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ABSTRACT

The evolution of vision-language (VL) models towards broad competencies has
complicated benchmarking, necessitating diverse tasks for accurate evaluation.
Moving beyond intuition-guided task selection common in existing benchmarks,
we propose a data-driven approach that leverages transfer performance and Factor
Analysis (FA) to identify latent skills crucial for VL tasks. Our study demonstrates
the utility of FA in systematically understanding and evaluating VL models.

1 INTRODUCTION

Recently developed vision-language models (VLMs) (Dai et al.| 2023} [Zhu et al.| 2023} |Liu et al.,
2023c; |Ye et al., 2023} [Li et al., [2023a; |Awadalla et al., [2023), viewed as precursors to general-
intelligence systems, demonstrate competencies across diverse VL tasks. These tasks are believed
to be underpinned by atomic VL skills such as object recognition, spatial relationship recognition,
language grounding, etc. However, these skills are not directly observable, and often, a single skill
may support several disparate tasks. Current benchmarks (Bitton et al.| |2023} Xu et al., [2023} [Liu
et al.,|[2023d; |Yu et al.;, 2023} |Li et al., [2023c; [Fu et al., 2023} |Bai et al.,[2023b) rely heavily on the
intuition of their designers to select test tasks and categorize them by skill, leading to uncertainties
about whether these benchmarks fully capture all relevant skills or weight them equally in evaluations.

In this paper, we propose a data-driven approach to identify latent VL skills from performance data.
We finetune four VLMs—BLIP-2 (Li et al., 2023b), Mini-GPT4 (Zhu et al., [2023), LLaVA (Liu
et al., [2023c), and mPLUG-Owl (Ye et al.l |2023)—across 23 source tasks and evaluate them on 29
target tasks, resulting in 2,784 performance measurements, inclusive of 29 x4 zero-shot performances.
Through Factor Analysis (FA) (Spearman| |1904), a widely used statistical method for uncovering
latent factors in data, we identify six VL skills that, upon close inspection, reveal prominent data
patterns. Our study highlights the capability of FA in identifying unexpected yet coherent skills that
influence VLM behavior, paving the way for more systematically designed benchmarks.

2 ANALYSIS TECHNIQUE

We collect data for FA by creating a diverse set of models and observing their performance on a
broad range of test tasks in a transfer learning setting. Specifically, we finetune M pretrained models
on N source tasks, yielding M N models, and evaluate them on K target tasks. Each source task is
assumed to impart a specific set of VL skills to a model, thereby enhancing its performance on target
tasks that require those same skills.

The normalized transfer performance of each model m is stored in matrix AM) ¢ RNXK , Where

each row represents a source task ¢ and each column represents a target task j. To calculate the entries

) of Al™) | we use the following formula:

o) = (o) =) / (el 167, 1)
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i
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Intuitive Task Source  Target Intuitive Task Source  Target
Category Category

COCO Caption v v New Yorker X v/

Image Flickr30k v v Ranking
Captioning Web CapFilt v X Humor & New Yorker X v/

TextCaps v v Sarcasm Explanation
Generic VQA VQAV2 G G, MC MORE X v
Chart OpenCQA G G
OK-VQA G G, MC .
I;arllsoe\:i/l\e/(ggz A-OKVQA G.MC G MC Reading ChartQA X G, MC

ScienceQA MC MC OLIVE (Ours) v v
LLaVA Conv- 4 X

OCR VQA (;F g{;_\(]%AA g g’ i/l/lg Open-ended ersation
’ Generation LLaVA Reas- 4 X

GQA G G, MC oning
. VSR MC MC LLaVA Desc- 4 X
Visual L

Reasoning IconQA MC MC ription
R A\C/IIEEYPEXIR ;: va[l\éc Question VQAV2 QG v X
Generation OK-VQA QG v X
Classification ~ Hateful Memes MC MC QG) A-OKVQA QG v X

Table 1: List of source and target tasks used in experiments. G and MC indicate the generative and
multiple-choice versions of VQA tasks respectively.

where bl(?) is the transfer performance from source task ¢ to target task j, and bém.) is the zero-shot

performance on target task j. The best source task, typically the in-domain training task, achieves
al(.’m) = 1. After normalization, we concatenate the M matrices along the source-task (row) dimension
to form performance matrix A.

