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Abstract

While self-correction has shown promise in001
improving LLM outputs in terms of style and002
quality (e.g. Chen et al., 2023; Madaan et al.,003
2023), recent attempts to self-correct logical004
or reasoning errors often cause correct answers005
to become incorrect, resulting in worse perfor-006
mances overall (Huang et al., 2023). In this pa-007
per, we break down the self-correction process008
into two core components: mistake finding009
and output correction. For mistake finding,010
we release BIG-Bench Mistake, a dataset of011
logical mistakes in Chain-of-Thought reason-012
ing traces. We provide benchmark numbers013
for several state-of-the-art LLMs, and demon-014
strate that LLMs generally struggle with find-015
ing logical mistakes. For output correction,016
we propose a backtracking method which pro-017
vides large improvements when given informa-018
tion on mistake location. We construe back-019
tracking as a lightweight alternative to rein-020
forcement learning methods, and show that it021
remains effective with a reward model at 60-022
70% accuracy.023

1 Introduction024

Large Language Models (LLMs) have dominated025

the field of NLP in recent years, achieving state-026

of-the-art performance in a large variety of appli-027

cations. In particular, LLMs have demonstrated028

the ability to solve tasks with zero- or few-shot029

prompting, giving rise to prompting methods such030

as Chain-of-Thought (CoT) (Wei et al., 2022), Self-031

Consistency (SC) (Wang et al., 2023), ReAct (Yao032

et al., 2022), etc.033

Recent literature on few- or zero-shot prompting034

has focused on the concept of self-correction, i.e.035

having an LLM correct its own outputs (Shinn et al.,036

2023; Miao et al., 2023; Madaan et al., 2023; Chen037

et al., 2023; Saunders et al., 2022). (See Pan et al.038

(2023) for a review of the literature.)039

However, Huang et al. (2023) note that while040

self-correction may prove effective for improving041

model outputs in terms of style and quality, when 042

it comes to reasoning tasks, LLMs struggle to iden- 043

tify and fix errors without external feedback: for 044

example, Reflexion (Shinn et al., 2023) and RCI 045

(Kim et al., 2023) both use ground truth correctness 046

as a signal to halt the self-correction loop. Initially 047

observed by Madaan et al. (2023) on a math dataset, 048

Huang et al. (2023) further demonstrate this short- 049

coming of self-correction in 2 additional datasets. 050

While previous work typically present self- 051

correction as a single process, we divide it into 052

mistake finding and output correction. 053

Mistake finding is a fundamental reasoning 054

skill that has been studied and utilised exten- 055

sively in philosophy, psychology, and mathematics, 056

spawning concepts such as critical thinking, and 057

logical and mathematical fallacies. One might ex- 058

pect that the ability to find mistakes should also be 059

an important requirement for LLMs. However, our 060

results show that state-of-the-art LLMs currently 061

cannot find mistakes reliably. 062

Output correction involves partially or com- 063

pletely changing previously generated outputs. 064

With self-correction, this is typically done with 065

outputs generated by the same model (see Pan et al. 066

(2023)). Despite LLMs’ inability to find mistakes, 067

our results show that they can correct outputs us- 068

ing our backtracking method, if given information 069

about the mistakes, such as via a small, supervised 070

reward model. 071

Our contributions for this paper are as follows: 072

1. With Chain-of-Thought prompting, any task can 073

be turned into a mistake-finding task. We collect 074

and release1 to the research community BIG- 075

Bench Mistake, a dataset of CoT-style traces2 076

generated using PaLM 2 (Anil et al., 2023), and 077

annotated according to where the first logical 078

mistake is. To our knowledge, BIG-Bench Mis- 079

take is the first dataset of its kind that goes be- 080

1Available at [redacted].
2We refer to a set of CoT reasoning steps as a trace.
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yond problems in mathematics.081

2. We produce benchmark results for our dataset082

to test the reasoning capabilities of five state-of-083

the-art LLMs. We demonstrate that these LLMs084

struggle with mistake finding, even for objec-085

tive, unambiguous cases. We hypothesise that086

this is a main contributing factor to LLMs’ in-087

ability to self-correct reasoning errors, and call088

on the research community to pursue further089

improvements on the mistake finding task.090

3. We propose backtracking as an output correc-091

tion technique that uses mistake location infor-092

mation to improve performance on the original093

task. We demonstrate that this method corrects094

outputs that are originally incorrect, with mini-095

mal effect on outputs that are originally correct.096

4. We construe backtracking as a form of “verbal097

reinforcement learning” (Shinn et al., 2023),098

allowing iterative improvement on CoT out-099

puts without requiring any weight updates. We100

propose that backtracking can be used with a101

trained classifier as a reward model, and demon-102

strate the effectiveness of backtracking at vari-103

ous reward model accuracies.104

2 BIG-Bench Mistake105

BIG-Bench Mistake contains 2186 sets of CoT-106

style traces. Each trace is generated with PaLM 2107

Unicorn (Anil et al., 2023), and annotated with the108

location of the first logical error. Table 1 shows an109

example trace where the mistake location3 is the110

4th step.111

Our traces span across a set of 5 tasks from the112

BIG-bench dataset (Srivastava et al., 2023): word113

sorting, tracking shuffled objects, logical deduction,114

multi-step arithmetic, and Dyck languages4. CoT115

prompting is used to prompt PaLM 2 to answer116

questions from each task. As we wanted to sepa-117

rate our CoT traces into distinct steps, we follow118

Yao et al. (2022) and generate each step separately,119

using the newline as a stop token.120

3As some traces may not contain mistakes, we use the term
mistake location as a multi-class label that can refer to either
the integer N where the N th step contains the first mistake, or
that there are no mistakes.

