Under review as a conference paper at ICLR 2025

REPRESENTATION LEARNING FOR FINANCIAL TIME-
SERIES FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

The accurate forecasting of financial time series remains a significant challenge
due to the stochastic nature of the underlying data. To improve prediction accu-
racy, feature engineering has become a vital aspect of forecasting financial assets.
However, engineering features manually often requires domain expertise. We pro-
pose to utilise an automated feature generation architecture, Contrastive Predictive
Coding (CPC), to generate embeddings as input to improve the performance of
downstream financial time series forecasting models. To benchmark the effective-
ness of our approach, we evaluate forecasting models on predicting the next day’s
log return on various foreign exchange markets with and without embeddings. Fi-
nally, we assess our CPC architecture by employing the same trained encoder on
different currency pairs and calculating the Sharpe ratio of our strategies.

1 INTRODUCTION

Analysing financial time series is an integral component of stock trading, risk management and
econometrics. Auto-regressive integrated moving averages and linear regression are traditionally
used and serve as the foundation for many modern forecasting techniques. However, these methods
often falter when confronted with the highly volatile and stochastic nature of financial datasets,
where the assumptions of stationarity and linearity do not hold (1).

Advancements in machine learning have allowed for more complex temporal patterns to be captured
for both analysis and forecasting of time series (2). Deep Learning (DL) and neural networks enable
the extraction of complex patterns and representations which have the potential to enhance predictive
accuracy. Notably, Long Short-Term Memory (LSTM) networks have been shown to be able to
forecast time series accurately to a degree (3).

LSTMs still struggle when attempting to forecast non-deterministic time series. This is partially
due to the large amount of data required for the LSTM to learn more complex patterns. Feature
engineering is typically utilised to supplement models with further data but this is a time-consuming
step that requires extensive domain knowledge and can introduce bias.

We propose to implement Contrastive Predictive Coding (CPC) architecture as presented by Aaron
van den Oord et al. to extract features from financial time series (4). To assess the performance of
this approach, linear regression and LSTM models are trained with and without the CPC-generated
embeddings and compared based on accuracy metrics. Several baselines models such as the persis-
tence model and naive mean model are implemented as a baseline. By conducting this comparative
analysis, we aim to evaluate the relative performance and potential advantages of CPC in high-
quality embeddings based unpredictable and highly variable stochastic financial time series.

1.1 LITERATURE OVERVIEW

(4) introduces CPC as an innovative approach for unsupervised learning. CPC leverages a self-
supervised learning framework that predicts future observations in a latent space while contrasting
correct futures against negative samples. This approach enables the extraction of meaningful pat-
terns from large datasets without the need for extensive labelled data. CPC’s strength lies in its
ability to learn compact and informative representations, making it particularly useful for applica-
tions where labelled data is scarce. However, CPC was experimented on a deterministic environment
and has yet to be applied successfully to financial time series that exhibit stochastic behaviour.

Under review as a conference paper at ICLR 2025

(5) proposes a novel deep learning framework, LSTNet, for multivariate time series forecasting.
LSTNet attempts to capture both short-term local dependencies and long-term patterns in time se-
ries data utilising convolutional neural networks and recurrent neural networks in combination. In
addition, a recurrent-skip mechanism along with an autoregressive component is implemented for
the handling of long-term dependencies and scaling issues. Despite the model outperforming bench-
marks on certain non-stochastic datasets, it failed to statistically outperform baselines on the one
financial dataset it was tested on.

(6) introduces a novel approach called Time-series Representational Learning through CPC (TRL-
CPC) for detecting anomalies in multivariate time series data. The proposed method presents an
effective way to learn representations using the CPC architecture and a non-linear transformation
function. The datasets utilised in this study are not similar to financial time series data, which
are notoriously more difficult to predict due to having higher levels of randomness and volatility.
Furthermore, the dataset used includes more than one feature, which makes evaluating the CPC
architecture’s impact on the results more difficult.

The lack of evaluating automated features generated by the CPC architecture in a stochastic envi-
ronment is what forms the basis of our research.

2 METHODS

Here we outline our methodology used to investigate the effectiveness of CPC embeddings in im-
proving financial time series forecasting. Our experiment framework consists of data sourcing and
preprocessing, baseline model development, neural network implementation, and the CPC architec-
ture.

