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Abstract: Learned language-conditioned robot policies often struggle to effec-
tively adapt to new real-world tasks even when pre-trained across a diverse set
of instructions. We propose a novel approach for few-shot adaptation to unseen
tasks that exploits the semantic understanding of task decomposition provided by
vision-language models (VLMs). Our method, Policy Adaptation via Language
Optimization (PALO), combines a handful of demonstrations of a task with pro-
posed language decompositions sampled from a VLM to quickly enable rapid
nonparametric adaptation, avoiding the need for a larger fine-tuning dataset. We
evaluate PALO on extensive real-world experiments consisting of challenging un-
seen, long-horizon robot manipulation tasks. We find that PALO is able of con-
sistently complete long-horizon, multi-tier tasks in the real world, outperforming
state of the art pre-trained generalist policies, and methods that have access to the
same demonstrations.'
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Figure 1: An overview of the PALO algorithm for few-shot adaptation with language. (Left) We build off a pre-
trained policy that has learned to follow low-level language instructions from a large dataset of expert demon-
strations. (Middle) Given a new task and a few expert demonstrations, we use a VLM to propose candidate
decompositions into subtasks. We optimize over these decompositions jointly with the partitions of trajectories
into subtasks, selecting the subtask decomposition that minimizes the validation error of the learned policy.
(Right) At test time, we condition the pre-trained policy on the selected decomposition to solve the task.
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1 Introduction

Robot learning promises policies that can adapt and generalize to new behaviors. However, in
practice, today’s robotic policies often struggle to effectively finetune for truly new tasks [1, 2, 3,
4, 5]. For example, consider the task of making a salad: while a person could likely follow a new
recipe with only a few examples by remembering the key steps, a robot learning approach may need
many more demonstrations to achieve similar performance, and still recover a more brittle policy.

A key difference that allows humans to learn tasks so quickly is their semantic understanding of the
world. Human have a symbolic representation of the task, such as the names of the ingredients and
the steps to prepare them, rather than a series of low-level actions. This representation enables them
to understand the task at a higher level, mapping directly into low-level behaviors they are already
familiar with [6, 7]. How can we enable robots to quickly learn new tasks through a semantic
understanding of the world?

Language provides a potential bridge between
these task semantics and low-level control [8].
Recent advances in large language models
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(LLMs) and vision-language models (VLMs)
have shown promise in understanding and
grounding language from a few demonstrations
[9, 10]. We propose Policy Adaptation via Lan-
guage Optimization (PALO), a method for ex-
ploiting the semantic understanding of VLMs
in combination with a pre-trained robot policy
to enable adaptation to new tasks with only a
few demonstrations (Fig. 1).
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Past approaches that fine-tune directly to new
demonstrations are often overparameterized
and sample-inefficient, due to the cost inher-
ent in collecting teleoperated trajectories [11].
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learned policy on the calibration set Figure 2: PALO enables pre-trained generalist policies

to adapt new tasks with as few as five demonstrations by
The key is that in the few-shot setting, a searchinginlanguage space instead of parameter space.
few demonstrations provide a better signal for

adapting to new tasks when used to select the right sequence of language subtasks with the help of
a VLM, rather than directly fine-tuning the policy parameters (Fig. 2). Unlike prior work, our ap-
proach can learn unseen, long-horizon behaviors with fewer than 10 demonstrations across a variety

of tabletop manipulation tasks.

2 Related Work

Our approach lies at the intersection of few-shot learning and approaches that leverage language and
large pre-trained models for robotics.

Few-shot learning. Broadly speaking, few-shot learning approaches utilize diverse data to enable
rapid test-time adaptation to a new task from a few examples. These techniques have been applied
in various domains, including vision [12, 13, 14], natural language processing [9, 15], and rein-
forcement learning [16, 17]. Frameworks for few-shot learning include optimization-based meta-
learning [18, 19, 20], where a model is trained to quickly fine-tune to new tasks, nonparametric



methods based on particular modeling assumptions such as metric approaches and Gaussian pro-
cesses [21, 22, 23, 24], and in-context learning [9, 25, 26, 27], where a large model is conditioned
on a context to adapt to a new task. Unlike past approaches to few-shot learning in robotics [28, 11],
we show that language can be used to enable nonparametric adaptation without fine-tuning.

Language-conditioned robotic control. While early approaches to instruction-following in
robotics relied on manually designed symbolic representations [29, 30, 31], recent work has fo-
cused on applying deep learning techniques to understand natural language instructions [32, 33].
These approaches use learned behavioral cloning policies on top of language [2, 34, 35], connect
language representations to grounded representations of the environment [36, 37, 38, 39], or use
the compositional structure of language to decompose tasks and plan [40, 41, 42, 43, 44]. Our ap-
proach is the first to enable few-shot adaptation to new demonstrations in robotics by leveraging the
structure of language.

Foundation models and robotics. Large-scale internet pre-training has seen recent success in
the domains of vision and natural language processing [9, 45, 46, 47, 9, 48]. Recent work has
investigated if these models can be trained and/or fine-tuned for downstream robotics tasks [32,
49, 50, 11, 51, 52]. Other work has investigated if these models can be used to provide semantic
knowledge for downstream robot learning pipelines [53, 54, 55, 56, 57, 58, 59]. Our approach falls
into this latter category, but unlike the past works, we perform few-shot adaptation in language-
conditioned robot control using the semantic knowledge in large pre-trained VLMs.

3 Policy Adaptation via Language Optimization

Our goal is to enable a learned language-conditioned robot policy to perform new tasks with only a
few demonstrations. The key insight is that the structure of language can be exploited to enable few-
shot adaptation to new demonstrations in robotics. Fundamentally, few-shot adaptation to new tasks
depends on a policy’s ability to generalize its existing knowledge to correctly fit to new demonstra-
tions. One approach for adapting a learned policy is to directly fine-tune to new demonstrations, but
in robotics settings where expert data collection is costly, this is often infeasible due to overfitting.

We propose Policy Adaptation via Language Optimization (PALO), which instead uses demonstra-
tions of a task that is outside the training distribution with the reasoning capabilities of a pre-trained
vision-language model (VLM) to determine the correct sequence of decomposed subtasks that are
in-distribution for the robot policy. Given a language instruction ¢, we compute a task decompo-
sition c¢y.x that is both semantically consistent with the instruction (determined by the VLM) and
feasible in the environment (measured by policy validation loss on expert demonstrations).