4These 5 tasks are selected because 1) Anil et al. (2023)
demonstrate that PaLM 2 performs poorly on these tasks, so
it is likely to generate mistakes in CoT traces; 2) mistakes in
these tasks are likely to be unambiguous, therefore minimising
subjectivity during annotation; and 3) identifying mistakes for
these tasks does not require expertise knowledge.

Sort the following words alphabetically: List:
hypochlorite ponderosa phone credulity

Thought 1:

I should start by looking at the first letter
of the words in the list. The first letter:
"hypochlorite": "h" (8). "ponderosa": "p"
(16). "phone": "p" (16). "credulity": "c" (3).

Thought 2:
We now have: (3) "credulity" < (8)
"hypochlorite" < (16) ["ponderosa" ?
"phone"].

Thought 3:

Now let’s sort this subpart ["ponderosa" ?
"phone"] by looking at their second letters.
The second letter: "ponderosa": "o" (15).
"phone": "h" (8).

Thought 4:
(MISTAKE)

We now have: (8) "phone" < (15) "pon-
derosa" for the subpart. Hence, we have
"credulity" < "phone" < "ponderosa".

Thought 5: I have now sorted all the words. The answer
is credulity hypochlorite phone ponderosa

Table 1: Example of a CoT trace for the word sort-
ing task. There is a mistake in Thought 4: the order-
ing "credulity" < "phone" < "ponderosa" is missing the
word hypochlorite.

All traces are generated with temperature = 0. 121

The correctness of answers are determined by exact 122

match. Prompts can be found at [redacted]. 123

2.1 Annotation 124

Each generated trace is annotated with the first 125

logical error. We ignore any subsequent errors as 126

they may be dependent on the original error. 127

Note that traces can contain a logical mistake 128

yet arrive at the correct answer. To disambiguate 129

the two types of correctness, we will use the terms 130

correctans and incorrectans to refer to whether the 131

final answer of the trace is correct. Accuracyans 132

would therefore refer to the overall accuracy for the 133

task, based on how many final answers are correct. 134

To refer to whether the trace contains a logical 135

mistake (rather than the correctness of the final 136

answer), we will use correctmis and incorrectmis. 137

2.1.1 Human annotation 138

For 4 of the 5 tasks, we recruit human annotators 139

to go through each trace and identify any errors. 140

Annotators have no domain expertise but are given 141

guidelines5 to complete the task. 142

Before annotation, we sample a set of 300 traces 143

for each task, where 255 (85%) are incorrectans, 144

and 45 (15%) are correctans. Since human annota- 145

tion is a limited and expensive resource, we chose 146

this distribution to maximise the number of steps 147

5See [redacted] for further details.
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Task # of correctans traces # of incorrectans traces # of incorrectmis traces Total
Word sorting 45 255 266 300

Tracking shuffled objects 45 255 260 300
Logical deduction 45 255 294 300

Multistep arithmetic 45 255 238 300
Dyck languages 482 504 650 986

Dyck languages (sampled) 88 504 545 592

Table 2: Number of traces in our dataset that are correct and incorrect. Dyck languages (sampled) is a set of traces
sampled so that the ratio of correctans to incorrectans traces matches other tasks.

containing mistakes and to prevent over-saturation148

of correct steps. We also include some correctans149

traces because some may contain logical errors150

despite the correct answer, and to ensure that the151

dataset included examples of correct steps that are152

near the end of the trace. To account for this skewed153

distribution, results in section 4 are split according154

to whether the original trace is correctans or not.155

Following Lightman et al. (2023), annotators156

are instructed to go through each step in the trace157

and indicate whether the step is correct or not (bi-158

nary choice). Annotators only submit their answers159

when all steps are annotated, or there is one in-160

correct step. If an incorrect step is identified, the161

remaining steps are skipped. This is to avoid ambi-162

guities where a logically correct deduction is depen-163

dent on a previous mistake. Our annotation guide-164

lines can be found at [redacted], and we include a165

screenshot of the user interface in Appendix D.166

Each trace is annotated by at least 3 annotators.167

If there are any disagreements, we take the majority168

label. We calculate Krippendorff’s alpha (Hayes169

and Krippendorff, 2007) to measure inter-rater reli-170

ability (see Table 3).171

Task Krippendorff’s α
Word sorting 0.979

Tracking shuffled objects 0.998
Logical deduction 0.996

Multistep arithmetic 0.984

Table 3: Inter-rater reliability for the human-annotated
tasks, measured by Krippendorff’s alpha.

