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ABSTRACT

The past year has witnessed the significant advancement of video-based large lan-
guage models. However, the challenge of developing a unified model for both
short and long video understanding remains unresolved. Most existing video
LLMs cannot handle hour-long videos, while methods custom for long videos
tend to be ineffective for shorter videos and images. In this paper, we identify the
key issue as the redundant content in videos. To address this, we propose a novel
pooling strategy that simultaneously achieves token compression and instruction-
aware visual feature aggregation. Our model is termed Prompt-guided Pooling
LLaVA, or PPLLaVA for short. Specifically, PPLLaVA consists of three core com-
ponents: the CLIP-based visual-prompt alignment that extracts visual information
relevant to the user’s instructions, the prompt-guided pooling that compresses the
visual sequence to arbitrary scales using convolution-style pooling, and the clip
context extension designed for lengthy prompt common in visual dialogue. More-
over, our codebase also integrates the most advanced video Direct Preference
Optimization (DPO) and visual interleave training. Extensive experiments have
validated the performance of our model. With superior throughput, PPLLaVA
achieves better results on image benchmarks as a video LLM, while achieving
state-of-the-art performance across various video benchmarks, excelling in tasks
ranging from caption generation to multiple-choice questions, and handling video
lengths from seconds to hours. The codes are promised to be made public.

1 INTRODUCTION

Video Large Language Models (Video LLMs) have made significant advancements over the past
year. Given the extensive resources and the scarcity of high-quality video-text data required for
video pretraining, performing Image-to-Video transfer on powerful Image-domain Large Language
Models has become a more practical approach for most Video LLMs. Building on the most ad-
vanced image LLMs (Liu et al., 2023a; 2024a; Dai et al., 2023), existing video LLMs typically ad-
dress the modal differences between images and videos by video instruction data production (Maaz
et al., 2023; Li et al., 2023b; Luo et al., 2023; Zhang et al., 2024b), temporal modeling (Liu et al.,
2024c;d; Li et al., 2023c; Huang et al., 2023), or video token aggregation (Jin et al., 2023; Li et al.,
2023d; Xu et al., 2024). Meanwhile, a wide range of video benchmarks and test tasks offer diverse
perspectives and options for evaluating the capabilities of video LLMs, including video question
answering (Maaz et al., 2023; Xu et al., 2016; Caba Heilbron et al., 2015; Wu et al., 2017), video
dense captioning (Ren et al., 2024), multiple-choice questions (Li et al., 2023c; Fu et al., 2024), and
long video assessment (Fu et al., 2024; Song et al., 2024; Zhang et al., 2024a).

For temporal modeling, an intuitive approach is to directly input tokens from each frame into the
LLM, a method proven effective in several studies (Liu et al., 2024d;b; Li et al., 2024). However,
while this method leverages the LLM’s sequence modeling capabilities, it leads to an excessively
long visual context. This not only increases computational resource consumption and processing
time but also limits the model’s ability to handle extended videos. To address this issue, several
alternative approaches exist. A commonly adopted method is average pooling across the temporal
dimension, frequently seen in early video LLMs (Li et al., 2023b; Maaz et al., 2023; Luo et al.,
2023; Liu et al., 2024c). While this approach maintains a constant context length, it significantly
diminishes the model’s ability to capture temporal dynamics. Models designed specifically for long
videos often incorporate unique structures, such as memory mechanisms (Ren et al., 2024; Zhang
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How does the girl feel in this video?

What is the number of three-dimensional 
graphics that can be seen in this video?

How many times does the butterfly 
occur in this video?

Seconds/Video

Video

Image

(a) (b)

Figure 1: (a) An instance from VideoMME (Fu et al., 2024). The crucial information pertains to
only a small portion of the video for different questions. (b) Performance comparison of PPLLaVA
with recent strong Video LLM among video benchmarks, image benchmarks, and efficiency. All the
models are based on Vicuna-7B.

et al., 2024a; Zhou et al., 2024). Although these designs enable the models to handle hour-long
videos, they offer limited utility for short videos or images. Another approach is the use of con-
ditional token pooling or aggregation (Li et al., 2023d; Xu et al., 2024; Jin et al., 2023). Unlike
global average pooling, this method reduces the context length while preserving some spatiotempo-
ral structure, enabling more effective spatiotemporal modeling.

However, pooling inevitably leads to performance loss compared to using the full set. So, how can
we reduce the number of tokens while preserving the spatiotemporal modeling capabilities? We be-
lieve the solution lies in the inherent characteristics of the video. As proven by many previous works
(Han et al., 2022; Liu et al., 2023b; Ma et al., 2022), videos contain significant redundancy, with key
information often concentrated in just a few frames, which is particularly true for long videos. For
video LLMs, this issue can be more pronounced. As shown in Fig. 1(a), the user’s instruction may
pertain to only a small portion of the video, with the rest being redundant for correctly answering the
question. Therefore, if we can extract crucial video information while compressing tokens, we can
maintain or even enhance performance. In this context, Image LLMs have offered valuable inspira-
tion. The BLIP series (Li et al., 2023a; Dai et al., 2023; Xue et al., 2024) and the LLaVA series (Liu
et al., 2023a; 2024a;b; Li et al., 2024) are the two most popular structures in multimodal LLM. BLIP
uses a Q-Former for image-to-text mapping, while the LLaVA series employs simple linear projec-
tion or MLP. Recently, LLaVA-based models have demonstrated that simple mapping can achieve
better results with less training (Liu et al., 2024a). However, despite requiring more computation
resources and training stages, the Q-Former offers two key advantages: first, it significantly reduces
visual tokens by converting them into fewer query tokens; second, through the interaction between
text and visual tokens within the Q-Former, it enables more targeted extraction of video features
relevant to the user’s instructions (Dai et al., 2023). Hence, can we develop a pooling method that
retains LLaVA’s simple structure and powerful weights while reducing the number of tokens and
enabling prompt-aware feature extraction?