2.1 FACTOR ANALYSIS

Given that tasks requiring the same VL skills are expected to show correlated performances, we apply
Exploratory Factor Analysis (EFA) to uncover these latent skills. Mathematically, we treat the j®
column of A4, a; € R*N, as the characteristics of target task j and explain it using L latent factors,

a;=Wh; + p+e, 2)
where W € R*V*L reflects how source tasks load onto the L factors and h; € R” reflects
how the target task j decomposes into these factors. p is the average vector across target tasks
and e is Gaussian noise. EFA is closely related to PCA, differing mainly in that it assumes a

diagonal covariance matrix for €, while PCA assumes a spherical covariance. We apply Varimax
rotation (Kaiser, |1958) to concentrate h; on as few factors as possible for easy interpretation.

Our initial analysis finds that captioning and most VQA tasks predominantly load onto a single factor,
likely indicative of a general VL skill. To explore more specific VL competencies, we isolate this
dominant factor using a one-factor EFA, transforming the matrix W into a 4N-dimensional vector w.
Then, we perform linear regression from w to A by solving the equation:
L 2

minimize HA —wp’ - 'leHF , 3)
where 3, € R*" are trainable parameters.
Finally, we conduct EFA on the residuals, A = A — wB@" — 1T, which contain information about

fine-grained VL skills beyond the general VL skill. Using parallel analysis and Velicer’s Minimum
Average Partial test, we determine the optimal number of factors to be six.

3  SOURCE AND TARGET TASKS

We gather 27 publicly available VL datasets and create variations, yielding 23 source tasks and 29
target tasks, outlined in Table [T} These tasks span categories such as image captioning, various forms
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OCR-VQA (MC)
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g - enerative atasets ultiple oice
3~ TextCaps (G) Factor 4 <8.40—> RAVEN-FAIR (MC) Tasks 'I")asks
o
TextVQA (G) \0'3:\‘ SclenceQA (MC) Factor 1 078—> OKVOA <—0g, Factor 2
Vb N IconQA (MC) §°-74\» A-OKVQA 4’0-59?
% VQAV2 (MC) %2, o
S . : 2 i}i ChartQA ><
5 _ O 0,
Factor 2 357» artQA (G) Qg,(;/v OCR-VAA(G) Factor 2 066 TextVOA 72) Factor 1
_0-650» OKVQA (G) Factor S 5.63—> A-OKVQA (MC) 0655 OCRVOA O
00~k GQA (MC) acter 954—s MORE (G)
N %2 F 7 D=
OKVQA (MC) OpenCQA (G) actor 3 0.60 VOAv2 4—06F actor 3
v VA2 (6) ¥ OLVE(G)
% {3 : .
Factor 3 <g_'754 GQA (G) Factor 6 <§_59» CLEVR (G) Figure 2: Results of EFA when 3 factors
actor actor .
‘;z» A-OKVQA (G) ggg» CLEVR (MC) are extracted from 7 generative and 7
T TextVQA (MC) ™% VSR (MC) MC VQA tasks separately. We merge

the results for display. Cut-off for factor
Figure 1: Results of EFA on the residuals A. Black  loadings=0.6.
arrows indicate positive loadings; red arrows indicate

negative loadings. Cut-off for factor loadings=0.3.

of visual question-answering (VQA), visual reasoning, image classification, question and open-ended
generation, and humor and sarcasm understanding. Multiple-choice (MC) versions are also created
for generative VQA datasets. For detailed descriptions of tasks, see Appendix [A.T]

Additionally, we introduce Open-world Language Instruction for Visual-language Evaluation
(OLIVE), a new dataset designed to mirror complex user queries encountered by VLMs in real-world
scenarios. This type of data is currently underrepresented in existing benchmarks. Generated us-
ing ChatGPT and refined through human curation, OLIVE features 9,450 images, 30,120 unique
instructions, and 47,250 responses. Further details are in Appendices[A.2]and

The performance metrics used are AUC for Hateful Memes, CIDEr (Vedantam et al., 2015) for
OpenCQA, OLIVE, and all captioning datasets, and accuracy for the remaining tasks. To focus on
end-to-end performance, we do not perform separate optical character recognition.

4 EXPERIMENTAL SETUP AND RESULTS

We consider four popular VLMs with limited exposure to our datasets of interest: BLIP-2 (L1 et al.}
2023b), MiniGPT-4 (Zhu et al., [2023)), LLaVA (Liu et al.,[2023c), and mPLUG-Ow1 (Ye et al., 2023).
During finetuning, we adjust only the trainable parameters from the VL pretraining phase of each
model. The models are trained on each source task for 10,000 iterations, with batch sizes set at 192
for BLIP-2 and 128 for MiniGPT-4, mPLUG-Owl, and LLaVA. Additional details can be found in

Appendices[A.4]and [A3]

