the weight matrix of another NN or itself (Schmidhuber,
1992a; 1993b;a;c; Unterthiner et al., 2020; Harb et al., 2020; Faccio et al., 2021).

In this work we revisit indirect encodings (Koutnı́k et al., 2010a;b) based on the Discrete Cosine
Transform (DCT) (Ahmed et al., 1974). DCT offers a simple and differentiable encoding of NN
weight matrices. The model can be trained from scratch and end-to-end (including the DCT trans-
formations). While NNs with DCT-encoded weight matrices have been successfully applied in
evolutionary settings (Koutnı́k et al., 2010a;b), DCT’s effect on model performance has not been
clearly quantified in prior work. We evaluate recurrent neural networks (RNNs) with DCT-encoded
weight matrices on a character level language modelling task with various compression rates. We
also report results of the fast weight version in which we augment the DCT-based model by another
NN which generates the DCT-coefficients of the main network.

2 NEURAL NETWORKS WITH DCT-ENCODED WEIGHT MATRICES

Here we review neural networks whose weight matrices are encoded as DCT coefficients (Koutnı́k
et al., 2010a;b; 2012), and define the type of models considered in this work.
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Figure 1: Illustration of the decompression steps from a DCT-coefficient vector (model parame-
ters) to an actual weight matrix. The DCT-coefficient vector (Figure 1a) is transformed into sparse
frequency domain weights (Figure 1b) by TopLeft operation (Eq. 2). Then, inverse DCT (Eq. 3)
transforms the frequency matrix of Figure (1b) to the final dense weight matrix of Figure (1c).

In contrast to regular neural networks whose trainable parameters are a set of weight matrices
θ = {W1, ...,WN}, trainable parameters in a DCT-based neural network are a set of DCT fre-
quency coefficients G = {g1, ..., gN} which are used to generate the effective weight matrices
{W (g1), ...,W (gN )}. In prior work (Koutnı́k et al., 2010a;b; 2012; Gomez et al., 2012; Srivastava
et al., 2012; van Steenkiste et al., 2016), G is referred to as genome, and each gi as chromosome.

As a formal illustration let us consider a regular feed-forward layer (where we omit bias) which
transforms an input vector x ∈ Rm into an output y ∈ Rn with an element-wise activation σ and a
trainable weight matrix W ∈ Rn×m as:

y = σ(Wx) (1)
Its DCT-based counterpart is a layer with trainable parameters g ∈ Rc with c � n × m which
transforms x ∈ Rm to y ∈ Rn as:

Wf = TopLeftn,m(g) (2)

W (g) = DCT−1(Wf ) (3)

y = σ(W (g)x) (4)
where operations in Eq. 2 and 3 correspond to a decompression process which transforms a DCT-
coefficient vector g ∈ Rc into a weight matrix W (g) ∈ Rn×m. First, the TopLeftn,m operation
generates a sparse matrix Wf ∈ Rn×m from g ∈ Rc. Wf represents the weight matrix in the
frequency domain. Its coefficients are all zero except the c highest frequency coefficients (anti-
diagonals in the top left corner of the matrix) which are filled using the coefficients of g. This
mapping is tied to the model definition, and the model is trained end-to-end under the corresponding
weight pattern in the time domain. The choice of high frequency domain (instead of low-frequency
one) is empirically discussed in Appendix B.1. The inverse of DCT, DCT−1 is then applied to the
sparse frequency domain matrix Wf to obtain a dense matrix W (g) ∈ Rn×m. Figure 1 illustrates
these intermediate steps of the decompression process.

We also note that both DCT and its inverse DCT−1 can be expressed as simple (differentiable)
matrix multiplications using fixed DCT matrices:

DCT−1(Wf ) = D−1
n WfD

−1
m (5)

where Dn ∈ Rn×n and Dm ∈ Rm×m are fixed orthonormalised DCT matrices.