2.1 PARAMETERS

For our experiment, the following variables were kept constant:

» windows = 10: The number of windows in each input to the CPC model.
* timesteps = 25: The length of each window.
* features = 1: The number of features in the input data (the closing price).

* code size = 32: The dimensionality of the encoded representation, also known as the size
of the latent space.

* batch size = 512: The number of samples processed by the model in one forward/backward
pass during training.

2.2 DATA SOURCE AND PREPROCESSING

Figure 1: Data Preprocessing Pipeline

2.2.1 DATA SOURCE

The dataset employed in this study and for the training of the CPC architecture comprises daily
closing prices of the US Dollar versus the Japanese Yen exchange rate (USDJPY). In addition, our
encoder trained on USDJPY is then domain-adapted on two other datasets: the US Dollar versus the
Singaporean Dollar (USDSGD) and the Euro versus the Great British Pound (EURGBP). All data
was downloaded in CSV format, obtained from Yahoo Finance (7), and subsequently processed to
prepare it for analysis. Data from November 1996 till August 2024 was utilised.

Under review as a conference paper at ICLR 2025

2.2.2 DATA PREPROCESSING

Log Returns Calculation: The raw closing prices were transformed into log returns to stabilise
the variance and achieve stationarity. This is a prerequisite for many statistical and machine-learning
models due to their assumption of the input data distribution being consistent over time (8). The log
return, 7, at time ¢ was calculated as follows:

re = log <Pft1) (1)

where P, denotes the closing price at time ¢.

Data Normalisation: The data was then normalised using min-max scaling. This normalisation is
beneficial when training neural networks as it improves convergence during training (due to gradient-
based optimisation algorithms) and ensures compatibility with activation functions, to name a few
(8). The normalised value, x;, was computed as:

) =2 (Ty — min(x)(x)) 1 @)

max(z) — min

where min(z) and max(x) represent the minimum and maximum values of the time series, respec-
tively.

Sliding Window Approach: The sliding window technique was utilised to convert the normalised
time series data into overlapping sub-sequences, called “windows.” Each window has 250 timesteps
(nearly one year of trading days) and is slid across the data at a fixed length of 1.

The pseudocode for the sliding window approach is provided below:

FUNCTION create_windows (data, timesteps, stride = 1):
SET windows TO empty list
FOR 1 FROM 0 TO (LENGTH of data - timesteps) STEP stride:
SET window TO data SLICE from
index i TO (i + timesteps)
APPEND window TO windows
END FOR

RETURN windows
END FUNCTION

Where:

* data: represents the normalised time series data.

* timesteps: is the fixed length of each sliding window (250 in our case).
* stride: defines the step size for moving the window across the data.

* window: one singular window of fixed length.

* windows: list of overlapping windows.

2.2.3 TRAIN-TEST SPLIT

We split the dataset with a 80 : 20 ratio with the following distribution of indices:

Set Index Range Proportion of Data
Training Set 0,1,2,...,4—1 80%
Testing Set | ¢, +1,4+2,...,1len(X) -1 20%

Table 1: Time-series split of the dataset into training and testing sets.

Under review as a conference paper at ICLR 2025

2.3 BASELINE MODELS

To establish a benchmark for model performance, several baseline models were implemented. This
allows us to assess the quality of CPC embeddings and whether they have extracted relevant features.

2.3.1 PERSISTENCE MODEL

The persistence model is a naive, recursive-like forecasting method that assumes the future value of
the time series is the most recent observed value. This can be expressed as:

Jt+1 = Yt 3)
2.3.2 ZERO MODEL

The zero model predicts that all future values log returns will be zero. This serves as a test for mean-
reverting behaviour of the asset in question where returns periodically return to zero. We define it
as:

g =0 “4)

2.3.3 MEAN MODEL

The mean model predicts that all future values will be equal to the mean of the observed training
data. The predicted value, ¢, is given by:

g:

S|

> ui)
=1

where n represents the number of observations in the training set.

2.3.4 LINEAR REGRESSION MODEL

A linear regression model was used with lagged time series data as an input and non-lagged time
series data as the target variable. We attempt to determine as a baseline if there is a linear relationship
between the price at time ¢ — 1 and the price at time . The regression equation is represented as:

P
J=PB+Y BiX; (6)
j=1

where 3y is the intercept, 3; are the coefficients for each lagged feature X;, and p is the number of
lagged features.