2.1.2 Automatic annotation172

For Dyck languages, we use mostly automatic in-173

stead of human annotation, as the traces show lim-174

ited variation in phrasing and solution paths.175

For each trace, we algorithmically generate a set176

of steps based on the format used in the prompt177

examples. Using pattern matching, we identify178

whether each model-generated step conforms to179

the same format. If so, we compare the two and180

assume that the trace is incorrect if the symbols do181

not match. Additionally, we account for edge cases182

such as where the final two steps are merged into183

one, or variations in presentation where symbols184

may or may not be placed in quotes. We release 185

the code at [redacted] along with our dataset. 186

3 Benchmark results 187

Table 4 shows the accuracy of GPT-4-Turbo, GPT- 188

4, GPT-3.5-Turbo, Gemini Pro, and PaLM 2 Uni- 189

corn on our mistake-finding dataset. For each ques- 190

tion, the possible answers are either: that there are 191

no mistakes, or; if there is a mistake, the number N 192

indicating the step in which the first mistake occurs. 193

A model’s output is only considered correct if the 194

location matches exactly, or the output correctly 195

indicates that there are no mistakes. 196

All models are given the same 3-shot prompts5. 197

We use three different prompting methods: 198

• Direct trace-level prompting involves using 199

the whole trace as input to the model and di- 200

rectly prompting for the mistake location. The 201

model must output either the number represent- 202

ing the step, or "No". 203

• Direct step-level prompting prompts for a bi- 204

nary Yes/No output for every step, indicating 205

whether or not the step is correct. In each gen- 206

eration call, the input contains the partial trace 207

up to (and including) the target step, but does 208

not contain results for previous steps. The final 209

answer is inferred from where the first "No" 210

output occurs (subsequent steps are ignored). 211

• CoT step-level prompting is an extension of 212

direct, step-level prompting. Instead of a bi- 213

nary Yes/No response, we prompt the model to 214

check the (partial) trace through a series of rea- 215

soning steps. This method is the most resource 216

intensive of all three methods as it involves gen- 217

erating a whole CoT sequence for every step. 218

As with direct step-level prompting, the final 219

answer is inferred from where the first "No" 220

output occurs (subsequent steps are ignored). 221

3.1 Discussion 222

All five models appear to struggle with our mis- 223

take finding dataset. GPT-4 attains the best results 224
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but only reaches an overall accuracy of 52.87 with225

direct step-level prompting. While exact parame-226

ter counts are undisclosed, GPT-4 is likely one of227

the largest models, along with PaLM 2 Unicorn6,228

while Gemini Pro and GPT-3.5-Turbo are among229

the smaller models.230

Our findings are in line with and builds upon231

results from Huang et al. (2023), who show that232

existing self-correction strategies are ineffective on233

reasoning errors. In our experiments, we specifi-234

cally target the models’ mistake finding ability and235

provide results for additional tasks. We show that236

state-of-the-art LLMs clearly struggle with mistake237

finding, even in the most simple and unambiguous238

cases. (For comparison, humans can identify mis-239

takes without specific expertise, and have a high240

degree of agreement, as shown in Table 3.)241

We hypothesise that LLMs’ inability to find mis-242

takes is a main contributing factor to why LLMs are243

unable to self-correct reasoning errors. If LLMs are244

unable to identify mistakes, it should be no surprise245

that they are unable to self-correct either.246

3.2 Comparison of prompting methods247

As we compare results across the three methods,248

we find that the accuracy on traces with no mistakes249

goes down7 considerably from direct, trace-level250

prompting to CoT, step-level prompting. Figure 1251

demonstrates this trade-off.252

We hypothesise that this is due to the number of253

outputs generated by the model. Our three methods254

involve generating increasingly complex outputs,255

starting with direct, trace-level prompting requir-256

ing a single token, then direct, step-level prompt-257

ing requiring one token per step, and finally CoT258

step-level prompting requiring several sentences259

per step. If each generation call has some proba-260

bility of identifying a mistake, then the more calls261

made on each trace, the more likely the model will262

identify at least one mistake.263

6Note that the traces in our dataset are generated using
PaLM 2 Unicorn and are sampled according to whether the
final answer was correct or not. Therefore, we expect that
using PaLM 2 itself to do mistake finding will produce dif-
ferent and likely biased results. Further work is needed to
elucidate the difference between cross-model evaluation and
self-evaluation.

7Note that the traces in BIG-Bench Mistake are sam-
pled to contain more incorrectans traces than correctans

traces (and therefore more incorrectmis traces than correctmis

traces), so the overall mistake location accuracy appears higher
for per-step prompting in Table 4, despite the poor accu-
racy for correctmis traces. For a full set of scores split by
correctnessmis, see Appendix E.

