
Modelling Multi-Agent Pathfinding Problems by Integrating Connectivity and
No-Collision Constraints

Anonymous submission

Abstract

Multi-agent pathfinding (MAPF) is the problem of finding
collision-free paths for a set of agents in a shared environ-
ment, typically represented as a graph. One of the approaches
to solving MAPF represents the problem as a Boolean sat-
isfiability problem. However, due to the encoding required
to represent the valid paths, this method can produce ex-
tremely large Boolean formulas, both in terms of variables
and clauses. Herein, we propose two encodings of MAPF
designed for SAT Modulo Theories solvers. Our approach
delegates all the valid path reasoning to a monotonic theory
supporting source-target connectivity. This is then combined
with a 2-SAT Boolean formula to prevent collisions between
agents. Together, these components create an effective sepa-
ration of concerns: the SAT solver focuses on resolving con-
flicts, while the theory solver handles the connectivity con-
straints. Our experiments are conducted in both makespan
and sum of costs optimisation settings, empirically demon-
strating a notable reduction in both the size of the MAPF en-
coding and the time required to generate it. In addition, when
fixing the SAT solver across experiments, results demonstrate
considerable performance improvements when transitioning
from pure SAT to our proposed SMT encodings.

Introduction
Multi-agent pathfinding (MAPF) is the task of navigating a
set of mobile agents in a shared environment from their start-
ing location to desired goal locations while avoiding colli-
sions (Stern et al. 2019). It has many practical applications in
warehousing (Wurman, D’Andrea, and Mountz 2008), air-
plane taxiing (Morris et al. 2016), video game control (Sil-
ver 2005), and traffic junctions (Dresner and Stone 2008).

Finding an optimal MAPF solution has been shown to be
computationally hard for a wide range of cost objectives. In-
stead of creating domain-specific optimal solvers, a popular
approach in theoretical computer science is to translate hard
problems into a well-established formalism and use an ex-
isting, highly optimized solver for that formalism. There is
a wide range of formalisms to choose from; the most no-
table mentions include Boolean Satisfiability (SAT) (Biere
et al. 2021), Answer Set Programming (ASP) (Baral 2003),
Mixed-Integer Programming (MIP) (Schrijver 1999), and
Constraint Programming (CP) (Dechter 2003). Many pre-
vious works have translated MAPF into an instance in a dif-
ferent formalism (Surynek 2022). Some of these works have

given exhaustive comparisons between translations to dif-
ferent formalisms (Achá et al. 2021; Barták et al. 2017),
highlighting the strengths and weaknesses of each. These
approaches must all translate the two main constraints of
the MAPF problem: (i) path existence, ensuring valid paths
exist from start to goal for each agent, and (ii) collision
avoidance, ensuring agents do not interfere with each other.
Solving via translation to SAT is a popular approach with
clear strengths, especially in densely populated environ-
ments (Surynek 2016). It can also easily leverage many
years of research effort in engineering efficient SAT solvers,
as well as benefit from their future improvements.

In translating MAPF into SAT, one of the most challeng-
ing tasks is to encode graph-related constraints such as con-
nectivity1. To address this, the work presented herein does
not encode the whole problem in SAT. We instead leverage
MonoSAT (Bayless et al. 2015), a SAT Modulo Theories
(SMT) solver for monotonic theories, which provides graph
propagators. We make these propagators responsible for the
constraints on the existence of valid source-target paths,
while the collision avoidance constraints are still modelled
by a Boolean formula passed to the SAT solver.

Contributions
The main contributions of this work are as follows. We in-
troduce SMT encodings with dedicated graph propagators
to model MAPF. These delegate the complex connectivity
constraints to a graph theory solver while efficiently ex-
pressing collision avoidance as 2-SAT formulas. We imple-
ment this approach using two well-known encodings: Pass
variables, which track agent movement through vertices and
edges, and Shift variables, which represent relative move-
ments between time-steps. These encodings are evaluated
on two standard cost functions: makespan and sum of costs.
Finally, we provide a comprehensive empirical evaluation
comparing all combinations of encoding strategies and cost
functions across a diverse MAPF benchmark set, offering
insights on how each combination affects both formula size
and solving efficiency. The results highlight the usefulness
of the approach, paving the way for future research.

1Sometimes reachability is used in the literature instead. In our
work, we reserve the term reachability for reachability of a location
in a given time-step and will use connectivity instead. In either case,
it relates to an existence of a path between given s and t.

Background and definitions
An instance of multi-agent pathfinding (MAPF) is a pair
M = (G,A), where G = (V,E) is a graph representing
the shared environment and A is a set of n agents, each rep-
resented by a start and goal location, i.e., ai = (si, gi). Time
is considered discrete and at each time-step each agent can
wait in its current location or move to one neighbouring.

The task is to find a plan πi for each agent ai. A plan is a
sequence of locations the agent occupies at each time-step,
where πi(t) = v represents that agent ai is located in ver-
tex v at time-step t. A plan πi is valid if it is a path from
the agent’s start location to its goal location, i.e., πi(1) = si
and πi(|πi|) = gi, and for every t = (1, . . . |πi| − 1) either
πi(t) = πi(t + 1) or (πi(t), πi(t + 1)) ∈ E. Furthermore,
there can be no vertex conflicts, i.e., no two agents can be
present at the same vertex at the same time, and no swap-
ping conflicts, i.e., no two agents can move over the same
edge in the opposite direction simultaneously. The solution
of MAPF is the collision-free joint plan Π =

⋃
ai∈A πi.