2.4 LSTM MODEL
2.4.1 OVERVIEW

To explore whether a simple model with our embeddings as input can outperform neural networks, a
basic LSTM model was implemented. The LSTM model, first introduced by Sepp Hochreiter et al.
(9) is a type of recurrent neural network (RNN) designed to be particularly suitable for sequential
data. LSTMs are different to standard RNNs as they are capable of capturing both short-term and
long-term patterns, helping to mitigate the vanishing gradient problem (9).

Through gate regulation, LSTMs maintain and update a memory cell state over time. This allows
for the network to capture dependencies that span across many time steps in sequential data.

2.4.2 ARCHITECTURE

The architecture for the LSTM is shown in Figure 3.

Under review as a conference paper at ICLR 2025

Training Procedure: The LSTM model was trained using the Mean Squared Error (MSE) loss
function with the Adam optimiser used to update the model weights.

Due to the relatively large model size compared to the number of data points, training was done for
a total of 40 epochs. This is to prevent possible overfitting on the train set.

2.5 CONTRASTIVE PREDICTIVE CODING (CPC)

CPC is an unsupervised representation learning approach designed to “learn the representations
that encode the underlying shared information between different parts of the (high-dimensional)
signal” (4). Unlike traditional supervised learning methods, CPC generates embeddings that capture
the temporal structure and dependencies inherent in time series data.

2.5.1 OVERVIEW OF CONTRASTIVE PREDICTIVE CODING

The CPC’s architecture’s objective is to maximise the mutual information between a context vector
and future observations in a latent space. The model consists of an encoder network that transforms
raw inputs into a lower-dimensional representation and a context network that aggregates these
representations over time to predict future sequences (4).

The CPC architecture implemented in this study is tailored for financial time series data and utilises
windows as data points. The flow of data through the CPC model can be described as follows:

* Encoder Network: denoted as fy, maps each window of raw input data,

X; = (%i1,%i2, - ., %), where 7 denotes the window index and T is the window length,
into a lower-dimensional latent representation z;. This process is represented by the equa-
tion:

zi = fo(Xi) (7

where z; € R? is the latent representation of window 4, and fy is a function parameterised
by 6 (in our case a series of one-dimensional convolutional layers followed by a dense

layer).
* Context Network: denoted as g4, aggregates the sequence of window embeddings
{z1, 22, ..., 2y} to produce a single context vector ¢ defined as:
c=g4(21,22,...,2n) €]

where ¢ € R" and gs is a function parameterised by ¢, implemented using a Gated Re-
current Unit (GRU). The GRU only returns the final hidden state to output a single context
vector that has aggregated information from all window embeddings.

* Contrastive Objective: is to maximise the similarity between the context vector ¢ and the
true future latent representation z, 41, while minimising the similarity with the negative
sample. We do this by minimising the binary cross-entropy loss function where the pre-
dicted probability g for the positive sample being the correct future latent representation is
computed as:

j = o (mean(c - zn41)) ©)

where o denotes the sigmoid function. The binary cross-entropy loss, L, is then computed
as:

1 N
L=-+ > (ilog(@:) + (1 —yi) log(1 — §:)) (10)
=1

where y; represents the binary label (1 for positive samples, O for negative samples), and j;
represents the predicted probability obtained from the sigmoid activation.

A diagram depicting the general CPC architecture can be seen in Figure 4, which was adapted from

.

Under review as a conference paper at ICLR 2025

2.5.2 DATA GENERATION FOR CPC

The generation of negative samples is arguably the most important aspect of the CPC architecture. If
negative samples are too easy to differentiate between positive samples, the model will fail to create
relevant and predictive embeddings. In contrast, if negative samples are too similar to the positive
samples, the model will fail to learn and high-quality embeddings will not be generated. Therefore,
a custom data generator was developed to create batches of data specifically for contrastive learning.
This generator produces sequences of time windows, with each batch containing both positive and
negative pairs, along with corresponding labels indicating whether a given pair is a true or false
match.

Positive Sample Generation: For each index or window in the time series data, the positive sam-
ple represents the next consecutive window of the time series.

