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ABSTRACT

Supervised fine-tuning (SFT) is crucial for aligning Large Language Models
(LLMs) with human instructions. The primary goal during SFT is to select a small
yet representative subset of training data from the larger pool, such that fine-tuning
with this subset achieves results comparable to or even exceeding those obtained
using the entire dataset. However, most existing data selection techniques are de-
signed for small-scale data pools, which fail to meet the demands of real-world
SFT scenarios. In this paper, we replicated several self-scoring methods—those
that do not rely on external model assistance—on two million-scale datasets, and
found that nearly all methods struggled to significantly outperform random selec-
tion when dealing with such large-scale data pools. Moreover, our comparisons
suggest that, during SFT, diversity in data selection is more critical than simply
focusing on high-quality data. We also analyzed the limitations of several current
approaches, explaining why they perform poorly on large-scale datasets and why
they are unsuitable for such contexts. Finally, we found that filtering data by token
length offers a stable and efficient method for improving results. This approach,
particularly when training on long-text data, proves highly beneficial for relatively
weaker base models, such as Llama3.

1 INTRODUCTION

With the advent of large language models (LLMs) such as ChatGPT, we have observed signifi-
cant advancements in tasks involving instruction following (Wang et al., 2023b), intent compre-
hension (Lu et al., 2023), and text generation (Zhao et al., 2023). One of the primary objectives of
developing LLMs is to harness their potential for generalizing to unseen natural language processing
(NLP) tasks. To achieve this aim, many LLMs focus on precisely aligning with human instructions.
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Figure 1: The discrepancy between each
methods and random selection on BBH
benchmark (Suzgun et al., 2022). The Y-
axis represents the differential score, which
is computed by subtracting the random se-
lection score from the scores obtained using
various methods.

Recent studies indicate that supervised fine-tuning
(SFT) can customize LLMs for specific domains,
tasks, or applications by utilizing well-crafted data.
According to the study in Zhou et al. (2024a), it
is feasible to fine-tune a pre-trained language model
with a relatively small set of examples. Building on
this insight, several papers have explored data selec-
tion strategies for SFT of LLMs (Wang et al., 2024;
Qin et al., 2024), emphasizing the importance of en-
hancing the quality of instruction tuning (IT) data
or increasing data diversity. These strategies can be
classified into two primary categories: (1) Extenral-
scoring methods, which require support from more
sophisticated external models like GPT-4 to score
the data for the subsequent selection (Lu et al., 2023;
Chen et al., 2023; Du et al., 2023; Liu et al., 2023;
Zhou et al., 2024b); (2) Self-scoring methods, which
leverage LLMs themselves as data scorers (Zhou
et al., 2023a; Li et al., 2023d;b; Liu et al., 2024; Xia
et al., 2024; Yin et al., 2024).
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Existing SFT data selection methodologies, both external-scoring and self-scoring, are primarily
assessed using several widely recognized IT datasets, such as alpaca-GPT4 (Peng et al., 2023),
Dolly (Conover et al., 2023), FLAN (Longpre et al., 2023), WizardLM (Xu et al., 2024), and
ShareGPT (Chiang et al., 2023). These datasets are limited in size and originate from a single
source. However, during the SFT stage, a substantially larger scale of data, typically ranging from
hundreds of thousands to even millions in size, is frequently necessary. For example, Qwen2 (qwe,
2024) utilized over 500,000 pieces of data during the SFT process. Therefore, in practical appli-
cations, in order to fully utilize the inherent knowledge of LLMs, large-scale instruction-following
data is essential in the SFT process. Moreover, large-scale data sources not only require a sufficient
amount of data, but should also have diverse data sources, such as annotated by professional workers,
sourced from real users, or synthesized by models, and rich data types include code data, math data,
conversation content, knowledge Q&A, etc.. This discrepancy creates a gap between the present
SFT data selection strategies and real-world applications. In order to observe the impact brought
by the dataset size on the performance of different selection strategies, we analyze the difference in
outcomes between existing SFT data selection methods and random selection within source datasets
ranging from 10K-30K to 1M on Llama3-8B (AI@Meta, 2024). As shown in Figure 1, when the
scale of the datasets increases to 1M, these data selection methods yield suboptimal performance
compared with random selection. Here, “Data size 10K-300K” refers to the data sources used in the
original papers of different methods. “Data size 1M” refers to Openhermes2.5-1M dataset (Teknium,
2023).

Inspired by this finding, we rethink whether SFT data selection methods can work when they are
required to handle large-scale IT datasets. For external-scoring approaches, it is impractical to apply
them to tackle vast amounts of IT data due to the substantial costs (Liu et al., 2023), we hence focus
on the self-scoring methods. For self-scoring approaches, we refer to the article Qin et al. (2024)
to categorize the techniques into two types: data quality-based methods and data diversity-based
methods. Data quality-based methods imply that the approach lays greater emphasis on devising
an algorithm and evaluation metrics to compute the score of each data item. Subsequently, the
selection is carried out based on the data scores. In contrast, the data diversity-based method is
more centered around the diversity of the dataset. To explore how self-scoring methods influence
LLMs’ performance when dealing with large-scale IT data, we evaluate several recent methods on
two benchmarks that contain millions of instances. The findings from our experiments reveal three
main points:

• Most self-scoring data selection techniques do not significantly outperform random selec-
tion on large-scale datasets. Even though these self-scoring methods can achieve significant
gains on small-scale datasets, their effectiveness will be greatly reduced when the data size
increases and the data sources become complex. While the performance of certain methods
does exhibit a marginal edge over the random approach when implemented on particular
LLMs, a comprehensive consideration of the trade-off between effectiveness and efficiency
leads us to the conclusion that, when dealing with extensive data sources, random selection
stands out as the most preferable and advantageous option.