In addition to finding a valid solution, it may be re-
quired to find a solution that is optimal. In the literature,
two cost functions are often used to describe the quality of
the found solution – makespan (Surynek 2014) and sum of
costs (Sharon et al. 2011). Let T ∗

i denote the last time-step
agent ai arrives at its goal gi. Then the makespan of plan Π
is defined as mks(Π) = maxai∈A T ∗

i , and its sum of costs is
defined as soc(Π) =

∑
ai∈A T ∗

i . Intuitively, the makespan
is the first time all of the agents are present in their respective
goal locations, and the sum of costs is the sum of time-steps
until all of the agents are in their goal locations and are not
required to move again. After reaching the goal location, the
agent remains in the environment and is able to move out
of the goal if required to make way for some other agent.
However, this agent contributes to the cost until it arrives at
the goal for the last time and does not move again. Note that
optimizing either makespan or sum of costs is an NP-Hard
problem (Yu and LaValle 2013; Surynek 2015).

Connectivity Reasoning in SAT solvers
Encoding connectivity in SAT is a significant challenge, as it
is fundamentally a transitive property that requires reasoning
about paths in graphs. Therefore, it does not naturally map
to the Boolean logic structure of SAT. Various works over
the years (Rankooh and Rintanen 2022) have dealt with the
challenging problem of encoding variants of connectivity
into standard propositional clauses. These encodings would
need to be further generalised to consider the various addi-
tional MAPF requirements, such as for nodes to be revisited
by agents or the self-loops introduced by wait actions.

An alternative approach is to introduce a propagator that
is able to deal with these concerns efficiently. A propagator
in the context of a SAT solver is responsible for analysing
the current partial assignment against a set of constraints
during the search. Its primary function is to deduce further
variable assignments that are logically entailed by the cur-
rent state, and to identify a conflict if the current assignment
violates these constraints. For directed graphs translated to
SAT, Gebser, Janhunen, and Rintanen (2014) introduced a

propagator for acyclicity, which they show can be combined
with a graph encoding to model s-t connectivity efficiently.
An expansion of this idea is MonoSAT (Bayless et al. 2015),
an SMT solver for monotonic theories. It supports not only
acyclicity, but also a wide set of graph predicates, such as s-t
connectivity, shortest paths, or maximum flow.

Encoding
In this section, SAT-based encodings to solve the MAPF
problem are described. First, we describe known encodings
that create purely CNF formulas. We then demonstrate how
a significant fraction of the clauses from these encodings can
be delegated to the graph theories of the SMT solver.

Pure SAT encoding
To model the position of each agent in time, Boolean vari-
ables At(ai, v, t) are created for each triple (agent, vertex,
time-step). Constraints on the agents’ movements for a spec-
ified cost are expressed as a CNF formula, forwarded to an
underlying SAT solver. For a satisfiable formula, the assign-
ment of At variables corresponds to the plan of each agent.
An important improvement in reduction-based MAPF solv-
ing was the introduction of preprocessing of reachable po-
sitions (Sharon et al. 2011). When examining the distance
between the start location si, any vertex v, the goal loca-
tion gi, and the current bound on the cost, it can be reasoned
whether the vertex v can be reached by the specific agent ai
or not due to the distance and the cost limitation. If a vertex
cannot be visited, neither the corresponding variable nor the
corresponding constraints need be created. We will use this
reachability preprocessing in all of the following encodings.

Variables

Pass encoding (P) While MAPF may be modelled using
only the At variables, additional variables describing move-
ment are used to decrease the size and number of some con-
straints. Boolean variables Pass(ai, u, v, t) are added, mod-
elling the movement of an agent ai over an edge (u, v) start-
ing in time-step t. Self-loop edges (v, v) are added to al-
low waiting. Using At and Pass variables, the following con-
straints are created to model MAPF (Barták and Švancara
2019). Note that the SAT solver requires CNF, but we pro-
vide the constraints with implications for perspicuity. For
the same reason, we leave out the quantification of agents
and vertices when it is clear from context. All of the con-
straints are created for all agents in all positions reachable
at that time-step. The per-agent end time Ti depends on the
used cost function, as explained in Cost Functions below.

At(ai, si, 1) (1)
At(ai, gi, Ti) (2)

∀t ∈ {1, . . . , Ti},∀u, v ∈ V, u ̸= v :

¬At(ai, u, t) ∨ ¬At(ai, v, t) (3)
∀t ∈ {1, . . . , Ti − 1} :

At(ai, u, t) =⇒
∨

(u,v)∈E
Pass(ai, u, v, t) (4)

∀t ∈ {1, . . . , Ti − 1} :

Pass(ai, u, v, t) =⇒ At(ai, v, t+ 1) (5)
∀ai, aj ∈ A, ai ̸= aj ,∀t ∈ {1, . . . ,min(Ti, Tj)} :

¬At(ai, v, t) ∨ ¬At(aj , v, t) (6)
∀ai, aj ∈ A,∀t ∈ {1, . . . ,min(Ti, Tj)− 1},∀(u, v) ∈ E :

¬Pass(ai, u, v, t) ∨ ¬Pass(aj , v, u, t) (7)

Unit clauses (1) and (2) ensure that each agent starts
and ends in the correct location. Constraint (3) ensures that
each agent is located in only one vertex per time-step. Con-
straints (4) and (5) ensure correct movement of each agent.
First, an agent must leave through exactly one neighbouring
edge. Second, when moving over an edge, the agent must ar-
rive at the correct vertex in the next time-step. The last two
constraints explicitly forbid the conflicts between agents –
(6) forbids vertex conflict and (7) forbids swapping conflicts.