The following pseudo-code illustrates the process for generating positive samples:

FOR each position i IN data LENGTH - (timesteps x (n_windows + 1)):
SET context_windows TO empty list
FOR each w IN range(n_windows) :
SET window TO data SLICE from
(i+ (wxtimesteps)) TO (i + (w + 1) * timesteps)
APPEND window TO context_windows
SET y_positive TO data SLICE from
(i+ (n_windows*timesteps)) TO (i+(n_windows+l)*«timesteps)
END FOR

Negative Sample Generation: Conventional CPC methodologies typically involve selecting ran-
dom samples from different sequences or distant parts of the same sequence. In our approach,
negative samples are generated using a normal distribution of random noise based on the parameters
of the input window. This is based on the Black-Scholes framework which models financial time
series as a stochastic process (10). Generating negative samples in this way allows for the model to
learn to differentiate from random noise, therefore creating high-quality embeddings.

To generate a negative sample, a random normal distribution is created:

ynegative ~ N(/"’ynegalive ’ Uynsgmlivc) (1 1)

where iy, .. and oy . are the mean and standard deviation of the input window.

The pseudo-code for generating negative samples is as follows:

FOR each position i IN data LENGTH - (timesteps * (n_windows + 1)):
SET context_windows TO empty list
FOR each w IN range (n_windows) :
SET window TO data SLICE from
(i + w x timesteps) TO (i + (w + 1) * timesteps)
APPEND window TO context_windows
SET y_negative_base TO data SLICE from

(i + (n_windows - 1) * timesteps) TO (i + n_windows * timesteps)

GENERATE y_negative USING Gaussian noise WITH
mean (y_negative_base) AND std(y_negative_base)
END FOR

This negative sampling strategy introduces noise that mimics random characteristics of financial
time series, forcing the CPC model to learn patterns that are more predictive than randomness.

In Figure 2 one can see an example of an input window and its corresponding positive/actual sample
and negative sample.

Under review as a conference paper at ICLR 2025

0.50
025 -
0.00 -

—— Actual
—0.25 - e Negative

0 10 20 30 40

Figure 2: CPC Positive and Negative Sample Exampels

2.5.3 CPC MODEL ARCHITECTURE

The CPC model architecture is depicted in Figure 5. The architecture consists of an encoder network,
which transforms input windows into embeddings, and a context network, which aggregates these
embeddings over time to predict future observations.

2.5.4 TRAINING

During training, for every epoch the binary accuracy is displayed for both train and test set to monitor
potential overfitting. The CPC architecture was ran for 100 epochs, after which overfitting to the
train set was very apparent.

2.5.5 EVALUATION OF CPC EMBEDDINGS

After training, the encoder is frozen and used to create embeddings for both the training and testing
datasets. These embeddings are then evaluated using the architectures mentioned earlier.

To analyse the embeddings from a visual standpoint, t-SNE, a dimensionality reduction technique
was utilised to reduce the number of components to two. The K-means algorithm was then used to
colour the embeddings in t-SNE vector space. Using the elbow method, it was determined that the
ideal number of clusters was 4. Figure 6 shows the K-Means clustering.

Visually, one can clearly see distinct clustering and segregation of the different clusters. This sug-
gests that the architecture is in fact learning and producing high-quality embeddings that effectively
identify different groups in the input data.

2.6 SHARPE OPTIMISATION WITH LINEAR REGRESSION

To utilise the embeddings in a formal and financial context we have used our embeddings in combi-
nation with Linear Regression and evaluated its performance using the Sharpe Ratio.

2.6.1 SHARPE RATIO DEFINITION

William F. Sharpe defined the Sharpe ratio as: “the mean excess return per unit of standard deviation
of excess return” (11). Mathematically, it is defined as:

E[R - Rf}
OR

Sharpe Ratio = (12)

where R is the portfolio return, Ry is the risk-free rate (often assumed to be zero for simplicity in
some contexts), and o is the standard deviation of the portfolio returns. To analyse the Sharpe

ratio, we multiply by v/252, assuming 252 trading days in a year.

2.6.2 TRAINING & EVALUATION

We will evaluate our model on the unseen test set of the USDJPY dataset and compare the Sharpe
ratio to a simple buy-and-hold strategy Sharpe ratio.