Model Direct
(trace)

Direct
(step)

CoT
(step)

Word sorting (11.7)
GPT-4-Turbo 36.33 33.00 –

GPT-4 35.00 44.33 34.00
GPT-3.5-Turbo 11.33 15.00 15.67

Gemini Pro 10.67 – –
PaLM 2 Unicorn 11.67 16.33 14.00

Tracking shuffled objects (5.4)
GPT-4-Turbo 39.33 61.67 –

GPT-4 62.29 65.33 90.67
GPT-3.5-Turbo 10.10 1.67 19.00

Gemini Pro 37.67 – –
PaLM 2 Unicorn 18.00 28.00 55.67

Logical deduction (8.3)
GPT-4-Turbo 21.33 75.00 –

GPT-4 40.67 67.67 10.33
GPT-3.5-Turbo 2.00 25.33 9.67

Gemini Pro 8.67 – –
PaLM 2 Unicorn 6.67 38.00 12.00

Multistep arithmetic (5.0)
GPT-4-Turbo 38.33 43.33 –

GPT-4 44.00 42.67 41.00
GPT-3.5-Turbo 20.00 26.00 25.33

Gemini Pro 21.67 – –
PaLM 2 Unicorn 22.00 21.67 23.67

Dyck languages† (24.5)
GPT-4-Turbo 15.33* 28.67* –

GPT-4 17.06 44.33* 41.00*
GPT-3.5-Turbo 8.78 5.91 1.86

Gemini Pro 2.00 – –
PaLM 2 Unicorn 10.98 14.36 17.91

Overall
GPT-4-Turbo 30.13 48.33 –

GPT-4 39.80 52.87 43.40
GPT-3.5-Turbo 10.44 14.78 14.31

Gemini Pro 16.14 – –
PaLM 2 Unicorn 17.09 23.67 24.65

Table 4: Mistake finding accuracy across 5 tasks. The
average number of steps in CoT reasoning traces in
each task is in brackets. Unless otherwise indicated, the
number of traces is in Table 2. We provide scores split
by correctnessans of the original trace in Appendix E.
Due to cost and usage limits, we are unable to provide
results indicated by –.
† indicates that traces were sampled to contain 15%
correctans and 85% incorrectans traces (see Table 2).
* indicates that traces were sampled to contain 45
correctans and 255 incorrectans traces to reduce costs.
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Figure 1: Graph of mistake location accuracies for each
prompting method (excluding GPT-4-Turbo and Gem-
ini Pro which we do not have all results for). Blue
bars show accuracies on traces with no mistakes, so
the model must predict that the trace has no mistake
to be considered correct; orange bars show accuracies
on traces with a mistake, so the model must predict the
precise location of the mistake to be considered correct.

3.3 Few-shot prompting for mistake location264

as a proxy for correctness265

In this section, we investigate whether our266

prompting methods can reliably determine the267

correctnessans of a trace rather than the mistake268

location. Our motivation was that even humans269

use mistake finding as a strategy for determining270

whether an answer is correct or not, like when go-271

ing through mathematical proofs or argumentation.272

Additionally, it may be the case that directly pre-273

dicting the correctnessans of a trace is easier than274

pinpointing the precise location of an error.275

We calculate averaged F1 scores based on276

whether the model predicts there is a mistake in277

the trace. If there is a mistake, we assume the278

model prediction is that the trace is incorrectans.279

Otherwise, we assume the model prediction is that280

the trace is correctans. In Table 5, we average the281

F1s calculated with correctans and incorrectans as282

positive labels, weighted according to the number283

of times each label occurs. Note that the naive base-284

line of predicting all traces as incorrect achieves a285

weighted F1 average of 78.286

The weighted F1 scores show that prompting for287

mistakes is likely a poor strategy for determining288

the correctness of the final answer. This is in line289

with our previous finding that LLMs struggle to290

identify mistake locations, and also builds upon291

results from Huang et al. (2023), who demonstrate292

that improvements from Reflexion (Shinn et al.,293

2023) and RCI (Kim et al., 2023) are only from294

using oracle correctnessans information.295

Model Direct
(trace)

Direct
(step)

CoT
(step)

Word sorting
GPT-4-Turbo 87.73 86.68 –

GPT-4 81.50 85.12 81.19
GPT-3.5-Turbo 6.58 35.07 77.79

Gemini Pro 69.93 – –
PaLM 2 Unicorn 21.08 56.66 62.92

Tracking shuffled objects
GPT-4-Turbo 52.23 74.31 –

GPT-4 76.38 75.69 95.03
GPT-3.5-Turbo 32.04 77.61 78.11

Gemini Pro 79.66 – –
PaLM 2 Unicorn 22.18 48.77 78.29

Logical deduction
GPT-4-Turbo 86.46 81.79 –

GPT-4 84.54 83.38 23.96
GPT-3.5-Turbo 10.34 67.62 61.31

Gemini Pro 48.57 – –
PaLM 2 Unicorn 31.67 37.93 21.21

Multistep arithmetic
GPT-4-Turbo 71.17 86.24 –

GPT-4 72.97 78.67 79.67
GPT-3.5-Turbo 3.76 53.18 64.08

Gemini Pro 32.21 – –
PaLM 2 Unicorn 33.69 13.42 70.94

Dyck languages
GPT-4-Turbo 51.96 85.87 –

GPT-4 62.33 85.73 79.60
GPT-3.5-Turbo 46.57 79.31 77.79

Gemini Pro 61.24 – –
PaLM 2 Unicorn 31.17 31.63 25.20

Table 5: Weighted average F1 scores for predicted
correctnessans of traces across 5 tasks. Baseline is 78
if we only select the incorrectans label. As in Table 4,
traces for the Dyck languages task has been sampled to
match the ratio of correctans to incorrectans traces of
the other tasks. See Table 2 for a full breakdown.