• Data diversity holds more significance than data quality during the SFT phase. Data
quality-based selection methods are more effective than data diversity-based methods when
dealing with a small-scale dataset from a single source. However, when tackling multi-
source data, only considering data quality is far from enough.

• Through a comparative empirical analysis of two IT datasets, we find that it is useful to
utilize token length as a criterion to conduct data filtering, yielding stable and efficient
results for SFT when dealing with large-scale IT data. Previous work (Liu et al., 2023) has
demonstrated the benefit of long texts training for models on subjective evaluation tasks
such as MTbench (Zheng et al., 2023) and AlpacaEval (Li et al., 2023c), we have further
confirmed the positive effect of long texts training on objective evaluation tasks, such as
Big-Bench-Hard (Suzgun et al., 2022). While utilizing token length in SFT may not yield
optimal outcomes on every language model, it is highly beneficial for applying it in training
with long texts, especially on a relatively weak BASE language model, like Llama3-8B.
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2 RELATED WORK

External-scoring Method. Lu et al. (2023) introduced an open-set instruction tagging method
called INSTAG, which employed ChatGPT to generate detailed tags to measure and examine the
variety and intricacy of human instructions for LLMs during SFT. Chen et al. (2023) presented the
ALPAGASUS model that used ChatGPT to evaluate each instruction and then selected various data
based on a certain threshold. Du et al. (2023) suggested a model-oriented instruction selection ap-
proach that not only considered the quality and coverage of instruction data but also incorporated the
necessity of instructions according to the capabilities of specific LLMs. Liu et al. (2023) introduced
DEITA, it used ChatGPT to iteratively enhance the complexity or quality of each data sample across
relevant dimensions and then requested ChatGPT to evaluate these samples for their complexity or
quality. These models exceed the performance of the basic foundation models trained on complete
datasets. However, they heavily depend on high-performing external LLMs to score data.

Self-scoring Method. Li et al. (2023b) put forward an autonomously guided method enabling LLMs
to discern relevant instruction pairs from open-source data. An Instruction-Following Difficulty
(IFD) metric was introduced to highlight inconsistencies between a language model’s anticipated
responses and its self-generated outputs. Wu et al. (2023) came up with DiverseEvol, which enabled
the model to progressively select training subsets to enhance performance, without external over-
sight from humans or more advanced LLMs. This approach focused on maintaining high diversity
within the selected subsets, as the model opted for new data points that are most distinct from ex-
isting ones based on its current embedding space. Xia et al. (2024) suggested LESS, designed to
pick out relevant instruction tuning data for a specific application. It utilized a gradient datastore
with low-dimensional gradient features, selecting examples based on their resemblance to few-shot
examples that represent a particular capability. Yin et al. (2024) observed that model performance is
inversely related to the compression ratio of training data. They introduced a universal data selection
method named ZIP aimed at prioritizing data subsets with low compression ratios for training LLMs.
Liu et al. (2024) developed SelectIT, which leveraged the inherent uncertainty in LLMs at various
levels—grain, token, sentence, and model—to more effectively identify high-quality instruction tun-
ing data, eliminating the need for additional resources. Li et al. (2023d) introduced Nuggets, which
employs one-shot learning to choose high-quality instruction data. It used a scoring system based
on the influence of candidate examples on the perplexity of a diverse anchor set, thereby facilitating
the selection of the most beneficial data for instruction tuning.

3 SELF-SCORING STRATEGIES

In this paper, we focus on self-scoring methods that do not rely on external advanced LLMs to score
data. We refer Qin et al. (2024)’s work and categorize existing resourceful data selection methods
into two main perspectives: data quality-based methods and data diversity-based methods.

3.1 QUALITY-BASED SELECTIONS

In this section, we introduce 4 methods based on data quality assessment and selection. “Quality”
here refers primarily to the complexity, completeness, score, and influence of the datapoints. Dif-
ferent from Qin et al. (2024), we believe that the influence of a datapoint in the target dataset is
also a reflection of data quality, especially in practical scenarios, where we are required to deal with
diverse tasks rather than a single task. We thus regard the influence as a quality category as well.

LESS Xia et al. (2024) instroduced low-rank gradient similarity search to select influential data for
the target application. Concretely, a model was trained with LoRA (Hu et al., 2021) for a warmup
period on a small subset Dwarmup ⊂ D. Then, the Adam LoRA gradient features for each data point
were computed and stored in a gradient database.

Next, a gradient datastore of projected low-dimensional gradient features was constructed which
can be reused for different target tasks. For training datapoints x, they computed d-dimensional
projection of the LoRA gradient ∇̃ℓ(x;θi) = Π⊤∇̂ℓ(x;θi), where Π⊤ is computed and applied
by memory-efficient online implementation of random projections proposed by Park et al. (2023).
For validation datapoint x′, they computed Γ̃(x′, ·) = Π⊤Γ̂(x′, ·), where Γ̃(x′, ·) represents the
gradient values of different data x′ under different optimization states ·.
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Finally, LESS computed maxj InfAdam(x,D(j)
val) for the training set x across all sub-validation sets

Dval. Then it selected the highest score examples to construct Dtrain.