We run EFA on the residual matrix A and plot the most significant factor loading for each target task
in Fig. [T} A higher absolute factor loading indicates a stronger relationship between the task and the
factor. We set the cut-off at 0.3. Notably, New Yorker Explanation and Ranking, and Hateful Memes
have no factor loadings above 0.3, implying that they do not share with other tasks any VL skills that
are detectable by EFA. Detailed results are provided in Appendices[A.6]and[A.7]

Furthermore, we analyze the effect of output length on transfer performance by dividing the tasks
into three groups based on average output lengths: 1-3 words, 6-12 words, and over 40 words. The
average normalized transfer performance by group is shown in Tab. [2]

5 DISCUSSION

In this section, we provide interpretations for the factors identified in factor analysis and highlight
key findings from our experiments.
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Source Task \ Target Task Output Length
Output Length ‘ 13 6-12 >40
1-3 -0.03/1.00 -0.78/0.79 -0.85/0.44
6-12 -049/0.64 -0.43/0.75 -0.43/0.48
>40 -0.90/043 -0.87/0.28 -0.26/0.55

Table 2: Mean normalized transfer performance across tasks, grouped by mean output length. Left
values consider all source tasks in a group; right values consider only the top 5 source tasks in a
group. In-domain source tasks are excluded.

Factor 1: Captioning. Factor 1 separates the captioning tasks — COCO Caption, Flickr30k, and
TextCaps — from the rest of the target tasks, which are mostly VQA tasks.

Factors 2 & 3: Generative vs. MC evaluation. Factors 2 and 3 distinguish between generative and
multiple-choice (MC) evaluations for VQA tasks. Generative VQAs exhibit positive loadings on
both factors while MC VQAs exhibit negative loadings. Furthermore, specialized VQAs requiring
OCR skills, such as TextVQA and ChartQA, load positively on Factor 2 and negatively on Factor 3,
whereas generic VQAs, such as VQAv2 and GQA, show the opposite pattern.

These differences arise because generative evaluations require exact matches to ground-truth answers,
risking false negatives for valid answers phrased differently, unlike MC evaluations which compare
average word probabilities, eliminating the need for strict matches. The exact match requirement also
makes generative evaluations more sensitive to output lengths.

Interestingly, separate analyses of generative and MC VQA tasks reveal remarkably similar structures
(Fig. [2), identifying factors related to knowledge-based VQA, OCR, and generic or spatial relations.
This highlights the efficacy of EFA in capturing underlying structures with appropriate data.

Factors 4 & 5: Text Reading vs Reasoning. Factors 4 and 5 differentiate between tasks involving
simple text extraction from those requiring complex multi-hop reasoning. OCR-VQA and ChartQA,
which primarily focus on reading text and numbers from images, exhibit loadings opposite to RAVEN-
FAIR, ScienceQA, and IconQA, which demand strong logical reasoning skills, and opposite to
A-OKVQA, MORE, and OpenCQA, which necessitate the use of external knowledge and contextual
understanding. The fact that EFA can find these reasonable skills illustrates its power.

Factor 6: Spatial reasoning. Factor 6 is characterized by spatial reasoning, as CLEVR and VSR
are both designed for this purpose. Notably, while OLIVE shows the highest loading on Factor
6, its communality (overall variance explained) is only 0.4. This suggests that while OLIVE does
require spatial reasoning skills, they account for only a small portion of the overall skills needed. The
remaining variance in OLIVE is not explained by the factors identified in our analysis.

Humor, sarcasm, and abstract reasoning remain difficult. The models we tested face difficulties
in comprehending humor and sarcasm, as evidenced by their performance on the New Yorker datasets
and MORE. In addition, they perform barely above chance level on RAVEN-FAIR, an abstract
reasoning task. Surprisingly, EFA is able to correctly place RAVEN-FAIR in the reasoning factor
(negative Factor 4) despite the tiny variance caused by overall poor performance.

The output length bias. Tab. [2]reveals a significant correlation between output length and transfer
performance. A mismatch in output lengths between source and target tasks leads to much worse
performance. This surprising finding shows that output length could be a shortcut feature for VLMs,
suggesting that future benchmarks may need a balance of tasks with varying output lengths. |Singhal
et al.|(2023) find a similar trend in the context of Reinforcement Learning from Human Feedback.

Recommendations. Based on the analysis, we make the following recommendations for future VL
benchmarks: (1) both generative and MC assessment should be used; (2) future benchmarks should
assign higher priority to tasks that require abstract and deep reasoning; (3) model rankings based on
latent skills rather than simple mean or intuitive categorization may be informative.
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A APPENDIX

A.1 DATASET DETAILS

We considered 27 publicly available VL datasets and created variations, resulting in 23 source tasks
and 29 target tasks. The descriptions of these tasks are provided below.

