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1 Introduction

Model-based RL [3, 20, 11, 16] is a natural choice to address limited data budget [6, 2, 21] and
achieve generalization [22, 29, 12] in offline reinforcement learning (RL). A recent notable technique,
reanalysis [20, 21], has shown superior performance for both online and offline RL and has advanced
model-based methods to overcome the two challenges. However, it is primarily designed for single-
task RL and cannot be directly applied for offline goal-conditioned RL (GCRL) [27, 13], since

1. the presence of multi-modal actions in multi-goal datasets presents challenges in avoiding
out-of-distribution (OOD) actions during long-term offline planning,

2. it remains unexplored to determine the selection of goals for multi-goal reanalysis, which
can generate improved targets for the value function and policy to enhance performance.

We introduce Goal-conditioned Offline Planning (GOPlan), a novel model-based algorithm designed
to address the limited data and the OOD generalization challenges in offline GCRL. GOPlan consists
of two stages, a pretraining stage and a reanalysis stage:

1. Pretraining stage: GOPlan trains a policy using advantage-weighted Conditioned Gener-
ative Adversarial Network (CGAN) to capture the multi-modal action distribution in the
heterogeneous multi-goal dataset. The pretrained policy exhibits notable mode separation
to avoid OOD actions and is improved towards high-reward actions, making it suitable for
offline planning. Besides, a group of dynamics models is also learned during this stage.

2. Reanalysis stage: GOPlan finetunes the policy with imagined trajectories for further policy
optimization. Specifically, GOPlan generates a reanalysis buffer by planning using the policy
and learned models for both intra-trajectory and inter-trajectory goals. We quantify the
uncertainty of the planned trajectories based on the disagreement of the models [18, 29] to
avoid going excessively outside the dynamics model’s support. Data with small uncertainty
from the reanalysis buffer are high-quality demonstrations that can enhance the agent’s
ability to achieve both in-dataset and out-of-dataset goals.

GOPlan iteratively executes planning to generate better data and finetunes the policy with advantage-
weighted CGAN. The framework is shown in Figure 1. The experimental evaluations demonstrate its
state-of-the-art (SOTA) performance on various offline GCRL tasks, its superior ability to handle
small data budgets, and its generalization capability to out-of-distribution goals.
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Figure 1: The two-stage framework of GOPlan: pretrain a prior policy and a group of dynamics
models, and finetune policy with imagined trajectories generated by our multi-goal reanalysis method.

Figure 2: Illustration of intra-trajectory and inter-trajectory reanalysis. There are six scenarios: (a-1)
the imagined trajectory is valid and better than the original trajectory; (a-2) the imagined trajectory
fails to reach the goal within the same number of steps as the original trajectory; (b-1) a valid
imagined trajectory connects the state to an inter-trajectory goal; (b-2) a valid imagined trajectory
that does not achieve the desired goal; (a-3) (b-3) invalid imagined trajectories with large uncertainty.

2 Goal-conditioned Offline Planning

In this section, we present the two-stage GOPlan algorithm for offline GCRL. The pretraining stage
introduces the advantage-weighted CGAN as an efficient prior policy for capturing multi-modal
action distribution in offline datasets, which is suitable for subsequent model-based planning. In the
reanalysis stage, we enhance the performance of the agent by enabling planning with learned models
and multiple goals, resulting in a significant policy improvement.

2.1 Pretraining Stage

Due to the nature of collecting data for multiple heterogeneous goals, the multi-goal datasets can
be highly multi-modal [14, 27], meaning that a state can have multiple valid action labels. Unlike
prior works using Gaussian [27, 15] as a mean-seeking uni-modal policy, we propose exponentially
advantage weighted CGAN, which can capture the multi-modal action distribution and produce
in-distribution actions which are potential to maximise the expected return. A motivation example is
shown in Appendix A. The training objective corresponds to the adversarial training objective [10]:

max
D

min
π

E(st,at,g)∼B [w(st, at, g) logD(st, at, g)] + E(st,g)∼B,a′∼π [log(1−D(st, a
′, g))] (1)
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Dataset Task GOPlanGOPlanGOPlan BCBCBC GCSLGCSLGCSL [9] WGCSLWGCSLWGCSL [27] GEAWGEAWGEAW [24] AMAMAM [4] CRLCRLCRL [7] g-TD3-BCg-TD3-BCg-TD3-BC [8]