As a further test to show the quality of the embeddings generated, the encoder trained on USDJPY
will then be used to generate embeddings on two other datasets: USDSGD and the EURGBP, to
show our CPC architecture is capable of generating both generalist and specific features.

Under review as a conference paper at ICLR 2025

3 RESULTS

3.1 PERFORMANCE COMPARISON

The percentage difference is calculated using the formula:

(13)

Error of Model — Error of CPC-LR < 100
Error of CPC-LR

Percentage Difference = (

3.2 LSTM MODEL PERFORMANCE

Despite the consensus that LSTMs are designed to avoid the gradient vanishing problem and should
be able to capture temporal dependencies (9) , the results suggest that the LSTM model struggles to
learn meaningful features from the USDJPY time series data. This can be attributed to the following
factors:

* Financial time series are inherently noisy and are highly stochastic. This is due to a variety
of factors (geopolitical events, macroeconomic indicators, etc.) that together contribute to
an almost random behaviour. LSTM models require a substantial amount of data or features
to learn effectively and therefore struggled with our task.

e LSTM architectures have more parameters than their non-neural network counterparts. If
the number of parameters is significantly larger than the number of data points, overfitting
has a high probability of occuring. This concern is exacerbated further when an LSTM is
trained on noisy data.

3.3 LINEAR REGRESSION MODEL PERFORMANCE

The LR model, despite its simplicity and significantly fewer parameters compared to the LSTM
model, outperforms the LSTM in forecasting the USDJPY. This surprising result can be explained
by several reasons:

* Linear Regression, being a simpler model with fewer parameters, is less prone to overfitting
compared to an LSTM. It does not attempt to capture complex non-linear patterns in the
data, which can be beneficial due to the inherent noisy nature of the our input.

* The LR model provides stable parameter estimates even with relatively small datasets. This
can be beneficial as the relationship between input and output might not be highly complex
or might vary frequently due to external market conditions.

* The financial time series of exchange rates often exhibit linear trends or mean-reverting be-
haviour over short periods. The LR model, which inherently assumes a linear relationship
between input variables and the output, can effectively capture these linear or near-linear
trends without the need for complex model architectures.

3.4 MEAN AND ZERO MODELS: EVIDENCE OF MEAN-REVERTING BEHAVIOUR

Both the Mean and Zero models perform close to each other and have the lowest error rate among
the other models. This outcome strongly suggests that the USDJPY rate exhibits a mean-reverting
behaviour, a common characteristic in many financial time series.

* The Mean model, which predicts future values as the mean of the historical data, works
well in scenarios where the time series is mean-reverting. The near-zero error indicates
that the exchange rate often returns to its average return over time, making the Mean model
areliable predictor.

* Similarly, the Zero model, which assumes that all future log returns will be zero (implying
no change in price), performs well, further supporting the hypothesis of mean reversion. A
zero prediction effectively suggests that the current price level is expected to persist, which
aligns with a market that lacks strong directional trends and frequently reverts to a mean.

Under review as a conference paper at ICLR 2025

3.5 SHARPE OPTIMISATION RESULTS

The table below presents the Sharpe ratios for different currency pairs using two different strate-
gies: the LR model using CPC embeddings generated on the USDJPY dataset and the buy-and-hold
strategy of the currency the embeddings are being evaluated on.

Table 2: Sharpe Ratios for Different Currency Pairs

Currency Pair Strategy Sharpe Ratio Buy and Hold Sharpe Ratio

USDJPY 1.312 0.5298
USDSGD 0.9802 -0.3512
EURGBP 0.7405 -0.1216

4 ANALYSIS

The strategy Sharpe ratios for all currency pairs evaluated are substantially higher than their corre-
sponding buy-and-hold Sharpe ratios. This indicates that the CPC-based strategy is able to capture
underlying patterns and signals in the data that are not apparent to traditional methods. The CPC
model’s ability to generalise and be fine-tuned on other currency pairs underscores its ability to learn
general market sentiment.

In the plots below, allocations were scaled to be between -1 and 1. This does not affect the calculation
of the Sharpe ratio and is done just for plotting purposes.

