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Abstract
Zeroth-order optimization (MeZO) is an attrac-
tive strategy for finetuning large language mod-
els (LLMs) because it eliminates the memory
overhead of storing intermediate activations re-
quired by backpropagation. However, it con-
verges slowly due to the inherent curse of di-
mensionality when searching for descent direc-
tions in the higher-dimensional parameter space
of billion-scale LLMs. We propose ConMeZO,
a novel zeroth-order optimizer that accelerates
convergence by adaptive directional sampling. In-
stead of drawing the direction uniformly at ran-
dom, ConMeZO restricts the sampling to a cone
centered around a momentum estimate. This con-
centrates the search in the directions where the
true gradient is more likely to lie and thus re-
duces the effect of higher dimensions. We ana-
lytically prove that ConMeZO achieves the same
worst-case convergence rate as MeZO. Empiri-
cally, when finetuning LLMs on natural language
benchmarks, ConMeZO is up to 2x faster than
MeZO while retaining the low-memory footprint
of zeroth-order methods.

1. Introduction
Fine-tuning LLMs enables pre-trained models such as
LLaMA (Touvron et al., 2023a;b; Grattafiori et al., 2024)
and Gemma (Team et al., 2024a;b; 2025) to excel in di-
verse tasks. However, fine-tuning methods face significant
challenges due to their high computational and memory
demands. Substantial GPU resources are required for gradi-
ent computation and storing activation, often exceeding the
budgets when only consumer-grade GPUs are available.

Zeroth-order optimization (ZO) methods, such as those em-
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ployed by MeZO (Malladi et al., 2023), offer a promising
alternative. By relying only on forward passes to estimate
gradients, ZO methods bypass the memory-intensive back-
ward pass, facilitating fine-tuning in resource-constrained
scenarios. However, ZO methods suffer from high variance
in gradient estimates, leading to slower convergence. As
shown (Malladi et al., 2023, Table 15), while it takes 1K
iterations with Adam to fine-tune a RoBERTa-large model
to desirable accuracy, MeZO requires 100K iterations for
comparable performance. Consequently, the overall runtime
of MeZO can be significantly longer than Adam.

This work aims to address the runtime inefficiency of ZO
methods while preserving their memory benefits. Tradi-
tional ZO methods typically rely on random search direc-
tions sampled from either a sphere or Gaussian distribution.
Such random strategies, especially in the high-dimensional
regime, is the bottleneck for the slow convergence of ZO.
We propose reducing gradient variance by constraining ran-
dom search directions within a cone centered on a promising
search direction, defined by a momentum vector. This strat-
egy improves convergence by narrowing the search space
while maintaining the flexibility of ZO optimization. The
proposed approach, coined ConMeZO, significantly reduces
iteration counts while retaining their memory efficiency.
Combining theoretical analysis and empirical validation, we
contribute to advancing efficient and accessible fine-tuning
methods for LLMs. Our contributions are summarized as:

1. Algorithm design: A distinctive cone-sampling strat-
egy inspired by geometrical principles, which focuses
search directions to areas more likely to yield produc-
tive updates. This approach not only reduces noise
but also preserves the simplicity of ZO optimization,
making it both efficient and theoretically sound.

2. Theoretical analysis: Unlike optimizers such as
MeZO, whose convergence rates suffer from curse of
dimensionality, we show that under benign settings our
ConMeZO can provide up to O(d) speed up.

3. Improved practical performance: Experiments on
fine-tuning LLMs demonstrate faster convergence of
ConMeZO, especially in early iterations. ConMeZO
ultimately achieves up to 2x speedup over MeZO.
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Related work. Our work falls in the broad field of zeroth-
order (ZO) optimization (Nesterov & Spokoiny, 2017) and
its application to LLM fine-tuning (Malladi et al., 2023).
Given the space limitation, a more careful treatment of
related work can be found in Appendix A.3.

Notation We use ∥ · ∥ and ⟨·, ·⟩ for the Euclidian norm
and the inner product, respectively. Let Sd−1 = {x ∈ Rd |
∥x∥ = 1} be the unit sphere in Rd and r Sd−1 the sphere of
radius r > 0. A function f : Rd → R is ℓ-smooth iff it is
differentiable and ∥∇f(x1)−∇f(x2)∥ ≤ ℓ∥x1 − x2∥ for
all x1, x2 ∈ Rd. The orthogonal complement of a vector
x ∈ Rd, denoted (x)⊥ is given by (x)⊥ = {v ∈ Rd |
⟨x, v⟩ = 0}. N (0, Id) and U(S) denotes the standard d-
dimennsional Gaussian or Uniform distribution over a set
S, respectively. All proofs are deffered to appendix.