FetchPush 39.1539.1539.15±0.6 31.56±0.6 28.56±0.9 39.11±0.1 37.42±0.2 30.49±2.1 36.52±0.6 30.83±0.6

Normal FetchPick 37.0137.0137.01±1.1 31.75±1.2 25.22±0.8 34.37±0.5 34.56±0.5 34.07±0.6 35.77±0.2 36.51±0.5

(2× 106 transitions) FetchSlide 10.08±0.8 0.84±0.3 3.05±0.6 10.7310.7310.73±1.0 4.55±1.7 6.92±1.2 9.91±0.2 5.88±0.6

HandReach 28.2828.2828.28±5.3 0.06±0.1 0.57±0.6 26.73±1.2 0.81±1.5 0.02±0.0 6.46±2.0 5.21±1.6

FetchPush 37.3137.3137.31±0.5 25.54±1.0 26.30±0.7 32.35±0.9 33.68±1.9 32.93±0.6 31.72±1.5 30.92±0.6

Small FetchPick 32.8532.8532.85±0.3 23.05±1.0 23.71±1.4 29.12±0.2 30.92±0.5 25.56±3.5 32.27±0.8 29.06±4.0

(2× 105 transitions) FetchSlide 5.045.045.04±0.4 0.31±0.1 0.98±0.4 0.22±0.1 0.30±0.1 1.97±2.7 4.74±0.6 0.16±0.2

HandReach 10.1110.1110.11±1.4 0.16±0.1 0.13±0.1 0.12±0.1 0.03±0.0 0.08±0.1 0.45±0.3 1.6±2.3

Table 1: Average return with standard deviation on the benchmark with normal/small size dataset.

Figure 3: Average performance on OOD gener-
alization tasks. The error bars depict the upper
and lower bounds of the returns within each
task group. GOPlan2 is a variant approach of
GOPlan, which employs testing-time model-
based planning with candidate actions from
GOPlan policy.

Here, D is the discriminator, w(st, at, g) = exp(Aπb(st, at, g)) is the exponential advantage weight,
πb is the behavior policy underlying the relabeled offline dataset B [1]. The advantage Aπb is
estimated by a learned value function [27, 23]. In addition, a group of dynamics model {Mi}Ni=1 is
learned to predict the state residual [25, 17] for model-based planning and uncertainty quantification
in the next stage.

2.2 Reanalysis Stage

With the learned prior policy and dynamics models, we reanalyse and finetune the policy in this stage.
As the dynamics information encapsulated in the offline dataset remains invariant across different
goals, we utilize this property to equip our policy with the capacity to achieve diverse goals by
reanalysing the current policy for both intra-trajectory goals (goals along the same trajectory as the
state) and inter-trajectory goals (goals lying in different trajectories). We formally define them here:

• Intra-trajectory goals: for any trajectory τ = {s0, a0, . . . , sT , g} ∈ B and any state st ∈ τ ,
the intra-trajectory goals are {ϕ(sk) | T ≥ k ≥ t}, where ϕ is a state-to-goal mapping [13];

• Inter-trajectory goals: for any trajectories τ1, τ2 ∈ B and any state st ∈ τ1, the inter-
trajectory goals for st are {ϕ(s) | s ∈ τ2}.

Given the selected goals, we apply model-based planning method [3] to generate trajectories to reach
them and fill a reanalysis buffer Bre with potential trajectories that can help improve the policy and
have a small uncertainty less than u. The uncertainty of a generated trajectory τ is measured by the
disagreement of the dynamics models: U(τ) = max0≤t<T

1
N

∑N
i=1 ||Mi(st, at)− s̄t+1||22, where

s̄t+1 = 1
N

∑N
i=1Mi(st, at). Figure 2 shows 6 scenarios of the imagined trajectories and presents the

criteria to save them. After saving a number of imagined trajectories, we finetune the policy with
the samples from Bre. We repeat the processes to iteratively improve the policy. More details about
GOPlan and the planning algorithm can be found in Appendix B.

3 Experiments

Through extensive experiments, we demonstrate GOPlan’s SOTA performance on standard offline
tasks, its superior ability to handle small data budgets, and its generalization ability to OOD goals.
The benchmarks are detailed in Appendix C.