From Figure 8, the following is observed:

Observations from Return Plots: Upon examining the return plots, it is evident that the strategies
exhibit an upward, almost linear trend on average. Additionally, there are sporadic jumps upwards in
our strategies returns that coincide with significant movements in the original stock, as indicated by
the returns of the benchmark buy-and-hold strategy. This pattern suggests that the features extracted
by the model provide relevant information on which trades to execute and, more importantly, the
optimal timing for these trades. The ability of the strategy to capture upward trends while also
responding swiftly to substantial market movements indicates that the model effectively identifies
profitable trading opportunities based on the underlying features.

Analysis of Allocations: The allocations plotted over time can be characterised by frequent fluc-
tuations both upwards and downwards. This behaviour is consistent with the expected strategy of
a market maker, whose role is to provide liquidity by constantly buying and selling, thereby ensur-
ing a smooth market operation. The high-frequency nature of these allocations reflects an attempt
to capture small price discrepancies, making quick trades that capitalise on these minor variations.
Such behaviour is advantageous in forex markets, where tight spreads and high liquidity present
numerous opportunities for rapid trades.

Furthermore, the allocations appear to be, on average, equally distributed between positive and
negative positions indicating that the model is finding opportunities to go both long and short. This
is a positive outcome as this type of neutral portfolio behaviour tends to perform well in the mean-
reverting behaviour of foreign exchange markets. Since prices tend to return to a central value over
time taking both long and short positions allows the model to profit from both upward and downward
movements.

5 CONCLUSION

A CPC architecture was built that outputs relevant, high-quality embeddings for downstream fi-
nancial forecasting time-series tasks. Negative samples in the architecture were generated non-
traditionally using the Black-Scholes framework as a basis. These embeddings were used to success-
fully forecast several different foreign exchange currency pairs and beat all traditional benchmarks.
Significant alpha was found demonstrated by a Sharpe ratio beating the traditional buy-and-hold

Under review as a conference paper at ICLR 2025

benchmark and ultimately helped in achieving our objective of producing an edge against the mar-
ket.

In conclusion, the architecture developed can be used to generate features automatically without the
need for manual feature engineering and domain expertise. This could impact further research into
stochastic time series forecasting and improve the current state of the art.

REFERENCES

[1] Ping-Feng Pai and Chih-Sheng Lin. A hybrid arima and support vector machines model in
stock price forecasting, 2005.

[2] Angelo Casolaro, Vincenzo Capone, Gennaro lannuzzo, and Francesco Camastra. Deep learn-
ing for time series forecasting: Advances and open problems. Information, 14(11), 2023.

[3] Sima Siami-Namini, Neda Tavakoli, and Akbar Siami Namin. A comparison of arima and Istm
in forecasting time series. In 2018 17th IEEE International Conference on Machine Learning
and Applications (ICMLA), pages 1394-1401, 2018.

[4] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding, 2019.

[5] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-
term temporal patterns with deep neural networks, 2018.

[6] Theivendiram Pranavan, Terence Sim, Arulmurugan Ambikapathi, and Savitha Ramasamy.
Contrastive predictive coding for anomaly detection in multi-variate time series data, 2022.

[7] Yahoo Finance. Yahoo finance stock lookup, 2024. Accessed: 2024-08-29.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[9] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735-1780, 1997.

[10] Fischer Black and Myron Scholes. The pricing of options and corporate liabilities. Journal of
Political Economy, 81(3):637-654, 1973.

[11] William F. Sharpe. The sharpe ratio, [].

10

Under review as a conference paper at ICLR 2025

A NEURAL NETWORK ARCHITECTURES

input_6 input: | [(None, 250, 1)]
InputLayer | output: | [(None, 250, 1)]

Istm_2 | input: | (None, 250, 1)
LSTM | output: | (None, 250, 64)

Istm_3 | input: | (None, 250, 64)
LSTM | output: (None, 64)

dropout 1 | input: | (None, 64)

Dropout | output: | (None, 64)

dense_1 | input: | (None, 64)

Dense | output: | (None, 1)

Figure 3: LSTM Architecture

Window of 25 Timesteps c

Zt+1

[2) [[/gm\

Tt+1

MMWWWWWWNMWWWWW

Figure 4: General CPC architecture diagram

11

Under review as a conference paper at ICLR 2025

input_11 input: | [(None, 25, 1)]