3.1 Notation

Formally, we assume a contextual Markov Decision Process (MDP) structure. We have a state space
S, continuous action space A = (0, 1)dA , initial state distribution py, transition probabilities P, and
free-form language instruction ¢ € L chosen from the language instruction space £. We use the
notation (X)) to denote the set of probability distributions over a space X.

The robot selects the action a; € A based on the observed state s; € S at each time step ¢t €
{1... H} over a finite horizon H to achieve states in S;. We denote a robot policy as a map 7 (d; |
¢, £), which maps the state s; and instruction £ to a distribution over actions a;. For convenience, we
assume actions are selected under a fixed isotropic Gaussian noise model unless otherwise specified,
and will denote the mode of the distribution 7(a | s, e) as w(s:,®). A robot policy then yields a
distribution over trajectories ({(s;,a;)}L,,¢) ~ TP given a task distribution p € P(L).

3.2 Problem Statement

We want to solve out-of-distribution instruction-following tasks involving unseen objects and skills
given only a few demonstrations. For (pre-)training the instruction-following policy we assume
access to a dataset that has been generated using language tasks sampled from some distribution
pprior € P(L) with an expert policy ms(a | s,¢). For training an instruction-following policy

#(s, £), we assume a prior dataset Dyior = { (7%, ng)K’ (@) }szpl for 7V ¢ ~ T and additional



hierarchically-decomposed subtask instructions c;.x € LX that are distributed according to p(c1.x |
S0, £) for decomposition size K < H.

A target task is sampled from a separate distribution pereer € P (L) Which requires interacting with
unseen objects in novel ways, so the policy trained on Dy, performs poorly zero-shot. To solve this
new task, we assume there exists an additional dataset Diyger = ({71 ... 70}, ¥) for 7; ~ 7;6; | s0
with s9 ~ po and £ ~ preer collected by human experts. While a large Diareec can enable directly
training 7 (s, £) to solve the target task, we are interested in challenging few-shot scenarios in which
Drarger Only contains a handful of demonstrations (e.g., 5). In this paper, we tackle this challenge
by decomposing the novel target task into a sequence of subtasks that are solvable by the pre-
trained 7 (s, ¢) using a VLM M. Notably, we do not assume any ground truth labels for the task
decomposition are given, and aim to generate the optimal language decomposition c;.x based on
the unlabeled demonstration dataset Dy, collected by human operators.

Our approach makes two assumptions about the structure of the target task.

Assumption 1. The target task subtask annotations c; locally match those of the prior dataset, i.e.,
are distributed identically for i ~ Unif(1... H)

Ef’vplargel,SUNPop(ci ‘ 50, E) ~ EZ"’pprionSONpOp(ci ‘ 50, E)' (1)

Assumption 1 states that even if the overall target tasks in pgrge; are unseen, the low-level manipula-
tion skills (e.g., “close the gripper,” “move the arm right”) will be represented in the policy training.

Assumption 2. The VLM M can approximate the distribution of the subtask annotations cy.x in
the target task, i.e., pmlcri | 50,€) = pler.i | s0,4). )

Assumption 2 states that the VLM can propose candidate task decompositions that are consistent
with the instruction ¢ in new scenes. Qualitatively, these assumptions are consistent with recent
advances in robot manipulation training data [5, 51] and embodied reasoning with VLMs [60] and
are empirically validated in our experiments in Section 4 using the BridgeDataV2 dataset [5] and
GPT-40 [46] with prompting described in Appendix F.

In Section 3.6 we show that under these assumptions, our PALO algorithm can achieve low regret
on out-of-distribution tasks, and discuss how violating these assumptions affects performance.

3.3 Task Decomposition with Language

To guide the pre-trained policy 7 to solve the unseen target task, we decompose the high-level
language instruction £ of the target task into a sequence of subtask instructions ¢;.x = (c1, ..., Cx)
for the K subtasks as a set of language decomposition. Instead of commanding 7 with the original
instruction ¢, we use a combination of ¢ and the subtask instructions ¢, as the input in each subtask
to produce the action as a; < 7(s¢, k). In our methods, we used GPT-4o [46] as a backbone
to generate instruction sets. We denote by M (g, £) the support of possible task decompositions
sampled from this VLM (see details in Appendix F).

Aside from the sequential order of the subtasks, the robot needs to decide when to switch to the next
subtask. For this purpose, we introduce an additional variable u = (u1, ..., urx) ~ Unif (i) where
U is the space of ordered partitions of {0... H}, so uy denotes the time steps on which the robot
is executing the k-th subtask. Notably, we assume the optimal solution to the target task follows
a fixed structure, i.e., the same subtask sequence c can be used to solve the task, regardless of the
initial state so. Meanwhile, u can be different in each episode, since the number of steps needed to
complete each subtask depends on sg as well as stochasticity in the environment and the policy.

3.4 Few-Shot Adaptation through Language Decomposition

We design a simple sampling-based inference algorithm to find the best c¢* for guiding the policy 7 to
solve the target task. Since the resulting actions depend on both ¢ and u, as discussed in Section 3.3,
we jointly optimize c and v to minimize a cost function J over all trajectories in Dyaeger:

min min c,u, . 3
c1.xk EM(s0,) Z (ul:Keu J( T)) 3)

TE Du\rget
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Figure 3: A visualization of an example execution of our method on the lon[gi -horizon task “put the beet toy
in the drawer.” The VLM deconstructs ¢ into candidate hi I§h -level subtasks e and low-level subtasks ¢l 5
and optimizes over the expert trajectories. The optimal ¢/, and cF,,, are chosen and unrolled in real-world
evaluations, which result in successful completion of the task (trajectory shown in gray).

To measure how well ¢ and u enable the policy 7 to reproduce each 7, the cost function is defined
with the mean squared error between the predicted action a; and the ground truth a; at each time
step t. More specifically, we evaluate the policy 7 on the demonstration trajectory given ¢ and w to
compute Gy < (8¢, Cmin{k:teu,})- Then the cost function is defined as:

T (e, u,7) Z 3 [lae — #(se o)) “)

n=1tEu,

By minimizing this cost across demonstrations, we compute a decomposition of the task c that would
optimally perform the task by minimizing the loss between the action of the robot and the expert.