InfAdam(x,D(j)
val) =

N∑
i=1

η̄i
⟨∇̄ℓ(D(j)

val;θi), Γ̃(x,θi)⟩
∥∇̄ℓ(D(j)

val;θi)∥∥Γ̃(x,θi)∥
(1)

IFD introduced the Instruction-Following Difficulty (IFD) score, a metric devised to evaluate the
challenge each instructional sample presents (Li et al., 2023b). Given a (Q,A) pair, they calculated
the ratio between s(A) and s(A|Q):

IFD(Q,A) =
s(A|Q)

s(A)
=

− 1
N

∑N
i=1 logP (xA

i |Q, xA
1 , x

A
2 , . . . , x

A
i−1)

− 1
N

∑N
i=1 logP (xA

i |xA
1 , . . . , x

A
i−1)

(2)

where s(A) means Direct Answer Score, which measures LLM’s ability to generate the answer
alone. s(A|Q) means Conditioned Answer Score, which is calculated by continuously predicting
the next tokens given the instruction Q and their proceeding words.

In this paper, the authors first generated 100 clusters on instruction embeddings and sampled 10
instances in each cluster based on IFD score on pre-trained base LLM. Then they trained that LLM
for 1 epoch by using the selected datapoints. After training, they calculated the IFD score of each
datapoint of the whole training set D and finally selected the highest IFD score data as Dtrain.

SelectIT selected high-quality IT data based on the intrinsic uncertainty reflected by LLMs (Liu
et al., 2024). It included three grains of sample evaluation modules: token, sentence, and model
level self-reflections.

For token level, SelectIT calculated the probability of the next token (from 1 to K) based on the
rating prompt RP and query-response pair E. The score token with the highest probability was then
considered as the quality of the sample. The higher P

′

Ebase , the more confidence of LLMs

Ebase = arg max P ′
k, P

′
k =

(
ePk∑K
j=1 e

Pj

)
(3)

where Pk and P
′

k mean the probability and softmax probability of token k. K means the number of
scores to be considered. In that paper, the score token ranged from 1 to 5. To enhance the credibility
of quality assessment, SelectIT assessed the average disparity between the predicted token Ebase

and the other, where the greater the disparity, the greater the confidence of the LLM.

Etoken = Ebase × 1

K − 1

K∑
i=1

|P ′
i − P ′

Ebase | (4)

For sentence level, since different prompts can significantly affect outputs of LLMs, it designed K
semantically similar rating prompts {RP0, RP1, . . . , RPK} and obtained a series of quality scores
{Etoken

0 , Etoken
1 , . . . , Etoken

K }, respectively.

Esent =
Avg{Etoken

i }Ki=1

1 + α× Std{Etoken
i }Ki=1

(5)

where Avg{·} and Std{·} denote the mean and standard deviation of Etoken
i , respectively. K

means the number of rating prompts RP .

For model level, SelectIT used N foundation models with parameter counts {β1, β2, . . . , βN} and
their respective sentence-level scores for a sample E being {Esent

0 , Esent
1 , . . . , Esent

N }, then the
model-level score Emodel was computed as follows.

Emodel =

N∑
i=1

(
βi∑N
j=1 βj

× Esent
i

)
(6)

where N means the number of the foundation models. It used Emodel as the final evaluation of
sample E in SelectIT.

4
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Cross-entropy: Language models can be considered a form of compression, with LLMs showing
strong capabilities in data compression empirically (Delétang et al., 2024). Compression efficiency
is a stable and reliable assessment that is linearly related to the model’s capabilities. It reflects the
model’s ability to extract relevant information and eliminate unnecessary elements, providing insight
into the intrinsic capability of the language model (Huang et al., 2024; Wei et al., 2024).

The cross-entropy loss employed in the training of LLMs establishes a coherent relationship between
LLMs and information compression of each query-response pair E.

ExE∼ρ[−
n∑

i=1

log2 ρmodel(x
E
i |xE

1:i−1)] (7)

Inspired by this foundational insight, we select data based on the cross-entropy of each datapoint,
where the higher value of cross-entropy means the better quality.

3.2 DIVERSITY-BASED SELECTIONS

In this section, we introduce methods that emphasize the diversity of instruction datasets, where
diversity refers to the overall diversity of the entire training dataset.

DiverseEvol iteratively sampled training subsets to improve its own performance (Wu et al., 2023).
It selected new data points most distinct from any existing ones according to its current embedding
space in each iteration phase.

Given a training set D, DiverseEvol first randomly selected a data pool P0 and trained an initial
model M0. In each iteration, it consisted of two operations: 1. Deduce new data points Dt to merge
into Pt+1, informed by the previously trained model Mt. 2. Train the subsequent chat model Mt+1,
with the updated data pool Pt+1.

DiverseEvol used K-Center-Sampling to select data. From a candidate pool, it chose k data points in
such a way that the distances to their respective nearest existing training data points were maximized.

argmax
i∈Xt

min
j∈Pt

∆(xi,pj) (8)

At each step, the input parameters to K-Center-Sampling were the model Mt, the current training
pool Pt, and Dt. The selection function K-Center-Sampling then outputs the new data point Xt,
which was added to the training pool for the next iteration Pt+1.