4 Backtracking 296

Madaan et al. (2023) and Huang et al. (2023) both 297

demonstrate that self-correction is only effective 298

with external feedback, e.g. both Shinn et al. (2023) 299

and Kim et al. (2023) rely on oracle labels for im- 300

provements. However, there is often no external 301

feedback available in many real-world applications. 302

As an alternative, we explore the possibility of 303

replacing external feedback with a lightweight clas- 304

sifier trained on a small amount of data. Analogous 305

to reward models in conventional reinforcement 306

learning, this classifier detects any logical errors in 307

a CoT trace, which is then fed back to the generator 308
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model to improve on the output. This can be done309

over multiple iterations to maximise improvements.310

We propose a simple backtracking method to311

improve model outputs based on the location of312

logical errors:313

1. First, the model generates an initial CoT trace.314

In our experiments, we use temperature = 0.315

2. We then determine the mistake location in this316

trace using a reward model.317

3. If there are no mistakes, we move onto the next318

trace. If there is a mistake (e.g. at Thought 4 in319

the example trace in Table 1), we prompt the320

model again for the same step but at tempera-321

ture = 1, generating 8 outputs8. We use same322

prompt and the partial trace containing all steps323

up to but not including the mistake step (e.g. up324

to Thought 3, prompting for Thought 4).325

4. From the 8 outputs, we filter out any options326

that match what was previously identified as a327

mistake. From the remaining outputs, we select328

one with the highest log-probability.329

5. Finally, with the new, regenerated step in place330

of the previous one, we generate the remaining331

steps of the trace again at temperature = 0.332

Our backtracking method provides several bene-333

fits over existing self-correction methods:334

• Unlike Shinn et al. (2023), Kim et al. (2023),335

etc., our approach does not depend on oracle336

knowledge of the answer. Instead, it relies on337

information (e.g. from trained a reward model)338

about logical errors, which can be determined339

on a step-by-step basis using a reward model.340

Logical errors can occur in correctans traces, or341

not occur in incorrectans traces9.342

• Unlike Miao et al. (2023), Shinn et al. (2023),343

and many others, backtracking does not rely on344

any specific prompt text or phrasing, thereby345

reducing associated idiosyncrasies.346

• Compared to approaches that require re-347

generating the entire trace, backtracking re-348

duces computational cost by reusing previous349

steps that are known to be logically sound.350

• Backtracking improves on the quality of the in-351

termediate steps directly, which can be useful352

8For this paper, we only report results where 8 outputs are
used, and leave for future investigation the effects of varying
this number.

9Having no logical errors in incorrectans traces is much
rarer but does exist, for example when the answer is correct
but is not captured by exact match, or if the original question
is faulty and has multiple possible answers.

in scenarios that require correct steps (e.g. gen- 353

erating solutions to math questions), and also 354

generally improves interpretability. 355

Backtracking with mistake location informa- 356

tion from a reward model can be construed as a 357

lightweight RL method. However, unlike conven- 358

tional deep reinforcement learning: 359

• Backtracking with a reward model does not 360

does not require any training of the original 361

generator model. Once the reward model is 362

trained, it can be used for backtracking with any 363

LLM as the generator, and can also be updated 364

independently of the generator LM. This can be 365

especially helpful when LLMs are frequently 366

updated to new checkpoints. 367

• Backtracking only requires training of a small 368

reward model. Compared to methods that re- 369

quire training of the generator model, backtrack- 370

ing is far more efficient in terms of computing 371

resources and available data. 372

• The process of backtracking is more inter- 373

pretable than updating the weights of the gener- 374

ator model directly, as is required for many deep 375

RL methods. It clearly pinpoints the location at 376

which an error occurs, which can help the de- 377

bugging process and allow faster development 378

and iterations of models. 379

4.1 Backtracking with gold mistake location 380

As an initial experiment, we use labels from BIG- 381

Bench Mistake to test if an LLM is able to correct 382

logical errors using backtracking, independent of 383

its inherent ability to identify these errors or any 384

other reward model. 385

For example, if the mistake location is in step 386

4, we use backtracking to regenerate that step and 387

continue the rest of the chain. If the mistake loca- 388

tion is that there are no logical mistakes, we do not 389

backtrack and use the original result. 390

4.1.1 Results 391

The results are shown in Table 6. To show that per- 392

formance increases are not due to randomly resam- 393

pling outputs, we compare our results to a random 394

baseline, where a mistake location10 is randomly 395

selected for each trace and we perform backtrack- 396

ing based on the random location. 397

10As described above, the mistake location can be either the
number representing the step, or that there are no mistakes. If
there are no mistakes, we do not use backtracking and simply
use the original trace.
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With mistake location With random location Avg. num.
of stepsTask ∆ accuracy 3 ∆accuracy7 ∆ accuracy 3 ∆accuracy7

Word sorting -11.11 +23.53 -15.56 +11.76 11.7
Tracking shuffled objects -6.67 +43.92 -6.67 +20.39 5.4

Logical deduction -11.43 +36.86 -13.33 +21.57 8.3
Multistep arithmetic -0.00 +18.04 -8.89 +10.59 5.0

Dyck languages -6.82 +18.06 -15.91 +5.16 24.5

Table 6: Absolute differences in accuracyans before and after backtracking. "With mistake location" indicates
that backtracking was done using oracle mistake locations from the dataset; "With random location" indicates that
backtracking was done based on randomly selected locations. ∆accuracy3 refers to differences in accuracyans
on the set of traces whose original answer was correctans; ∆accuracy7 for traces whose original answer was
incorrectans. The average number of steps in a trace is shown to demonstrate the likelihood of randomly selecting
the correct mistake location in the random baseline condition.