1. Table 1 demonstrates that GOPlan outperforms competitive baselines in the benchmark tasks
[27] with both normal size (’Normal’) and limited data budgets (’Small’).

2. Figure 3 shows GOPlan and GOPlan2 outperforms other baselines and enjoys less variance
in four OOD generalization task groups [26], where the testing goal may be not included in
the dataset.
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Appendix

A Conditioned GAN

The initial step of this section is to learn a policy capable of generating both in-distribution and
high-reward actions from multi-goal offline data. Due to the nature of collecting data for multiple
heterogeneous goals, these datasets can be highly multi-modal [14, 27], meaning that a state can
have multiple valid action labels. These actions may even conflict with each other and make
learning challenging. Unlike prior works using Gaussian [27, 15], conditional Variational Auto-
encoder (CVAE) [30, 5] and Conditioned Generative Adversarial Network (CGAN) [28], we employ
Weighted CGAN as the prior policy. In Figure 4, we compare six different models : Gaussian,
Weighted Gaussian, CVAE, Weighted CVAE, CGAN, and Weighted CGAN on a multi-modal dataset
with imbalanced rewards, where high rewards have less frequency, as illustrated in Figure 4(a-2). The
weighting scheme for Weight CVAE and Weighted CGAN is based on advantage re-weighting [27]
and we directly use rewards as weights in this example.

In Figure 4, Weighted CGAN outperforms other models by exhibiting a more distinct mode separation.
As a result, the policy generates fewer OOD actions by reducing the number of interpolations
between modes. In contrast, other models all suffer from interpolating between modes. Even
though VAE models perform better than Gaussian models, they are still prone to interpolation due
to the regularization of the Euclidean norm on the Jacobian of the VAE decoder [19]. Furthermore,
without employing advantage-weighting, both the CVAE and CGAN models mainly capture the
denser regions of the action distribution, but fail to consider their importance relative to the rewards
associated with each mode.

Based on the empirical results, the utilization of the advantage-weighted CGAN model for modeling
the prior policy from multi-modal offline data demonstrates notable advantages for offline GCRL. In
this framework, the discriminator is responsible for distinguishing high-quality actions in the offline
dataset from those generated by the policy, while the generative policy is designed to generate actions
that outsmart the discriminator in an adversarial process. This mechanism encourages the policy to
produce actions that closely resemble high-quality actions from the offline dataset.

(c-1) (d-1)

(c-2) (d-2)

(a-1) (b-1)

(a-2) (b-2)

Figure 4: An example about modeling the multi-modal behavior policy while maximizing average
rewards. The x-axis and the y-axis respectively represent the state and the multi-modal action. (a-1)
and (a-2) show the action distribution and the the reward distribution of the offline dataset. (b-1)(b-2),
(c-1)(c-2) and (d-1)(d-2) illustrate the action distributions generated by Gaussian and Weighted
Gaussian, CVAE and Weighted CVAE, CGAN and Weighted CGAN, respectively.

B Algorithms

In this section, we present the pseudocode for GOPlan (Algorithm 1) and the model-based planning
(Algorithm 2) used in GOPlan.
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Algorithm 1 Goal-conditioned Offline Planning (GOPlan).

Initialise: N dynamics models {ψi}Ni=1, a dis-
criminator θd, a policy θπ , a goal-conditioned
value function θv; an offline dataset B and a
reanalysis buffer Bre; the state-to-goal map-
ping ϕ.

1: # Pre-train
2: while not converges do
3: Update {ψi}Ni=1 using B.
4: Update θv using B. ▷ TD-learning
5: Update θd using B. ▷ max in Eq. 1
6: Update θπ using B. ▷ min in Eq. 1
7: end while
8: # Finetune
9: for i = 1, ..., I do

10: for j = 1, ..., Iintra do
11: τ = intra_traj()
12: Bre = Bre ∪ τ
13: end for
14: for j = 1, ..., Iinter do
15: τ = inter_traj()
16: Bre = Bre ∪ τ
17: end for
18: Finetune θv using Bre. ▷ TD-learning
19: Finetune θd using Bre. ▷ max in Eq. 1
20: Finetune θπ using Bre. ▷ min in Eq. 1
21: end for

def intra_traj():
1: (st, st+1, ..., st+K , g) ∼ B, ŝt = st
2: for k = 0, ...,K do
3: at+k = Plan(ŝt+k, ϕ(st+K))
4: ŝt+k+1 =Mψi,i∼{1,...,N}(ŝt+k, at+k)

5: if U(ŝt+k, at+k) > u then
6: return {st, st+1, ..., st+K , g}.
7: end if
8: if ŝt+k+1 achieves ϕ(st+K) then
9: return {st, ŝt+1, ..., ŝt+k+1, ϕ(st+K)}.