To this end, we propose Prompt-guided Pooling LLaVA (PPLLaVA), a novel method that combines
visual pooling with instruction-aware visual feature extraction. Specifically, PPLLaVA first iden-
tifies prompt-relevant visual representations through fine-grained vision-prompt alignment. Then,
using the prompt-vision relevance as a 3D convolutional kernel, PPLLaVA can compress the vi-
sual tokens to any desired three-dimensional size based on the specified output size or stride. Fi-
nally, recognizing that CLIP pretraining provides a limited context length and that training video
LLMs—particularly for multi-turn dialogues—requires long text contexts, PPLLaVA also employs
asymmetric positional embedding extensions to expand the text encoding capacity. As a result,
PPLLaVA effectively extracts relevant visual features from both long texts and short phrases while
compressing video tokens. PPLLaVA achieves over an 80% compression rate, supports ultra-long
video inputs, and simultaneously improves performance on short videos. In fact, PPLLaVA func-
tions similarly to a Q-Former within LLaVA, but it offers several advantages over directly train-
ing a Q-Former: (1) PPLLaVA introduces far fewer additional parameters and computational over-
head, amounting to less than one-tenth of a Q-Former. (2) While a Q-Former requires a three-stage
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pretraining process—contrastive learning, alignment training, and instruction tuning—PPLLaVA
can be utilized solely during instruction tuning, allowing for seamless transfer from image-domain
LLMs. (3) PPLLaVA supports flexible output sizes for different modalities, whereas the number of
queries in a Q-Former is fixed once set. As a result, different Q-Formers typically need to be trained
separately for images and videos (Zhang et al., 2023; Li et al., 2023c).

Extensive experiments on the latest multimodal LLM benchmarks have validated the superiority of
PPLLaVA: with superior throughput, PPLLaVA has achieved top results across a wide range of test
sets, including MSRVTT (Xu et al., 2016), MSVD (Wu et al., 2017), ActivityNet (Caba Heilbron
et al., 2015), VCG Bench (Maaz et al., 2023), MVBench (Li et al., 2023c), and Video-MME (Fu
et al., 2024). These benchmarks encompass tasks such as video question answering, detailed video
captioning, and video multiple-choice questions, with video lengths ranging from seconds to hours.
Furthermore, our codebase has integrated cutting-edge video LLM techniques, including video Di-
rect Preference Optimization and video-image-multiple image interleave training. As shown in Fig.
1(b), compared to recent top Video LLMs, PPLLaVA demonstrates clear advantages across both
video and image benchmarks, while responding 7x faster than LLaVA-Next-Video-7B.

2 RELATED WORKS

Image-domain LLMs. Image-domain pretrained models have long served as the foundation for
video understanding (Carreira & Zisserman, 2017; Luo et al., 2022; Liu et al., 2023c). This is partly
due to the inherent similarities between image and video modalities and partly because image pre-
training datasets offer a level of quality, quantity, and diversity that video datasets often lack. In the
field of multimodal LLMs, the BLIP and LLaVA series have consistently served as the foundation
for various video LLMs. The BLIP series is particularly notable for its Q-Former (Li et al., 2023a),
which acts as an intermediary between the vision encoder and the LLM. The Q-Former not only
enhances visual encoding but also compresses the number of visual tokens. Building on this foun-
dation, InstructBLIP further developed the Q-Former’s capability to extract instruction-aware visual
features, making it a preferred choice for some video LLMs (Zhang et al., 2023; Li et al., 2023d;
Liu et al., 2024d; Ren et al., 2024). LLaVA, a pioneer in visual instruction tuning (Liu et al., 2023a),
accomplished the mapping from the visual encoder to the LLM using simple linear layers or MLPs.
The LLaVA series has been continually updated (Liu et al., 2024a;b; Li et al., 2024), with later
versions showing that this straightforward mapping approach can achieve superior results with less
data. This simplicity and effectiveness inspired us to use LLaVA as the foundation for our model.
Alongside this, we introduced the pooling module that retains LLaVA’s efficient structure while also
enabling the compression of visual tokens and the extraction of prompt-specific visual features.

Video LLMs. In the past year, Video LLMs have experienced rapid development since their incep-
tion. For video LLMs, updating video instruction data and benchmarks is essential. Video-ChatGPT
(Maaz et al., 2023) was the first to introduce a high-quality video instruction training dataset and test
set, establishing a benchmark for GPT-assisted evaluation. MVBench (Li et al., 2023c) provides a
multiple-choice benchmark that assesses video performance across 20 different tasks. Video-MME
(Fu et al., 2024) extends video duration significantly, reaching up to several hours, and serves as
a comprehensive multiple-choice video QA benchmark. On the other hand, early Video LLMs
(Li et al., 2023b; Zhang et al., 2023; Luo et al., 2023; Maaz et al., 2023; Liu et al., 2024c) typi-
cally used average pooling to process video sequences with Image LLMs while employing modality
perceivers to model temporal sequences. However, this approach significantly limited the model’s
ability to fully understand video sequences. Alternatively, some models (Liu et al., 2024d;b; Xu
et al., 2024) rely on the LLM itself to model video sequences, achieving good video understanding
results. Nonetheless, this method is limited to handling a small number of frames and does not
support the comprehension of long videos.

Understanding long videos is also a hot topic in video LLMs. MovieChat (Song et al., 2024) and
Flash-VStream (Zhang et al., 2024a) use memory structures to process streaming videos, while Chat-
UniVi (Jin et al., 2023) adopts a clustering approach for token aggregation. LLaMA-VID (Li et al.,
2023d) compresses each video frame into two tokens, capturing both local and global information.
Most similar to our work, PLLaVA (Xu et al., 2024) employs a non-parametric AdaptiveAvgPool3d
function to compress visual tokens. In contrast, our method supports not only token compression but
also the extraction of visual features pertinent to user prompts. Furthermore, our convolution-style
pooling method enables flexible output sizes. Notably, compared to the aforementioned methods,
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User Query: What was the man 
wearing glasses doing before he 
took the phone handed to him?
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Figure 2: The overview of PPLLaVA for compressing the video based on user prompts and generat-
ing responses on the input video and instructions.

our approach has achieved state-of-the-art results on both long and short video benchmarks, whereas
the other methods may exhibit slightly lower performance on videos of certain lengths.

The diversification of data modalities and formats has also become a prominent direction in research.
Beyond the classic image-video instruction tuning, CAT (Ye et al., 2024) introduced mixed training
with video and audio, while VideoMME (Fu et al., 2024) emphasized the importance of subtitles.
VILA (Lin et al., 2024) and LLaVA-Interleave underscored the value of interleaved training. Besides
instruction tuning, Reinforcement Learning from Human Feedback (RLHF) has also been proven to
be particularly effective for video LMM. Specifically, VLM-RLAIF (Ahn et al., 2024) and LLaVA-
Hound (Zhang et al., 2024b) demonstrated the effectiveness of Proximal Policy Optimization (PPO)
and Direct Preference Optimization (DPO), respectively. We have also integrated these cutting-edge
techniques into our codebase and demonstrated that they can operate in parallel with PPLLaVA.

