
Mastering Massive Multi-Task Reinforcement Learning
via Mixture-of-Expert Decision Transformer

Yilun Kong 1 Guozheng Ma 2 Qi Zhao 1 Haoyu Wang 1 Li Shen 3 Xueqian Wang 1 Dacheng Tao 2

Abstract
Despite recent advancements in offline multi-task
reinforcement learning (MTRL) have harnessed
the powerful capabilities of the Transformer ar-
chitecture, most approaches focus on a limited
number of tasks, with scaling to extremely mas-
sive tasks remaining a formidable challenge. In
this paper, we first revisit the key impact of task
numbers on current MTRL method, and further re-
veal that naively expanding the parameters proves
insufficient to counteract the performance degra-
dation as the number of tasks escalates. Building
upon these insights, we propose M3DT, a novel
mixture-of-experts (MoE) framework that tackles
task scalability by further unlocking the model’s
parameter scalability. Specifically, we enhance
both the architecture and the optimization of the
agent, where we strengthen the Decision Trans-
former (DT) backbone with MoE to reduce task
load on parameter subsets, and introduce a three-
stage training mechanism to facilitate efficient
training with optimal performance. Experimental
results show that, by increasing the number of
experts, M3DT not only consistently enhances its
performance as model expansion on the fixed task
numbers, but also exhibits remarkable task scal-
ability, successfully extending to 160 tasks with
superior performance.

1. Introduction
Recent developments, such as Decision Transformer (Chen
et al., 2021) and Trajectory Transformer (Janner et al., 2021),
have reframed offline reinforcement learning (RL) as a se-
quence modeling problem, showcasing their ability to trans-
form large-scale datasets into potent decision-making agents.

1Tsinghua University, China 2Nanyang Technological University,
Singapore 3Shenzhen Campus of Sun Yat-sen University. Corre-
spondence to: Xueqian Wang <wang.xq@sz.tsinghua.edu.cn>,
Li Shen <mathshenli@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

0 20 40 60 80 100 120 140 160
Task Number

70

75

80

85

90

N
or

m
al

iz
ed

 S
co

re

M3DT
MTDT
PromptDT
HarmoDT

Figure 1: Illustration of a comparative analysis of normal-
ized score across various task numbers. M3DT achieves
unparalleled task scalability. An in-depth exploration of
these results refers to Section 5.

These models also prove valuable for multi-task RL (MTRL)
challenges, offering a high-capacity framework capable of
accommodating task variances and assimilating knowledge
from diverse datasets. Additionally, they pave the way for
incorporating innovations from language modeling (Brown
et al., 2020) into MTRL methodologies, unlocking new
potential for cross-disciplinary advancements.

Drawing inspiration from large language models (LLM),
where models harness a remarkable generalization capabil-
ity to address massive tasks, there’s a growing interest in the
potential of training RL agent to master increasingly diverse
tasks. However, the application of these high-capacity se-
quential models to massive multi-task RL presents consider-
able challenges. Firstly, existing approaches exhibit limited
scalability with respect to task numbers. With most studies
confined to dozens of tasks in Atari or Meta-World (Lee
et al., 2022; Hu et al., 2024), when scaled to a larger number
of tasks, their performance degrades significantly; while
Gato (Reed et al., 2022) extends the research to over 600
tasks, its performance on control tasks remains suboptimal.
Secondly, current research either overlooks the impact of
parameter scaling, with most studies confined to very small
models (Xu et al., 2022), or overly relies on the inherent
parameter scalability of the Transformer architecture. Al-
though Gato (Reed et al., 2022) and Multi-Game DT (Lee
et al., 2022) have experimentally demonstrated the perfor-
mance enhancements with expanded model size, a compari-
son between the increase in model size and the correspond-
ing performance gains suggests that these approaches cannot
be considered an efficient method of parameter scaling.