3.5 Learning Composable Instruction-Following Primitives
We use language-conditioned behavior cloning [61] to learn a policy 7 (s:,¢) based on the expert

trajectories of Dpior. To enable conditioning on fine-grained hierarchical language instructions, we
factorize 7 through c¢;.x:

K

w(a ] s, l) = Z (c1:x | 9) Z (@ | sty cn)plke = k) ®)
c1.xk €L k=1

for the subtask index at time ¢: k; = min{k : t € uy,u1.x ~ Unif(U/)}. We learn parameters 6 for

Tp by minimizing the following behavioral cloning objective:

H
EBC(Q) = E(st,at,ck,Z)N’Dp,io, {Znﬁ'@(sta Ck) - at||2:| . (6)
t=1

The training dataset Dy is an augmented version of BridgeData [5], a dataset containing a diverse
set of manipulation tasks on common household objects. Details about how the subtask instructions
are generated are discussed in Appendix D. Each ¢; is further partitioned into a high-level component
cH and a low-level component cZ~. Our full implementation is described in Appendix D.

3.6 Analysis of PALO

Our theoretical results study the regret of this approach on out-of-distribution tasks in pgarger, Showing
that it trades off the performance of the pre-trained policy on pyrior and the performance of the VLM
M in accurately modeling the hierarchical language decomposition p(cy.x) in Prarget- We define
regret with respect to the expert policy 73 and a given task distribution in terms of the MSE:

Ry, (m5p) = By, [H\/— Z||7r si:0) = ma(si, O] @)




Algorithm 1 Policy Adaptation via Language Optimization (PALO)

Require: a VLM M, pre-trained instruction-following policy 7 (a | s, ¢),
number of candidate decompositions to sample M, optimization steps N

Input: new task described by ¢ with n expert demonstrations Dige collected manually
Output:  policy 7(- | s;) adapted to the new task ¢
: fori=1to M do

c(1Z)K ~ M(so,0)

for j =1to N do

ufl) ~ Unif@)
él:K < arg min01;1<€{c<’7>}£”i1 minue{u(i,]‘)}é\;l j(Cl;K, u, T) (Cq. 4)
Toaro (@ | S¢,0) < m(a | s, ék,)
return 7p 0.

AN A S ol ey

Theorem 3.7. The (out-of-distribution) regret of PALO on pireer can be bounded as:
Rﬂ'ﬁ (7TPAL0; ptarget) < Rﬂg (ﬁ-a pprior) +E [DTV (ptarget(ckf,)a pprior(ck,, ))]
1/2 VM v/ nlog(Mn _
+ (2Dxw [p(er:x), pa]) Lt %g() +1/M +1/K + N5 (8)
where TpaLo is from Algorithm 1, 7t(sy, £) is trained on Dyior (Section 3.5), and t ~ Unif(1... H).

The proof is in Appendix A. Theorem 3.7 shows that in the limit as N, M — oo, we can decompose
the out-of-distribution regret of PALO into a sum of the in-distribution regret of the pre-trained
policy, and the performance of the VLM in accurately decomposing language tasks:

qu (ﬂ—PALO; ptarget) S_, Rﬂﬁ (7}7 pprior) + (2 IEpmgﬂDKL [p(cl:K) HPM (Cl:K)} ) 2 +E [DTV (plarget(ck,,)y pprior(ckt ))] . (9)

pre-training MSE VLM accuracy local marginal conformity

Viewing the VLM accuracy and local marginal conformity terms as the extent to which Assump-
tions 1 and 2 are satisfied, we can see that under these conditions, Theorem 3.7 lets us directly relate
the performance of the pre-trained policy 7 on the training data Dyor to the performance of the
PALO algorithm on out-of-distribution tasks.

3.8 System Details

We use a ResNet-34 [62] to model the policy 7 (a | s, c¢), where ¢ = ( ) is a concatenation of
high- and low-level instructions. The instruction ¢ = (¢, ¢?) is passed through a frozen MUSE
model [63] to obtain embeddings before being fused into the ResNet with FILM layers [64]. Archi-
tecture details are presented in Appendix C, and the overall algorithm is shown in Algorithm 1.

et

4 Experiments

In this section, we show that PALO can better adapt to long-horizon and out-of-distribution tasks
from a few expert demonstrations than existing learned language-conditioned manipulation poli-
cies (both zero-shot and when finetuned to demonstrations), as well as a nonparametric few-shot
adaptation method. Ablation studies also show all components of PALO are necessary.

4.1 Experimental Setup

We evaluate on a variety of long-horizon and/or unseen tasks across four scenes from the Bridge
tabletop manipulation setup [5]. These involve manipulating new combinations of objects and be-
haviors unseen in the training data to accomplish long-horizon tasks, such as making a salad or
pouring into a bowl. For each task, we collect a set of five expert demonstrations Digrge for few-shot
learning. Besides separating by scenes, we can also separate the tasks into 4 long-horizon tasks
(put in, salad, sweep mints, sweep skittles) and 4 unseen-skills tasks (pry away, pour spoon, rotate
marker, rotate spoon). Experimental details and example rollouts are presented in Appendix B.

4.2 Baselines
We compare against the following baselines trained on BridgeData:

Octo [11]: A general transformer-based robot manipulation policy with diffusion action head.
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Figure 4: Comparison of PALO with baseline methods on different scenes with one standard error.

Figure 5: An execution of our method on the task “pour the contents of the scoop into the bowl.” Full breakdown
of task and instructions can be seen at Appendix G

GRIF [36]: A language-conditioned robot control method that uses pre-trained CLIP [45] repre-
sentations to connect language instructions to goals for the policy to reach.

RT-2-X [32]: A language-conditioned robot control model with 55B parameters that transfers
knowledge from internet-scale pre-training to manipulation zero-shot.

LCBC [61]: Language imitation with a ResNet and pretrained MUSE [63] embeddings.

VINN [65]: Using k-Nearest Neighbor to select actions from the training data based on similarity
between the task representations of the observation and training data. We used GRIF’s CLIP
encoder for the representations used to calculate similarity scores.

FT-Octo: Octo transformer finetuned on the few-shot demonstration (see Appendix C.2 for details).

FT-LCBC: Similar to FT-Octo, but fine-tuning LCBC on the few-shot demonstrations.