3 METHODOLOGY

3.1 MOTIVATION AND ANALYSIS

In the previous section, we discussed that the videos are redundant in both length and content.
Vista-LLaMA (Ma et al., 2024) demonstrated that the extensive number of tokens in long videos
makes it difficult for LLMs to capture video content. In this section, we further examine whether
redundant video content impacts the performance of video LLMs and whether extracting key video
content can enhance performance. Inspired by EgoSchema (Mangalam et al., 2024), we adopt the
certificate length to measure the redundancy. The certificate length of a video-QA pair is determined
by the shortest video sub-clip that can answer the question. Instead of using manual annotation, we
employed an automated method to determine the certificate. Specifically, frames are sampled at 2
fps, and then the similarity between each frame and the question-answer text is calculated using
CLIP-L-336 (Radford et al., 2021). If the similarity exceeds 0.5, the frame is considered relevant to
the text. Finally, the proportion of relevant frames to the entire video is calculated as the certificate.

Table 1: The study on the impact of video redundancy, we used the Vicuna-
7B version for all models. ”Average” and ”Manual” refer to the default
average frame sampling and manual frame selection, respectively.

Model Frames Tokens Video-MME-full Video-MME-redund
average average manual

InstructBLIP 32 1024 39.2 36.1 (-3.1) 39.5 (+0.3)
LLaVA-Next 32 4608 41.1 36.9 (-4.2) 42.0 (+0.9)
LLaVA-Next-Video 8 1152 42.9 39.0 (-3.9) 43.5 (+0.6)
LLaVA-Next-Video 32 4608 45.0 41.5 (-3.5) 46.1 (+1.1)
PPLLaVA (ours) 32 1024 49.8 47.6 (-2.2) 50.5 (+0.7)

Based on the Video-MME
dataset, we selected the 100
video-QA pairs with the
shortest certificate lengths
termed Video-MME-redund.
We then evaluated the per-
formance of various models
on both the full Video-MME
dataset and these selected
samples. Additionally, for
these 100 samples, we manually selected the frames most relevant to the questions, alongside
the default frame sampling method. This approach was used to test whether extracting key
information enhances video understanding. As shown in Table 1, all models experienced a decline
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in performance on high-redundancy videos. As an earlier model, InstructBLIP performed as
expected, not matching the overall performance of the more advanced LLaVA-Next. However,
on high-redundancy videos, InstructBLIP, which has instruction-aware video feature extraction
capabilities, declined slower than LLaVA-Next. Furthermore, when manually selected frames
were used, all models showed significant performance improvements, highlighting the importance
of extracting key video information for enhancing video understanding. Additionally, we clearly
observed the importance of including more frames for long videos, such as those in the Video-MME
dataset. These findings motivated us to explore token compression to accommodate more video
frames while effectively extracting key information.

3.2 PPLLAVA

As shown in Fig. 2, PPLLaVA, like most video LLMs, includes a vision encoder, a mapping layer,
and a LLM. It also features an additional text encoder paired with the visual encoder. Given a
T -frame video, we first pass it through the CLIP-ViT visual encoder, obtaining the visual feature
V ∈ RT×W×H×D. This feature is then fed into the Prompt-guided Pooling module, where it is
compressed by over 90%, resulting in V ′ ∈ RT ′×W ′×H′×D. V ′ is fed into the MLP mapping
layer as the final visual input. Importantly, V ′ not only contains significantly fewer tokens but also
condenses information more relevant to the user’s instructions. This ensures improved performance
while efficiently processing the video input. Next, we will detail how V ′ is obtained.

Fine-grained Vision-Prompt Alignment. To extract video features relevant to the prompt, we
first utilize the original CLIP dual encoders to identify which video features are related to the text.
Specifically, we input the user’s question into the CLIP text encoder to obtain the text feature c ∈
RD. Following the CLIP training pipeline, we only use the CLS token of the text. The attention
score of the (tth, wth, hth) video token relative to the text feature is then calculated as:

s(t,w,h) =
exp(τc · fclipv(v(t,w,h)))∑T

t=1

∑W
w=1

∑H
h=1 exp(τc · fclipv(v(t,w,h)))

, (1)

where v(t,w,h) represents the token at the (t, w, h) position in V , τ is the CLIP temperature scale,
and fclipv is the CLIP visual projection, which is typically not used in multimodal LLMs. Note that
v(t,w,h) typically refers to the patch token from the penultimate layer of CLIP, rather than the CLS
token from the final layer used during CLIP training. However, since the spatial representations in
CLIP’s final layers are similar, applying fclipv still allows the patch tokens to be mapped into the
interaction space with the text.

Prompt-Guided Pooling. In the previous section, we obtained token-level weights corresponding
to the user’s prompt, which we use as guidance for pooling the video. Unlike traditional tasks
that require only a D-dimensional feature for contrastive learning (Ma et al., 2022; Wang et al.,
2022), our approach aims to preserve a certain 3-dimensional structure to enable the LLM to perform
temporal modeling. To achieve this, we perform pooling with S = {s(t,w,h)} in a manner similar
to 3D convolution. Specifically, we define the spatiotemporal 3D convolution kernel and stride as
(kt, kw, kh) and (dt, dw, dh), respectively. The output dimension of V ′ can then be expressed as:

T ′ = (
T − kt
dt

) + 1, W ′ = (
W − kw

dw
) + 1, H ′ = (

H − kh
dh

) + 1. (2)

Unlike conventional convolution kernels, our kernel parameters are derived from S. Moreover, the
parameters of the kernel are dynamic; as the kernel slides over different positions in V , its parameters
are taken from the corresponding positions in S. Finally, the feature at position (t, w, h) in the output
V ′ is calculated as:

v′(t,w,h) =

kt−1∑
i=0

kw−1∑
j=0

kh−1∑
k=0

v(t∗dt+i,w∗dw+j,h∗dh+k)s(t∗dt+i,w∗dw+j,h∗dh+k). (3)

By flexibly adjusting the stride and kernel size, we can control the output dimensions. This approach
allows us to better accommodate videos of varying lengths and facilitates joint training with images,
compared to fixed-output methods.