2. Problem Formulation
We consider the zeroth-order (ZO) optimization problem
minx∈Rd f(x), which emerges when direct access to the
subgradient is unavailable due to e.g., memory constraints
on GPUs. We assume that f is differentiable, and it can be
accessed via a ZO oracle which computes f(x) at any given
x (Nesterov & Spokoiny, 2017). ZO problem is usually
solved by applying gradient descent (GD) using a ZO gradi-
ent estimator. We use the following popular stochastic ZO
estimator which perturbs the point along randomly sampled
directions (Nesterov & Spokoiny, 2017; Duchi et al., 2015).
Definition 2.1. Stochastic ZO gradient estimate (ZOGE)
of a function f at x using z randomly from an isotropic
distributions like N (0, Id) or U(

√
dSd−1) and a smoothing

parameter λ > 0 is given by

gλ(x, z) = (1/2λ) · (f(x+ λz)− f(x− λz)) · z

This estimator requires only two evaluations of f(x) re-
gardless of the dimensionality d. It avoids explicit gradient
computation, reducing memory and compute overheads.
Further, it is known that limλ→0 gλ(x, z) is unbiased.
Lemma 2.2. (Zhang et al., 2024a) When λ is sufficiently
small, gλ(x, z) ≈ (z⊤∇f(x))z. Further, first two mo-
ments of this term satisfies Ez[(z

⊤∇f(x))z] = ∇f(x) and
Ez[∥(z⊤∇f(x))z∥2] ≤ 2d∥∇f(x)∥2.

Despite the benefits mentioned above, this gradient esti-
mator suffers from high O(d) variance, especially in high-
dimensional settings of LLM finetuning. This variance leads
to O(d) slower convergence rate than first-order methods.
Addressing this limitation is crucial for making ZO optimiza-
tion competitive in practical scenarios (Malladi et al., 2023).
In next sections we overcome this limitation by constraining
the search direction z around the true gradient direction
estimated via momentum, while still retaining the memory
advantage of ZO methods over first-order approaches.
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Figure 1: 2D- and 3D-representation of the cone-sampling
approach. (a) Sphere with radius

√
d and (gray) search

space cone of half-angle θ around m̂t. (b) 3D representation
of cone sampling in red area.

3. The Cone Sampling Approach
The key idea is to leverage a promising search direction, cap-
tured by a momentum mt accumulating past gradients, and
constrain the random search direction zt at step t to a cone
of fixed half-angle θ around the unit vector m̂t = mt/∥mt∥
along mt. In Section 4, we show that cone sampling reduces
the variance of the gradient estimate by focusing the search
in a region of higher likelihood for productive updates, thus
balancing exploration and exploitation more effectively.

The cone sampling approach introduces two main algorith-
mic components: i) Promising search direction, where
the momentum vector mt acts as a predictor of beneficial
future search directions; and ii) Cone restriction that con-
strains the search space of the perturbation direction zt to
a cone with an apex at the origin, central axis

√
d m̂t, and

half-angle θ. This reduces the variance by limiting the set
of possible directions to those more aligned with m̂t. The
following subsections derive the mathematical framework
for cone sampling. The proposed approach seamlessly inte-
grates with the ZOGE (Definition 2.1).

3.1. Search Direction

We construct the promising search direction using a momen-
tum mt computed as the exponentially moving averaging
of past gradient estimates g(xt, zt) as follows

mt+1 ← β ·mt + (1− β) · g(xt, zt). (1)

We choose momentum since it reduces variance of stochas-
tic GD when training neural networks (Tieleman, 2012;
Kingma & Ba, 2014; Cutkosky & Orabona, 2019).

3.2. Sampling Method

Next, we discuss how to sample from intersection of the
sphere

√
dSd−1 and the cone with a central axis along the

direction m̂t and half-angle θ. Using the 2D Figure 1a as a
geometrical reference, we see that the random vector zt can
be split into two additive parts: z∥t and z⊥t , representing the
component of zt parallel and perpendicular to mt, respec-
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Algorithm 1 ConMeZO

Input: Cone angle θ ∈ [0, π
2 ], momentum parameter

β ∈ [0, 1], learning rate η, smoothing parameter λ > 0.
for t = 0, . . . , T do
ut ∼ U(

√
d Sd−1) // Sample ut

[m0 ← u0]t=0

zt ← cos(θ)
√
d · m̂t + sin(θ) · ut // m̂t ← mt/∥mt∥

x← x− η · gλ(x, zt)
mt+1 ← β ·mt + (1− β) · gλ(x, zt)

end for

tively. First consider the case when the angle γ between zt
and mt is fixed. We can see that cos(γ) = ∥z∥t ∥/

√
d and

sin(γ) = ∥z⊥t ∥/
√
d. Then, it is easy to argue that z∥t =

cos(γ)
√
dm̂t and z⊥t can be sampled as z⊥t = sin(γ)u⊥

t ,
where u⊥

t ∼ U(
√
dSd−1 ∩ (m̂t)

⊥), and (m̂t)
⊥ denotes the

subspace orthogonal to m̂t. Since u⊥
t ⊥ m̂t, we can easily

verify zt ∈
√
dSd−1. Now the questions boil down to sam-

ple such a u⊥
t and to introduce randomness in the angle γ.

To achieve these, we make two justified simplifications.

Sampling a u⊥
t ∼ U(

√
dSd−1 ∩ (m̂t)

⊥). Instead of sam-
pling a random vector u⊥

t of magnitude
√
d orthogonal to

m̂t, we sample ut ∼ U(
√
d Sd−1). This is an appropriate

simplification, because in very-high d dimensions almost all
vectors in

√
d Sd−1 are orthogonal to any fixed unit vector.