1

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

To address the above challenges, we extend the research sce-
nario to encompass 160 simulation control tasks. We begin
by investigating the pivotal role of task quantity on model
performance and gradient conflicts, followed by an explo-
ration of the impact of model expansion on MTRL. With the
evident phenomenon that model performance and gradient
conflicts deteriorate as the task scales, our findings indicate
that these declines are most pronounced when the task num-
ber remains relatively low; once the number of tasks reaches
sufficiently large, the performance degradation tends to be-
come gradual and steady. Therefore, one of our key insights
emerged when viewed from a reverse perspective: reduc-
ing the learning task numbers to a sufficiently small scale
can significantly enhance the performance. In our study on
model scaling, the results surprisingly reveal that simply
increasing the model size rapidly hits the performance ceil-
ing. Thus, naively expanding shared parameters to offset the
performance degradation from an increasing task numbers
proves ineffective. In contrast, expanding parameters while
reducing the task numbers results in the most pronounced
performance gains. So how can we really minimize the num-
ber of tasks to be learned while efficiently scaling model
parameters, thereby maximizing performance?

Building upon these insights, we propose M3DT, a MoE-
based DT for handling Massive Multi-task RL. The overall
framework is shown in Figure 4. We make improvements
in both the architecture and optimization of the RL agent.
Specifically, we introduce mixture-of-experts (MoE) in the
DT backbone to achieve parameter separation, allowing the
backbone to learn shared knowledge across all tasks, while
each expert specializes in learning task-specific knowledge
from a distinct small task subset, which greatly simplifies
the training of parameters in experts. This also unlocks ef-
fective parameter expansion, as the number of experts is the
most efficient way to scale models (Fedus et al., 2022). By
increasing the number of experts, we can not only introduc-
ing a large number of parameters, but reduce the task load on
each parameter subset, which mutually reinforce the model
performance. Furthermore, M3DT introduces a three-stage
training mechanism, sequentially optimize the DT backbone,
each expert, and the router, respectively, which allows each
module to explicitly learn specialized knowledge without
interference, mitigating the severe gradient conflicts encoun-
tered when scaling to massive tasks, meanwhile reducing the
difficulty of MoE training. Experimental results show that,
by increasing the number of experts, on one hand, M3DT
can consistently enhance its performance as model expan-
sion on the fixed task scale; on the other hand, it exhibits
remarkable task scalability, successfully extending to 160
tasks with superior performance.

In summary, our research makes three significant contribu-
tions to the field of MTRL:

1. We rethink the challenges of sequence modeling in

MTRL from the perspective of task numbers and model
size, analyze the performance degradation and gradient
conflicts with increasing task numbers, and identify
the limited effectiveness of naively parameter scaling
in handling massive multi-task scenarios. (Section 3)

2. Based on the above insights, we propose M3DT, a
novel framework that enhances the DT architecture
with MoE, explicitly assign the grouped task subsets
to each expert through task grouping, and introduce a
three-stage training mechanism for training each mod-
ule without interference. By increasing the number of
experts, we unlock the parameter scalability for mas-
tering massive tasks. (Section 4)

3. We demonstrate the superior performance of M3DT
through rigorous testing on a broad spectrum of task
scales, analyze its functionality through extensive abla-
tion studies, and verify its task scalability and parame-
ter scalability. (Section 5)

2. Preliminary
Offline Reinforcement Learning. The goal of RL is
to learn a policy πθ(a|s) maximizing the expected return
E[
∑∞

t=0 γ
tR(st, at)] in a Markov Decision Process (MDP)

(S,A,P,R, γ, d0), with state space S , action space A, envi-
ronment dynamics P(s′|s, a) : S ×S ×A → [0, 1], reward
function R : S × A → R, discount factor γ ∈ [0, 1),
and initial state distribution d0 (Sutton & Barto, 2018).
In the offline setting (Levine et al., 2020), a static dataset
D = {(s, a, s′, r)}, collected by a behavior policy πβ , is
provided. Offline RL algorithms learn a policy entirely from
this static offline dataset, without any online interactions
with the environment.

Multi-Task RL. In multi-task RL, different tasks can have
different reward functions, state spaces, and transition func-
tions. Given a specific task T ∼ p(T), a task-specified
MDP can be defined as (ST ,AT ,PT ,RT , γ, dT0). In-
stead of solving a single MDP, the goal is to find an op-
timal policy that maximizes expected return over all tasks:
π∗ = argmaxπ ET ∼p(T)Eat∼π[

∑∞
t=0 γ

trTt]. The static
dataset D is correspondingly partitioned into per-task sub-
sets as D = ∪N

i=1Di, where N is the number of tasks.