CLIP Context Extension. In our method, CLIP-text is the only additional parameter used. De-
spite having significantly fewer parameters than Qformer, it achieves better performance. However,
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CLIP-text has a major limitation: its context length is too short (default is 77). While this length
is sufficient for objects or simple descriptions, it is inadequate for long prompts or multi-turn di-
alogues in multimodal LLMs. To address this performance bottleneck, we propose extending the
context length of CLIP-text using asymmetric positional embedding extensions. In most cases, ex-
tending the positional embedding involves randomly initializing new embeddings at the end. A more
theoretically sound approach is to perform linear interpolation on the original positional embedding
at a rate of r. Assuming the original and target positional embeddings are P and P ′, respectively,
the ith position of P ′ can be represented as:

P ′
i = P⌊j⌋ + (j − ⌊j⌋) · (P⌊j⌋+1 − P⌊j⌋), j = i · r, (4)

where ⌊j⌋ means taking the floor of j. However, we found linear interpolation yielded inferior re-
sults to randomly initializing embeddings at the end. We believe this is because CLIP’s positional
embeddings are well-trained, and globally averaged interpolation disrupts the well-pre-trained in-
formation. Given that short sentences dominate CLIP’s training data, the earlier parts of positional
embeddings are more thoroughly trained. Hence, we adopted asymmetric interpolation, applying
different interpolation rates at different positions. In the early part of the new positional embedding,
we use a large r value to shorten the interpolation distance, while in the later part, we use a smaller r
value to extend the interpolation distance. This asymmetric approach allows us to effectively extend
the context length of CLIP-text while preserving as much of the pre-trained information as possible.

3.3 TRAINING

Interleave Instruction Tuning. PPLLaVA enables plug-and-play transfer of image-domain LLMs
to the video domain. As a result, initialized from well-pretrained image LLM, we can bypass expen-
sive contrastive or alignment pretraining and proceed directly to instruction tuning. In this stage, we
fully fine-tune the LLM, the projection MLP, and the CLIP text encoder. Our instruction datasets
include multi-turn and single-turn conversations presented in a conversational format, along with
various forms of visual input such as images, videos, and multiple images. For different types of
data, we employed an interleaving training approach. Rather than using batches composed of a
single data type, we mixed various data types within the same batch. Numerous studies (Li et al.,
2024; Laurençon et al., 2024; Xue et al., 2024) have demonstrated that this method is the most nat-
ural approach for handling multimodal data. Additionally, this training method enables the model
to simultaneously process both long videos with many frames and single-frame images, greatly
enhancing its adaptability to visual sequences of varying lengths.

Direct Preference Optimization. (DPO) Video, especially long video-based dialogue, is more
prone to hallucinations compared to images. As a result, Reinforcement Learning from Human
Feedback (RLHF) (Zhang et al., 2024b; Ahn et al., 2024) has proven particularly effective for video.
Therefore, we also implemented this method based on our model. Following LLaVA-Hound (Zhang
et al., 2024b). We used detailed video captions as proxies for video content and performed DPO
with feedback from the language model serving as a reward. In this stage, all parameters except the
LLM were frozen, and only video data was used. This additional phase significantly reduced the
occurrence of hallucinations during video-based dialogue.

4 EXPERIMENTS

In this section, we have performed comprehensive experimental evaluations of PPLLaVA, cover-
ing crucial settings, comparisons, and ablations, while more ablation studies, visualizations, and
limitations analysis can be found the appendix.

4.1 EXPERIMENT SETUP

Implementation Details. PPLLaVA is built upon the advanced image-domain LLaVA-Next models
(Liu et al., 2024b). To ensure a fair comparison with most models, we chose the Vicuna-7B version.
For image and multiple-image inputs, the pooling kernel and strides are set to (1, 3, 3). For video
inputs, we uniformly sample 32 frames and set the pooling kernel and strides to (2, 3, 3), compress-
ing the video tokens by over 15 times. During training, both questions and answers are fed into
the CLIP text encoder to better capture prompt-vision relevance. For CLIP context extension, when
i < 20, r is set to 1, and when i ≥ 20, r is set to 0.25. We train for one epoch using a learning rate
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Table 2: The results of open-ended QA with GPT-based evaluation, including MSVD-QA,
MSRVTT-QA, ActivityNet-QA(ANet), and VCG Bench. All the models are based on the Vicuna-
7B. † means using DPO or PPO.

Method MSVD MSRVTT ANet VCG Bench
Acc. Sco. Acc. Sco. Acc. Sco. CI DO CU TU CO Avg.

VideoChat (Li et al., 2023b) 56.3 2.8 45.0 2.5 26.5 2.2 2.23 2.50 2.53 1.94 2.24 2.29
Video-ChatGPT (Maaz et al., 2023) 64.9 3.3 49.3 2.8 35.2 2.7 2.50 2.57 2.69 2.16 2.20 2.42
BT-Adapter (Liu et al., 2024c) 67.5 3.7 57.0 3.2 45.7 3.2 2.68 2.69 3.27 2.34 2.46 2.69
Video-LLaVA (Lin et al., 2023) 70.7 3.9 59.2 3.5 45.3 3.3 - - - - - -
MovieChat (Song et al., 2024) 75.2 3.8 52.7 2.6 45.7 3.4 2.76 2.93 3.01 2.24 2.42 2.67
Chat-UniVi (Jin et al., 2023) 65.0 3.6 54.6 3.1 45.8 3.2 2.89 2.91 3.46 2.89 2.81 2.99
VideoChat2 (Li et al., 2023c) 70.0 3.9 54.1 3.3 49.1 3.3 3.02 2.88 3.51 2.66 2.81 2.98
Vista-LLaMA (Ma et al., 2024) 65.3 3.6 60.5 3.3 48.3 3.3 2.44 2.64 3.18 2.26 2.31 2.57
LLaMA-VID (Li et al., 2023d) 69.7 3.7 57.7 3.2 47.4 3.3 2.96 3.00 3.53 2.46 2.51 2.89
ST-LLM (Liu et al., 2024d) 74.6 3.9 63.2 3.4 50.9 3.3 3.23 3.05 3.74 2.93 2.81 3.15
PLLaVA (Xu et al., 2024) 76.6 4.1 62.0 3.5 56.3 3.5 3.21 2.86 3.62 2.33 2.93 2.99
CAT (Ye et al., 2024) - - 62.1 3.5 50.2 3.5 3.08 2.95 3.49 2.81 2.89 3.07
VLM-RLAIF † (Ahn et al., 2024) 76.4 4.0 63.0 3.4 57.3 3.5 3.85 3.45 3.84 3.63 2.8 3.49
LLaVA-Next-Video (Liu et al., 2024b) - - - - 53.5 3.2 3.39 3.29 3.92 2.60 3.12 3.26
LLaVA-Next-Video † - - - - 60.2 3.5 3.64 3.45 4.17 2.95 4.08 3.66
PPLLaVA 75.8 3.9 61.9 3.3 56.1 3.4 3.32 3.20 3.88 3.00 3.20 3.32
PPLLaVA † 77.1 4.0 64.3 3.5 60.7 3.6 3.85 3.56 4.21 3.21 3.81 3.73

Table 3: Performance on Video-MME with short, medium, and long durations, under the settings of
“without subtitles” and “with subtitles”. * means using multi-images during training.