Proposition 3.1. The cosine similarity between a randomly
sampled vector ut ∼ U(

√
d Sd−1) and a fixed unit vector

m̂t satisfies ⟨m̂t, ut⟩/∥ut∥ → 0 as d→∞.

Introducing randomness into the sampling angle γ. In-
stead of fixing a specific angle between m̂t and zt, we orig-
inally wanted this γ to be a variable value in [0, θ]. Again
due to the high dimensionality, most of the probability mass
of the distribution of γ concentrates sharply near the edge
of the cone, making it suitable to set γ = θ in practice.

To formally prove this, we look at the cumulative density of
the angle γ if zt is uniformly sampled from the intersection
of the d-dimensional unit (for simplicity) sphere with the
cone of angle θ. A graphical illustration can be found in
Figure 1b. This cumulative density p(γ ≤ θ′) is equal to the
area on the higher dimensional spherical cap (denoted with
A in Figure 1b) divided by the overall area of the surface .
Generalizing this to higher dimensions, the distribution of γ
converges to the Dirac delta centered around θ.

Proposition 3.2. Consider a cone C with apex at the origin,
central axis aligned with a unit vector m̂t, and half-angle θ.
If a random vector zt is sampled uniformly from C ∩ Sd−1,
then as d → ∞, the angle γ between zt and m̂t satisfies
γ = θ almost surely.

A direct consequence of Proposition 3.2 is that γ can be

treated as equal to θ given a large d. Let ut ∼ U(
√
d Sd−1),

the random direction zt can thus be obtained by:

zt ← cos(θ)
√
d · m̂t + sin(θ) · ut. (2)

This greatly simplifies the conceptually complicated cone
sampling, facilitating its practical implementation. As
zeroth-order gradient estimate, we use the ZEGO (Defi-
nition 2.1) with this newly constructed search direction zt.
The resultant ConMeZO method is given in Algorithm 1.

4. Theoretical Analysis
Next, we analyze Algorithm 1 on ℓ-smooth (potentially
nonconvex) minimization problems. Our analysis shows
that ConMeZO may decrease the objective at a step faster
than MeZO (Malladi et al., 2023), when the momentum and
the true gradient align. Further, we show that MeZO does
not have better worst-case convergence rate than ConMeZO.

We begin with insights on the variance properties of Con-
MeZO. For notational convenience, we denote at = ∇f(xt)
and assume that the smoothing parameter λ of the ZOGE
(Definition 2.1) is infinitesimally small, i.e., λ→ 0.
Lemma 4.1. Suppose that zt is given by (2). Then, the first
moment of the ZOGE can be bounded via

Eut

[
(z⊤t at)zt

]
= d cos2(θ)(m̂⊤

t at) · m̂t + sin2(θ) · at.

Moreover, the second moment can be bounded by

Eut

[∥∥(z⊤t at)zt
∥∥2]

≤ d
(
(d+ 4) cos2(θ) cos2(ρt) + sin2(θ)

)
∥at∥2,

where ρt denotes the angle between at and m̂t.

This lemma reveals that the estimator introduces a bias that
is influenced by the momentum vector mt. This direction
alignment bias wrt the true gradient at is minimized when
m̂t is well aligned with at. The parameter θ adjusts the
relative magnitude of these components to optimize the
estimator’s behavior. Building on this, we show that the per-
step objective decrease of ConMeZO is O(∥at∥2) whenever
m̂t and at are reasonably aligned (ρt ≫ 0) and when sin θ is
small. Note that this is better than the O(∥at∥2/d) descent
of MeZO (Nesterov & Spokoiny, 2017).

4.1. Convergence Guarantee

This subsection tackles theoretical guarantees on the descent
per iteration and the global convergence of the algorithm.
Theorem 4.2 (Descent Lemma). Assume f is ℓ-smooth
and let λ → 0. Choose η via (4) in appendix, and let
Dt := Eut [f(xt+1)]− f(xt). ConMeZO ensures that:

Dt ≲ −
(d cos2(θ) cos2(ρt) + sin2(θ))

2ℓd
∥at∥2.
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Table 1: Test performance of ConMeZO on RoBERTa Large
after 10K iterations, averaged over 5 seeds.

SST-2 SST-5 SNLI MNLI RTE TREC

AdamW 93.1 56.6 86.4 81.4 83.6 95.9
MeZO 92.5 50.8 80.4 69.2 72.8 88.9
Cone 93.0 49.8 80.8 73.6 74.5 89.9

When θ = 0, Theorem 4.2 shows that the expected improve-
ment per iteration is only determined by the squared cosine
similarity cos2(ρt) between the momentum and the true
gradient. We find that cos2(ρt) could be larger than 1/d,
especially during the early phase of convergence; see Figure
3 for an example. In such steps, the per-step decrease in the
objective becomes dimension independent and O(d) times
larger than that of MeZO, leading to a faster convergence.