Image Captioning. Image captioning is one of the most popular image-text tasks and is commonly
used as a pretraining task for VLMs (Chen et al., 2022} Tiong et al.,|2022). We consider two classic
datasets: COCO Caption (Lin et al., 2014) and Flickr30k (Young et al., [2014). Additionally, we
incorporate TextCaps, which focuses on describing text within images, and Web CapFilt—a dataset
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of synthetic captions across diverse web images. Web CapFilt was generated by BLIP (Li et al.|
2022b) for self-training. We hypothesize that its diversity could be beneficial in transfer learning.

Visual Question-answering (VQA). VQA is another highly popular image-text task favored for its
versatile question-answering format. VQAv2 (Goyal et al.| 2017) is a major benchmark, with more
than 200,000 COCO images and 1 million questions. Variants include knowledge-grounded VQA,
OCR VQA, Chart VQA, among others, which we’ll delve into subsequently.

Measuring performance in VQA can be challenging due to the presence of multiple correct answers
for the same question. To address this, we establish two target tasks for each VQA dataset. The first
task, the generative (G) version, demands an exact match with one of the ground-truth answers to be
considered correct. The second task, the multiple-choice (MC) version, involves the model selecting
one option from five choices.

Converting a generative VQA dataset to the MC version involves creating five options for each
question, including up to two correct answers to accommodate linguistic variations. We then
incorporate incorrect choices by sampling answers from other questions, selecting those with top-k
probabilities based on InstructBLIP (Dai et al., [2023)). During inference, all options are fed to the
model, and the one with the highest average word probability is chosen as the model’s prediction.

Knowledge-grounded VQA. These tasks require the model to apply world knowledge not present
in the input to answer questions. ScienceQA (Lu et al.| 2022) centers on science textbook content.
OK-VQA (Marino et al., |2019) emphasizes visual recognition and knowledge recall, whereas A-
OKVQA (Schwenk et al.|[2022) usually necessitates an additional step of reasoning.

OCR VQA. TextVQA (Singh et al.,2019) and OCR-VQA (Mishra et al.,|2019) are two VQA datasets
that entail recognizing text within images. OCR-VQA focuses on reading text from book covers,
whereas TextVQA requires locating an object before reading the text on it.

Chart Reading. OpenCQA (Kantharaj et al., [2022) and ChartQA (Masry et al., |2022) contain
questions regarding the content of diagrams and charts. OpenCQA expects descriptive long-form
answers, whereas ChartQA focuses on data extraction and comparison using short answers.

Visual Reasoning. The term "reasoning" in the VLM literature encompasses various tasks, ranging
from simple ones like counting (e.g., how many apples are in the image?) to more complex ones
involving spatial relations and grounding (e.g., what is adjacent to the cylinder?), and may even
extend to logical or algebraic operations. In this category, we include five datasets, GQA (Hudson
& Manning| 2019), VSR (L1u et al.l 2023a)), CLEVR (Johnson et al., [2017), IconQA (Lu et al.,
2021), and Raven-Fair (Benny et al.,[2021). GQA and VSR predominantly feature natural images,
while IconQA presents cartoons, and Raven-Fair involves abstract diagrams. CLEVR comprises
synthetically rendered images of 3D objects. Among these, Raven-Fair poses the greatest challenge,
as its data are derived from the Raven’s test (Raven, |1938)), an intelligence test originally devised for
humans that demands intricate reasoning skills.

Image Classification. Hateful Memes (Kiela et al.,[2020) is a binary classification task that distin-
guishes hateful memes from other meme images.

Humor and Sarcasm Understanding. According to (Hessel et al.l 2023), VLMs exhibit poor
performance in humor understanding. From their paper, we adopt the New Yorker Ranking task,
which involves selecting the best humorous caption for a cartoon from the New Yorker magazine,
and the New Yorker Explanation task, which requires the model to explain why the cartoon and its
caption evoke humor. Additionally, the MORE dataset (Desai et al., 2022) involves explaining why a
textual statement associated with a natural image is sarcastic.

Question and Open-ended Generation. We adapt three datasets, VQAv2, OK-VQA, and A-
OKVQA, for the task of question generation from an image and an answer. Additionally, we utilize
three subsets of LLaVA-Instruct-150K (Liu et al.,[2023c)), which respectively emphasize free-form
conversation, detailed description, and reasoning. While we employ these as source tasks, we
refrain from considering them as target tasks, as these artificial datasets may not accurately represent
real-world use cases.
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Instruction: What is the item in
the image?

Output: The item in the image is a
solar sail, which is a device that is
designed to harness the energy
from sunlight to propel a
spacecraft through space without
the use of fuel. It is a square
shaped piece of cloth that acts
like a sail and captures the
radiation pressure from the sun to
propel the spacecraft forward.