The size c of the DCT-coefficient vector is a model hyper-parameter. With c� n×m, where n×m
is the size of the original matrix, g effectively offers a compressed representation of W (g). In our
experiments, instead of explicitly fixing c, we fix a compression rate and derive the value of c.

In practice, we allocate separate DCT-coefficient vectors for different weight matrices (i.e. matrices
which have different roles), e.g., in an RNN:

ht = σ(W (gi)xt +R(gr)ht−1) (6)
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W (gi) and R(gr) are generated by parameters gi and gr respectively via two separate transfor-
mations. Similarly, for a Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997),
separate DCT parameters are allocated for each weight matrix and decompressed separately.

This method has been previously investigated for RNNs in evolutionary settings (Koutnı́k et al.,
2010a;b) and for small feedforward NNs in supervised settings of toy binary classification tasks
(Fabisch et al., 2013). We revisit this method for RNNs in a language modelling setting. In the
experimental Sec. 3, we evaluate the performance of LSTM-RNNs with DCT-encoded weights under
different compression rates.

Compressed
weight space

Main network

Decompression

Figure 2: Illustration of a network
with weight matrices parametrised
by an RNN in the compressed
space (weight generation for Wt

as well as super-scripts on weights
are omitted for readability).

Fast weight version. Once we have a compact representa-
tion of weight matrices, an attractive extension is to generate
the weights in the compressed space depending on the context
by parameterising it by another neural network (Schmidhuber,
1991; 1992b; 1993d; Gomez & Schmidhuber, 2005; Ha et al.,
2017; Schlag et al., 2021).

Here we focus on systems whose main network (fast net) is a
regular RNN (Eq. 11) and we parameterise its two weight ma-
trices: input-to-hidden weights and hidden-to-hidden weights,
using two separate LSTM-RNNs (Eqs. 7-8). This system thus
transforms an input vector xt ∈ Rm at time step t to a recur-
rent hidden state ht ∈ Rn as:

git, c
i
t = LSTMθi(g

i
t−1, c

i
t−1,xt) (7)

ght , c
h
t = LSTMθh(g

h
t−1, c

h
t−1,xt) (8)

W
(gi

t)
t = DCT−1 ◦ TopLeftn,m(git) (9)

R
(gh

t )
t = DCT−1 ◦ TopLeftn,n(ght ) (10)

ht = σ(W
(gi

t)
t xt +R

(gh
t )

t ht−1) (11)

where ◦ denotes the composition. Figure 2 illustrates the cor-
responding model. This approach can be considered as an al-
ternative to outer-product based fast weights, with a potentially full rank weight matrix update at
each time step. Also, the slow network (e.g. LSTMθi ) can see the current states of weight matrix
(git−1) to generate new weight states (git) in the compressed space. In Appendix B.2, we also discuss
an alternative approach where a single LSTM is used to parameterise the two weight matrices.

3 EXPERIMENTAL RESULTS

We train character level LSTM-RNN language models on the standard enwik8 dataset (Hutter,
2012) which contains about 90 M characters for training with a character vocabulary size of 205.
We follow the base configuration of Merity et al. (2018) which has three LSTM-RNN layers with
dimensions of 1840 for the two first layers and 400 for the third one, with an embedding matrix of
size 400 whose shared by the input and output layers. In the DCT models, we encode each weight
matrix in an LSTM layer by DCT as described in Sec. 2. We apply the same compression rate for
each weight matrix. More on experimental details can be found in Appendix A.

Table 1 presents the effects of different compression rates on DCT-based LSTM model performance.
We obtain degradation of about 14% relative in bits-per-character with a compression rate of 90%.
This model with 4.8 M parameters has to be compared to the performance of baseline models with
smaller layer sizes (the simplest way to reduce the model size) presented in Table 2. The perfor-
mance of the baseline model with a layer size of 465 and an embedding size of 400 from Table 2
(also 4.8 M parameters) is similar to the performance of the DCT model with a compression rate of
90% in Table 1. Apparently a large model with compressed weights does not improve much over a
small model with a comparable number of parameters. However, reducing the number of parameters
by only reducing the recurrent layer size without reducing the embedding dimension has its limits.
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Table 1: Bits-per-character performance of
DCT-based character level LSTM language
models on enwik8. Results are shown for
different levels of compression rate. The em-
bedding size is 400 in all cases.