Shift encoding (S) The drawback of Pass variables is that
they are created per agent. A more recent encoding (Achá
et al. 2022) uses Boolean variables Shift(u, v, t) modelling
the movement of something over an edge (u, v) in a time-
step t. Additional constraints are added to map the move-
ment to a specific agent. Using At and Shift variables, the
following constraints are created to model the MAPF prob-
lem. Again, we leave out the quantification of agents and
vertices when it is clear from context. All the constraints are
created for all agents in all positions reachable at that time-
step in the per-agent end time Ti. Constraints (1), (2), (3),
and (6) are shared with the Pass encoding. In addition:

∀t ∈ {1, . . . , Ti − 1} :

At(ai, u, t) =⇒
∨

(u,v)∈E
At(ai, v, t+ 1) (8)

∀t ∈ {1, . . . , Ti − 1} :

(Shift(u, v, t) ∧ At(ai, u, t)) =⇒ At(ai, v, t+ 1)
(9)

∀t ∈ {1, . . . , Ti − 1} :

(At(ai, u, t) ∧ At(ai, v, t+ 1)) =⇒ Shift(u, v, t)
(10)

∀t ∈ {1, . . . ,max
ai∈A

(Ti)− 1},∀(u, v), (u,w) ∈ E :

¬Shift(u, v, t) ∨ ¬Shift(u,w, t) (11)
∀t ∈ {1, . . . ,max

ai∈A
(Ti)− 1},∀(u, v) ∈ E :

¬Shift(u, v, t) ∨ ¬Shift(v, u, t) (12)

Constraints (8)–(11) describe correct movement and con-
nect Shift variables to specific agents: An agent can move
only to a neighbouring vertex; If an agent is located in a ver-
tex and at the same time there is something moving from the
vertex, the agent is relocated by this movement; If an agent
is located in a vertex and at the next time-step it is located in
the neighbouring vertex, there must have been a movement
between these vertices; All movement from one vertex sums
up to at most one in a single time-step. Lastly, constraint (12)
forbids swapping conflicts. Reachable At preprocessing re-
mains the same, but Shift(u, v, t) is not created only if no
agent can traverse edge (u, v) at time-step t.

Cost Functions

Makespan All of the presented constraints relate to a per-
agent end time Ti. To model a decision problem of finding a
solution in makespan T , Ti for each agent is set to T . Specif-
ically, the latest time of arrival to the goal for each agent in
constraint (2) is set to T . Modelling makespan is therefore
straightforward as it corresponds to the created At variables.

To optimize the makespan, T is increased by one until
a solvable formula is produced. To save numerous compu-
tations, a lower bound on the makespan of LB(mks) =
maxai∈A dist(si, gi) is the first T used, where dist(si, gi)
is the distance between si and gi.

Sum of costs Optimising the sum of costs means minimis-
ing the time-step of arrival to the goal location per agent, via
the minimisation of the sum of those time-steps. The lat-
est time-step of arrival to goal Ti is set separately for each
agent and depends on the shortest path from si to gi. We start
with setting the limit on the sum of costs as a lower bound
LB(soc) =

∑
ai∈A dist(si, gi). Let δ denote the number of

increments to the cost limit (initially δ = 0). The δ repre-
sents an extra allowed movement shared by all agents. Then
each agent ai needs to be present at their goal at time-step
Ti = dist(si, gi) + δ, as there is certainly not enough al-
lowed movement to arrive later. While it is possible that all
of the extra movement is consumed by a single agent, all of
the extra movement of all agents must sum to δ.

Recall that an agent is allowed to move from its goal after
reaching it, but it incurs additional cost until the last return
to the goal. Therefore, limiting the sum of costs is not as
simple as limiting the time-steps spent outside of the goal
location. We create additional Boolean variables Late(ai, t)
to indicate whether an agent ai is late at time-step t (i.e.
it has not arrived at its goal location for the last time). For
an agent ai, the Late variables are created only for time-
steps dist(si, gi), . . . , dist(si, gi) + δ, as before that time-
step, the agent is not late (dist(si, gi) time-steps are certainly
needed), and after that time-step, the agent has to be in the
goal (due to the preprocessing, the agent cannot be located
anywhere else, also no other agent can be located in gi from
dist(si, gi)+ δ onward). The following formula ensures that
if an agent is not in the goal location, it is late.

¬At(ai, gi, t) =⇒ Late(ai, t) (13)

If an agent is not late at a certain time, it cannot be late in
the future. This information is propagated in time, to ensure
that any waiting in goal is counted as being late if the agent
leaves at any time-step in the future.

¬Late(ai, t) =⇒ ¬Late(ai, t+ 1) (14)

To enforce that at most δ movement is spent, at most δ
Late variables among all agents are allowed to be set to True.
This can be achieved in numerous ways in SAT through at-
most-k constraint (Philipp and Steinke 2015).

In case of an unsatisfiable formula, δ and each Ti are in-
creased by one. It was proven that this process provides a
sum of costs optimal solution upon reaching the first satisfi-
able formula (Surynek et al. 2016).

Figure 1: An example of a graph on 3 vertices being trans-
formed into a time-expanded graph with T layers (i.e. T
time-steps). Figure taken from (Barták and Švancara 2019).