ZIP presented that model performance is negatively correlated to the compression ratio of training
data, which usually yields a lower training loss. Yin et al. (2024) proposed a quite efficient and
universal data selection method named ZIP for training LLMs, which aimed to prioritize data subsets
exhibiting a low compression ratio.

ZIP is initialized by calculating the sample-level compression ratio for the entire dataset D, where
πD shows the information redundancy state of D. In each iteration, it selected K1 samples with the
lowest πD1

to form an initial candidate pool DK1
. Then, it calculated the compression ratio of a

merged set that adds each sample in DK1
to the selected set Dtrain, to update the redundancy state

of the information πD1 .

Based on the scores of the samples in DK1
, ZIP selected DK2

samples with the lowest scores. After
that, it initialized an empty selected set DK3

, and computed the compression ratio of the union of
DK3

and each sample in DK2
. Then, the sample with the lowest compression ratio was added to

DK3
, and removed from DK2

. Finally, each sample in DK3
was added to the selected set Dtrain. In

ZIP, the compression ratio calculation g(C(D)) is defined as:

g(C(D)) =
Bits(D)

Bits(C(D))
(9)

where C means the compression ratio.

5
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4 EXPERIMENT

4.1 DATASETS

In practical applications, researchers frequently encounter extensive datasets from various sources
during SFT, which may also contain imperfections. Thus, in this study, rather than using the typically
employed IT datasets such as alpaca (Taori et al., 2023), we select two large-scale IT datasets at the
million-record level, Openhermes2.5 (Teknium, 2023) and WildChat-1M (Zhao et al., 2024), to
examine the efficiency of existing data selection techniques in handling large datasets and to assess
their performance in real-world scenarios.

Openhermes2.5 is presented by Teknium (2023), which comprises over 1 million data points. It
is significantly more comprehensive and of higher quality, predominantly consisting of generated
guides and chats. The dataset’s information is sourced from 16 distinct origins, including meta-
math (Yu et al., 2023), CamelAI (Li et al., 2023a), among others. It encompasses a wide variety of
subjects such as mathematics, programming, and authentic user dialogues.

WildChat-1M is introduced by Zhao et al. (2024) and features solely non-toxic user inputs and
ChatGPT responses. The dataset comprises 1 million dialogues between human users and ChatGPT,
with 25.53% of the interactions stemming from the GPT-4 model, and the remainder from GPT-3.5.
It encompasses a diverse range of user-chatbot exchanges, including ambiguous user inquiries, code-
switching, topic-switching, and political discussions. In this study, we extract English dialogues
from the WildChat dataset, resulting in over 440k interactions.

4.2 BENCHMARKS

To thoroughly evaluate the capabilities of LLM, we explored various approaches across different
downstream tasks. We assess the reasoning abilities of LLMs using two commonly used datasets:
the Grade School Math dataset (GSM) (Cobbe et al., 2021) and Big-Bench-Hard (BBH) (Suzgun
et al., 2022) within the CoT setting (Wei et al., 2022). We evaluate the code generation capability
with the HumanEval dataset (Chen et al., 2021) and report pass@1 results. To determine the fac-
tual knowledge of LLMs, we use the Massive Multitask Language Understanding dataset (MMLU)
(Hendrycks et al., 2021) and provide 5-shot results. We also assess instruction-following ability
using the IFEval (Zhou et al., 2023b) dataset and report both strictly and loosely followed scores.
Additionally, we utilize scripts from OpenInstruct, which includes a collection of standard bench-
marks focusing on core capabilities (Wang et al., 2023a; Ivison et al., 2023; 2024).

4.3 IMPLEMENTATION DETAILS

Specifically, we leverage the widely-used LLaMA3-8B (AI@Meta, 2024) and Qwen2-7B (qwe,
2024) as our base models, and fine-tune them using the Llama-Factory framework (Zheng et al.,
2024). We train these models for 3 epochs with a batch size of 128. Our training process employs a
cosine learning rate scheduler beginning at 7e− 6, which decays to 0.1, warms to 0.01, and utilizes
an input length of 4096. To replicate our baseline methods on Openhermes and WildChat, we adjust
some original parameters and implementations to fit the large-scale datasets.

In term of LESS, individual models are built and trained on specific tasks. However, in practical
applications, our goal is to train a model that enhances performance across various scenarios. Thus,
given that the two datasets we select are both extensive and diverse, we randomly select 1000 data
points from each dataset as Dval. Additionally, due to the volume of our data, we randomly pick
10,000 data points for warm-up training, differing from the method described in (Xia et al., 2024).

As for IFD, we initially generate 1000 clusters on instruction embeddings, which differs from the
settings given in Li et al. (2023b). For SelectIT, we adopt model-level selection as the final strategy
for the Qwen2 model and evaluate the model-level score on Qwen2-1.5B and Qwen2-7B. While
for Llama3, we employ sentence-level selection as the final approach. Considering that the Llama3
family only has two public variants, Llama3-8B and Llama3-70B, and to mitigate time costs, we
compute the score based solely on Llama3-8B.

Within DiverseEvol, during each iteration’s K-Center-Sampling stage, data points are selected based
on maximizing their distance to the nearest existing training data points, one at a time, until the

6
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Table 1: The overall results (%) on a variety of downstream tasks based on Openhermes2.5 dataset.
CODE means HumanEval, Random n denotes the nth random selection. Except for fine-tuning
with the entire Openhermes dataset, the bold numbers indicate the best score of each part, and the
underlined numbers indicate the second highest score.

Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

Base 59.07 72.40 55.67 70.20 28.84 31.24 52.90 60.93 55.12 37.59 65.30 19.41 21.07 43.24
all data 61.39 80.12 63.32 68.50 40.85 44.18 59.73 63.33 73.24 46.43 63.90 46.40 49.72 57.17

Random 1 59.72 82.41 62.10 68.30 33.27 36.41 57.04 64.72 53.90 45.21 63.20 39.19 43.62 51.64
Random 2 61.48 83.47 64.33 67.90 38.08 40.30 59.26 60.83 56.86 48.99 62.70 41.77 45.47 52.77
Random 3 61.85 81.65 62.90 68.10 36.78 38.45 58.29 63.43 59.74 46.83 62.70 43.25 46.21 53.69
Random 4 61.20 82.71 59.27 68.00 36.60 39.19 57.83 63.98 59.59 45.18 63.80 44.36 47.13 54.01
Random 5 61.30 82.71 62.23 68.90 35.86 37.71 58.12 62.31 56.10 42.07 63.50 44.55 48.80 52.89

LESS 61.20 81.65 53.26 67.60 32.16 37.15 55.50 61.39 57.70 41.43 64.20 38.08 41.96 50.79
IFD 57.96 79.23 68.48 56.70 33.27 35.12 55.13 57.41 53.53 32.41 59.90 43.07 45.84 48.69
SelectIT 59.17 80.44 66.46 67.20 35.86 38.82 57.99 62.59 61.56 42.38 63.60 38.45 42.14 51.79
Entropy 61.30 55.04 61.04 68.90 37.34 40.48 54.02 58.61 50.72 44.02 61.40 32.90 37.89 47.59

Diverse 61.11 81.73 61.71 68.65 40.85 43.44 59.58 65.00 56.25 44.51 63.84 43.99 47.13 53.45
ZIP 60.65 80.52 66.10 68.60 37.15 39.56 58.76 63.98 59.67 40.70 62.60 43.81 46.58 52.89

desired count is reached. Consequently, it is essential to maintain a n × n float-type matrix for the
entire computation, where n represents the dataset size. Given that our OpenHermes dataset exceeds
1 million entries, the matrix calculation would require more than 1 terabyte of memory. Therefore,
we revised this part to select all required data points once for each iteration, which significantly
reduces the memory requirement.

5 DISCUSSION

5.1 BASELINE METHODS VS RANDOM

In this section, we reproduce all baseline methods in experiments involving LLaMA3-8B and
Qwen2-7B on OpenHermes2.5, the experimental results are presented in Table 1, and results on
WildChat are detailed in Table 3. We assess LLaMA3-8B and Qwen2-7B with and without fine-
tuning on the entire dataset. All mentioned SFT data selection methods are employed to select
10,000 samples as described in Section 4.3. We randomly run 5 times and all of the results are pro-
vided in the tables. Furthermore, 50,000 samples obtained through various methods are also shown
in the Appendix Table 6, 7.

Table 2: The P-values of the significance tests for
each method against the results of five rounds of
random selection.

Llama3-8B Qwen2-7B
OpenHermes WildChat OpenHermes WildChat

LESS 0.77 0.45 0.80 0.86
IFD 0.85 0.53 0.85 0.68

SelectIT 0.71 0.79 0.60 0.58
Entropy 0.92 0.46 0.78 0.30
Diverse 0.39 0.58 0.37 0.45

zip 0.55 0.36 0.42 0.31

As indicated in Table 1 and 3, it is evident
that when dealing with extensive and diverse
IT datasets, no data selection techniques con-
sistently outperform random sampling by a sub-
stantial margin, which implies that the average
score exceeds the random score by more than
1%. In most cases, the results of the baseline
method are within the range of the results ob-
tained by 5 random runs, and a few methods
are even worse than the worst random result,
For instance, when evaluating Cross-Entropy on Qwen2-7B using Openhermes2.5, the average re-
sult is a mere 54.02, significantly below the lowest score of 57.04 obtained in the 5 random trials.
Besides, We also conducted the Mann-Whitney U test for each method against the results of 5 rounds
of random selection. We adopted the right-tailed test approach, with the testing hypothesis being
that the scores of each baseline method on different test tasks are greater than those of the random
method. We reported the p-value for each method being significantly better than that of the random
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Table 3: The overall results (%) on a variety of downstream tasks based on WildChat dataset. CODE
means HumanEval, Random n denotes the nth random selection. Except for fine-tuning with the
entire Openhermes dataset, the bold numbers indicate the best score of each part, and the underlined
numbers indicate the second highest score.

Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

Base 59.07 72.40 55.67 70.20 28.84 31.24 52.90 60.93 55.12 37.59 65.30 19.41 21.07 43.24
all data 62.87 80.82 62.84 68.70 45.84 48.80 61.65 63.70 56.94 47.44 63.30 46.40 49.72 54.58

Random 1 61.30 82.64 61.98 68.10 40.30 42.33 59.44 63.70 56.48 51.92 63.30 39.37 41.95 52.79
Random 2 60.93 81.96 61.43 67.50 38.63 40.67 58.52 62.41 52.62 49.33 64.00 44.18 46.77 53.22
Random 3 60.28 82.64 62.07 68.30 41.04 42.88 59.54 63.52 58.38 43.90 64.10 42.33 45.29 52.92
Random 4 61.11 80.36 65.46 67.50 37.34 40.67 58.74 63.33 55.42 51.10 64.50 41.96 44.55 53.48
Random 5 61.57 81.50 60.27 68.20 41.77 43.99 59.55 64.91 60.27 48.66 64.30 42.14 45.84 54.35

LESS 52.59 60.50 61.19 68.00 38.82 41.77 53.81 63.43 57.01 50.43 64.50 40.85 44.92 53.52
IFD 60.56 76.27 65.24 68.00 36.23 38.26 57.43 63.33 59.29 47.16 64.60 40.30 43.81 53.08
SelectIT 60.37 82.34 64.97 68.50 36.97 39.19 58.72 61.48 53.22 46.01 63.20 40.11 42.88 51.15
Entropy 60.37 81.96 62.90 68.40 42.51 46.21 60.39 63.15 56.10 47.71 63.00 45.10 49.54 54.10

Diverse 61.02 80.82 65.09 67.33 41.04 42.88 59.70 62.59 53.30 33.48 64.46 47.87 50.65 52.06
ZIP 62.59 81.80 68.17 68.00 40.11 42.33 60.50 62.31 60.96 46.58 64.50 45.10 48.06 54.59

Table 4: The overall results (%) of token length selection.
Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

OpenHermes 60.65 80.74 60.18 68.33 37.89 41.40 58.20 64.63 61.33 45.70 64.41 48.43 52.87 56.23
WildChat 61.67 81.05 59.21 67.82 39.56 42.14 58.58 66.11 60.35 51.16 63.91 43.81 47.69 55.51

method in table 2. We found that the p-values of all methods is higher than 0.05, which indicates
that the results of all baseline methods are not greater than those of the random method.

Based on the experimental results, when dealing with an extensive SFT dataset, it is more ef-
ficient to randomly select training data instead of spending significant time and resources to
meticulously choose seemingly optimal training data. Random selection reduces costs and yields
superior training results.

5.2 QUALITY VS DIVERSITY

Tables 1 and 3 demonstrate that the diversity-based selection strategy outperforms the quality-based
one. To examine whether prioritizing diversity over data quality improves data selection, we de-
signed a supplementary experiment by incorporating a K-means clustering process on the OpenHer-
mes dataset. Instead of selecting data based solely on method scores, we choose higher-scoring data
within each cluster to boost the final training set’s diversity.

Table 5 illustrates that integrating the K-means clustering with quality-based selection methods en-
hances the effectiveness for most approaches. Notably, Cross Entropy on both Llama3 and Qwen2
models shows improvement over 5% and 3%, respectively, when K-means is used to diversify the
data. This suggests that for a large-scale IT dataset, data diversity holds more importance than
data quality. This also clarifies why random selection often outperforms most SFT data selection
methods, as the random process preserves the dataset’s original distribution and diversity to the
greatest possible extent.

5.3 BASELINE ANALYSIS

In this part, we mainly analyze several methods and try to find the reasons why these methods fail
in large-scale data sets and why these methods are not applicable to practical applications.
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Table 5: The overall results (%) on a variety of downstream tasks based on Openhermes2.5 dataset.
Methodkm means method with kmeans process. The bold number indicates the avg performance
increase after add K-means phase.

Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

LESS 61.20 81.65 53.26 67.60 32.16 37.15 55.50 61.39 57.70 41.43 64.20 38.08 41.96 50.79
IFD 57.96 79.23 68.48 56.70 33.27 35.12 55.13 57.41 53.53 32.41 59.90 43.07 45.84 48.69
SelectIT 59.17 80.44 66.46 67.20 35.86 38.82 57.99 62.59 61.56 42.38 63.60 38.45 42.14 51.79
Entropy 61.30 55.04 61.04 68.90 37.34 40.48 54.02 58.61 50.72 44.02 61.40 32.90 37.89 47.59

LESSkm 61.30 81.96 54.63 67.79 34.38 38.26 56.39 60.93 50.27 48.11 63.97 39.74 44.55 51.26
IFDkm 60.19 78.77 59.70 66.81 30.31 31.79 54.60 60.74 58.98 40.37 62.95 40.67 42.70 51.07
SelectITkm 60.93 82.34 61.04 67.85 36.78 39.19 58.02 62.96 59.36 40.85 63.43 39.74 43.07 51.57
Entropykm 60.37 81.12 59.27 68.55 35.67 38.45 57.24 61.02 61.64 48.32 61.12 39.00 43.99 52.52
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Figure 2: The average score (%) of each methods on Llama3 and Qwen2.

The lack of availability of Less is primarily evident in how its influence score is calculated. Since it
requires computing the score for the final data point in the target task, it is essential to meticulously
design a target set for each task to filter the data. However, in practical applications, we face a
variety of training tasks that require our target data to be comprehensive and diverse. Hence, the
effectiveness of LESS is strongly related to the quality of Dval.

The IFD approach determines the ultimate IFD score by evaluating the perplexity (ppl) of the re-
sponse. However, the length of the data significantly affects the ppl value. In particular, shorter data
tend to produce excessively high ppl values, which contradicts with our expected results. Ultimately,
we note that the IT data instructions selected by the IFD approach are quite brief, averaging merely
42 tokens on Openhermes, which aligns with the findings reported by Liu et al. (2023).