10: end if
11: end for
12: return {st, st+1, ..., st+K , g}.
def inter_traj():
13: s0 ∼ B, sg ∼ B, ŝ0 = s0
14: for t = 0, ..., T do
15: at = Plan(ŝt, ϕ(sg))
16: ŝt+1 =Mψi,i∼{1,...,N}(ŝt, at)

17: if U(ŝt, at) > u then
18: return {∅}
19: end if
20: if ŝt+1 achieves ϕ(sg) then
21: return {s0, ŝ1, ..., ŝt+1, ϕ(sg)}
22: end if
23: end for
24: return {s0, ŝ1, ..., ŝT , ϕ(ŝT )}

Algorithm 2 Model-based Planning.
Initialise: N dynamics models {Mi}Ni=1, policy π; current state s0, goal g, reward function r.

1: for c = 1, ..., C do
2: z ∼ N (0, 1)
3: ac0 = π(s0, g, z) ▷ Sample C initial actions {ac0}Cc=1.
4: i ∼ Uniform(1, . . . , N)
5: ŝc1 =Mi(s0, a

c
0) ▷ Predict C next states {ŝc1}Cc=1.

6: for h = 1, ...,H do
7: ŝch,1 = ŝc1 ▷ Duplicate every next state H times.
8: for k = 1, ...,K do
9: z ∼ N (0, 1)

10: ach,k = π(ŝch,k, g, z)

11: i ∼ Uniform(1, . . . ,M)
12: ŝch,k+1 =Mi(ŝ

c
h,k, a

c
h,k) ▷ Generate H trajectories of K steps.

13: end for
14: Rc,h =

∑K
k=0 r(ŝ

c
h,k, a

c
h,k, g)

15: end for
16: Rc =

1
H

∑H
h=1Rc,h ▷ Average all cumulative returns.

17: Rc =
Rc∑C

c=1 Rc
▷ Normalize all cumulative returns.

18: end for
19: a∗ =

∑C
c=1 e

κRc ·ac0∑C
c=1 e

κ ▷ Exponentially weight the actions.
20: return a∗
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C Environments and Datasets

We utilize the offline datasets from [27] to conduct benchmark experiments, as illustrated in (a-d) of
Figure 5. The offline datasets, including 2 × 106 transitions, are collected by a pre-trained policy
using DDPG and hindsight relabelling [1], where the actions from the policy are perturbed by adding
Gaussian noise with zero mean and 0.2 standard deviation to increase the diversity and multi-modality
of the dataset. Detailed information about the environments can be found in Appendix F of [27].
Furthermore, to demonstrate the ability to handle small data budgets, we integrate an additional group
of small datasets, each containing only 1

10 of the number of transitions.

To assess GOPlan’s ability to generalize to OOD goals, we leverage four task groups from [26]:
FetchPush Left-Right, FetchPush Near-Far, FetchPick Left-Right, and FetchPick Low-High, each
consisting of a dataset of 5, 000 transitions. For instance, the dataset of FetchPush Left-Right contains
trajectories where both the initial object and achieved goals are on the right side of the table. As such,
the independent identically distributed (IID) task assesses agents handling object and goals on the
right side (i.e., Right2Right), while the other tasks in the group assess OOD goals or starting positions,
such as Right2Left, Left2Right, and Left2Left. In Figure 3, for the FetchPush Left-Right task group,
we report the mean, the lowest, and the highest returns within Right2Right, Right2Left, Left2Right,
and Left2Left. The behaviour policy used to collect the dataset is the same as the aforementioned
policy except with a 30% probability of taking random actions. For further information regarding the
ODD benchmark, we refer readers to Appendix C in [26].

(a) (b) (c) (d) (e) (f)

Figure 5: Goal-conditioned tasks. (a) FetchPush, (b) FetchPick, (c) FetchSlide, (d) HandReach, (e)
Push Left-Right, and (f) Pick Low-High.
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