Encoding with Graph Theories
Irrespective of the cost function, the number of time-steps is
increased after an unsuccessful call to the SAT solver. This
process is represented by a time-expanded graph (TEG),
consisting of a number of copies of the original graph G,
each forming a layer in the TEG and corresponding to a
time-step. Vertex v in layer t is denoted with a superscript,
vt. If there is an edge (u, v) in G, a directed edge from vertex
ut to vertex vt+1 exists in the TEG for all time-steps t. ‘wait-
ing’ edges are also created that connect copies of vertices in
subsequent layers. Figure 1 presents an example TEG. Each
agent moves over the TEG from layer to layer, always mov-
ing forward in time. In the preceding encodings, a TEG is
not explicitly created. Rather, it serves as a graphical repre-
sentation of each agent’s position over time.

Variables

Pass+Graph encoding (PG) The SMT solver with graph
theories allows the user to define one or more graphs and
associate each vertex and edge to a Boolean variable2. The
associated variable is set to True iff the given vertex (re-
spectively edge) is present in the graph. To model the move-
ment of the agents, we create a TEG for each agent ai with
Ti layers, TEGi. The vertices and edges in the TEGs are as-
sociated with the At and Pass variables, respectively, thus the
same set of variables is created as in the pure SAT encoding.

The SMT solver allows the user to add any number of
connectivity constraints between two vertices and associate
them with Boolean variables. The associated variable is set
to True iff there is a path between the two specified ver-
tices. We add a connectivity constraint for each agent ai be-
tween vertices s1i and gTi

i in TEGi. Each such constraint
is associated with a fresh Boolean variable. These variables
are forced to be assigned to True via unit clauses: there
must be a path in the TEG for each agent from their start
to goal location. This connectivity constraint replaces con-
straints (1), (2), (4), and (5). Indeed, the path starts and ends
in the correct location. The latter two clauses force the con-
nection to be a path. Constraint (3) forbidding duplication of
agents is not needed. If an agent is duplicated in the TEG,
phantom agents may appear. However, it is impossible for
those to produce an invalid solution, as the connectivity con-
straints ensure at least one valid connected path. If some

2In fact, only edges are associated with Boolean variables. In
our implementation, each vertex is split into two vertices connected
by an edge, which is associated to the variable. For simplicity, we
say that vertices can be associated with variables as well.

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Figure 2: A solution by Pass+Graph encoding for an in-
stance with seven vertices and two agents. The two TEGs
have seven layers corresponding to time-steps {1, . . . , 7}.
Unreachable vertices are greyed out and the corresponding
edges are not present. Coloured vertices and edges corre-
spond to At and Pass variables set to True. The only reach-
able vertices in layers 1 and 7 are the start and goal, respec-
tively. The solution for the red agent contains vertices that
do not create a valid path from start to goal. These can be
filtered out by simple post-processing. For the green agent,
there are two possible valid paths. Either is valid as it cannot
conflict with the red agent and has the same cost.

other variables are set to True, but not connected to both s0i
and gTi

i , they may be filtered out by simple post-processing
(simple DFS to find the connected path). Figure 2 presents
an example of two TEGs with highlighted possible solution.

To ensure that there are no collisions between the agents,
the constraints forbidding the vertex (6) and swapping con-
flicts (7) are kept. Note that both of those are binary clauses.

Together, the Pass+Graph encoding consists of |A| num-
ber of TEGs associated with variables At and Pass (using
the same preprocessing as in pure SAT encoding Pass), |A|
number of unit clauses for the connectivity constraints, and
constraints (6) and (7) forbidding conflicts.

Shift+Graph encoding (SG) Creating a separate TEG for
every single agent may seem wasteful, as some parts of the
different TEGi represent the same location, but are occu-
pied by different agents. We draw inspiration from the Shift
encoding and create a single TEG shared by all agents, that
is TEG+. Each edge in the TEG+ is associated with a cor-
responding Shift variable. Note that in this case, the vertices
are not associated with the At variables. The At variables
copy the location for each agent, which we try to avoid.
Rather, we navigate all agents through the same TEG and
make sure that their paths do not cross. The SMT solver
allows for multiple connectivity constraints over the same
graph. For each agent ai, the connectivity constraint from s1i
to gTi

i is created. Again, this connection is forced by creating
a unit clause. To ensure that the paths of the agents do not
cross, it is forced that there is at most one outgoing Shift via
clause (11) and at most one incoming Shift via clause (15).

∀t ∈ {1, . . . ,max
ai∈A

(Ti)− 1},∀(u, v), (w, v) ∈ E :

¬Shift(u, v, t) ∨ ¬Shift(w, v, t) (15)
By enforcing non-overlapping paths in the TEG+, ver-

tex conflicts are implicitly forbidden. Indeed, each path cor-
responds to a single agent and no two paths can enter the

1 2 3 4 5 6 7

Figure 3: Example as in Fig. 2 solved by Shift+Graph en-
coding. Coloured edges correspond to the Shift variables set
to True. There are no variables for the vertices; we high-
light them to show the paths clearly. The only reachable po-
sitions in layers 1 and 7 are the starts and goals, respectively.
Different colours are again present to improve readability.
Red and green represent valid paths of the two agents, and
blue edges represent phantom agents. Phantom agents do not
connect any start and goal and no two paths can intersect.

same vertex in the TEG+. To forbid swapping conflicts,
clauses (12) are added as in the pure SAT encoding.

From a single Shift variable set to True it is unclear
which agent uses this movement. To extract the solution
from the variable assignment, a simple DFS from each s1i
is run to find a valid path to the corresponding gTi

i . While
no path can branch and no two paths can merge, there is still
a possibility of phantom agents as some Shift variables may
be set to True while not being connected to any start or
goal vertex in the 1-st and Ti-th layer, respectively. Again,
these are inconsequential, as the DFS post-processing does
not depend on them. Figure 3 presents an example.