We now establish the overall convergence guarantee of
our algorithm over T iterations. This guarantee not only
matches the rate of MeZO but also demonstrates potential
improvements under certain conditions related to the align-
ment between the momentum vector and the true gradient.

Corollary 4.3. Assume f is ℓ-smooth, minx∈Rd f(x) >
−∞, and λ → 0. There exists a hyperparameter setting,
such that after T iterations, ConMeZO ensures:

1

T

T−1∑
t=0

Eut

[
∥∇f(xt)∥2

]
≤ 2ℓd(f(x0)− f⋆)

T
. (3)

Theorem 4.2 and Corollary 4.3 hint that the convergence rate
could be even faster than MeZO, especially when the mo-
mentum mt can be well aligned with the gradient∇f(xt),
i.e. cos2 ρt ≫ 1/d, for a sufficient fraction of the iterations.

5. Experimental Results
Our ConMeZO is tested on fine-tuning tasks. For space
limitation, experimental details can be found in Appendix.

5.1. RoBERTa

We start with RoBERTa-large (Liu et al., 2019b), a 355M
model. Similar to (Malladi et al., 2023), we tackle a few-
shot setting with 512 samples per class, on the GLUE bench-
mark (Wang et al., 2018a). Following common practice
(Zhang et al., 2024a), random directions are sampled from
a standard normal distribution instead of the sphere.

After 10K iterations, our ConMeZO achieves an average
improvement of ≥ 1% test accuracy over MeZO across the
tasks, as shown in Table 1. This demonstrates its capability
to achieve higher accuracy consistently across diverse tasks.
Moreover, ConMeZO outperforms MeZO at every evaluated
checkpoint (see Table 2 and Figure 4 in appendix).

Table 2: Accuracy (%) of ConMeZO vs. MeZO on
RoBERTa at different steps for one fixed seed.

SST-2 SST-5 SNLI MNLI RTE TREC

Steps MeZO Cone MeZO Cone MeZO Cone MeZO Cone MeZO Cone MeZO Cone

1500 88.3 90.1 44.7 46.0 68.7 71.6 57.2 58.4 63.2 65.0 53.6 65.6
3000 90.8 92.1 48.1 49.5 73.3 76.7 61.0 64.3 66.1 68.2 68.0 78.4
6000 91.4 92.7 50.3 50.9 77.6 78.8 65.5 69.8 69.3 70.0 84.2 87.2

Table 3: Comparison of ConMeZO vs. MeZO on OPT-1.3B.

Task Optim. 4K 6K 14K 20K

SST2 MeZO 68.6 75.3 84.5 88.0
(Acc) Cone 74.8 80.3 86.5 88.9

BoolQ MeZO 60.7 62.3 62.6 62.6
(Acc) Cone 61.3 62.3 63.3 63.3

DROP MeZO 23.1 24.6 25.9 25.9
(F1) Cone 24.7 25.3 25.8 26.3

SQuAD MeZO 56.7 62.2 70.0 73.0
(F1) Cone 64.5 68.3 73.5 75.4

Overall, ConMeZO represents a sweet spot between conver-
gence speed and memory efficiency: slightly higher memory
consumption and runtime per iteration enable faster early-
stage convergence and long-term accuracy improvements.
ConMeZO consumes 4640MiB of memory and has a per-
iteration runtime of 0.52s, compared to 2670MiB and 0.37s
for MeZO. However, these differences remain within the
same order as MeZO and are still far from the significantly
higher demands of first-order optimizers. For instance, fine-
tuning RoBERTa with AdamW requires 15820 MiB memory
and incurs a per-iteration runtime of approximately 1.25s.

5.2. OPT

Fine-tuning is then conducted on the OPT-1.3B model
(Zhang et al., 2022). Across all four benchmarks ConMeZO
delivers the highest final accuracy/F1 on every task (Table 3).
The gains are most crucial in the earliest stages of training.
The steep slope of the SQuAD learning curve in Figure 5 (in
appendix) highlights ConMeZO reaches MeZO’s 16K step
performance in less than 8K steps, yielding a 2× speed-up.
For practitioners operating under strict compute budgets or
early-stopping regimes, this translates directly into fewer
forward/backward passes for the same accuracy.

6. Conclusion
This work explores the challenges and opportunities in fine-
tuning LLMs using ZO optimization. By introducing a
novel cone-sampling strategy, it mitigates the high variance
of traditional random-direction estimators and leverages
momentum to guide updates more effectively. Empirical
evaluations on RoBERTa-large and the substantially larger
OPT-1.3B model show that our method consistently outper-
forms state-of-the-art MeZO, achieving up to a 2× speedup
in early convergence and accuracy gains across benchmarks.
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A. Broader impact, limitation and future work
A.1. Limitations

Despite its significant advancements, the proposed cone-based ZO optimization method has several limitations that require
further exploration.

First, the performance of the optimizer is highly dependent on the choice of hyperparameters such as the cone angle (θ) and
momentum (β). Experiments reveal that certain configurations achieve faster convergence in the early stages of optimization
(e.g., the first 2,000 steps), while others perform better when fine-tuning near the optimum. This suggests that static
parameter choices may not fully exploit the potential of the optimizer across different optimization phases.