Prompt Decision Transformer. The integration of Trans-
former(Vaswani, 2017) in offline RL for sequence modeling
has gained prominence in recent years. Prompt-DT (Xu
et al., 2022) extends DT by using task-specific prompts
to enhance multi-task learning and few-shot generaliza-
tion. Unlike text-based prompt in NLP (Liu et al., 2023;
Kong et al., 2025), Prompt-DT employs short trajectories as
prompts, which consist of state, action, and return-to-go tu-
ples (s∗, a∗, r̂∗), providing directed guidance to RL agents
with few-shot demonstrations. Each element marked with
the superscript ·∗ is relevant to the trajectory prompt. These

2

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

trajectory prompts are much shorter than the task’s horizon,
encompassing essential information to only identify task,
yet inadequate for task imitation. During training with of-
fline data, Prompt-DT utilizes τ inputi,t = (τ∗i , τi,t) as input
for each task Ti, combining a K∗-step trajectory prompt
τ∗i with a normal K-step trajectory τi,t. The trajectory is
formulated as:

τ inputi,t = (r̂∗i,1, s
∗
i,1, a

∗
i,1, ..., r̂

∗
i,K∗ , s∗i,K∗ , a∗i,K∗ ,

r̂i,t−K+1, si,t−K+1, ai,t−K+1, ..., r̂i,t, si,t, ai,t).
(1)

The action a is predicted through a prediction head linked
to the state token. The training objective aims to minimize
the mean-squared loss:

LDT =E
τ
input
i,t ∼Di

[
1

K

t∑
m=t−K+1

(ai,m − π(τ∗
i , τi,m))

2

]
. (2)

Prompt-DT has become a widely used backbone in recent
research on MTRL.

3. Rethinking DT with MTRL
In this section, we delineate two primary challenges of em-
ploying DT in MTRL: the inability to scale with task number
and model size, laying the groundwork for the motivation
behind our method.

3.1. Limited Scalability of Task Numbers

The complexity of MTRL is significantly amplified with
increasing task numbers, largely attributed to escalating
gradient conflicts. These conflicts stem from optimizing a
shared set of parameters across tasks with differing objec-
tives, leading to compromises in task-specific optimization.
To better understand the impact of task numbers, we use
Prompt-DT and construct an offline dataset containing 160
tasks based on Meta-World (Yu et al., 2020b), DM Con-
trol (Tassa et al., 2018), and Mujoco Locomotion (Todorov
et al., 2012), investigating the performance trends as the task
number scales from 10 to 160. We measure the model’s per-
formance across three benchmarks using normalized scores.
The gradient conflict is assessed by the average cosine simi-
larity between the aggregate gradient and the gradients of
each task, where a lower similarity indicates a higher de-
gree of gradient conflict. The implementation details are
described in Appendix A.

During the expansion of the training tasks, we observe a di-
vergent trend in the performance across different task scales.
The results presented in Figure 2 highlight three distinct
phenomena: • Normalized Score: In the clear trend where
the performance degrades with increasing task numbers, the
decline is pronounced when task number is relatively low
(below 40 tasks), while it becomes much more gradual once
the tasks reach a sufficiently large number (above 80 tasks).
• Gradient Conflicts: The decrease of gradient similarity

10 20 40 80 120 160
Number of Tasks

60

65

70

75

80

85

No
rm

al
ize

d
Sc

or
e

0.16

0.18

0.20

0.22

0.24

0.26

0.28
Gradient Sim

ilarity
Normalized Score
Gradient Similarity

Figure 2: With the number of tasks increases from 10 to 160,
both model performance and gradient similarity experience
a noticeable decline.

generally aligns with that of model performance, while it
drops more rapidly when the task number is low, and, coun-
terintuitively, levels off and shows minimal decline after
exceeding 40 tasks. • Performance Variance: For each
run, we test on different task sets with the same number
of tasks, thus the standard deviation of normalized scores
reflects the model’s robustness to variations in task combi-
nations. For a massive number of tasks (120 to 160), the
standard deviation is small, as the variations in task sub-
sets from the total 160 tasks are minimal. For a moderate
number of tasks (20 to 80), the standard deviation is large,
indicating that different task combinations significantly im-
pact performance, as similar tasks are easier for learning.
For few tasks (10), despite greater variability in sampled
task subsets, the standard deviation is much smaller than
that in moderate tasks, which underscores that when task
number is sufficiently low, the learning process is simple
enough to be affected by the inter-task relationships.