The Shift+Graph encoding thus consists of one TEG as-
sociated with only variables Shift (with the same preprocess-
ing as the pure SAT encoding), |A| unit clauses for the con-
nectivity constraints, clauses (11) and (15) modelling non-
overlapping paths, and (12) forbidding swapping conflicts.

Cost Functions

Makespan Deciding the existence of a solution with
makespan T is straightforward, as it corresponds to the num-
ber of created layers in the TEG. The connectivity require-
ments are then set from s1i to gTi for each agent ai. The pre-
processing on the initial number of layers and the increment
scheme is the same as with the pure SAT encoding. Correct-
ness follows from the correctness of the pure SAT encoding.

Sum of costs The individual latest time-step of arrival to
goal Ti is as the pure SAT encoding: Ti = dist(si, gi) + δ.
The limit on the sum of costs is again enforced by creating
Late(ai, t) variables and consequently at most δ Late vari-
ables are allowed to be True. Propagation of being late is
again done by formula (14). However, deciding if an agent
is late in a given time-step is not as straightforward. Recall
that in both Graph encodings, there may be phantom agents
setting any variable At(ai, gi, t) (respectively Shift(gi, gi, t))
to True, even though these variables are not the ones con-
necting the start and goal location. Therefore, we cannot be
certain that an agent is in the goal: we need to enforce that

the agent is not anywhere else other than in the goal.
Using the Pass+Graph encoding, the following formula

ensures that if an agent is located anywhere other than at its
goal, it is late in that time-step. The formula is created for
all time-steps t ∈ {dist(si, gi), . . . , dist(si, gi) + δ}.

∀v ∈ V, v ̸= gi : At(ai, v, t) =⇒ Late(ai, t) (16)

Enforcing that each agent is not duplicated using con-
straint (3) would ensure that constraint (13) can be used in-
stead of (16). However, (3) creates many more clauses com-
pared to (13). Nevertheless, both options will be evaluated.

Using the Shift+Graph encoding, we want to reason about
the agent not being in a goal without the At variables.
Due to the connectivity requirement, if the formula is sat-
isfiable, there is a connected path from s1i to gTi

i , where
Ti = dist(si, gi) + δ. Such a path has to use some vari-
able Shift(v, gi, t) to move the agent into gi from some
other vertex v. Whenever such movement happens, the agent
is late in the time-step t, which is expressed in the fol-
lowing formula. The formula is created for all time-steps
t ∈ {dist(si, gi), . . . , dist(si, gi) + δ}.

∀v ∈ V, v ̸= gi : Shift(v, gi, t) =⇒ Late(ai, t) (17)

Eliminating phantom agents to simplify (17) requires lim-
iting the number of Shift variables set to True in each layer.
As this requires several at-most-k constraints, expensive in
SAT, we omit such encoding from the experiments.

In both encodings – Pass+Graph and Shift+Graph – the
preprocessing ensures that no other agent aj interferes with
the goal location of ai, as the variables At(aj , gi, t), respec-
tively Shift(v, gi, t) are not created for t ≥ dist(si, gi) + δ.

Empirical evaluation
The instances in our experiments are inspired by a com-
monly used benchmark set available online (Stern et al.
2019). Generally, the most important attributes contributing
to solving speed are map size, placement of obstacles on the
map, and number of agents. Other attributes can affect per-
formance, such as interaction between agents, congestion,
etc. However, these are hard to quantify and generate au-
tomatically. Therefore, we vary the size of the 4-connected
grid maps, starting with the size of 20 × 20 and increasing
by 20 until reaching 100× 100. Next, we change the layout
of the obstacles in the map, producing empty, random, and
warehouse maps (Figure 4 (a) and (b)). Additionally, we test
large game maps brc202d, den520d, and ost003d (Figure 4
(c) – (e)). Lastly, a set of agents is created (a scenario). The
intended way to use the benchmark set is to create an in-
stance of MAPF from a map and a number of agents from a

(a) random (b) warehouse (c) brc202d (d) den520d (e) ost003d

Figure 4: Maps used in the experiments, omitting empty.

20 40 60 80 100 brc den ost total

m
ks

P 380 77 16 4 1 0 0 0 478

S 402 133 25 4 1 0 0 0 565

PG 392 353 227 131 91 1 4 6 1205

PG3 424 156 33 10 2 0 0 0 625

SG 207 227 172 113 71 0 3 5 798

so
c

P 123 207 215 271 236 29 68 47 1196

S 139 220 224 273 235 25 64 47 1227

PG 132 238 290 324 347 36 77 56 1500

PG3 130 224 257 297 274 31 73 51 1337

SG 140 188 173 202 187 20 47 36 993

Table 1: The number of solved instances by each encoding
using the MonoSAT solver. The results are split by map size
and by the optimized cost function. The best performing en-
coding for each size and cost function is highlighted.

scenario. If the instance is solved within the given time limit,
additional agents from the same scenario are added, and thus
a new MAPF instance is produced. Once the instance cannot
be solved within the time limit, we can reasonably assume
that further increasing the number of agents cannot make
the instance solvable. We start with 5 agents, adding 5 more
each time the instance is solvable within the given time limit.
For each map, we create 5 different scenario files with ran-
domly placed start and goal locations.