Another limitation lies in the lack of theoretical guarantees on the cosine similarity between the momentum vector and the
true gradient. While empirical results indicate improved alignment, a rigorous analysis is missing, which leaves room for
theoretical gaps in the method’s convergence guarantees.

Finally, compared to MeZO, the proposed method requires slightly higher memory and runtime due to the additional
computational overhead of the cone-sampling strategy and the storage of momentum. While these trade-offs are acceptable
in many practical scenarios, they may limit applicability in extremely resource-constrained environments.

A.2. Broader Impact

This is a foundational research work studying the efficiency of optimization algorithms for finetuning large language models
(LLMs). Therefore, we believe this work does not open any new avenues of broad impact which were not already touched
by prior works on LLM and optimization algorithm efficiency. However, we would like to highlight that our work may
increase the adoption of LLM finetuning by people or entities who have limited computational resources.

A.3. Related Work

Zeroth-order (ZO) optimization. The work of (Nesterov & Spokoiny, 2017) marked a foundational step in formally
analyzing the convergence rate of zeroth-order methods, such as zeroth-order (stochastic) gradient descent (ZO-SGD).
ZO-SGD substitutes gradients in SGD with their zeroth-order estimators. Building on this foundation, (Shamir, 2017) refined
the analysis for nonsmooth convex functions, while (Lin et al., 2022) extended these insights to nonsmooth nonconvex
functions. Contributions by (Ghadimi & Lan, 2013) further tackles smooth functions in stochastic settings. These works
have show that for smooth problem, the squared norm of the gradient converges with a worst-case rate O(d/T ) where d
is the number of dimensions in x (Nesterov & Spokoiny, 2017). In stark contrast, standard gradient descent has a rate
of O(1/T ) (Nesterov, 2003). Further, there exists lower complexity results which prove that this dimension dependence
is unavoidable (Jamieson et al., 2012; Wibisono et al., 2012; Duchi et al., 2015; Golovin et al., 2020; Alabdulkareem &
Honorio, 2021) unless there are additional structural assumptions such as sparsity or low-rank Hessian (Wang et al., 2018b;
Yue et al., 2023). More recently, Zhang et al. (2025) proved that zeroth-order methods converge to flat minima for convex
and sufficiently smooth functions, where flat minima are defined as the minimizers that achieve the smallest trace of Hessian.

These research were motivated by the growing interest in zeroth-order methods, driven by practical challenges including the
memory limitations imposed by fast differentiation techniques (Wang et al., 2018b; Liu et al., 2020). ZO has been enriched
with various enhancements such as conditional gradient methods (Balasubramanian & Ghadimi, 2018), and variance
reduction techniques (Liu et al., 2018; Fang et al., 2018; Ji et al., 2019). Other notable adaptations include the integration of
SignSGD (Liu et al., 2019a) and applications to minimax optimization (Wang et al., 2022). Beyond algorithmic development,
these methods have demonstrated utility across diverse domains, including black-box machine learning (Grill et al., 2015;
Chen et al., 2017; 2019), bandit optimization (Flaxman et al., 2005; Shamir, 2017), reinforcement learning (Salimans et al.,
2017; Choromanski et al., 2018; Mania et al., 2018), and distributed learning, where they mitigate communication overhead
(Fang et al., 2022; Zelikman et al., 2023; Xu et al., 2023).

ZO for LLM fine-tuning. In the realm of ZO optimization for LLMs, various approaches have emerged, emphasizing
memory efficiency and computational effectiveness. MeZO (Malladi et al., 2023) offers a breakthrough by eliminating
backpropagation and significantly reducing memory requirements, but it suffers from slower convergence rates and sensitivity
to high-dimensional noise. (Zhang et al., 2024b) provides a more comprehensive benchmark for evaluating the performance
of ZO for LLMs fine-tuning, where they observe that directly combining ZO with momentum methods does not lead to
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significant performance gain. (Liu et al., 2024) introduces Sparse MeZO, where only a carefully chosen subset of parameters
is updated. LeZO (Wang et al., 2024) introduces a layer-wise sparse strategy to reduce computational overhead. (Gautam
et al., 2024) integrate variance reduction to ZO optimizers and proposes MeZO-SVRG. (Zhao et al., 2024) proposes also
the estimation of second-order information with ZO oracles to improve the performance of MeZO. Similarly, LOZO
(Chen et al., 2024) incorporates low-rank gradient estimations, capturing the inherent low-dimensional structure of LLM
gradients. The work of (Park et al., 2025) further develops a theoretical framework to characterize effectiveness of structural
perturbations, such as sparsity and low rankness, in ZO approaches. It is also pointed out in (Ma & Huang, 2025) that
effective perturbations in ZO should account for the (estimated) gradient directions, and they propose an approach that
requires halving the minibatch data. DPZero (Zhang et al., 2024a) extends ZO optimization into the realm of differential
privacy, addressing the dual challenges of memory efficiency and data privacy in fine-tuning LLMs. More recently, Addax
strategically combined first-order and ZO steps to improve overall efficiency (Li et al., 2024).