Thus, a reverse perspective reveals the key insight: reducing
the learning task number, particularly to a sufficiently small
scale, can significantly enhance model performance. When
the task number is sufficiently small, challenges such as
gradient conflicts and inter-task relationships become effort-
lessly manageable. However, given the predefined number
of tasks must be learned, how to reduce the actual learning
task burden?

3.2. Limited Scalability of Model Size in MTRL

Since existing models struggle with large-scale tasks in
MTRL, a straightforward approach is to scale up the model
size to enhance its capacity. The supervised learning com-
munity has convincingly demonstrated that larger networks
lead to improved performance, in particular for language
models (Kaplan et al., 2020). To investigate whether this
trend holds for the DT model in MTRL, we conduct exper-

3

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

1.47M 5.29M 20.02M 77.78M 173.30M
Model Parameters

160

120

80

40

20

10

Ta
sk

 N
um

be
rs

61.46 67.19 71.61 71.68 71.65

63.09 70.33 72.49 72.88 73.14

65.11 72.22 73.94 75.66 75.70

70.22 74.74 78.17 79.19 78.51

75.65 81.12 83.57 84.63 83.95

82.41 86.01 87.12 88.46 88.17
65

70

75

80

85

Figure 3: As the model size increases, model performance
rapidly reaches its ceiling and ceases to improve thereafter.
A more detailed domain-wise analysis can be seen in Ap-
pendix B.1.

iments with Prompt-DT, a language model-based method
trained in supervised learning for MTRL, of varying sizes
across different task scales. Detailed implementation can
be found in Appendix A.5. Results in Figure 3 highlight
some of the surprising phenomena, which contradict the
behaviors typically observed in previous research (Lee et al.,
2022; Reed et al., 2022):

In MTRL, increasing the model size of DT swiftly hits
the performance ceiling, preventing sustained improve-
ments. The horizontal comparison in Figure 3 shows that
expanding the model parameters is effective within a lim-
ited range across all task scales; once the model exceeds
20M parameters, further scaling yields no meaningful im-
provements. This is clearly inefficient, as scalability is a
key advantage of the Transformer architecture, and the per-
formance of approaches relying solely on small models
becomes increasingly constrained as the number of tasks
scales. This leads to another limitation: Scaling up the
model size can not effectively mitigate the performance
degradation caused by the increase in task numbers. As
shown by the clear decline from bottom-left to top-right in
Figure 3, larger task numbers prevent the model from achiev-
ing the strong performance seen with fewer tasks, even with
increased parameters. A more detailed rethinking of who
blocks DT from scaling is presented in Appendix B.2.

Despite these discouraging phenomena, the heatmap reveals
the most pronounced performance increase from the top-
left to the bottom-right. Building on the insights from the
previous section, a natural question arises:

Key Insight: How can we effectively minimize the
number of tasks to be learned, while efficiently scaling
model parameters, thereby maximizing performance?

4. Methodology: M3DT
From the previous observations and discussions, our key
insight is that through task grouping and parameter sepa-
ration, we can assign much fewer tasks to each parameter
subset, leading to exceptional performance. And by expand-
ing the number of parameter subsets while preserving their
individual sizes, and simultaneously increasing the number
of task groups, we can both reduce the task load on each
parameter subset and enhance the model’s capacity with
more parameters, which enables a scalable solution to han-
dle an increasing number of tasks by expanding model size
without compromising performance.