The time limit per instance is 5 minutes using a sin-
gle CPU and a maximum of 64GB of memory. Exper-
iments were performed on a cluster using AMD EPYC
7543 @ 2.80GHz. Creation of the CNF formula is imple-
mented in C++3. We use MonoSAT (Bayless et al. 2015),
an SMT solver with graph propagator. The PBlib (Philipp
and Steinke 2015) library is used to create cardinality con-
straints for the sum of costs optimal models. The cardinal-
ity constraint is fixed for all encodings: comparing differ-
ent cardinality constraints is beyond the scope of this pa-
per. We do not compare our novel encoding to different op-
timal MAPF algorithms (such as the popular search-based
algorithm CBS (Sharon et al. 2015)), since it was shown
that different algorithm paradigms excel at different types
of instances (Kaduri, Boyarski, and Stern 2020). Instead, we
compare with the state-of-the-art SAT encoding.

Results
Table 1 presents number of solved instances by encoding.
The difference in results for makespan and sum of costs
agrees with a previous study (Švancara et al. 2024): optimis-
ing makespan is more successful on smaller instances but
drastically falls off as the size of the map increases, which
does not affect sum of costs to the same extent. This can be
explained by the increase in formula size presented in Ta-
ble 2, where the number of clauses for makespan optimiza-
tion is several orders of magnitude larger.

3[Link to repository in case of acceptance]

20 40 60 80 100

m
ks

P 3.2 0.9 87.7 7.5 419.7 16.3 2559.1 57.4 7318.5 105.6

S 3.4 0.2 89.8 1.9 425.2 4.1 2575.3 14.0 7348.9 26.4

PG 0 0.9 0 7.5 0 16.3 0 57.4 0 105.6

PG3 2.9 0.9 85.7 7.5 414.5 16.3 2543.5 57.4 7289.4 105.6

SG 0.2 0.01 1.3 0.09 3.9 0.2 10.3 0.7 19.4 1.4

so
c

P 0.005 ϵ 0.02 ϵ 0.05 ϵ 0.1 ϵ 0.2 ϵ

S 0.008 ϵ 0.03 ϵ 0.07 ϵ 0.2 ϵ 0.3 ϵ

PG 0 ϵ 0 ϵ 0 ϵ 0 ϵ 0 ϵ

PG3 0.002 ϵ 0.01 ϵ 0.03 ϵ 0.1 ϵ 0.2 ϵ

SG 0.002 ϵ 0.006 ϵ 0.01 ϵ 0.02 ϵ 0.03 ϵ

Table 2: Average number of clauses (in millions) for in-
stances with a fixed number of 30 agents. The results are
split by map size and by the optimized cost function. The
two provided numbers correspond to movement clauses on
the left and conflict clauses on the right. The unit clauses are
omitted, as there is too few of them in all cases. A value of ϵ
is used for less than a thousand.

The Pass+Graph encoding is the most successful in most
cases. For the smallest maps, the difference is not as signif-
icant and Pass+Graph+(3) 4 and Shift+Graph are the most
successful by a tiny margin. Comparing the Graph encod-
ings with their pure SAT counterparts, both the Pass+Graph
and Pass+Graph+(3) are always able to solve more in-
stances. The difference is more significant for Pass+Graph
and for makespan optimisation as the size of the map grows.
Pass+Graph solved more than double the number of in-
stances than Pass in makespan optimisation. For sum of
costs, it managed to solve about a quarter more instances,
which is still a significant improvement. The advantage of
Pass+Graph+(3) quickly falls off as the size of the map
increases, which can be explained by the number of cre-
ated clauses of type (3) (Table 2). The number of clauses
created by constraint (3) almost matches the whole formula
created by the pure SAT encoding Pass. This is because the
other movement constraints grow linearly, while (3) grows
quadratically in the number of vertices. The benefit of for-
bidding phantom agents and simplifying the constraints on
sum of costs is outweighed by the number of clauses. For a
fixed δ = 10, the number of clauses to limit sum of costs us-
ing constraint (13) is 4601, while using (16) is around 16500
(this number is approximate as it depends on the reachable
positions), which is a minuscule growth compared with (3).

The most surprising result is the underperformance of
the Shift+Graph encoding compared with Pass+Graph, al-
though Shift does perform better than Pass. The number of
movement clauses is not as much reduced for Shift+Graph
compared with Pass+Graph, but it is reduced compared with
Shift. In addition, the number of variables is reduced (recall
that At variables are not created). Yet, the pure SAT encod-
ing Shift solves more instances when optimizing the sum of

4A Graph encoding that in addition explicitly forbids phantom
agents via constraint (3). PG3 for short.

1

10

100

1000

10000

100000

1000000

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00

Bu
ild

 ti
m

e
[m

s]

Instance number

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00

Instance number

Pass

Shift

Pass+Graph

Pass+Graph+(3)

Shift+Graph

Figure 5: The building time in ms of all solved instances by
each of the presented encodings optimizing makespan (left)
and sum of costs (right) objective. On the x-axis is the num-
ber of the instance. The instances are sorted by their build
time. The y-axis is in logarithmic scale.

costs, and the improvement of Shift+Graph when optimiz-
ing makespan is not great compared with the improvement
of other Graph encodings. Our current conjecture is that
graph reasoning over a single TEG is difficult when the paths
must be disjoint. Further investigation, with a better under-
standing of the inner workings of MonoSAT, is required.