Compression # Params Valid TestRate in M

0 47.0 1.28 1.29
0.5 23.7 1.33 1.33
0.7 14.2 1.36 1.36
0.8 9.5 1.40 1.40
0.9 4.8 1.43 1.44
0.99 567 K 1.75 1.74
0.999 144 K 2.23 2.20

Table 2: Bits-per-character performance of base-
line character level LSTM language models on
enwik8 with different numbers of parameters.

Embed. Layer # Params Valid TestSize Size in M

64 672 5.8 1.47 14.9

400 16 780 K 1.74 1.75
465 4.8 1.46 1.47
512 5.5 1.46 1.47

For example, with an LSTM layer size of 16 (which is extremely small) and an embedding size
of 400, the corresponding model size is 780 K. Further parameter reduction requires to reduce the
embedding size. In contrast, the DCT-based model can be configured to have an arbitrarily small
number of parameters, without requiring to modify other model hyper-parameters, as shown in the
lower part of Table 1.

Table 3 highlights performance of fast weight models. The hyper-parameters are chosen such that
the total number of model parameters is comparable to those we discuss in Table 1 and 2. We found
the performance of these models to vary a lot even with similar numbers of parameters. In general,
we found that models with more fast variables (# Fast Params in tables) tend to perform better. The
best model achieves performance similar to the one of baseline models. More comparisons among
the fast weight model variants can be found in Table 5 in Appendix B.2.

Table 3: Bits-per-character performance on enwik8 of DCT-based models with fast weights. Each
weight matrix in the fast RNN is parameterised by two separate LSTMs.

Compression Embed. Layer Num # Fast # Params Valid TestRate Size Size Layers Params in M

0.90 64 80 2 2028 4.8 1.60 1.61
154 154 1 4692 4.7 1.48 1.51

0.99 478 478 1 4556 5.0 1.44 1.48

4 DISCUSSION AND FUTURE WORK

We revisited DCT-based indirect encodings of neural network weight matrices in a character level
language modelling task. Our experiments seem to indicate that at least in the case of language
modelling, large architectures with DCT-compressed weights don’t improve much over small net-
works with a similar number of parameters. However, we also showed that the DCT-based encoding
allows for controlling the number of parameters in each layer flexibly and independently of hyper-
parameters in other layers. This property may be of practical interest in some applications.

What is the best way of encoding neural network weights? This fundamental question remains
unanswered, but we hope our work will help trigger a discussion of this topic.

Our fast weight variants can be extended in various ways to build highly adaptive language models
(Lazaridou et al., 2021; Irie et al., 2018). In particular, the weight generator networks could be aug-
mented by additional inputs for error signals (Schmidhuber, 1993b; Hochreiter et al., 2001; Rocki,
2016) to facilitate the weight update generation. Future work will evaluate our models on tasks
which explicitly require context-adaptive behaviour, e.g., texts containing multiple domain shifts.
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A EXPERIMENTAL DETAILS

In this section, we provide experimental details. As a baseline architecture to evaluate DCT-
parameterised NNs (Table 1), we follow the base configuration of Merity et al. (2018) which has
three LSTM-RNN layers with 1840 nodes for the two first layers and 400 for the third one, with an
embedding layer of size 400 whose parameters are shared for input and output embeddings. For all
small models with less than 6 M parameters in all tables, dropout is completely disabled to avoid
an extra factor for comparison. For larger models in Table 1, the dropout configuration from Merity
et al. (2018) is applied: 0.1 to the feed-forward hidden layers between the LSTM layers, 0.2 to the
recurrent weights, and 0.4 to the output of the last LSTM layer. Otherwise all models in all tables are
trained with the same training configuration: we use Adam optimiser with a learning rate of 0.001,
with a batch size of 128, and a backpropagation span of 200 characters.