Across eight different tasks, our PALO method yielded a success rate of 71.3%, while the best
zero-shot policies only resulted in a success rate of 26.3%. While most of the zero-shot methods
degrade when the task became increasingly more out-of-distribution for the pretrained policy (for
example, tasks in the “salad” scene achieved a 30% overall performance across the 4 baseline models
while pouring from scoop only achieved 12% performance across the models), our method remained
effective, with all 8 tasks performing at a success rate of 50% or better.

The FT-Octo and FT-LCBC baselines allow us to compare the nonparametric adaptation of
PALO to conventional parametric finetuning. While Octo trained only on BridgeData achieved
moderate zero-shot success, finetuning on only five demonstrations overfit and worsened perfor-
mance. The FT-LCBC baseline did benefit from finetuning, but still failed to ever exceed 30%
success rate across all tasks. We observe that the small size of trajectories made these datasets
an unfavorable candidate for finetuning, as any variance brought by the human controller may be
amplified and cause unfavorable movements during evaluation. The nonparametric VINN base-
line performed well on the rotation tasks (45% success rate), but failed to achieve greater than 5%
success rate on the other tasks.

4.3 Ablations
We ablate the following components of our method in Fig. 6:

Ours: Our full PALO approach
No c’: No high-level ¢y conditioning for the learned policy via masking.
No c”: No low-level ¢y, instruction conditioning via masking.
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4.4 Scaling with Demonstrations

Figure 7: Performance of PALO with 5 demonstra-
tions compared to finetuning Octo on different number
of demonstrations, plotted with one standard error.

We study the scaling of our nonparametric
method and a parametric finetuning approach
with > 5 demonstrations of the skittle sweep-
ing task in Fig. 7. We observe that while Policy Adaptation via Language Optimization achieves the
best performance (80%) using any number of demonstrations, the Octo finetuning baseline needs at
least 80 expert demonstrations to achieve comparable performance, while LCBC needs at least 120
demonstrations.

4.5 Qualitative Results

We show successful task executions in Figs. 3 and 5. While the full method is robust to logically
unsound instructions generated by the VLM, failures in reasoning and execution occur when we ab-
late our methods. Fig. 12 and Fig. 13 are two examples in which reasoning break down in ablations.
See Appendix G for details.

5 Discussion

We introduced PALO, an approach for few-shot adaptation to unseen tasks that exploits the semantic
understanding of task decomposition provided by vision-language models. In extensive real world
experiments, we find that PALO is able to use language to adapt to unseen long-horizon robot
manipulation tasks across a wide range of tabletop setups.

Limitations and Future Work. We assume the dataset has a consistent format of high-level lan-
guage labels and proprioception, making it more challenging to generalize our low-level heuristic
generation on drastically different embodiments. The discrete optimization over subtask time steps
may also scale poorly with the number of subtasks and time steps. Future work could explore more
efficient optimization methods for this problem.
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A Proof of Theorem 3.7
Theorem 3.7. The (out-of-distribution) regret of PALO on pereer can be bounded as:
R, (Tearos prarget) < Ry (75 Pprior) + E[D1v (Prarget (i, ), Pprior (¢, )) |
+ 2Dk [plerrc), paa] ) 2 + YAV Io8QIN) |y 41 K+ NUHE(8)

where TpaLo is from Algorithm 1, 7t (s, £) is trained on Dyior (Section 3.5), and t ~ Unif(1... H).

Proof. We will first consider the empirical regret of the MLE estimate of c;.x, and relate it to in-
distribution regret of 7 using PAC techniques (see Catoni [66], Alquier [67]). We will then bound the
remaining error due to the approximations made by the PALO algorithm and this empirical regret.

Recall our definition of regret:

L&
ZHw(st,E) —WB(st,é)Hz]. (from eq. 7)
=1

Rﬂ'/a‘ (va) = ET,fﬁ |:H\/a

We can also define an empirical target regret Rpy, measuring the fit of some ¢ € LK to the target
distribution pareer in terms of Eq. (4):
1

Ree(c1:x) = EDy o~ prge [H\/CT Z Hllllf(l j(CI:K7U1:K77)] (10)
A u1:

TE Dturget

where 7 is the cost function in Eq. (4). PALO selects cpa0 = argmin,, , cox EEMP(CLK) to

minimize an approximation of this quantity for samples u("), ..., u(™) ~ Unif(U):
~ 1 .
R x)=Ep — i xu® )| 11
mar{C: ) Pz s [H\/@ Te%,: _ iegl.l.].ﬂN} v T)} (an

We will also define a distributional notion of conditional regret for our analysis:

R’n'[.; (7~T ‘ 50, ‘ev C1:K) - E-,—NT:E min j(cltKv U1:K, 7_):| . (12)

1
|:H\/dA ui: Kk €U
We now make use of the following PAC result [68, 67], which follows from Hoeffding’s inequality:

Lemma A.1 (Alquier [67, Theorem 1.2]). Let H be a class of functions f : X — [0,1] with
|H| = M, and let p € P(X) be an arbitrary data distribution. Further, suppose D is a sample of
size n drawn i.i.d. from p. Then, for any € € (0, 1), we have

Pr(¥F € M, Buny [(0)] < Eumlf@)] /255052 ) > 1 -, (13)

generalization risk empirical risk

Taking X to be the space of trajectories and H = M(so, ¢) for f(c) = min, J(c, u, ), we can
apply Lemma A.1 to the empirical regret Ry, in Eq. (10) to obtain (for any ¢ € (0, 1))

Pr (VCLK € M(50,0), Rr, (7 | 50,4, cr.x) < Rewr (c1:x) + 1/ log”é;loge) >1-c. (14
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Taking cpar0 to be the output of the PALO algorithm, we can relate the true regret of PALO on the
current task (left) to its empirical regret (right):

Pr (Rm; (7AT | 307& CPALO) < Rewp (CPALO) + \/ bg]hé;loge) >1-—e. (15)

Since regret is bounded by 1, we can convert to an expectation:

]EDIargel [ng (ﬁ' | 507& CPALO)] < IEDm,ga [REMP (CPALO)} + \/ W +e.

Lemma A.2. Suppose u,u’ ~ Unif(U) are i.i.d. samples from a uniform distribution over the
ordered K -partitions U of {1 ... H}. Forany e € [0,1/K], we have

Pr(Zf:ﬂuk Nuy| < Hg) < e2H(E—e)?