Figure 5 shows the building time of all solved instances
by each presented encoding while optimizing makespan and
sum of costs. While the number of clauses presented in Ta-
ble 2 correlates with building time, the TEGs required by the
Graph encodings also require some time to be built. How-
ever, TEG building time depends on the number of variables,
not the number of clauses, which is usually smaller. Fig-
ure 5 (left) shows that the building time while optimizing
makespan for all Graph encodings is smaller than that of
the pure SAT encodings, as expected. For sum of costs, in
Figure 5 (right), the building time of Shift+Graph is closer
to the build times of the pure SAT encodings, which corre-
sponds to the lower performance than the other Graph en-
codings. Creation of the Boolean variables is also included
in the building time. Lastly, we highlight that a faster build-
ing time does not mean that the solver is guaranteed to be
more successful, as the smaller created formula might be
more challenging for the underlying solver. However, lower
building time allows a larger proportion of the time limit to
be spent on solving.

So far, we have fixed the underlying solver, but MonoSAT
is not updated with the most recent SAT solver techniques.
For comparison, we run the pure SAT encodings on a state-
of-the-art SAT solver Kissat (Biere et al. 2024). The number
of solved instances by Kissat is reported in Table 3. Kissat
is able to solve more instances than MonoSAT using the
pure SAT encoding, highlighting the improvement in SAT
solver technologies and so the potential for even greater per-
formance for our approach if a more recent SAT solver like
Kissat were hybridised with graph theory. Even now, the best
performing Graph encoding, Pass+Graph, solved with the

20 40 60 80 100 brc den ost total

m
ks P 512 366 198 80 41 0 0 0 1197

S 522 302 145 61 30 0 0 0 1060

so
c P 125 216 222 273 254 29 70 50 1239

S 143 238 271 308 272 32 84 56 1404

Table 3: The number of solved instances by the pure SAT
encodings using the Kissat solver. The results are split by
map size and by the optimized cost function.

older MonoSAT solver, still outperforms the best perform-
ing pure SAT encoding solved with Kissat.

Related Work and Closing Discussion
We have proposed a novel approach for solving MAPF by
decomposing the problem into two distinct components:
path validity and collision avoidance. Our method lever-
ages an SMT solver, MonoSAT, to which we delegate graph
reachability constraints while handling collision avoidance
via a Boolean formula. We applied this approach to two dif-
ferent styles of encoding, Pass and Shift, combined with two
different objective functions, makespan and sum of costs.
In all settings, our approach achieves a drastic reduction in
the size of the encoding and a commensurate reduction in
the time taken to generate it. In terms of runtime perfor-
mance, for a fixed solver, the Pass encoding benefits greatly
from connectivity reasoning via the graph propagator for
makespan and sum of costs objectives, doubling and improv-
ing by a quarter the number of solved instances respectively.
Runtime performance for the Shift encoding is improved sig-
nificantly for the makespan objective but degraded for sum
of costs. Investigating this latter finding is an important item
of future work. Our present conjecture is that connectivity
reasoning over this more compact graph is not as strong.

Only a handful of papers aim to solve MAPF problems
via SMT. SMT-CBSR algorithm (Surynek 2019a) solves
MAPF with continuous time, geometric agents, and Eu-
clidean space. Hence, a direct comparison to our work is
not possible. SMT-CBS (Surynek 2019b) solves the clas-
sical MAPF problem by lazy reduction to SAT, where the
constraints forbidding conflicts are excluded and added iter-
atively only after a conflict in the solution is detected. De-
spite the name, no SMT solver is used. Rather, an SMT-like
framework ‘generate and test‘ is created. We did a prelimi-
nary experiment with the lazy conflict clause generation, but
we were unable to confirm the benefit claimed by the initial
study. Hence, we did not make a direct comparison.

None of the solvers was used in incremental mode (Kissat
currently does not include incremental solving). Incremen-
tal solving for increasing the cost function is not practical,
since increasing cost makes some extra vertices reachable,
extending the right-hand side of formulas (4) and (8). Ex-
cluding the variables of unreachable vertices in preprocess-
ing generally outweighs the benefits of incremental solving.
Further study on incremental solving in MAPF (both lazy
clause generation and cost increment) would be beneficial.

Acknowledgments
[Hidden]

References
Achá, R. A.; López, R.; Hagedorn, S.; and Baier, J. 2021.
A New Boolean Encoding for MAPF and its Performance
with ASP and MaxSAT Solvers. In Proceedings of the Four-
teenth International Symposium on Combinatorial Search
(SOCS’21), 11–19. AAAI Press.
Achá, R. A.; López, R.; Hagedorn, S.; and Baier, J. 2022.
Multi-Agent Path Finding: A New Boolean Encoding. Jour-
nal of Artificial Intelligence Research, 75: 323–350.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.