Instruction: What could be the possible
cultural significance of this typical tree
to the Japanese people?

Output: The cherry blossom tree, also
known as "sakura", holds great cultural
significance in Japanese society. Its
delicate and ephemeral beauty is
associated with the transience of life
and the seasonal cycle of rebirth and
renewal. Every year, Japan celebrates
Hanami, a national festival where
people gather under the cherry blossom
trees to appreciate their beauty and
contemplate the impermanence of life.

Instruction: What kind of material is used
to create a unique mode of transportation
and what other materials could be used?

Output: The motorcycle used wood for
the body parts which is a unique material
for this transportation. While wood is
certainly a unique material for a
motorcycle, there are many other
materials that could also create a one-of-
a-kind mode of transportation. For
example, a motorcycle made from
recycled materials like metal scraps, old
car parts, or discarded plastic could be
both sustainable and visually striking.

Figure 3: Examples of the OLIVE benchmark for different categories. From left to right: visual
recognition, knowledge-based, and creative writing.

A.2 OLIVE

We introduce a new dataset, Open-world Language Instruction for Visual-language Evaluation
(OLIVE), designed to simulate the complex user queries that VLMs encounter in real-world scenarios.
This highly diverse, human-corrected multimodal dataset aims to mirror the variety and idiosyncrasies
of inputs that VLMs receive once deployed publicly, which is currently underrepresented in academic
datasets. OLIVE enables the training and evaluation of VLMs in conditions that more closely
resemble their ultimate use case.

OLIVE comprises 9,450 images, 30,120 unique instructions, and 47,250 responses. The examples
can be broadly categorized into 4 groups: visual recognition, creative writing, knowledge-based, and
elaborated description. Tab. [3|shows some examples.

The data curation process begins with random sampling of 9,450 images from LAION-
Aesthetics (Schuhmann et al} [2022). We combine the original LAION captions - which may
contain entity-specific knowledge - with additional captions generated by BLIP-2 (Li et al.l 2023b) to
form comprehensive image descriptions. These descriptions are then used as input for the text-only
version of ChatGPT to generate tailored instructions and five corresponding responses per instruction.
We also manually annotate a few seed examples for each aforementioned categories, and use these as
in-context examples to guide ChatGPT. Examples of input prompts are given in Appendix [A3]

The instructions and outputs generated by ChatGPT could contain incorrect information due to model
hallucination, which undermines their reliability for use as an evaluation benchmark. Recognizing
this, we hired human annotators through Flitto, an annotation company, to thoroughly inspect and
correct erroneous data. They are task to: 1) ensure that the instructions contain minimal shortcut
information, which would enable the model to produce correct outputs without having to understand
the image, 2) verify the accuracy of the output and confirm that it is free from harmful content, and 3)
fact-check knowledge-based information. This comprehensive review process helps to enhance the
overall quality and reliability of the data.

A.3 CHATGPT PROMPTS FOR OLIVE

Following (Liu et al.,2023c)) and (Taori et al.,[2023), we construct prompts for ChatGPT (OpenAll,
2023a) to generate instructions and outputs for different categories: visual recognition, elaborated
description, knowledge-based and creative writing. For elaborated description, we randomly sample
from a list of instructions that inquire about image description.

10
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Prompt for generating creative writing

instructions

Prompt for generating knowledge-based
instructions

You are given several image captions,
each describing the same image you are
observing. Using your creativity and
imagination, think of a new instruction
that can be induced from the image
captions.

Here are the requirements:

1. Try not to repeat the verb for each
instruction to maximize diversity.

2. The language used for the instruction
also should be diverse. Either an impera-
tive sentence or a question is permitted.
3. The type of instruction should be di-
verse.

4. The instruction must not involve
counting.

5. Make the instruction challenging by
not including the visual content details in
the instruction so that one must use the
captions to understand the instruction.
6. Replace the name of the object entity
with a generic term or category, for ex-
ample replace bus as this vehicle, dress
as this clothing, etc.

7. The format of the instruction should
follow the examples shown below. Make
sure it is numbered and end with *###’.
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You are given several image captions,
each describing the same image you are
observing. Using your creativity and
imagination, think of a new instruction
that can be induced from the image
captions.

Here are the requirements:

1. Try not to repeat the verb for each
instruction to maximize diversity.

2. The language used for the instruction
also should be diverse. Either an impera-
tive sentence or a question is permitted.

3. The instruction should be diverse and
ask a question that requires reasoning,
not just simple visual recognition.

4. Given the instruction, one should
require first understanding the visual
content, then based on the background
knowledge or reasoning, either explain
why the things are happening that way,
or provide guides and help to user’s re-
quest.