B. Proofs
B.1. Proof of Proposition 3.1

Let ut ∼ U(
√
d Sd−1) and m̂t ∈ Rd with ∥m̂t∥ = 1 be a promising search direction. Instead of ensuring that the sampled

random direction is orthogonal to m̂t, we show that it suffices to sample any random direction ut ∼ U(
√
d Sd−1). We show

that the relative magnitude of the projection ⟨m̂t, ut⟩/∥ut∥ becomes negligible as d→∞.
Proof. Notice that ut =

√
d X
∥X∥ , where X ∼ N (0, Id). It holds that ∥ut∥ =

√
d.

We have that

⟨m̂t, ut⟩
∥ut∥

=
⟨m̂t, X⟩
∥X∥

.

⟨m̂t, X⟩ is a N (0, 1) random variable, since ∥m̂t∥ = 1, and ∥X∥2 is a χ2-distributed random variable with d degrees of
freedom. Therefore, for large d, the ratio ⟨m̂t, X⟩ /∥X∥ is on the order of N (0, 1)/

√
d, which converges to 0 in probability

as d→∞.

B.2. Proof of Proposition 3.2

Consider a cone C in Rd with apex at the origin, central axis aligned with a unit vector m̂t, and half-angle θ ∈ [0, π/2].
We are interested in the distribution of the angle γ between a random vector zt, sampled uniformly from the intersection
of C with Sd−1, and the axis m̂t. The following proof demonstrates that as the dimension d → ∞, the angle γ becomes
concentrated at θ.
Proof. We consider the case where d→∞:

p(γ ≤ θ′) =

∫ θ′

0
Surface area of hypercircle with radius r(α) dα∫ θ

0
Surface area of hypercircle with radius r(β) dβ

=

∫ θ′

0
Cd · r(α)d−1 dα∫ θ

0
Cd · r(β)d−1 dβ

Where Cd is a constant dependent on d and independent of radius.

When inspecting Figure 1b it is simple to see that r(γ) = sin(γ). Now assume that θ′ < θ. Further calculation yields

p(γ ≤ θ′) =

∫ θ′

0
(sin(α))d−1 dα∫ θ

0
(sin(β))d−1 dβ

≤ θ′(sin(θ′))d−1∫ θ

0
(sin(β))d−1 dβ
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because (sinα)d−1 ≤ (sin θ′)d−1 for 0 ≤ α ≤ θ′, and the interval length is θ′. Let s = θ+θ′

2 ∈ (θ′, θ). Now because sin(β)
is increasing on [0, θ], on the sub-interval [s, θ] we have (sin(β))d−1 ≥ (sin(s))d−1.

Hence ∫ θ

0

(sin(β))d−1 dβ ≥
∫ θ

s

(sin(β))d−1 dβ ≥ (θ − s) (sin(s))d−1.

We have that
sin(s) > sin(θ′),

since θ > s > θ′.

Putting these together, we get

p(γ ≤ θ′) =

∫ θ′

0
(sin(α))d−1 dα∫ θ

0
(sin(β))d−1 dβ

≤ θ′

θ − s

(
sin(θ′)

sin(s)

)d−1

.

Since sin(s) > sin(θ′), we have that

p(γ ≤ θ′)→ 0 for d→∞.

So instead of sampling γ, in practice we can set γ = θ.

Proof of Lemma 4.1

Proof. We start with the first part of Lemma 4.1. It can be seen that

Eut

[
(z⊤t at)zt

]
= Eut

[((
cos(θ)

√
d · m̂t + sin(θ) · ut

)⊤
at

)
(cos(θ)

√
d · m̂t + sin(θ) · ut)

]
= d cos2(θ)(m̂⊤

t at) · m̂t + sin2(θ) · E
[
(u⊤

t at)ut

]
= d cos2(θ)(m̂⊤

t at) · m̂t + sin2(θ) · at.

For the second part of Lemma 4.1, let zt = αm̂t + βut, where ut ∼ U(
√
d Sd−1) , ∥m̂t∥ = 1, α = cos(θ) ·

√
d and

β = sin(θ). We now derive the second moment of (z⊤t at)zt.

Eut

[∥∥(z⊤t at)zt
∥∥2]

= Eut

[∥∥(α(m̂⊤
t at) + β(u⊤

t at)
)
(αm̂t + βut)

∥∥2]
= Eut

[(
α2(m̂⊤

t at)
2 + β2(u⊤

t at)
2 + 2αβ(m̂⊤

t at)(u
⊤
t at)

) (
α2∥m̂t∥2 + β2∥ut∥2 + 2αβ(m̂⊤

t ut)
)]

= α2
(
α2(m̂⊤

t at)
2 + β2∥at∥2 + 0

)
+β2

(
α2(m̂⊤

t at)
2d+ β2d∥at∥2 + 0

)
+2αβ

(
0 + 0 + 2αβ(m̂⊤

t at)
2
)

= d2 cos2(θ)(m̂⊤
t at)

2 + 4d sin2(θ) cos2(θ)(m̂⊤
t at)

2 + d sin2(θ)∥at∥2

= d cos2(θ)
(
d+ 4 sin2(θ)

)
(m̂⊤

t at)
2 + d sin2(θ)∥at∥2

≤ d(d+ 4) cos2(θ)(m̂⊤
t at)

2 + d sin2(θ)∥at∥2.