SelectIT can perform well at the model level, but it necessitates combining LLMs with various sizes
to score the data. As IT datasets become larger, the computational cost required for LLMs with more
parameters tends to increase exponentially, which limits their applicability to extensive datasets.

Cross-entropy is influenced by the length of responses. Typically, cross-entropy favors data with
lengthy responses, whereas it shows no specific preference towards instructions. Consequently, the
training samples will include simple instructions but extensive responses.

In addition, in this article, we do not use NUGGETS (Li et al., 2023d) as our baseline method.
During our experimentation, we discover that the computational time for NUGGETS is significantly
higher compared to other methods. Even with 40 A100 80G GPUs, it requires over 2,000 hours to
perform the calculations. Given this high time cost, we decide to abandon this method.

The diversity-based approach usually outperforms the quality-based selection methods, however,
one main issue with the diversity-based approach is its time and memory consumption.

To reproduce DiverseEvol, we utilized 8 A100 80G resources and consistently performed 3 itera-
tions. However, each iteration requires 1-2 days, totaling 5-7 days to choose the final training subset.
When dealing with large-scale data sets, the results often fall within the random range, though opti-
mal results occur sporadically. This may be due to modifications in our implementation to address
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memory constraints during replication (see Section 4.3), which may have slightly diminished the
method’s performance.

In contrast, ZIP does not need GPU resources, but the computing process is greedy. It incrementally
adds 100 data at a time to the final training subset. For large data scales, it takes approximately 7 days
to select 50,000 data. In addition, ZIP serves as a data selection method that operates independently
of the model, meaning that the selected data cannot be adaptively tuned on the basis of the model.
As illustrated in Tables 1 and 3, the data chosen by ZIP in OpenHermes perform poorly in both
Llama3-8B and Qwen2-7B, whereas the data selected in WildChat exhibit the best performance
across these models.

Moreover, we attempt to utilize DQ (Zhou et al., 2023a) as our baseline method. However, DQ uses
a submodular strategy to choose a subset by optimizing submodular gains within the feature space.
When dealing with millions of data points, it requires more than 1TB memory resources. Eventually,
we decide to forgo this approach.

5.4 WHICH METHOD IS THE BEST?

By examining the average results of all methods, we notice that the majority of methods perform
better with WildChat as the data source compared to OpenHermes, as illustrated in Figure 2, which
is rather unexpected. Nonetheless, from a quality perspective, WildChat’s conversation data tends to
be noisy, particularly since the context of multiple conversation rounds is sometimes unrelated, while
OpenHermes’s data quality should be substantially higher than WildChat. However, the performance
of the same data selection methods on these two types of data contradicts with our expectations. It is
observed that the average token length for WildChat data is 1142, whereas for OpenHermes data, it is
354. Drawing inspiration from the work of Shen (2024), we devise a new experiment concentrating
on data selection by token length. Initially, we obtain N clusters through the K-Means process and
subsequently select a certain amount of data based on the token length from each cluster proportional
to its size. The results are presented in Table 4.

Based on Table 4, it is evident that using token length as the criterion for data selection generally
yields optimal results. Specifically, for Llama3, regardless of whether the data source is Open-
Hermes or WildChat, the results are superior to those achieved by other methods. In addition, the
average score on WildChat (55.51) surpasses that obtained by fine-tuning with the entire dataset
(54.58). Since random selection may not ensure the best fine-tuning results, we believe that se-
lecting data by token length can stably obtain a relatively high training benefit, reduce the
uncertainty caused by randomness, and reduce costs. This approach is particularly beneficial
for BASE language models which generally have limited capabilities, as they tend to derive the most
significant benefits from training on longer texts.

6 CONCLUSION

In this study, we observe that many SFT data selection methods depend on small-scale data sets,
which do not meet the actual needs in real-world scenarios. This finding makes us rethink whether
SFT data selection methods can work when they are required to handle large-scale IT datasets. We
reproduce some existing self-scoring data selection approaches that do not need external LLMs’
support on two million-scale datasets and find that almost all present methods do not significantly
surpass random selection when dealing with large-scale datasets. Moreover, our analyses show that
during the SFT phase, data diversity in data selection plays a more significant role than data quality.
In addition, using token length as the quality metric is more appropriate for SFT data selection
compared to other carefully crafted quality metrics.
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A APPENDIX

In this section, table 6, 7 includes training results of various methodologies with a training dataset
comprising 50,000 entries 6, 7.
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Table 6: The comprehensive results (%) on various downstream tasks using OpenHermes. Men-
tion that CODE means Humaneval. Algorithmkm means the algorithm has a Kmeans process, and
Randomx denotes the xth random selection. The bold numbers indicate the best avg score of each
part, and the underlined numbers indicate the second highest score.

Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

Base 59.07 72.40 55.67 70.20 28.84 31.24 52.90 60.93 55.12 37.59 65.30 19.41 21.07 43.24
all data 61.39 80.12 63.32 68.50 40.85 44.18 59.73 63.33 73.24 46.43 63.90 46.40 49.72 57.17

Random1 62.87 80.67 62.44 68.33 34.75 38.08 57.86 63.89 64.37 46.19 62.75 45.10 49.72 55.34
Random2 61.11 80.82 65.76 68.12 38.08 40.67 59.09 62.13 66.57 47.32 61.57 46.58 49.54 55.62
Random3 61.02 81.35 60.15 68.54 38.63 40.85 58.42 65.65 63.53 44.05 61.96 42.51 46.21 53.99
Random4 60.37 80.06 55.98 68.95 37.34 40.30 57.17 62.78 62.40 45.12 62.41 47.87 50.83 55.24
Random5 60.19 80.14 63.29 69.16 38.08 40.85 58.62 64.72 65.13 45.18 62.51 45.47 49.17 55.36

LESS 60.46 80.29 58.66 67.40 39.00 43.25 58.18 61.02 57.85 17.01 63.01 40.30 46.40 47.60
IFD 57.50 80.52 67.13 66.79 35.86 38.08 57.65 61.94 52.84 44.63 63.36 41.04 43.99 51.30
SelectIT 60.56 79.98 62.77 67.96 36.04 39.00 57.72 61.20 64.22 40.03 62.40 41.96 44.92 52.46
Entropy 60.83 77.56 59.24 69.02 36.78 39.56 57.17 60.65 55.50 49.02 57.51 47.13 51.02 53.47

Diverse 61.67 81.35 61.89 68.60 44.55 46.40 60.74 63.33 61.11 48.75 63.62 46.21 49.17 55.37
zip 59.81 82.03 68.48 68.08 35.67 38.26 58.72 63.89 57.92 42.65 62.58 43.25 46.95 52.87

LESSkm 61.20 81.88 54.51 67.77 32.90 36.60 55.81 61.02 59.44 47.04 63.35 42.14 47.32 53.39
IFDkm 59.81 78.92 60.55 67.09 28.65 31.24 54.38 63.43 63.23 43.41 61.19 40.11 43.81 52.53
SelectITkm 61.20 81.20 66.52 69.10 34.57 38.45 58.51 61.85 61.49 45.76 61.64 43.44 48.43 53.77
Entropykm 61.02 80.82 66.04 68.25 36.78 39.37 58.71 61.85 64.22 48.66 61.85 42.70 46.58 54.31

Lengthkm 60.46 83.62 63.35 68.79 38.26 41.59 59.35 65.09 62.70 47.29 62.73 45.10 49.17 55.35

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 7: The comprehensive results (%) on various downstream tasks using WildChat. Mention that
CODE means Humaneval. Algorithmkm means the algorithm has a Kmeans process, and Randomx

denotes the xth random selection. The bold numbers indicate the best avg score of each part, and
the underlined numbers indicate the second highest score.

Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

Base 59.07 72.40 55.67 70.20 28.84 31.24 52.90 60.93 55.12 37.59 65.30 19.41 21.07 43.24
all data 62.87 80.82 62.84 68.70 45.84 48.80 61.65 63.70 56.94 47.44 63.30 46.40 49.72 54.58

Random1 61.85 81.50 60.55 68.02 40.48 42.70 59.18 63.61 55.72 48.90 64.07 42.51 45.66 53.41
Random2 60.74 82.03 58.72 68.05 40.67 44.36 59.10 61.76 54.66 50.95 63.38 42.88 46.03 53.28
Random3 59.07 81.35 64.45 67.63 41.77 44.92 59.87 63.98 55.42 53.11 63.33 43.81 46.77 54.40
Random4 62.41 82.34 60.95 68.43 42.51 45.10 60.29 63.70 58.91 50.09 63.84 43.62 46.03 54.37
Random5 61.30 82.49 59.05 67.60 42.70 44.92 59.68 64.54 55.65 49.91 64.16 42.70 45.84 53.80

LESS 58.80 81.35 66.95 68.10 41.04 43.99 60.04 63.43 57.01 50.43 64.50 40.85 44.92 53.52
IFD 59.44 81.50 66.46 67.90 38.45 40.85 59.10 63.33 59.29 47.16 64.60 40.30 43.81 53.08
SelectIT 60.74 84.23 60.49 69.24 41.04 44.36 60.02 61.48 53.22 46.01 63.20 40.11 42.88 51.15
Entropy 61.02 81.96 60.88 68.40 43.07 46.58 60.32 61.48 55.34 48.90 64.02 47.50 51.02 54.71

Diverse 59.81 82.03 67.10 68.00 41.77 44.36 60.51 65.09 56.18 38.81 63.03 44.36 47.13 52.43
zip 59.91 79.83 71.04 67.97 42.88 45.84 61.25 64.72 57.16 41.49 61.54 45.84 48.43 53.20

LESSkm 59.54 80.89 67.84 68.20 43.62 46.95 61.17 61.94 54.74 48.99 64.10 43.99 46.95 53.45
IFDkm 59.26 80.67 68.41 68.13 41.77 43.99 60.37 62.69 56.10 48.63 63.02 40.85 42.70 52.33
SelectITkm 60.46 83.17 59.39 68.79 39.93 43.07 59.14 61.20 54.89 45.88 63.50 43.99 48.06 52.92
Entropykm 60.93 82.79 59.82 67.01 39.19 42.14 58.65 63.06 58.45 45.73 63.85 41.04 45.10 52.87

Lengthkm 61.30 79.76 59.76 68.19 42.88 45.29 59.53 62.41 60.05 49.82 64.23 45.47 48.80 55.13
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