InputLayer | output: | [(None, 25, 1)]

convld 9 | input: (None, 25, 1)
ConvID | output: | (None, 25, 16)

convld 10 | input: | (None, 25, 16)
ConvlD output: | (None, 25, 32)

convld 11 [input: | (None, 25, 32)
ConvlD output: | (None, 23, 64)

flatten 3 | input: | (None, 25, 64)
Flatten | output: | (None, 1600)

|

encoder_embedding | input: | (None, 1600)

Dense output: (None, 32)

(a) Encoder Architecture

Encoder: The encoder model utilises three one-dimensional convolution layers with different
sizes to extract relevant features from the input. This is then flattened to generate a single
embedding for that window.

input_12 | InputLayer context | GRU preds ‘ Dense
input: | output: — input: l output: — input: | output:
[(None, 10, 32)] [[(None, 10, 32)] (None, 10, 32) [(None, 16) (None, 16) [(None, 32)

(b) Context Architecture

Context: The context model utilises one GRU layer to extract temporal features from the
sequence of embeddings generated by the encoder from the windowed input.

input_13 input: | [(None, 10, 25, 1)]
InputLayer | output: | [(None, 10, 25, 1)]

!

time_distributed_2(encoder) | input: | (None, 10, 25, 1) input_14 input: | [(None, 25, 1)]
TimeDistributed(Functional) | output: (None, 10, 32) InputLayer | output: | [(None, 25, 1)]
context input: | (None, 10, 32) encoder input: | (None, 25, 1)
Functional | output: (None, 32) Functional | output: (None, 32)

tf.math.multiply 2 | input: | (None, 32)
TFOpLambda output: | (None, 32)

)

tf.math.reduce_mean_2 | input: | (None, 32)
TFOpLambda output: (None,)

tf.math.sigmoid 2 | input: None
TFOpLambda output: | (None,)

(c) Overall CPC Architecture

Overall CPC Model: The overall CPC model integrates the encoder and context models to
predict future latent representations based on past input windows.

Figure 5: Overall CPC Model Architecture

12

Under review as a conference paper at ICLR 2025

648
649
650
651
652

B APPENDIX: THE LEARNING PROCEDURE
The following figures help visualise the progress of the learning procedure.

Cluster analysis of CPC embeddings

653
654 w0l
655
656
657
658 st
659
660
661
662 op
663
664
665
666
667
668
669 10l
670

671 1o =5 0 5 10
672

673 Figure 6: Clustering of embeddings in two-dimensions
674

675

676 Percentage Differences in RMSE and MAE Relative to CPC-LR

677 W RMSE Difference (%) Ml MAE Difference (%) —®— RMSE Line —®— MAE Line

678
679
680
681
682
683
684 10
685 s
686 0
687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

45

40

35

30

25

20

Percentage Difference (%)

Persistence LSTM R Mean Zero
Model

Figure 7: RMSE and MAE relative to CPC-LR

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
77
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
41
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

—— benchmark
03 strategy

0.2-

0.1-

0.0

0 200 400 600 800 1000 1200 1400

(a) USDJPY Strategy vs. Benchmark Buy-and-Hold

1.00

0.75

0.50

0.25

0.00 - |
-0.25 -
—0.50 -

-0.75 -
0 200 400 600 800 1000 1200 1400

(b) USDJPY Allocations

0.04-

—— benchmark
—— strategy

0.00

-0.02-

0 200 400 600 800 1000

(c) USDSGD Strategy vs. Benchmark Buy-and-Hold

0.00 I ‘
-0.25 |

—0.50 -

=0.75 -
1000

o
N
=]
S
IS
5.
5]
o
3
)
@
<]
5]

(d) USDSGD Allocations

14

Under review as a conference paper at ICLR 2025

756
757
758
759
760
761
762
763
764
765
766
767
768

7

o 0.08- —— benchmark
770 —— strategy
77 0.06

772 0.04-
773
774
775
776 -0.02-
777 —0.04-
778 -0.06-

779
780 —0.08 200 400 600 800 1000 1200

781 (e) EURGBP Strategy vs. Benchmark Buy-and-Hold
782

783
784
785
786
787
788
789
790
791
792 osl

793

794 o 260 40‘0 660 860 10'00 12b0
795 (f) EURGBP Allocations

796
797
798
799
800
801
802
803
804
805
806
807
808
809

0.02

0.00

£

Figure 8: Performance and Allocations for USDJPY, USDSGD, and EURGBP

15