Using (m̂⊤
t at)

2 = (cos(ρ)∥m̂t∥∥at∥)2 = cos2(ρ) · ∥at∥2, we have:

Eut

[∥∥(z⊤t at)zt
∥∥2] ≤ d

(
(d+ 4) cos2(θ) cos2(ρ) + sin2(θ)

)
∥at∥2.
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Proof of Theorem 4.2

We assume that the function f is ℓ-smooth, meaning:

f(xt+1) ≤ f(xt) +∇f(xt)
⊤(xt+1 − xt) +

ℓ

2
∥xt+1 − xt∥2.

Additionally, we use the update rule xt+1 = xt − ηgλ(xt, zt), where gλ(xt, zt) is the gradient estimate at xt and zt =
cos(θ)

√
d · m̂t + sin(θ) · ut, where ut ∼ U(

√
dSd−1). Let at = ∇f(xt). The proof derives the expected improvement in

f(x) per iteration under these assumptions.
Proof. Substituting the update rule xt+1 = xt − ηgλ(xt, zt) into the smoothness assumption:

f(xt+1) ≤ f(xt)− η∇f(xt)
⊤gλ(xt, zt) +

η2ℓ

2
∥gλ(xt, zt)∥2.

Taking expectations with respect to ut, the random search direction:

Eut [f(xt+1)] ≤ f(xt)− ηa⊤t Eut [gλ(xt, zt)] +
η2ℓ

2
Eut [∥gλ(xt, zt)∥2].

Using the moments of gλ(xt, zt):

Eut
[(z⊤t at)zt] = d cos2(θ)(m̂⊤

t at) · m̂t + sin2(θ) · at,

and

Eut

[
∥(z⊤t at)zt∥2

]
= d

(
(d+ 4) cos2(θ) cos2(ρ) + sin2(θ)

)
∥at∥2,

we substitute these into the inequality:

Eut [f(xt+1)] ≤ f(xt)− η
(
d cos2(θ) cos2(ρ) + sin2(θ)

)
∥at∥2

+
η2ℓ

2
d
(
(d+ 4) cos2(θ) cos2(ρ) + sin2(θ)

)
∥at∥2.

This proves the first part of the theorem.

Next, rearranging the inequality to isolate ∥at∥2:

Eut
[f(xt)− f(xt+1)] ≥

(
η
(
d cos2(θ) cos2(ρ) + sin2(θ)

)
− η2ℓ

2
d
(
(d+ 4) cos2(θ) cos2(ρ) + sin2(θ)

) )
∥at∥2.

Thus,

∥at∥2 ≤
Eut [f(xt)− f(xt+1)]

η
(
d cos2(θ) cos2(ρ) + sin2(θ)

)
− η2ℓ

2 d
(
(d+ 4) cos2(θ) cos2(ρ) + sin2(θ)

) .
To maximize the denominator, observe that it is a concave quadratic function of η, achieving its maximum at:

η∗ =
d cos2(θ) cos2(ρ) + sin2(θ)

ℓd
(
(d+ 4) cos2(θ) cos2(ρ) + sin2(θ)

) . (4)

Substituting η = η∗ and rearranging for Eut [f(xt+1)]− f(xt) yields:
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Eut
[f(xt+1)]− f(xt) ≤ −

(
η∗

(
d cos2(θ) cos2(ρ) + sin2(θ)

)
− η∗2ℓ

2
d
(
(d+ 4) cos2(θ) cos2(ρ) + sin2(θ)

))
∥at∥2

= −
(
d cos2(θ) cos2(ρ) + sin2(θ)

)2
2ℓd

(
(d+ 4) cos2(θ) cos2(ρ) + sin2(θ)

)∥at∥2
≤ −

(
d cos2(θ) cos2(ρ) + sin2(θ)

)2
2ℓd

(
(d+ 4) cos2(θ) cos2(ρ) + d+4

d sin2(θ)
)∥at∥2

= −d cos2(θ) cos2(ρ) + sin2(θ)

2ℓd(1 + 4/d)
∥at∥2

≈ −d cos2(θ) cos2(ρ) + sin2(θ)

2ℓd
∥at∥2

This completes the proof of the theorem.

Proof of Corollary 4.3

Proof. A proof directly follows from Theorem 4.2 by setting θ = π/2 and telescoping across T iterations.

C. Figures

(a) After 1,000 iterations. MeZO’s test accuracy after 1,000 itera-
tions is 0.474.

(b) After 10,000 iterations. MeZO’s test accuracy after 10,000
iterations is 0.89.

Figure 2: Heatmaps of Test Accuracy of ConMeZO on TREC dataset for different θ and β values and fixed learning rate
η = 10−6.
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(a) TREC dataset for θ = 1.3 and varying β.

(b) TREC dataset for β = 0.95 and varying θ.

Figure 3: Squared Cosine Similarity between real gradient and momentum vector during training.
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Figure 4: Test Accuracy of ConMeZO with settings mentioned in D.1 compared to MeZO over 10,000 iterations.