Lemma A.3. There exists an ¢ € [0,1/K] such that
e+e H(x—)" <1/K + N"2K, (16)

Since Algorithm 1 (line 4) only samples N values for u instead of the full space for the min in
Eq. (10), we must separately consider the degree of suboptimality in the decomposition cp, o, relative
to the optimal ¢* = arg min e rq(s,,¢) Rewr(c) that results from our approach to determine the effect
of N on the final bound. Applying Lemma A.2, we can say:

EDlargel [Eﬂg (7Ar | 50,4, CPALO)]

S EDlarge[ [REMP (CPALO)] + \/@
< By [Rove ()] + /0820082 4 ¢ 201"
< Epyp [REMP (C*)] + \/@ +1/K + N—2/K

For e = vV M /n, we get

EDlarget |:R71'5 (ﬁ- ‘ S0, é’ CPALO)}

M+ Vnlog(Mn) |y ey -2/ a7

< Epmge‘ [REMP (C*)] + n

So, we have related the true regret of PALO on the current task (left) to its empirical regret in the
limit of infinite samples (right). All that remains is to compute the empirical regret, for which we
make use of the following lemmas.

Lemma A.4. Denote the true (unobserved) target decomposition as c1.x. We can relate the empir-
ical regret of the optimal PALO solution c* to the empirical regret of the true decomposition.

IEDmgcl [REMP (C*)] < EDm,gu [REMP (c1:x) + D1v (p(CI:K)va (CI:K))] +1/M
Lemma A.5. The empirical regret of 7 can be bounded for i ~ Unif(1... K) as
]ED,a,get [REMP (Cl:K)} < Rﬂ'g (ﬁ'; Pprior) +E [DTV (pzargez(ckt)vpprior(ckt ))} .

Applying Lemma A.4 and Lemma A.5 to Eq. (17) yields a bound of the correct form.
EDm,gﬂ [REMP (C*)] < EDWel [REMP (ClzK)] + Drv (p(cl:K)va) + 1/M
< EDprior |:R7T[-3 (ﬁ-a pprior)] +E [DTV (ptarget(ckt)ypprior(ckt ))} + Drv (P(C1:K)7 PM) + ]-/M

To make the Dty (p(cL K),D M) term more interpretable as a VLM accuracy, we convert to a KL
divergence with Pinsker’s inequality [69]:

EDmge[ [REMP (CPALO)] < ]EDprior [R‘n'g (fﬁ pprior)] E [DTV (ptarget(ckt )a pprior(ckg ))} (18)

+\/2Dke (pleri). paa) + 1/M. 19)
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Since Ep,. [Rrs (7 | 50,4, coaro)] = Ry (Teavo; Prareer) > Plugging Eq. (19) into Eq. (17) gives the
desired result:

Rﬂ"ﬁ (7TPALo; p[a.rget) S [Rﬂ'ﬁ (ﬁ-a pprior)]
+E [DTV (ptarget(ckt)apprior(ckt))] + \/QDKL (p(clzK>7pM) + 1/M
L YM Zlog(Mn) +1/K + N"YK, 20)

O

Proof of Lemma A.2. Define {X; } 1 | to be the unique index k such that i € ug, and { X/}, to be
the unique index k such that ¢ € u},. We have

Pr(zz{:lmk Nuj| > Ha) = Pr(ziH:lll{Xi =X/} > He)

- Pr(Zfil]l{Xi £ X} <HQ1- 5)). 1)
Now, we observe
K
r(X; # X)) => (1 —px,(k)px: (k) (22)
k=1
=1- pri (k)2 (23)
—

Eq. (22) is concave in px,, and so is maximized when for any dpx, and some A,

Aopx, (k =—2§jpx )opx, (k),

i.e., when px, (k) = const. = 1/K for all k. Thus, we have
E[1{X; # X{}] =Pr(X; # X]) <1-1/K.
Continuing from Eq. (21) with p = E[Zil 1{X; # X[},
Pr(SL X £ X} S HO - ) = 1= Pr(SIL X £ X)) <t (H(1 =) = p))

_ _ _ 2
Zl—eXp( 2AH(1—¢) —p) ) (Hoeffding [701)

H
_2H2((1 — 5) _ (1 _ 1/K))2
>1—
> eXp( - >
= 1—exp(-2H(1/K —)°), (24)
Taking the complement of Eq. (24) yields the desired result:
Pr(Zle\uk Nuy| < HE> < e~2H(E—2)?, 05
O

Proof of Lemma A.3. The statement follows from the ansatz

_ 1 log N
=K VNHK

Plugging in,

—oH(k—e)? _ N-2K | L (108;N )1/2
ete K N +K TN

<1/K + N~¥K,
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Proof of Lemma A.4. Recall the definition of the optimal PALO solution

¢* = argmin Rgyp(c). (26)
CEM(SU,E)

Now, noting regrets are bounded by 1 from Eq. (7), we have

EDtarget [REMP (C*)] = E’D‘”‘get Le/{r/ll%g) £) REMP(C):|

p(c) . (%)
=E R
Dharget |:<p/\/l (C) > {C(i)}gvzlllngLK [ EMP(C )]

= E'D[argel {{c<l)}min I:REMP(C('L))]]

M
i=1"Peq. g

p(c) : (4)
E - R,
+ Dharget |:<pM (C) ) {C(i)}?illlr"l’pcl:K [ EMP(C )]

p(c) 1’

S EDMUC[ min [REMP(C(i))]] + Epmgcl o (C)

} _{C(i’)}ﬁif"pclzk
< Ep,p min [REMP(C(Z'))] + D1y (p(clzK);pM(Cl:K)):|

N L{c@OFM  ~pey g

= ED, e PT(REMP(CI:K) < " for {C(i)}ﬁl ~ pq;x)

+ Rewe(c1:x) + Drv (p(01:K)7PM(01:K))]

= By [Rewe(€1:) + Drv (plenic) pa(eriie)) | + 1/M.