Models LLM Short (%) Medium (%) Long (%) Overall (%)
Params w/o subs w/ subs w/o subs w/ subs w/o subs w/ subs w/o subs w/ subs

Qwen-VL-Chat (Bai et al., 2023) 7B 46.9 47.3 38.7 40.4 37.8 37.9 41.4 41.9
Qwen-VL-Max (Bai et al., 2023) - 55.8 57.6 49.2 48.9 48.9 47.0 51.3 51.2
InternVL-V1.5 (Chen et al., 2024) 20B 60.2 61.7 46.4 49.1 45.6 46.6 50.7 52.4
Video-LLaVA 7B 45.3 46.1 38.0 40.7 36.2 38.1 39.9 41.6
ST-LLM 7B 45.7 48.4 36.8 41.4 31.3 36.9 37.9 42.3
VideoChat2-Mistral 7B 48.3 52.8 37.0 39.4 33.2 39.2 39.5 43.8
Chat-UniVi-V1.5 7B 45.7 51.2 40.3 44.6 35.8 41.8 40.6 45.9
LLaVA-NeXT-Video 7B 45.9 49.8 40.3 44.3 36.6 41.0 40.9 45.0
LLaVA-NeXT-Video 34B 61.7 65.1 50.1 52.2 44.3 47.2 52.0 54.9
PPLLaVA 7B 56.1 59.7 43.9 48.6 38.4 44.0 46.1 50.0
PPLLaVA* 7B 58.7 62.8 45.6 50.4 42.2 47.4 48.8 53.6

of 2e−5 and a batch size of 256. We provid both GPU and NPU versions, and the full training takes
24 hours on 16 A100 GPUs or 32 910B NPUs.

Data Details. The instruction tuning data includes diverse modalities and sources. We randomly
sampled 300k image data from the LLAVA-1.5 training set (Liu et al., 2024a) and used 594k
multiple-image data from LLAVA-Interleave (Liu et al., 2024b). The video data includes Kinet-
ics (Kay et al., 2017), SthSth-V2 (Goyal et al., 2017), Next-QA (Xiao et al., 2021), CLEVRER (Yi
et al., 2019), and LLAVA-Interleave-300k, resulting in a total of 1.36M multimodal training sam-
ples. Notably, to ensure fairness in the comparison experiments, we excluded multi-image data and
used only 760k image-video data, comparable to the training volume of most video LLMs.

We evaluate our model on six video LLM benchmarks, categorized into two types based on the eval-
uation method: GPT-based evaluation and multiple-choice questions. The GPT evaluation mainly
involves open-ended QA, including the Video-based Generative Performance Benchmark (VCG
Bench) (Maaz et al., 2023), MSVD-QA (Wu et al., 2017), MSRVTT-QA (Xu et al., 2016), and
ActivityQA (Caba Heilbron et al., 2015). Consistent with most models, we used the GPT-3.5-turbo-
0613 version for testing. The multiple-choice question benchmarks include MVBench (Li et al.,
2023c) and Video-MME (Fu et al., 2024). This evaluation method is more objective by eliminat-
ing the potential disturbances of GPT. For medium-to-long videos in Video-MME, we sampled 64
frames instead of the 32 frames used in other datasets. Our test corpus encompasses videos of
various genres and lengths, offering a comprehensive evaluation of PPLLaVA’s performance.

4.2 QUANTITATIVE RESULT

GPT-Based Evaluation. Table 2 presents the quantitative results for open-ended question-
answering, showing that PPLLaVA achieves top performance across all datasets. It also demon-
strates a significant performance gap compared to models other than LLaVA-Next-Video, demon-
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Table 4: Results on MVBench. Models without additional annotation are 7B by default. * means
using multi-images during training.

Method AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI Avg.
Video-LLaMA 27.5 25.5 51.0 29.0 39.0 48.0 40.5 38.0 22.5 22.5 43.0 34.0 22.5 32.5 45.5 32.5 40.0 30.0 21.0 37.0 34.1
LLaMA-Adapter 23.0 28.0 51.0 30.0 33.0 53.5 32.5 33.5 25.5 21.5 30.5 29.0 22.5 41.5 39.5 25.0 31.5 22.5 28.0 32.0 31.7
Video-ChatGPT 23.5 26.0 62.0 22.5 26.5 54.0 28.0 40.0 23.0 20.0 31.0 30.5 25.5 39.5 48.5 29.0 33.0 29.5 26.0 35.5 32.7
VideoChat 33.5 26.5 56.0 33.5 40.5 53.0 40.5 30.0 25.5 27.0 48.5 35.0 20.5 42.5 46.0 26.5 41.0 23.5 23.5 36.0 35.5
VideoChat2 66.0 47.5 83.5 49.5 60.0 58.0 71.5 42.5 23.0 23.0 88.5 39.0 42.0 58.5 44.0 49.0 36.5 35.0 40.5 65.5 51.1
ST-LLM 66.0 53.5 84.0 44.0 58.5 80.5 73.5 38.5 42.5 31.0 86.5 36.5 56.5 78.5 43.0 44.5 46.5 34.5 41.5 58.5 54.9
PLLaVA-7B 58.0 49.0 55.5 41.0 61.0 56.0 61.0 36.0 23.5 26.0 82.0 39.5 42.0 52.0 45.0 42.0 53.5 30.5 48.0 31.0 46.6
PLLaVA-13B 66.0 53.0 65.5 45.0 65.0 58.0 64.5 35.5 23.5 30.0 85.0 39.5 45.5 57.0 47.5 49.5 49.0 33.0 53.0 37.0 50.1
PLLaVA-34B 67.5 53.0 82.0 47.0 79.0 68.5 67.5 36.5 37.5 49.5 91.0 40.5 43.0 70.0 51.5 50.0 66.5 39.5 63.5 59.0 58.1

GPT-4V 55.5 63.5 72.0 46.5 73.5 18.5 59.0 29.5 12.0 40.5 83.5 39.0 12.0 22.5 45.0 47.5 52.0 31.0 59.0 11.0 43.5

PPLLaVA-7B 69.0 54.4 69.5 50.5 69.0 87.0 67.0 38.0 35.0 33.0 69.5 37.5 63.5 91.0 47.5 47.5 51.5 27.0 47.5 57.5 57.1
PPLLaVA-7B* 73.5 61.0 83.5 45.5 68.0 87.5 75.5 33.0 37.5 40.0 83.0 37.0 67 96.5 50.5 43.5 59.0 35.5 44.5 63.0 59.2

Table 5: The ablation study on model components. TP means throughput (seconds/video).