D. Experimental details
D.1. RoBERTa

The smoothing parameter λ was fixed to 10−3 for all experiments. Empirically best found hyperparameters for our optimizer
are θ = 1.3, β = 0.97, η = 1.72 · 10−6 and λ = 10−3. All experiments are executed on a single NVIDIA RTX 3090 GPU
with 24 GiB of memory.

Our implementation builds heavily on the framework provided by DPZero paper (Zhang et al., 2024a) and can be found at
https://anonymous.4open.science/r/conmezo.
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The optimizer’s performance was analyzed under varying configurations of its hyperparameters: θ, β, and the learning rate
η. These parameters were systematically adjusted to evaluate their sensitivity and impact on model performance.

A robust configuration we found was θ = 1.3584506581, β = 0.97, η = 1.71375681× 10−6. We used this configuration
and the seeds 13, 21, 42, 87, 100 to calculate values provided in Figure 1.

Parameter Sensitivity & Ablation Study. Understanding the sensitivity of the optimizer to its hyperparameters, particu-
larly momentum (β) and cone angle (θ), provides critical insights into its performance across different phases of optimization.
This section explores their roles in convergence acceleration and alignment with the true gradient, highlighting key patterns
observed in the experiments.

Early-Phase Convergence and Momentum Alignment. Momentum plays a critical role in accelerating early convergence
by aligning the optimizer’s updates with the true gradient direction. High momentum values, such as β = 0.98, help
maintain directional consistency in the initial optimization phase, where gradients tend to form a tightly clustered cone,
driving rapid progress toward the optimum. This effect is even more pronounced when combined with a small cone angle
(θ), as illustrated in early-phase heatmaps, while more balanced configurations yield better results (Figure 2a and Figure
2b). Our analysis of squared cosine similarity between the momentum vector and true gradients (Figure 3) confirms this:
high momentum (β = 0.97) significantly improves alignment, with up to 2x better directional accuracy during the first
2,000 iterations compared to the expected alignment for random directions. However, as training progresses beyond 3,500
iterations, this alignment advantage diminishes, approaching the random baseline, suggesting that high momentum’s benefits
are primarily confined to the early phases of training. This supports the use of high initial momentum to accelerate early
progress, followed by a gradual reduction to improve long-term stability.

Impact of Cone Angle: Exploration vs. Exploitation. The cone angle (θ) balances building an accurate gradient
approximation against effectively exploiting it. Larger θ values sample broader directions, increasing cosine similarity with
the true gradient but reducing reliance on the estimated gradient for updates. Figure 3b shows how varying θ affects cosine
similarity over iterations.

D.2. OPT

We evaluated on four benchmarks: SST-2 (Socher et al., 2013) (binary sentiment classification), BoolQ (Clark et al., 2019)
(boolean question answering), SQuAD v1.1 (Rajpurkar et al., 2016) (span-based QA), and DROP (Dua et al., 2019) (discrete
reasoning QA). Each task was fine-tuned for 20,000 iterations to capture performance across early, mid, and late training
phases. The best found values for the hyperparameters of our optimizer are θ = 1.35, β = 0.95 and λ = 10−3.

All OPT-1.3B experiments were conducted for 20 K iterations using both ConMeZO and MeZO with a fixed learning rate of
η = 10−7. Due to the very high cost of fine-tuning a 1.3 B-parameter model and rerunning multiple random seeds, we did
not perform additional learning-rate searches or seed sweeps for OPT. Consequently, every OPT result reported uses a single
seed and η = 10−7 for both optimizers. These findings completely align with our RoBERTa results, demonstrating that the
observed performance gains under fixed hyperparameter settings extend across different model scales.

Hyperparameters were set to θ = 1.35, β = 0.95 and we used seed 29 for our reported results.

Our implementation builds on the DPZero framework (Zhang et al., 2024a), with all experiments run on a single NVIDIA
H100 NVL GPU (˜95 GiB each). We fixed the smoothing parameter to λ = 10−3 and, instead of sampling uniformly from a
hypersphere, drew random direction from N (0, Id), which is a valid simplification in high dimensions.

D.3. Licences

Our evaluations are carried out on commonly-used datasets in the literature.

Datasets. GLUE (Wang et al., 2018a) is designed to provide a general-purpose evaluation of language understanding. Those
adopted in our work include MNLI (inference, (Williams et al., 2018)), SST-2/5 (sentiment analysis, (Socher et al., 2013)),
SNLI (natural language inference) (Bowman et al., 2015), RTE1 (inference), and TREC (question classification, (Voorhees
& Tice, 2000)). These datasets are released under different permissive licenses.

1https://paperswithcode.com/dataset/rte
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Figure 5: SQuAD F1 score over 20,000 iterations comparing ConMeZO vs. MeZO.

Models. RoBERTa-large. This is a 355M parameter model. The model checkpoint2 is released under the MIT license.

OPT-1.3B. The model checkpoint3 is released under a non-commercial license. 4

2https://huggingface.co/FacebookAI/roberta-large
3https://huggingface.co/facebook/opt-1.3b
4https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.md
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