O

Proof of Lemma A.5. We consider the empirical regret of 7 using the true decomposition
UL, C1:K ™~ Prarget, for t ~ Unif(1... H) and k; defined as in Eq. (5):

1
Diger | Rimp (C1:K) Duse | 7 T Te; min J(crr, vk, T)

target

1 & )
:Epm,ga{m > g}}}{lZZHat—w(st,cn)Hz}

T € Duarget T n=1teu,

K
< Eu, 0~ Dige {%m ST lae = # (st CH)HQ}

TEDurger n=1 tE€EUR

K
PDrarget [Z Z ||at - 7}(Sta Cn)||2 + Drv (plarget(cn)apprior(cn)):|

n=1t€un,

1
< ——FK
~ Hy/dy

1 K
= B, cp ~ppior {m Z Z Hat — (8¢, Cn)HQ} + E[DTV (pmget(ckt),pprior(ckt))]

n=1t€uy,

= wag (7}7 pprior) +E [DTV (ptarget(ckt )a pprior(ckt ))] .

B Environment Details

We evaluate our method in a real-world tabletop manipulation setup. We use a 6DOF WidowX-250
robot interacting with various objects both inside and outside of our training distribution at 5 Hz.
We use one 640x480 RGB camera mounted on top of the model as set up in BridgeData [5]. When
computing observations we downsample images to 224 x 224.
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Instruction

“put the beet toy/purple

thing into the drawer” fier putting the

bom in the bowl”

“sweep the skittles into the
bin after putting the
mushroom in the container”

“pry out the pot in the
drawer using the ladle”

“make a salad bowl with
corn and mushroom”

“put the marker into the
box while aligning it”

“put the spoon into the
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Figure 8: Sample rollouts using PALO on unseen testing tasks.

We evaluate our method in the following scenes, which include:

Sweep: This scene involves an object manipulation as well as sweeping task unseen in the Bridge-
Data’s initial training trajectories.
mint: Placing the mushroom in the pot, then sweep the mints on the right using the towel.
skittles: Instead of using mints and towel for sweeping, we use a swiffer and skittles instead.

Drawer: This scene involves using a drawer and perform manipulation within the space of the
drawer.
put in: Open the drawer, and then put a purple object (beet/sweet potato) inside the drawer.
pry away: A pot is stored inside the drawer space, and the robot must use a ladle to pry away the

pot within drawer.

Bowl: This scene involves object manipulation to a bowl and perform long-horizon or 6DOF ma-
nipulation.
salad: This task requires sequential object manipulation by putting a corn cob and a mushroom

in the bowl.
pouring: This task requires the robot to grasp a scoop and pour almonds inside the scoop into
the bowl.

Rotation: This scene involves rotating a spoon and a marker to fit into a white container not aligned
with the pen/marker, and naive pick-and-place will not correctly align the object into the con-
tainer.
spoon: Placing the spoon in the container placed on the left side of the table.
marker: Replacing the spoon with the marker and randomize location of the container while

being misaligned.

We summarize the evaluation tasks in Table 1, and show example rollouts in Fig. 8.

C Training Details

We train on an augmented version of the BridgeDataV2 dataset [5], which features over 50k tra-
jectories with 72k language annotations. We algorithmically augment the dataset with low-level
instructions using heuristics designed over the proprioceptive states of the robot and incorporate
language context by parsing the language instruction using a language model. We use the Adam
optimizer [71] to minimize the loss function in Eq. (27).

Instead of naively looping through Algorithm 1, we batch our implementation with the exception
of the outermost for loop, thus reducing time consumption during optimization by a significant
margin via vectorization. We record an empirical time consumption of 470 seconds for our language
optimization module on computations ran on a V4 TPU module, in which only 200 seconds are
required for sampling 20000 different partitions to complete the optimization for all of the 15 sets of
language instructions. We save our optimal plans for future use, thus reducing overhead even more.

We encode both language instructions using a frozen MUSE model [63] before passing them into
the main ResNet with FiLM layers [64].

17



Table 1: Task Breakdown

Scene | Task | Long-Horizon? 6DOF required? Instruction
put in Yes Yes “put the beet toy/purple thing into
Drawer ) the drawer.”
pry away Yes Yes t ]fga%lll:; ‘E’he pot in the drawer using
salad Yes No “make a salad bowl with corn and
Bowl mushroom.”
pour scoop No Yes “pour the contents of the scoop into
the bowl.”
. “sweep the mints to the right after
mints Yes No putting the mushroom in the bowl.”
Sweep “sweep the skittles into the bin after
skittles Yes No putting the mushroom in the con-
tainer.”
marker No Yes “put the marker into the box while
Rotation aligning it.”
“put the spoon into the cleaner
spoon No Yes while aligning it.”

C.1 Hyperparameter Selection
We discuss the hyperparameters used in our method and baselines.

Policy Training We set our learning rate for our Adam Optimizer [71] to 3-10~* and a dropout rate
of 0.1 in our policy head. We employ random resizing and cropping, contrast, brightness, saturation,
and hue for input images. We train our policy for 300,000 steps, in which we use the checkpoint
with the lowest validation MSE. The total training time takes 12 hours when trained on 4 TPU pods.

Language Decomposition Optimization During optimization, we sample M/ = 15 random in-
struction sets from GPT4-o0, and we use N = 20, 000 sampling steps in order to find the best subtask
decomposition.

In order to batch across demonstrations, which have different trajectory lengths, we pad our trajecto-
ries to a certain length [ (200 for long-horizon tasks, 150 for non long-horizon tasks). We sum the
squared difference between generated action and oracle action in evaluation, thus giving a consistent
error metric analogous to Eq. (7).

C.2 Baseline Details

We finetune an Octo-small [11] model that is trained on BridgeData with a learning rate of 3 - 1074
and finetune our model’s action head for 5000 steps. We use the hyperparameters set by Octo for
the rest of the settings.

In order to perform tasks in long-horizon, we assign a language label for each task in order to trans-
plant semantic understanding from human into Octo. The same language instruction for PALO eval-
uation is also used for Octo finetuning.

D Augmentation Details

We train the policy by maximizing the likelihood of actions given high- and low-level instructions
in the dataset Dpyior:

'-7(9) = EDprior [Hat — To (Stﬂ (CH7O)) ”2 + ”at — To (St7 (07 CL)) H2 + Hat — T (Stﬂ (CH, CL)) ||2]
(27)
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where s1...55 € S, a1...ag € A, c',c¢f! € £ U {0}, and @ are the parameters of the policy
network, 0 is an additional point representing the absence of a high- or low-level instruction, which
will be represented as an embedding vector of zero during training, and 7 = (sg, ag, - - -, S, GH) is
a trajectory sampled from the dataset.