Model Context VCG Bench Video-MME (w/ subs)
Length CI DO CU TU CO Avg TP Short Medium Long Overall TP

LLaVA-Next (Average Pooing) 576 3.05 3.07 3.71 2.62 3.01 3.09 2.9 53.1 41.3 36.0 43.4 3.1
LLaVA-Next (w/o Pooing) 4608 3.23 3.08 3.82 2.75 3.11 3.20 15.0 58.4 45.1 38.8 47.4 15.2
+Prompt-guided Pooling 1024 3.21 3.15 3.80 2.88 3.02 3.21 4.6 59.0 45.6 42.2 48.9 5.3
+CLIP Context Extension 1024 3.32 3.20 3.88 3.00 3.20 3.32 4.6 59.7 48.6 44.0 50.0 5.3

strating the strong text generation capability of our model. Despite using lower-quality data (as
LLaVA 1.6 data is not publicly available), PPLLaVA outperforms LLaVA-Next-Video. More im-
portantly, PPLLaVA uses significantly fewer visual contexts (1024 vs. 4096), resulting in higher
throughput. After applying DPO, PPLLaVA also shows consistent improvements and outperforms
other models that use DPO or PPO, further proving the adaptability of the PPLLaVA architecture
across different training stages.

Video-MME. Although Video-MME is a new benchmark, it offers high quality and data diversity.
Its inclusion of hour-long videos makes it particularly effective for evaluating models’ long video un-
derstanding capabilities. As shown in Table 3, PPLLaVA achieves the best results on Video-MME,
with a notably significant advantage on videos of different lengths compared to other models. The
7B model’s long video comprehension already surpasses the 34B LLaVA-Next-Video, as PPLLaVA
efficiently compresses video tokens, enabling support for a much higher number of frames than
LLaVA-Next-Video, thereby enhancing long video understanding capabilities.

MVBench. MVBench is a multiple-choice benchmark offering a comprehensive set of evalua-
tion tasks, including Action Sequence (AS), Action Prediction (AP), Action Antonym (AA), Fine-
grained Action (FA), Unexpected Action (UA), Object Existence (OE), Object Interaction (OI), Ob-
ject Shuffle (OS), Moving Direction (MD), Action Localization (AL), Scene Transition (ST), Action
Count (AC), Moving Count (MC), Moving Attribute (MA), State Change (SC), Fine-grained Pose
(FP), Character Order (CO), Egocentric Navigation (EN), Episodic Reasoning (ER), Counterfactual
Inference (CI), and the average across all 20 metrics (Avg). PPLLaVA achieves the best average re-
sults among models, demonstrating a clear advantage and strong adaptability in video understanding
across diverse scenarios, especially for moving and action tasks.

4.3 ABLATIONS AND ANALYSIS

Model Components. The core of PPLLaVA is its prompt-guided token compression, which en-
hances both video understanding efficiency and performance. To assess the impact of this feature,
we conducted ablation experiments on the overall model components. As shown in Table 5, while
the LLaVA-Next Baseline’s direct averaging method is the most efficient, its performance is sub-
par. Directly feeding all tokens into the LLM yields reasonable results but suffers from extremely
low throughput. Our Pooling module substantially improves both efficiency and performance. Ex-
tending the CLIP context further enhances results, particularly in long video understanding. The
simultaneous improvement in efficiency and effectiveness underscores the superiority of our model.

Pooling Size. PPLLaVA can flexibly implement pooling at any scale. However, as the pooling
kernel and stride increase, while efficiency improves, there will inevitably be performance degrada-
tion. Therefore, it’s crucial to find a pooling size that balances both efficiency and performance. As
illustrated in Fig. 3, we first explore the impact of pooling in the spatial dimension. It is evident
that when the pooling kernel and stride are small, increasing them significantly improves efficiency,
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Figure 3: Spatial pooling effects. We set T =
16 and kt = dt = 1, varying the spatial kernel
size and stride.
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Figure 4: Temporal pooling effects. We set
T = 32 and kw = dw = kh = dh = 3, varying
the temporal kernel size and stride.

Table 6: The image results. ⋆ means self-implementation.
Model Resolution MMMU(val) MathVista MMB-ENG MMB-CN MM-Vet SEED-IMG MME POPE
LLaVA-1.5-13B 336*336 36.4 27.6 67.8 63.3 36.3 68.2 1531/295 85.93
LLaVA-Next-7B 672*672 35.8 34.6 67.4 60.6 43.9 70.2 1519/332 86.53
VideoLLaVA 336*336 - - 60.9 - 32.0 - - 84.40
Chat-Univ-1.5 336*336 - - 62.7 - 28.3 - - 85.40
LLaVA-Next-Video ⋆ 336*336 34.2 28.9 64.7 56.7 44.0 64.6 1501/351 83.10
PPLLaVA 336*336 37.9 34.6 68.9 62.0 44.7 70.7 1539/277 88.46

and thanks to the prompt-guided approach, the performance remains almost unaffected. In contrast,
as shown in Fig. 4, pooling in the temporal dimension yields smaller efficiency gains compared
to spatial scaling, with more noticeable performance degradation as the kernel and stride sizes in-
crease. When the pooling kernel and stride are large, the efficiency gains tend to plateau, but the
decline in effectiveness becomes significantly pronounced, particularly in spatial pooling, where the
performance drop is more severe. Considering all factors, for video input, we ultimately selected a
pooling kernel and stride of (2, 3, 3) to ensure a substantial improvement in efficiency while main-
taining stable model performance.