Barták, R.; and Švancara, J. 2019. On SAT-Based Ap-
proaches for Multi-Agent Path Finding with the Sum-of-
Costs Objective. In Proceedings of the Twelfth Interna-
tional Symposium on Combinatorial Search (SOCS’19), 10–
17. AAAI Press.
Barták, R.; Zhou, N.; Stern, R.; Boyarski, E.; and Surynek,
P. 2017. Modeling and Solving the Multi-agent Pathfind-
ing Problem in Picat. In Proceedings of the Twenty-ninth
IEEE International Conference on Tools with Artificial In-
telligence (ICTAI’17), 959–966. IEEE Computer Society
Press.
Bayless, S.; Bayless, N.; Hoos, H.; and Hu, A. 2015.
SAT Modulo Monotonic Theories. In Proceedings of the
Twenty-ninth National Conference on Artificial Intelligence
(AAAI’15), 3702–3709. AAAI Press.
Biere, A.; Faller, T.; Fazekas, K.; Fleury, M.; Froleyks, N.;
and Pollitt, F. 2024. CaDiCaL, Gimsatul, IsaSAT and Kissat
Entering the SAT Competition 2024. In Proc. of SAT Com-
petition 2024 – Solver, Benchmark and Proof Checker De-
scriptions, volume B-2024-1 of Department of Computer
Science Report Series B, 8–10. University of Helsinki.
Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2021. Handbook of Satisfiability - Second Edition, volume
336 of Frontiers in Artificial Intelligence and Applications.
IOS Press. ISBN 978-1-64368-160-3.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann Publishers.
Dresner, K.; and Stone, P. 2008. A Multiagent Approach to
Autonomous Intersection Management. Journal of Artificial
Intelligence Research, 31: 591–656.
Gebser, M.; Janhunen, T.; and Rintanen, J. 2014. SAT Mod-
ulo Graphs: Acyclicity. In Proceedings of the Fourteenth
European Conference on Logics in Artificial Intelligence
(JELIA’14), volume 8761 of Lecture Notes in Artificial In-
telligence, 137–151. Springer-Verlag.
Kaduri, O.; Boyarski, E.; and Stern, R. 2020. Algorithm
Selection for Optimal Multi-Agent Pathfinding. In Proceed-
ings of the Thirty-fourth National Conference on Artificial
Intelligence (AAAI’20), 161–165. AAAI Press.
Morris, R.; Pasareanu, C.; Luckow, K.; Malik, W.; Ma, H.;
Kumar, T.; and Koenig, S. 2016. Planning, Scheduling and

Monitoring for Airport Surface Operations. In The Work-
shops of the Thirtieth AAAI Conference on Artificial Intelli-
gence: Planning for Hybrid Systems, 608–614.
Philipp, T.; and Steinke, P. 2015. PBLib – A Library for En-
coding Pseudo-Boolean Constraints into CNF. In Proceed-
ings of the Eighteenth International Conference on Theory
and Applications of Satisfiability Testing (SAT’15), volume
9340 of Lecture Notes in Computer Science, 9–16. Springer-
Verlag.
Rankooh, M. F.; and Rintanen, J. 2022. Propositional En-
codings of Acyclicity and Reachability by Using Vertex
Elimination. In Proceedings of the Thirty-sixth National
Conference on Artificial Intelligence (AAAI’22), 5861–
5868. AAAI Press.
Schrijver, A. 1999. Theory of linear and integer program-
ming. Discrete mathematics and optimization. John Wiley
& sons.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence, 219: 40–66.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2011.
The Increasing Cost Tree Search for Optimal Multi-Agent
Pathfinding. In Proceedings of the Twenty-second Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’11),
662–667. IJCAI/AAAI Press.
Silver, D. 2005. Cooperative Pathfinding. In Proceedings of
the First Artificial Intelligence and Interactive Digital En-
tertainment Conference (AIIDE’05), 117–122. AAAI Press.
Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T.; Barták,
R.; and Boyarski, E. 2019. Multi-Agent Pathfinding: Defi-
nitions, Variants, and Benchmarks. In Proceedings of the
Twelfth International Symposium on Combinatorial Search
(SOCS’19), 151–159. AAAI Press.
Surynek, P. 2014. Compact Representations of Coopera-
tive Path-Finding as SAT Based on Matchings in Bipartite
Graphs. In Proceedings of the Twenty-sixth IEEE Interna-
tional Conference on Tools with Artificial Intelligence (IC-
TAI’14), 875–882. IEEE Computer Society Press.
Surynek, P. 2015. On the Complexity of Optimal Paral-
lel Cooperative Path-Finding. Fundamenta Informaticae,
137(4): 517–548.
Surynek, P. 2016. Makespan Optimal Solving of Cooper-
ative Path-Finding via Reductions to Propositional Satisfia-
bility. CoRR, abs/1610.05452.
Surynek, P. 2019a. Multi-Agent Path Finding with Con-
tinuous Time and Geometric Agents Viewed through Sat-
isfiability Modulo Theories (SMT). In Proceedings of the
Twelfth International Symposium on Combinatorial Search
(SOCS’19), 200–201. AAAI Press.
Surynek, P. 2019b. Unifying Search-based and Compilation-
based Approaches to Multi-agent Path Finding through Sat-
isfiability Modulo Theories. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence (IJCAI’19), 1177–1183. ijcai.org.

Surynek, P. 2022. Problem Compilation for Multi-Agent
Path Finding: a Survey. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence (IJ-
CAI’22), 5615–5622. ijcai.org.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016.
Efficient SAT Approach to Multi-Agent Path Finding Un-
der the Sum of Costs Objective. In Proceedings of the
Twenty-second European Conference on Artificial Intelli-
gence (ECAI’16), 810–818. IOS Press.
Švancara, J.; Atzmon, D.; Strauch, K.; Kaminski, R.; and
Schaub, T. 2024. Which Objective Function is Solved Faster
in Multi-Agent Pathfinding? It Depends. In Proceedings of
the Sixteenth International Conference on Agents and Arti-
ficial Intelligence (ICAART’24), 23–33. SciTePress.
Wurman, P.; D’Andrea, R.; and Mountz, M. 2008. Coor-
dinating Hundreds of Cooperative, Autonomous Vehicles in
Warehouses. AI Magazine, 29(1): 9–20.
Yu, J.; and LaValle, S. 2013. Structure and Intractability of
Optimal Multi-Robot Path Planning on Graphs. In Proceed-
ings of the Twenty-seventh National Conference on Artificial
Intelligence (AAAI’13), 1443–1449. AAAI Press.