5. Make the instruction challenging by
not including the visual content details in
the instruction so that the user must use
the captions to understand the instruc-
tion.

6. Replace the name of the object entity
with a generic term or category, for ex-
ample replace bus as this vehicle, dress
as this clothing, etc.

7. The instruction must not involve
counting.

8. The format of the instruction should
follow the examples shown below. Make
sure it is numbered and end with *###’.
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Prompt for generating visual recognition

instructions

List of instructions for elaborated de-

You are given several image captions,
each describing the same image you are
observing. Using your creativity and
imagination, think of a new instruction
that can be induced from the image
captions.

Here are the requirements:

1. Try not to repeat the verb for each
instruction to maximize diversity.

2. The language used for the instruction
also should be diverse. Either an impera-
tive sentence or a question is permitted.

3. The instruction should ask about the
visual content of the image, including
the object types, object actions, object
locations, etc. Only include instruction
that has definite answers founded in the
captions.

4. Include complex instruction that is rel-
evant to the content in the image, for ex-
ample, asking about background knowl-
edge of the objects in the image, asking
to discuss about events happening in the
image, etc. Again, do not ask about un-
certain details.

5. Make the instruction challenging by
not including the visual content details in
the instruction so that the one must use
the captions to understand the instruc-
tion.

6. Replace the name of the object entity
with a generic term or category, for ex-
ample replace bus as this vehicle, dress
as this clothing, etc.

7. The instruction must not involve
counting.

8. The format of the instruction should
follow the examples shown below. Make
sure it is numbered and end with *###’.
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scription (part 1)

* Provide a vivid description of
the image.

* What is a suitable paragraph
that describes this image?

» Compose a passage that depicts
this image.

* What is this image about?

* What’s happening in the scene?

* Can you describe the main fea-
tures of this image for me?

* What are the key details in this
picture?

* Can you elaborate on the ele-
ments of the picture provided?

* What do you think is going on
in this photo?

* Can you provide a comprehen-
sive description of the image?

* Describe the following image
in detail.

* Provide a detailed portrayal of
what’s captured in this image.

* Offer an intricate description of
the image you see.

* Please share a thorough run
down of the image that has been
presented.

* Could you elaborate on the con-
tents of the displayed image
with thoroughness?

* Clarify the contents of the dis-
played image with elaborate de-
tail.
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List of instructions for elaborated de-

scription (part 2)

* Can you offer a comprehensive
portrayal of the image?

* Could you highlight and elabo-
rate on the details of the image?

* Portray the image with a vivid
comprehensive narrative.

* Analyze the image in a descrip-
tive manner.

* Write an well-detailed depic-
tion of the given image.

* How would you describe this
photo in great detail?

* Can you give a detailed account
of what you see in this image?

* Describe this image using your
own words.

* Please describe what you see in
the image with as much detail
as possible.

* I need you to depict the image
with utmost detail.

* Can you describe the image be-
low in exhaustive detail?

* Please provide a complete de-
scription of what is shown in
the picture.

* I would like you to give a de-
tailed clarification of the con-
tents of the displayed image.

* Could you provide a detailed
and comprehensive representa-
tion of the image?

* Provide a comprehensive illus-
tration of the image.

e Illustrate the image using a
well-detailed description.

* Write a rich narrative for this
image.

* Give a thorough description for
the given image.

* Write a vivid account of the mo-
ment captured in this image.

* Create a narrative that is rich
and vivid based on the image
presented.

13

Prompt for generating visual recognition,
knowledge-based and creative writing

outputs

You are given an instruction and several
image captions, each caption describing
the same image you are observing.
Generate an output resulting from
following the instruction.

Here are the requirements:

1. The output is the response to the in-
struction and the caption.

2. The output must utilize the informa-
tion in the caption and must not contra-
dict the caption.

3. If the output is unknown without fur-
ther context, generate "unknown" as the
output.

4. When using the information from the
caption, directly explain the scene, do
not mention that the information source
is the caption. Always answer as if you
are directly looking at the image.

5. Provide detailed output when an-
swering complex instruction. For exam-
ple, give detailed examples or reasoning
steps to make the content more convinc-
ing and well-organized.

6. The format of the output should fol-
low the examples shown below. Make
sure it is numbered and end with "###’.
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Prompt for generating elaborated de-
scription outputs

You are given several image captions,
each caption describing the same image
you are observing.

Here are the requirements:

1. Generate an output that describes the
image in detail.

2. The output must utilize the informa-
tion in the caption and must not contra-
dict the caption. Do not include descrip-
tion of objects that is not presented in the
caption.