This objective encourages the policy to learn to follow instructions at both levels of abstraction,
marginalizing over missing instructions. We chunk actions within training data into segments of
length 4 and evaluate the low level instruction within these segments and append them into the
training data.

D.1 Heuristics for Low-Level Language Augmentation

We algorithmically enhance our training data by using heuristics generated by the proprioception of
the robot and language context, which generates the low-level instructions. The labeled language
instruction is passed into a language model to obtain manipulation keywords, and we combine the
keywords with the proprioceptive information within that time span including translation, rotation,
and gripper movement into coherent language commands.

Proprioception. We use standard deviation of each action against the metadata of BridgeData [5]
and determine how to describe the proprioception of the label. We determine the largest direction
in which the gripper is moving (up, down, left, right, forward, backward) and the orientation it is
rotating (up, down, left, right, clockwise, counterclockwise), and determine whether the movement
is unambiguous enough by checking the largest z-score in translation and rotation. We then combine
the movement as well as the keywords extracted to form language primitive commands.

Target Object. We identify the target object using a prompt heuristic to be fed into GPT3.5-Turbo
[9] by taking advantage of the fact that BridgeData consists of mainly object manipulation data. We
extract two keywords: the object to be manipulated and the destination of the object, based on the
fact that much of BridgeData is focused on object manipulation. The precise prompt can be found
at Appendix F

Data Filtering. We filter low-level instruction on two occasions: when the movement itself is am-
biguous and when the language model gives inconsistent results. We check the former by looking
up the norm of the translation and the norm of rotation, and we check the latter by using regular ex-
pression to see if the result was against the desired format and manually filtering out some common
keywords of inadmissible GPT query. On the former occasion, we use an empty string as the low
level instruction, and on the second occasion, we use only proprioceptive information for low-level
instruction.

D.2 Additional High-Level Language Augmentation

We additionally augment the high-level language annotations by generating context-free rephrasings
with GPT-3.5 [9]. For each trajectory with crowdsourced language annotations in the BridgeData
v2 dataset, we generate 5 such augmented language strings following the approach of Myers et al.
[36].

E Ablation Details

We ablate our experiment in progressive manners, going from full implementation to using only the
barebone hierarchical policy network.

* PALO w/o high level instruction: while running PALO, we derive both high and low level in-
struction sets. However, during inference on robot, we mask out the high level instruction and
feed in zero embeddings.

* PALO w/o low level instruction: mask out the low level instruction and replace them with zero
embeddings during inference.

19



* Fixed Time During Optimization: for each trajectory that has corresponding length
Hy,H,, ..., H;, we choose fixed u; = [Hk , %, R %] during optimization. We im-
plement no u sampling, which reduce PALO into an arg max operation.

» Zero-Shot Plan Generation: instead of sampling 15 plans, we sample only one plan from VLM
and examine the behavior of the robot using that specific plan.

* No VLM Guidance: We use only £ as our high level instruction, and mask out low level instruction

with zero embeddings during inference.

F Prompting Methods

We employ a keyword decomposition prompt in our augmentation method and a planning prompt
to generate VLM outputs. They are listed below:

Keyword Decomposition Prompt

User: "You are presented with a text for high level instruction for a
robot, and you need to extract keywords in the task description
text.

In this instruction, the first keyword is the object being moved, and
the second keyword, if applicable, what is the moving taking this
to (either another object or a location) within the instruction.

Only return the first and second keyword, and they should be separated

by a comma. If the instruction is in another language, write your
response in English.

For example, if the text instruction says "Pick up the silver 1lid onmn
the left to the middle of two burners", return "silver 1lid, middle

of two burmners".

Or if the instruction says: "Move the object to the top middle side of

the table.", your response should be "object, top middle side of
the table".
Or if the instruction says : "Move the red greenish thing on the towel
to the right.", return "red greendish thing on the towel, the
right".

Try your best to find the two key phrases, but if you can’t find the
second keyword within the instruction sentence, write "N/A".

For example, if the instruction is "Move the pot 1id.", the response
should be "pot 1lid, N/A".

There might be some other description regarding confidence at the end,
you are safe to ignore it.\n The specific task description for
you to analyze is: \n {instruction} \mn "

Planning Prompt

User: Here is an image observed by the robot in a tabletop robot
manipulation environment. The gripper situated at the top of the
center of table and perpendicular to it.

Now plan for the list of subtasks and skills the robot needs to
perform in order to {instrs}.

Each step in the plan can be selected from the available skills
below:

*movement direction:

*forward. This skill moves the robot gripper away from the
camera by a small distance.

*backward. This skill moves the robot gripper towards the
camera by a small distance.

*left. This skill moves the robot gripper to the left of the
image by a small distance.

*right. This skill moves the robot gripper to the right of the

image by a small distance.

*up. This skill moves the robot gripper upward until a safe

height.
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*down. This skill moves the robot gripper downward to the
table surface.

*rotation direction:

*left. This skill tilts the gripper to an angle to the left.

*right. This skill tilts the gripper to an angle to the right.

*down. This skill tilts the gripper to an angle facing up.

*up. This skill tilts the gripper to an angle facing down.

*clockwise. This skill rotates the gripper and the objcet it
is holding clockwise.

*counterclockwise. This skill rotates the gripper and the
object it is holding counterclockwise.

*gripper movement:
*close the gripper. This skill controls the robot gripper to
close to grasp an object.
*open the gripper. This skill controls the robot gripper to
open and release the object in hand.

You may choose between using one of movement direction. rotation
direction, or gripper movement.

If you were to choose to use movement direction, you may use one
or two directions and include a target object, and you should
format it like this:

"move the gripper x towards z" or "move the gripper x and y
towards z" where x and y are the directions and z is the
target object.

You also must start your command with "move the gripper".
Therefore, instead of saying something like "down" or "up",
you should phrase it like "move the gripper down" and "move

the gripper up". Make sure to include at least one direction
in your command since otherwise this command format won’t make
sense.

If you were to choose to use gripper movement, you should format
the command as "close the gripper to pick up x" or "open the
gripper to release x", where x is the target object.

You may discard the target object if necessary. In that case use
close the gripper" or "open the gripper".