Note that Table 6 separates results into num-398

bers for the correct set and the incorrect set, refer-399

ring to whether the original trace was correctans400

or not. This gives a clearer picture than the over-401

all accuracyans, which would be skewed by the402

proportion of traces that were originally correctans403

(15%) and incorrectans (85%).404

Scores represent the absolute differences in405

accuracyans. We perform backtracking on both406

correctans and incorrectans traces, as long as there407

is a mistake in one of the steps.408

∆accuracy3 refers to differences in accuracyans409

on the set of traces whose original answer was410

correctans. Note that we take losses here because,411

despite the correct answer, there is a logical mistake412

in one of the steps. Therefore, the answer may413

change to an incorrect one when we backtrack.414

∆accuracy7 is the same but for incorrectans415

traces, so the answers may have been corrected,416

hence increasing accuracyans.417

For example, for the word sorting task, 11.11%418

of traces that were originally correctans became419

incorrectans, while 23.53% of traces that were orig-420

inally incorrectans became correctans.421

4.1.2 Discussion422

The scores show that the gains from correcting423

incorrectans traces are larger than losses from424

changing originally correct answers. Additionally,425

while the random baseline also obtained improve-426

ments, they are considerably smaller than if the427

true mistake location was used. Note that tasks428

involving fewer steps are more likely to improve429

performance in the random baseline, as the true430

mistake location is more likely to be identified.431

While our numbers do show that our gains are432

higher than our losses, it should be noted that433

changes in the overall accuracy depends on the434

original accuracy achieved on the task. For exam- 435

ple, if the original accuracy on the tracking shuffled 436

objects task was 50%, the new accuracy would be 437

68.6%. On the other hand, if the accuracy was 438

99%, the new accuracy would drop to 92.8%. As 439

our dataset is highly skewed and only contains 440

45 correctans traces per task, we leave to future 441

work to assess the effectiveness of backtracking in 442

a more comprehensive way. 443

4.2 Backtracking with a simulated reward 444

model 445

We show in subsection 4.1 that backtracking can 446

be used to correct CoT traces using gold mistake 447

location labels. To explore what level of accuracy 448

reward model is needed when gold labels are not 449

available, we use backtracking with simulated re- 450

ward models, designed to produce labels at differ- 451

ent levels of accuracy. We use accuracyRM to refer 452

to the accuracy of the simulated reward model at 453

identifying mistake locations. 454

For a given reward model at X% accuracyRM , 455

we use the mistake location from BIG-Bench Mis- 456

take X% of the time. For the remaining (100 − 457

X)%, we sample a mistake location randomly. To 458

mimic the behaviour of a typical classifier, mis- 459

take locations are sampled to match the distribution 460

found in the dataset. We also ensure that the sam- 461

pled location does not match the correct location. 462

4.2.1 Results 463

Results are shown in Figure 2. We can see that the 464

losses in ∆accuracy3 begins to plateau at 65%. In 465

fact, for most tasks, ∆accuracy3 is already larger 466

than ∆accuracy7 at around 60-70% accuracyRM . 467

This demonstrates that while higher accuracies pro- 468

duce better results, backtracking is still effective 469

even without gold standard mistake location labels. 470
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Figure 2: ∆accuracy3 and ∆accuracy7 on each dataset
as accuracyRM increases.

4.3 Reward Modeling471

We investigate whether mistake-finding can benefit472

from a dedicated reward model, and if learning473

to find mistakes can transfer to out-of-distribution474

tasks. We fine-tune a PaLM 2-XS-Otter model475

with our available data for 20k steps and choose476

the checkpoint with the best validation results. We477

hold out one task for evaluation while training the478

reward model on the other 4 tasks.
Held-out task Difference
Word sorting +11.66

Tracking shuffled objects +19.67
Logical deduction -0.67

Multi-step arithmetic +4.00
Dyck languages +22.59

Table 7: Absolute difference in mistake finding accu-
racy between PaLM 2 Unicorn and a small, trained re-
ward model.479