In the DCT models, we encode each weight matrix (separately for each gate) of an LSTM layer by
DCT as described in Sec. 2. We apply the same compression rate for all weight matrices. To initialise
the model parameters which are DCT-coefficient vectors, we first generate and initialise a weight
matrix in time domain, and apply the DCT compression to obtain the corresponding initialisation,
which we found to work well in practice.

Implementation notes. Like any fast weight variants which generate the entire weight matrix at
each time step, implementation of DCT based fast weight RNNs requires a custom operation for
backpropagation. In fact, a naive implementation would store weights for each time step for the
backward pass, which can quickly result in prohibitive space requirement. Instead, in a custom im-
plementation we only store the compressed weights for each time step during the forward pass, and
the actual weights are recomputed via decompression for each backward step. An obvious drawback
is that the decompression operations need to be called at each backward step, which can be slow. The
corresponding code is available at https://github.com/kazuki-irie/dct-fast-weights .

B ABLATION STUDIES AND EXTRA EXPERIMENTAL RESULTS

Here we present extra experimental results which could not be included in the main text because of
the space limitation.

B.1 CHOICE OF HIGH VS LOW FREQUENCY SPARSITY PATTERNS

The choice of high frequency sparsity pattern in the frequency matrix is arbitrary for our language
models, because the textual data does not contain any a priori frequency property, and the input
character embeddings are jointly learned with the rest of model parameters, given the pre-determined
architectural choice of high or low-frequency coefficients in the model. Our choice is thus only
supported by the empirical results, presented in Table 4, which show that the DCT models with
high-frequency non-zero coefficients tend to outperform those using low-frequency coefficients.

Table 4: Comparison of DCT-based language models with high vs. low frequency coefficients. Lan-
guage model bits-per-character performance on enwik8.

Compression Coefficient Number Valid TestRate Frequency Params.

0.90 Low 4.8 M 1.49 1.50
High 1.43 1.44

0.99 Low 567 K 1.78 1.77
High 1.74 1.74

B.2 ALTERNATIVE FAST WEIGHT PARAMETERISATIONS

In Eqs. 7-11, we used two separate slow LSTM RNNs to parameterise DCT coefficients of the two
weight matrices of the fast RNN. An alternaitve approach is to parameterise the two DCT vectors as

7
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the output of a single slow LSTM, such that it is aware of the states of all weights of the fast RNN
to generate new weights. The corresponding equations are as follows:

[git, g
h
t−1], c

i
t = LSTM([git−1, g

h
t−1], c

i
t−1,xt, ) (12)

W
(gi

t)
t = DCT−1 ◦ TopLeftn,m(git) (13)

R
(gh

t )
t = DCT−1 ◦ TopLeftn,n(ght ) (14)

ht = σ(W
(gi

t)
t xt +R

(gh
t )

t ht−1) (15)

However, as shown in Table 5, we experimentally found that the variant with two separate LSTMs
(which we denote as Twin approach) perform better than the variant using only one LSTM (denoted
as Single). Thus, in Table 3, we only reported results for twin model variants.

Table 5: Comparison of DCT-based fast weight models with single vs. twin LSTM parameterisation
of fast RNN. Language model bits-per-character performance on enwik8.

Compression Slow LSTM Embed. Hidden Num # Fast # Params Valid TestRate Size Size Layers Params in M

0.90 Single 64 64 3 812 4.6 1.64 1.65
64 80 2 1126 4.8 1.66 1.66

130 130 1 3306 4.5 1.64 1.65
Twin 64 80 2 2028 4.8 1.60 1.61

154 154 1 4692 4.7 1.48 1.51
0.99 Single 64 306 2 1319 5.5 1.59 1.61

Twin 478 478 1 4556 5.0 1.44 1.48
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