If you think the gripper is close to the target object, then you
must choose to use gripper movement to grasp the target object

to maintain efficiency.

If you were to choose gripper rotation, you should format the
command as "rotate the gripper x", where x is the target
rotation direction. You need to make sure that in pouring
tasks, the opening of the container is aligned with the pot.

For example, if the object is aligned vertically but you want it
to align it horizontally, then you should call "rotate the

gripper counterclockwise". If you want to tilt the object in
the gripper to pour it, you should call "rotate the gripper
left"

Pay close attention to these factors:

*Which task are you doing.

*Whether the gripper is closed.

*Whether the gripper is holding the target object.

*How far the two target objects are. If they are across the table,

then duplicate the commands with a copy of it.

*Where the gripper is. After the end of each subtask, it is
reasonable to assume that the gripper will not be at where it
originally was in the image, but somewhere close to the last
target object.
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Especially pay attention to the actual direction between the
gripper and the target object. Remember that the robot’s angle

is roughly the same as the camera’s angle.

To determine whether the gripper should move forward or backward,
look into the edge of the table. If the target object is
closer to the edge of the table that is near the top of the
image, you should move forward, and if it is closer to the
edge that is near the bottom of the image, you should move
backward.

At the end of each subtask, you need to use the skill "move the
gripper back to neutral. This will move the gripper back to
the original position of the image after completing the task.

Start by looking at what objects are in the image, and then plan

with the direction of the objects in mind. The tasks should be

completed sequentially, therefore you need to consider the
position of the gripper after each task before planning the
next task.

You should return a json dictionary with the following fields:

- subtask: this should be the key of the dictiomary. It should
contain the only the verbal description of the subtask the
robot needs to perform sequentially in order to finish the
task, and they should be ordered in the same way the task is
completed.

- list of skills: this should be the value of the dictiomary. It
should be a list of skills the robot needs to perform in order

to finish the corresponding subtask.

Be concise, and do not return any other comments other than the
dictionary mentioned above. Do not put "subtask: " or "lsit of

skills: " in the key and value of the dictionary you generate
Remember only the description and list should be returned.

G Execution Breakdown

In this section, we provide additional qualitative results for PALO.

G.1 Inference Details

During inference, we chunk each low-level instruction into length § intervals, switching to the new
set of low-level (and high-level, if applicable) after these 8 steps. We chose a fixed interval instead of
a dynamically allocated one due to the policy choosing to mostly stay put after finishing the action
prescribed by the low-level instruction.

G.2 Success Cases
We show the full breakdowns of success cases here. Fig. 9 and Fig. 10 gives detailed description of

the robot’s action primitives generated by PALO during inference.

G.2.1 Full PALO Failure

While PALO is robust in generating language primitives that help achieve the task, it does not guar-
antee a successful execution of the policy as shown in Fig. 11. PALO can fail when the underlying
policy fails to execute a low-level motion, after which the robot may not be able to recover and
complete the task.

G.2.2 Ablation Failures

When we ablate the components of PALO, we begin to see more critical failures. Fig. 14 demon-
strates a case of grounding failure when cy is masked out, i.e., when PALO loses half of the opti-
mized task decomposition.
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Figure 9: An execution of our method on the task “Pry out the pot using the ladle.”

{= ‘“pour the contents of the scoop into the bowl”
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counterclockwise | | SR the bowl scoop
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Figure 10: An execution of our method on the task “pour the contents of the scoop into the bowl.”. Note that
the high level instruction is £ itself, as the best-proposed language decomposition does not create additional
subtasks.

Table 2: Method Comparisons

Scene | Task | PALO RT-2-X FT-Octo Octo GRIF VINN FT-LCBC LCBC
Drawer put in 0.7 0.0 0.0 0.2 0.1 0.0 0.3 0.1
pry away 0.6 0.2 0.2 0.1 0.0 0.1 0.0 0.0

Bowl salad 0.7 0.5 0.0 0.3 04 0.0 0.6 0.0
pour 0.5 0.1 0.2 0.3 0.0 0.0 0.0 0.0

Swee mints 0.7 0.3 0.1 0.2 0.0 0.0 0.2 0.0
P skittles 0.8 04 0.0 0.4 0.3 0.0 0.3 0.2
Rotation marker 0.9 04 0.0 0.1 0.3 04 04 0.0
spoon 0.8 0.2 0.1 0.1 0.1 0.5 0.2 0.0

Average | 071 0.26 0.10 021 0.15 0.13 0.25 0.08
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Figure 11: Failure in execution: while the robot completed every subtask correctly up until the last subtask, it
did not achieve it due to errors within the policy.

Figure 12: Spatial reasoning failure occurred when masking out low level instruction. The task was to “sweep
the mints using the towel.” Due to the presence of the pot and the mushroom, being both strong priors within
BridgeData, the policy chose not to follow the high level instruction.

— i
: Se o

Figure 13: Grounding failure occurs when high level instruction is masked out. While the low level instruction
“move the gripper left” correctly predicts the next reasonable action, masking out the context of the subtask
“put the mushroom in the bowl” causes the policy to overshoot its trajectory.

Table 3: Ablations

Scene | Task | PALO Noc” Noc* Fixed Times Zero-shot No VLM
Drawer put in 0.7 0.2 0.4 0.4 0.3 0.0
pry open 0.6 0.4 0.2 0.1 0.4 0.1
Bowl salad 0.7 0.4 0.5 0.4 0.2 0.0
pour scoop 0.5 0.1 0.4 0.4 0.2 0.0
Swee mints 0.7 0.5 0.3 0.5 0.0 0.0
P skittles 0.8 0.7 0.2 0.5 0.4 0.2
Rotation marker 0.9 0.6 0.3 0.3 0.1 0.3
spoon 0.8 0.6 0.1 0.2 0.3 0.2
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Figure 14: In this instance, we mask out the high level instructions, and the policy is only conditioned on the
low-level instructions. We see that the low-level instruction “move the gripper forward and left.” causes the
robot to overshoot its trajectory and causes failure in execution.

H Evaluation Results

We present detailed results of our method across four tasks in the studied scenes in Table 2. We also
present ablation results in Table 3. We evaluate each entry of the result for 10 trials, shifting the
starting location of both target and background objects randomly.

I Code
We make our code publicly available at https://github.com/vivekmyers/palo-robot.
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