Note the reward model we train is significantly480

smaller than our inference model. We show the481

relative improvements and losses in Table 7 vs. a482

zero-shot baseline on PaLM 2 Unicorn. We see483

gains for 4 out of 5 of the tasks. This suggests that484

it may be possible to train reward models to assist485

in backtracking, and that these reward models do486

not have to be large. Further, such a reward model487

can work on out-of-distribution mistakes. However,488

we believe more data may be necessary to improve489

results across the board on all tasks. We leave to490

future work the collection of this larger dataset and491

a more rigorous investigation of the trade-offs of492

model size vs. performance of the reward model.493

We also leave for future investigation the effect 494

of backtracking iteratively with a reward model: for 495

example, the generator model may make another 496

mistake after backtracking for the first time, which 497

can then be identified and corrected again. 498

5 Related work 499

Datasets To our knowledge, the only publicly 500

available dataset containing mistake annotations in 501

LLM outputs is PRM800K (Lightman et al., 2023), 502

which is a dataset of solutions to Olympiad-level 503

math questions. Our dataset BIG-Bench Mistake 504

covers a wider range of tasks to explore the reason- 505

ing capabilities of LLMs more thoroughly. Addi- 506

tionally, the generator LLM used in PRM800K has 507

been fine-tuned on 1.5B math tokens and a dataset 508

of step-by-step math solutions, which is not always 509

possible for other use cases. In our paper, we want 510

to explore few-shot in-context learning methods, 511

which is more typical with API-based LLMs. 512

Self-correction Pan et al. (2023) present a 513

plethora of self-correction methods in recent litera- 514

ture. While their list includes training-time correc- 515

tion strategies such as RLHF (Ouyang et al., 2022) 516

and self-improve (Huang et al., 2022), our back- 517

tracking method falls into the category of post-hoc 518

correction, where the correction process is applied 519

to outputs that have already been generated. 520

Our paper focuses on correction of reasoning 521

errors, rather than stylistic or qualitative improve- 522

ments. Previous post-hoc correction methods that 523

are applied to reasoning errors include Reflexion 524

(Shinn et al., 2023) and RCI (Kim et al., 2023), 525

both of which cause performance deterioration 526

when the oracle labels are not used (Huang et al., 527

2023). Other methods like Self-Refine (Madaan 528

et al., 2023) and iterative refinement (Chen et al., 529

2023) focus on qualitative or stylistic improve- 530

ments rather than correcting logical errors. 531

6 Conclusion 532

In this paper, we describe and release our dataset 533

BIG-Bench Mistake for mistake finding, and pro- 534

pose a backtracking method to correct logical errors 535

in CoT style traces. We show that LLMs generally 536

struggle with finding logical errors without external 537

feedback, but argue that this feedback can come 538

from a reward model instead. Finally, we demon- 539

strate the effectiveness of backtracking, both with 540

gold standard labels as well as with simulated re- 541

ward models at lower levels of accuracy. 542
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Limitations543

One main limitation of our dataset is that it features544

tasks that are artificial and unrealistic for real-world545

applications. We made this choice to minimise am-546

biguity and subjectivity during the mistake finding547

process, but further work needs to be done to deter-548

mine the effectiveness of backtracking in a more549

realistic setting.550

Another limitation is that our paper does not551

evaluate backtracking on the original datasets on552

BIG-Bench, only showing results on the limited set553

that we sampled in a skewed manner, in order to554

maximise the value of the human annotators’ time.555

We leave the full evaluation to future work.556
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A Dataset details654