3. When using the information from the
caption, directly explain the scene, do
not mention that the information source
is the caption. Always answer as if you
are directly looking at the image.

4. The format of the output should fol-
low the examples shown below. Make
sure it is numbered and end with *###.

A.4 MODEL DETAILS

We experiment with the following four VLMs:

e BLIP-2 utilizes ViT-G/14 (Fang et al.,|2023) as the image encoder and FlanT5x;, (Chung
et al.l [2022) as the LLM. We initialize BLIP-2 from the pretrained checkpoint and only
fine-tune the Q-former parameters. Both the image encoder and the LLM are frozen. The
total and trainable parameters are 4B and 187M respectively.

* MiniGPT-4 utilizes ViT-G/14 (Fang et al.,|2023)) as the image encoder and Vicunayg (Chiang
et al.| 2023) as the LLM. It consists of the BLIP-2 Q-former and a linear layer between the
image encoder and the LLM. The Q-former is initialized from BLIP-2. All parameters are
frozen except the linear layer. The total and trainable parameters are 8B and 3M respectively.

* LLaVA utilizes ViT-L/14 (Radford et al.,2021) as the image encoder and LLaMA ;g (Tou-
vron et al.| |2023)) as the LLM. It consists of a linear layer between the image encoder and
the LLM. All parameters are frozen except the linear layer and LoRA (Hu et al., 2022)
parameters in the LLM. The total and trainable parameters are 7B and 164M respectively.

* mPLUG-Owl utilizes ViT-L/14 (Radford et al. 2021) as the image encoder and
LLaMA75 (Touvron et al.l [2023)) as the LLM. It consists of a visual abstractor module
between the image encoder and the LLM. All parameters are frozen except LoRA (Hu
et al.l [2022)) parameters in the LLM. The total and trainable parameters are 7B and 4M
respectively.

The four models have largely not been trained on our datasets of interest, with a few exceptions.
Specifically, BLIP-2 and MiniGPT-4 have been exposed to COCO Caption and Web CapFilt. mPLUG-
Owl has been exposed to COCO Caption. LLaVA has been exposed to its own three datasets.

We avoid models that have been finetuned on many VQA datasets such as InstructBLIP (Dai et al.}
2023), LLaVA 1.5 (Liu et al.} 2023b), and Qwen-VL (Bai et al., 2023al).

A.5 TRAINING HYPERPARAMETERS
We fine-tune the models on each source task using instruction-formatted inputs. Only a single

instruction template is used for each task, as preliminary findings indicate that multiple templates
degrade performance.

14
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We keep the hyperparameters constant for experiments using the same model architecture. The
number of training iterations is set to be 10,000, and the batch sizes are set to be 192 for BLIP-2 and
128 for MiniGPT-4, mPLUG-Owl, and LLaVA.

For BLIP-2, MiniGPT-4 and mPLUG-Ow]1, we train the model using AdamW optimizer with a weight
decay of 0.05. The learning rate is linearly increased from le—8 to 1le—5 in the first 200 steps and
then cosine decayed to 0. For LLaVA, we use a weight decay of 0. The learning rate is linearly
increased from O to 2e—5 in the first 200 steps and then cosine decayed to 0.

We output model performances at intervals of 1,000 iterations and select the best checkpoint using
the validation set for evaluation.

All experiments are performed on a machine with 8 or 16 Nvidia A100 GPUs. On average, each
experiment requires 2 hours for training and 2 hours for evaluation. We use the LAVIS (L1 et al.|
2022a) library for training BLIP-2, MiniGPT-4, and mPLUG-OwI and the original author’s codebase
for training LLaVA. All evaluations are performed using LAVIS.

A.6 RESULTS: TRANSFER PERFORMANCE

We present the experimental results for all four models. Tables 36| contains the raw transfer
performance. Each row represents a source task and each column represents a target task. Tables
[7HI0] contains the normalized transfer performance. The rows (source tasks) are sorted in descending
order of average performance.
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Among the source tasks, LLaVA Conversation demonstrates significant transfer to OLIVE for both
BLIP-2 and LLaVA models. This notable transferability likely stems from the similarities in data
distribution between LLaVA Conversation and OLIVE, as both utilize instruction-response pairs
generated by OpenAl GPT models (OpenAlL 2023aib). The key difference is that OLIVE is inspected
by human annotators to rectify erroneous data, whereas LLaVA Conversation is not.

A.7 RESULTS: FACTOR ANALYSIS

We present the results for six-factor EFA on the residual matrix A. We set the cut-off for factor
loadings to be 0.3. Communality quantifies the proportion of variance in each target task that
is accounted for by the identified factors. A low communality value indicates that a task differs
significantly from others in the mix.