Image Performance. Theoretically, further video tuning on top of an image-domain LLM could
lead to catastrophic forgetting of pre-trained knowledge and image understanding. The PPLLaVA
method can also be seamlessly applied to images. Although images do not have the same need for
token compression as videos, and compression may lead to performance loss, the guidance from
user prompts can still similarly enhance performance. In Table 6, we present PPLLaVA’s results on
various popular image LLM benchmarks. Since PPLLaVA was trained on LLaVA-1.5 image data
based on LLaVA-Next, we compared the results of these two models. We also compare the image
performance with LLaVA-Next-Video and other image-video unified models. As shown, PPLLaVA
shows a significant advantage in image performance compared to video models, indicating that
PPLLaVA has effectively retained pre-trained knowledge. Compared to image models, despite us-
ing a smaller LLM or lower image resolution, PPLLaVA, as a video model, still achieved better
results on most benchmarks. Notably, our pooling method reduced the visual tokens to one-ninth
of the original count at the same resolution. This demonstrates that PPLLaVA can achieve both
performance and efficiency improvements even on image-based tasks, highlighting its potential for
lightweight multimodal LLM.

5 CONCLUSION

In this paper, we propose Prompt-guided Pooling LLaVA (PPLLaVA), a novel pooling method that
achieves token compression and prompt-aware feature extraction simultaneously. We first observed
that current video LLMs struggle to balance performance on both long and short videos. Further
analysis revealed that redundant tokens in videos negatively impact video understanding perfor-
mance. To address this, our model incorporates three key modules: Fine-grained Vision-Prompt
Alignment, Prompt-Guided Convolution-Style Pooling, and CLIP Context Extension. These mod-
ules significantly reduce the visual context while effectively extracting essential visual features. Ex-
tensive experiments have demonstrated the effectiveness of PPLLaVA on both images and videos, as
it achieves the best results across benchmarks of various tasks and video lengths, ensuring excellent
efficiency, with particularly outstanding performance on long videos.
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Table 7: The ablation study on the Pooling Ap-
proach. We report the overall performance of
VideoMME (w/ subs).

Pooling Method kernel1 kernel2 tokens Overall
weighted average (2,3,3) - 1024 53.6
separate S-T - - 608 44.1
max pooling (2,3,3) - 1024 52.0
multiple (1,6,6) (8,2,2) 1088 52.8
multiple (4,3,3) (2,4,4) 1088 53.2

Table 8: The study on whether PPLLaVA
helps long video understanding. We report the
Long performance of VideoMME (w/ subs).

train test tokens Longframes kernel frames kernel
32 (2,3,3) 32 (2,3,3) 1024 45.7
32 (2,3,3) 64 (4,3,3) 1024 47.4
16 (1,3,3) 16 (1,3,3) 1024 43.5
8 (1,1,1) 8 (1,1,1) 4608 41.2

Table 9: The study on multimodal data with interleave training and DPO training.
Model Video Image Multi-Image Interleave DPO VcgBench MvBench VideoMME

LLaVA-Next-Video ✓ ✓ ✓ 3.26 - -
✓ ✓ ✓ ✓ 3.66 - -

PPLLaVA

✓ 3.20 55.0 48.9
✓ ✓ 3.09 49.8 44.1
✓ ✓ ✓ 3.32 57.1 50.0
✓ ✓ ✓ ✓ 3.21 59.2 53.6
✓ ✓ ✓ ✓ 3.73 55.8 49.3

Q1: How does the girl feel in this video? Q2: What is the number of three-dimensional graphics that can be seen?

Q1: When demonstrating the Germany modern Christmas tree is initially 
decorated with apples, candles and berries, which kind of the decoration has the 
largest number? A.Apples. B.Candles. C.Berries. D.The same number

Q2: What is the genre of this video? A. It is a news report introducing the 
history behind Christmas.. B. It is a documentary on the evolution of Christmas. 
C. It is a travel vlog exploring Christmas. D. It is a tutorial on DIY Christmas.

Q1: Which of the following tools is not used in this video? A. Cards. B. A string. 
C. Coins. D. A calculator.

Q2: What is the main content of this video? A. The video shows a magician and 
his daughter training in magic. B. Video shows the amazing talent of a magician's 
daughter. C. The video shows a father teaching his daughter magic tricks. 

Q1: What is the object illustrated in the third point in the video? Q2: At which point did the author depict the handshake scene?

Figure 5: The visualization of the attention weights used to guide video pooling.

A MORE ANALYSIS

Prompt-Guided Pooling Approach. Beyond the weighted average pooling detailed in the main
text, we experimented with several alternative pooling methods guided by the prompt. First, we
applied separate spatiotemporal pooling, conducting pooling operations independently on the tem-
poral and spatial dimensions before concatenation. We also explored combinations of different
pooling sizes to assess their impact. Lastly, we implemented max pooling using weights derived
from the prompt as guidance. As shown in Table 7, spatiotemporal separate pooling demonstrates
the worst performance, underscoring the importance of maintaining the 3-dimensional spatiotempo-
ral structure during pooling. Max pooling, though slightly better, still falls short, suggesting that a
few prominent features are insufficient to represent the entirety of the video. The combination of
various pooling kernels performs similarly to direct weighted averaging when the context length is
comparable. Consequently, we opted for weighted averaging, as it provides optimal results while
maintaining a simpler structure.

Is PPLLaVA Really Helpful for Long Video? Token compression is a key feature of PPLLaVA,
primarily aimed at enhancing the understanding of long videos. To validate PPLLaVA’s effectiveness
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Figure 6: The visualization of the attention weights used to guide video pooling. The prompts for
all videos are “Describe this video.”.

The video showcases a series of dramatic and atmospheric scenes set in a rugged, natural environment with elements of fantasy 
and adventure. The scenes feature characters in various environments, such as rocky cliffs, snowy landscapes, and mystical 
settings with illuminated statues or ruins. The lighting and color palette suggest either a time of day with low light or a moody, 
overcast atmosphere. The characters are dressed in detailed, possibly historical or fantasy-inspired attire, and some of them 
are wielding weapons or casting spells. The video captures a sense of action and exploration, with characters navigating through 
the environment and interacting with their surroundings. The video also includes textual elements, such as Chinese characters 
or subtitles, which add to the cultural or narrative context of the scenes.

Describe the scenes of this video in detail

Tell me what makes this video attractive in details.

The video showcases a captivating and immersive environment with detailed textures and atmospheric lighting that create a 
sense of depth and mystery. The visuals feature dramatic landscapes with rocky cliffs, ethereal lighting effects, and a sense of 
ancient ruins or fantasy settings. The color palette is dominated by muted earth tones with occasional bursts of vibrant colors 
like glowing orbs or fiery effects. The characters and creatures within the video have a fantasy-inspired design, with intricate 
textures and expressions that convey a sense of otherworldly or mythical beings. The video also includes dynamic action 
sequences with characters wielding weapons or casting spells, contributing to the sense of adventure and conflict within the 
narrative.