Our dataset, BIG-Bench Mistake, is available at655

[redacted] under the Apache License 2.0. The five656

tasks used in our dataset are based on BIG-Bench657

(Srivastava et al., 2022), also released under the658

Apache License 2.0. All five tasks are in the En-659

glish language.660

A.1 3-shot CoT prompting to generate traces661

for BIG-Bench Mistake662

We use PaLM 2 (Unicorn) to generate the traces663

used in BIG-Bench Mistake. All traces are gener-664

ated at temperature = 0.665

Our prompts and examples can be found at666

[redacted]. Our prompts are based on chain-of-667

thought prompts in the BIG-Bench Hard dataset668

(Suzgun et al., 2022), with four main changes:669

1. Example CoT traces in the prompt is broken670

up into smaller steps (typically one sentence671

per step). This is done so that mistake location672

information is more precise.673

2. Following Yao et al. (2022), each step in674

the prompt is signposted with “Thought 1”,675

“Thought 2:”, etc. This allows us to refer to676

the number of the step when prompting for677

mistake location.678

3. For the logical deduction task, we find that the679

notation used in the original prompt with ques-680

tion marks is often inconsistent. It becomes681

difficult for annotators to determine whether a682

question mark is a mistake or not, because the683

correctness of the question mark is dependent684

on its interpretation. To minimise such ambi-685

guity, the question mark notation is rewritten686

into text descriptions of the objects.687

4. For the multistep arithmetic task, one of the688

prompt examples is altered to increase the689

length of the equation. This is because the690

BIG-Bench Hard dataset (where the prompts691

are taken from) only used equations of a spe-692

cific length, but our dataset contains equations693

of averaged a variety of lengths, in accordance694

with the original BIG-Bench dataset (Srivas-695

tava et al., 2022).696

Following Yao et al. (2022), we use the newline 697

as the stop token, which generates one step with 698

every generation call. We algorithmically append 699

“Thought N:” before each step. This allows us to 700

split up steps in a clear and systematic way. We 701

stop generating once an answer is reached, which 702

is detected using the following regex: 703

(?<=[Tt]he answer is).*$ 704

A.2 3-shot prompting to identify mistakes in 705

BIG-Bench Mistake 706

As described in section 3, we explore three differ- 707

ent methods of prompting for mistake location: di- 708

rect trace-level prompting, direct step-level prompt- 709

ing, and CoT step-level prompting. We use 3-shot 710

prompting for all methods, and our prompts and 711

examples can be found at [redacted]. 712

Our prompts follow OpenAI’s chat completion 713

format. All results were obtained with temperature 714

= 0 and no stop tokens. 715

B Annotation 716

We release our annotation guidelines at [redacted]. 717

Our annotators are recruited via our institution and 718

contracted at the market rate in their country of 719

residence. 720

During annotation of the multistep arithmetic 721

task, we found that the first CoT step given in the 722

original BIG-Bench Hard prompt examples (Suz- 723

gun et al., 2022) was incorrect. Since all generated 724

traces contained the same first step, we removed 725

that step before showing traces to the annotators. 726

Figure 3 contains an example screenshot of the 727

user interface. For every trace, we provide the input 728

question as well as the target answer, with a note 729

to be aware of errors that may occur in correctans 730

traces. 731

Annotators can click on words to highlight the 732

same word across the trace and the question text, 733

which we found was particularly helpful for some 734

tasks such as word sorting and tracking shuffled 735

objects. Buttons on the right automatically become 736

inactive if a previous step has been labelled as neg- 737

ative. 738

C Reward model training 739

To train our reward models (see subsection 4.3), 740

we fine-tune PaLM 2 XS Otter on 4 of our 5 tasks, 741

holding out one task for evaluation. This is done 742

for each of our 5 tasks. 743
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All 5 models are fine-tuned for 20k steps with744

a batch size of 32. The learning rate is 1e−5 with745

a linear ramp and cosine decay. After 20k steps,746

we select the checkpoint with the best validation747

results. The number of steps trained for each model748

are shown in Table 8.749

Held-out task Training steps
Word sorting 6800

Tracking shuffled objects 8000
Logical deduction 9000

Multi-step arithmetic 10000
Dyck languages 10000

Table 8: Number of training steps to fine-tune each re-
ward model.

All models are trained as a binary classifier on750

whether a CoT step is correct, given the task and751

previous steps. Due to the limited data, we include752

in training the CoT steps that occur after the first753

mistake step. These steps are considered incor-754

rect for the purposes of training (despite not being755

human-annotated as such).756
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D User interface757

Figure 3: Screenshot of the user interface for a question from the tracking shuffled objects task.
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E Benchmark scores 758

Model Direct
(trace)

Direct
(step)

CoT (step)

Word sorting
GPT-4-Turbo 67.74 38.24 –

GPT-4 88.24 82.35 58.82
GPT-3.5-Turbo 100.00 97.06 20.59

Gemini Pro 44.12 – –
PaLM 2 Unicorn 100.00 73.53 35.29

Tracking shuffled objects
GPT-4-Turbo 90.00 77.50 –

GPT-4 82.50 82.50 80.00
GPT-3.5-Turbo 67.50 0.00 0.00

Gemini Pro 12.50 – –
PaLM 2 Unicorn 100.00 85.00 47.50

Logical deduction
GPT-4-Turbo 100.00 83.33 –

GPT-4 100.00 100.00 0.00
GPT-3.5-Turbo 100.00 50.00 100.00

Gemini Pro 33.33 – –
PaLM 2 Unicorn 100.00 100.00 50.00

Multistep arithmetic
GPT-4-Turbo 57.69 40.32 –

GPT-4 53.23 46.77 27.42
GPT-3.5-Turbo 96.77 79.03 58.06

Gemini Pro 83.87 – –
PaLM 2 Unicorn 83.87 93.55 29.03

Dyck languages
GPT-4-Turbo 96.42 30.00 –

GPT-4 98.41 78.57 13.79
GPT-3.5-Turbo 95.74 4.76 0.00

Gemini Pro 0.00 – –
PaLM 2 Unicorn 100.00 80.95 19.05

(a) Mistake finding accuracy for traces that do not contain
mistakes (correctmis).

Model Direct
(trace)

Direct
(step)

CoT (step)

Word sorting
GPT-4-Turbo 32.71 32.33 –

GPT-4 28.20 39.47 30.83
GPT-3.5-Turbo 0.00 4.51 15.04

Gemini Pro 6.39 – –
PaLM 2 Unicorn 0.38 9.02 11.28

Tracking shuffled objects
GPT-4-Turbo 31.54 59.23 –

GPT-4 59.14 62.69 92.31
GPT-3.5-Turbo 1.17 1.92 21.92

Gemini Pro 41.54 – –
PaLM 2 Unicorn 5.38 19.23 56.92

Logical deduction
GPT-4-Turbo 20.81 74.83 –

GPT-4 39.46 67.01 10.54
GPT-3.5-Turbo 0.00 24.83 7.82

Gemini Pro 8.16 – –
PaLM 2 Unicorn 4.76 36.73 11.22

Multistep arithmetic
GPT-4-Turbo 34.27 44.12 –

GPT-4 41.60 41.60 44.54
GPT-3.5-Turbo 0.00 12.18 16.81

Gemini Pro 5.46 – –
PaLM 2 Unicorn 5.88 2.94 22.27

Dyck languages
GPT-4-Turbo 6.99 28.46 –

GPT-4 7.37 40.81 43.91
GPT-3.5-Turbo 1.28 6.05 2.08

Gemini Pro 2.25 – –
PaLM 2 Unicorn 0.38 6.43 17.77

(b) Mistake finding accuracy for traces that contain mis-
takes (incorrectmis).

Table 9: Mistake finding accuracy across 5 tasks for correctmis and incorrectmis traces. The combined scores of
Table 9a and Table 9b make up Table 4.

13