Target Tasks Factor 1 Factor2 Factor3 Factor4 Factor5 Factor6 Communality
Flickr30k 0.97 -0.02 0.00 0.07 0.06 -0.08 0.96
COCO Caption 0.93 -0.05 0.00 0.10 -0.02 -0.12 0.90
TextCaps 0.83 0.12 -0.20 0.07 0.10 -0.10 0.77
TextVQA (G) -0.19 0.87 0.04 -0.10 -0.14 -0.16 0.85
VQAv2 (MC) -0.34 -0.74 -0.34 -0.01 0.24 -0.02 0.83
ChartQA (G) -0.08 0.67 -0.16 0.31 -0.12 -0.23 0.65
OK-VQA (G) -0.24 0.60 0.51 -0.20 0.20 0.15 0.78
GQA (MC) -0.32 -0.55 -0.18 -0.26 -0.02 0.00 0.50
OK-VQA (MC) -0.43 -0.49 -0.30 0.07 0.22 -0.20 0.62
VQAV2 (G) 0.08 0.06 0.85 0.23 0.05 -0.25 0.86
GQA (G) -0.22 -0.01 0.75 -0.05 -0.21 0.12 0.66
A-OKVQA (G) -0.28 0.54 0.59 -0.26 0.23 0.17 0.87
TextVQA (MC) -0.38 -0.12 -0.49 0.02 0.36 -0.23 0.58
OCR-VQA (MC) 0.20 -0.14 -0.04 0.65 -0.19 -0.27 0.60
ChartQA (MC) -0.14 0.07 -0.02 0.65 0.19 0.29 0.57
RAVEN-FAIR (MC) 0.02 -0.01 0.08 -0.40 -0.04 0.17 0.20
ScienceQA (MC) -0.07 0.00 -0.07 -0.39 -0.05 -0.06 0.17
IconQA (MC) -0.01 -0.09 -0.08 -0.34 -0.05 -0.10 0.14
OCR-VQA (G) -0.01 0.11 -0.04 -0.12 -0.66 0.01 0.46
A-OKVQA (MC) -0.21 -0.35 -0.38 -0.18 0.63 -0.07 0.74
MORE (G) 0.22 0.47 -0.22 0.21 0.54 -0.03 0.65
OpenCQA (G) 0.17 -0.07 -0.09 0.11 0.32 -0.24 0.21
OLIVE (G) -0.05 0.06 0.09 0.10 -0.08 0.61 0.40
CLEVR (G) -0.17 0.20 0.16 -0.44 -0.34 0.59 0.74
CLEVR (MC) -0.18 -0.13 -0.05 -0.07 0.01 0.55 0.36
VSR (MC) 0.15 -0.26 -0.10 0.10 -0.06 0.50 0.37
NY Explanation (G) 0.13 -0.03 -0.04 0.26 0.21 -0.10 0.14
NY Ranking (MC) -0.24 -0.30 0.13 0.08 -0.23 0.04 0.22
Hateful Memes (MC) 0.05 -0.09 -0.16 -0.14 -0.24 0.05 0.12

Table 11: Results of EFA on the residuals A. Cut-off for factor loadings = 0.3.

We present the results for three-factor EFA on the normalized transfer performance for the generative
and MC versions of seven VQA tasks. We set the cut-off for factor loadings to be 0.6.

Target Tasks  Factor 1 Factor2 Factor3 Communality

OK-VQA (G) 0.78 0.43 0.44 1.00
A-OKVQA (G) 0.74 0.44 0.49 0.98
ChartQA (G) 0.59 0.68 0.31 0.91
TextVQA (G) 0.63 0.66 0.38 0.97
OCR-VQA (G) 0.30 0.65 0.46 0.73
GQA (G) 0.51 0.46 0.73 1.00
VQAV2 (G) 0.60 0.46 0.60 0.93

Table 12: Results of EFA on generative VQAs. Cut-off for factor loadings = 0.6.
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Target Tasks Factor 1 Factor2 Factor3 Communality

OCR-VQA (MC) | 0.81 0.31 0.28 0.82
ChartQA (MC) 0.72 0.38 021 0.70
A-OKVQA (MC) 0.1 0.69 0.44 0.93
TextVQA (MC) 0.53 0.69 0.39 0.90
OK-VQA (MC) 0.59 0.64 0.44 0.95
GQA (MC) 0.23 0.28 0.93 1.00
VQAV2 (MC) 0.50 0.55 0.64 0.96

Table 13: Results of EFA on multiple-choice VQAS A. Cut-off for factor loadings = 0.6.
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