The video captures a woman walking down a vibrant city street at night, showcasing the lively atmosphere and illuminated signs 
and billboards. The woman is dressed in a stylish black or red leather jacket and appears confident as she navigates the wet 
streets. The video also highlights the woman's accessories, such as sunglasses and a handbag, adding to her fashionable 
appearance. The scene is bathed in the warm glow of artificial lights and neon signs, creating a dynamic and energetic ambiance.

Can you describe this video?

Figure 7: Qualitative result of video summary and detailed video description.

in this regard, we conducted an additional ablation experiment. As shown in Table 8, we first
experimented with larger pooling kernels to accommodate more frames. The results indicate that
even with some discrepancies between training and testing, using a greater number of frames still
improves long video comprehension. When fewer frames are used during training, the disadvantage
in long video understanding becomes even more pronounced. In the most extreme case, when no
pooling is applied, even with significantly longer context lengths, the understanding of long videos
is the weakest due to the limited number of frames that can be accommodated.

Interleave training and DPO. Multimodal data interleaved training and DPO are two key tech-
niques utilized in this work. We conducted an analysis of their effects and compatibility with
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The video showcases a man demonstrating a dance routine while holding a basketball. He performs various moves and poses while 
maintaining rhythm and fluidity. The video captures his movements and expressions, highlighting his skill and confidence in the 
dance.

Describe this video.

Is the man in this video a basketball player?

No, the man in the video is not a basketball player; he is demonstrating dance or fashion-related movements.

Tell me something about the man in this video.

The man in the video is dressed in a stylish outfit and appears to be confidently performing a dance or rap routine. He is wearing 
a layered outfit with a jacket, a turtleneck, and trousers, complemented by a necklace and a black accessory. The video also 
includes text overlays in a non-English script, which may provide additional context or information about the man or the content 
being showcased.

The video shows a man standing in a room and performing a series of dance moves or steps. He appears to be following a 
choreographed routine or demonstrating a set of movements. The man is dressed in a striped shirt and beige pants, and he 
maintains a focused demeanor throughout the video. The room has wooden flooring and simple furnishings, including a door and a 
couple of chairs or stools in the background. There is also a poster or sign on the wall in the background. The lighting in the 
room is even, suggesting indoor lighting. The man's movements are deliberate and controlled, indicating a rehearsed or 
practiced routine.

Can you describe this video?

What makes this video funny?

The individual's exaggerated and humorous dance movements or gestures make the video funny.

What is the man practicing in this video?

The man in the video is practicing a sequence of movements or steps, which could be part of a dance or exercise routine.

Is the man practicing Tai Chi professionally?

No, the man's attire and demeanor suggest a non-professional or instructional Tai Chi practice.

The video captures a man standing in front of a sign or plaque with East Asian characters on it, smiling and speaking or 
conversing directly to the camera. The lighting is consistent, and the man appears to be indoors. The man is dressed in a dark-
colored jacket or coat with a visible collar and a pink inner garment or shirt. The background is static, and the focus remains on 
the man throughout the video.

Can you describe this video?

What makes this video funny?

The video is intended to be humorous due to the man's exaggerated expressions and gestures. The man's facial expressions and 
body language are over the top and seem to be intentionally comedic.

Describe the facial expression of this man.

The man in the video has a friendly and approachable expression with a slight smile or a gentle smile. His eyes appear to be 
open and engaged, and his mouth is slightly open or curved upwards in a manner that suggests a positive or welcoming demeanor.

Figure 8: Qualitative result of multi-turn video conversation and reasoning.
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PPLLaVA. As shown in Table 9, when different data modalities are not mixed within a batch, adding
image or multi-image modalities leads to performance degradation compared to pure video training.
This aligns with the conclusions of LLaVA-Next-Video. When data modalities are mixed within
the same batch, the additional images enhance performance. However, we found that when further
adding multi-image data, the performance on the multiple-choice benchmark improved, but the per-
formance on the caption generation benchmark declined. This indicates that multi-image data can
enhance the model’s visual knowledge but may reduce its capability in video-based dialogue. In
contrast, DPO training has a minimal side effect on multiple-choice benchmarks but significantly
improves results in GPT-based evaluation. This highlights DPO’s ability to effectively reduce hal-
lucinations in LLM outputs, leading to higher-quality dialogues. Moreover, when compared to the
baseline and LLaVA-Next-Video, the combination of DPO and PPLLaVA yields similar improve-
ments. This emphasizes the strong compatibility between PPLLaVA and DPO.

B QUALITATIVE RESULTS

In Fig. 5, we visualize the attention weights used to guide video pooling based on the user prompts.
For the same video, we tried different questions. It can be clearly observed that the model’s attention
shifts noticeably depending on the question. For example, when the user asks about the girl’s feel-
ings, the attention is significantly focused on her face. Conversely, when asked about the number
of 3D objects in the video, the attention shifts more toward the 3D objects. These visualizations
demonstrate that while reducing the visual context, PPLLaVA effectively captures the key informa-
tion in the video. In Fig. 6, we additionally illustrate the attention weights for captioning-related
questions, as these questions theoretically provide less informational content. As shown in the fig-
ure, prompts like ”Describe this video,” which lack specific references, result in attention weights
being evenly distributed across the foreground. This indicates that our model still plays a significant
role in handling captioning-related questions. In Fig. 7 and 8, we further present some examples
of video dialogue. As shown in Fig. 7, for the famous Sora video, PPLLaVA can accurately and
intricately describe details about the protagonist and the environment. For the more complex scene
changes in the trailer for Black Myth Wu Kong, PPLLaVA remarkably captures the details of each
scene and character. In Fig. 8, PPLLaVA maintains accuracy and consistency across multiple rounds
of dialogue and is capable of making reasonable inferences on open-ended questions.

C LIMITATION

Although the 7B PPLLaVA has demonstrated impressive performance, even rivaling that of 34B
video LLMs, our biggest regret is that, due to a lack of computational resources, we were unable to
train larger-scale LLMs to uncover the limits of this architecture. Additionally, the conflict between
the enhanced understanding capabilities brought by multi-image data and the decline in dialogue
abilities remains unsolved in this work; a reasonable data allocation ratio might address this issue.
We leave these problems for future work.
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