Based on this insight, we introduce M3DT, which includes
two key enhancements in both the architecture and optimiza-
tion of the agent to improve the task and parameter scal-
ability in MTRL. The first enhancement enables efficient
parameter separation and expansion to reduce task load,
achieved by incorporating an MoE architecture alongside
the FFN in Prompt-DT, as detailed in Section 4.1. While
relying solely on the advantages of the MoE structure proves
ineffective to solve massive MTRL, the second enhancement
includes a task grouping process and three distinct training
stages that optimize the agent’s learning process, especially
for ensuring each parameter subset can effectively handle a
specific task subset without interference, as outlined in Sec-
tion 4.2. The overall framework of our method is illustrated
in Figure 4.

4.1. Architecture: MoE for reducing Task Load

We propose to use an MoE architecture with scalable experts
for massive tasks. The MoE structure is characterized by
its composition of N modular experts and a router, θMoE =
{θ1, ..., θN , θr}, where each expert θi is responsible for a
distinct task subset and the router θr dynamically assigns
weights for these experts without the need for exact task IDs.
Accordingly, the parameters of a given expert are updated
only by gradients from its corresponding small task subset,
fully leveraging the remarkable learning capability for fewer
tasks. Meanwhile, by increasing the number of experts, we
can further decrease the task load assigned to each expert,
thereby effectively alleviating the severe gradient conflicts
caused by the overwhelming task numbers and enhancing
the performance.

The complete architecture of M3DT is illustrated in the right
of Figure 4. We employ the complete Prompt-DT (Xu et al.,
2022) as the backbone. As Appendix B.2 have investigated
the crucial role of the feed-forward network (FFN) in trans-
former module in multi-task settings, we incorporate the
MoE architecture by augmenting each Transformer block
with additional experts and the router alongside the pre-
served FFN, which can maintain the learned shared knowl-
edge from all tasks in the backbone model. We use networks

4

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

Multi-Head Attention

Layer Norm

FFN

Layer Norm

Embedding

Predict Head

All Tasks

Multi-Head Attention

Layer Norm

FFN

Layer Norm

Embedding

Predict Head

Expert 1 Expert 𝑛…

… …

…

Small Subset 1

Grouping

Multi-Head Attention

Layer Norm

FFN

Layer Norm

Embedding

Predict Head

Expert 1 Expert 𝑛… ...
Router

All Tasks

…

Transformer Block ×	𝐿

Stage 1.
Backbone Training

Stage 2. Additionally introduce Expert module
Task Grouping & Expert Training

Stage 3. Additionally introduce Router module
Router Training

Small Subset 𝑛

Expert 2

Small Subset 2

…

Figure 4: Overview of M3DT. Stage 1: We train the PromptDT on all tasks as the backbone. Stage 2: Here, we employ task
grouping to obtain various small task subsets, and introduce expert module into every transformer block of the backbone,
with each expert handling a specific task subset. In this stage, only the experts are optimized. Stage 3: We introduce the
router to dynamically assign weights to all experts for training across all tasks. Only the router is optimized in this phase.

identical to the FFN module as experts and employ an MLP
as the router. Formally, the forward propagation process of
the FFN in M3DT can be simplified as follows:

f(x) = x+ fFFN(x) + fMoE(x), (3)

fMoE(x) =

N∑
i=1

Softmax(fθr (x))i · fθi(x), (4)

where fFFN denotes the retained FFN in the backbone, and
fθi and fθr represent the i-th expert and the router, respec-
tively. By this, the MoE and the backbone work in tandem,
enabling the agent to dynamically adjust the utilization of
different experts for handling diverse types of tasks.

However, the results in Figure 5 suggest that relying solely
on the advantage of the MoE is insufficient to handle mas-
sive MTRL. Upon end-to-end training of the MoE-enhanced
PromptDT, gradient conflicts within the expert modules are
even more pronounced than those observed in the MLP
layers of PromptDT, and the overall performance improve-
ments remain marginal. These findings underscore the ne-
cessity of refining the training paradigm.

4.2. Optimization: Three-Stage Training Mechanism

Considering our unique training purpose, namely the ex-
plicit task assignment and independent training for each
expert, as well as the inherent challenges of training MoE,

PromptDT PromptDT-MoE M3DT-R M3DT-G

70

72

74

76

78

80

No
rm

al
ize

d
Sc

or
e

0.1

0.2

0.3

0.4

0.5

0.6

Gradient Sim
ilarity

Normalized Score
Gradient Similarity

Figure 5: The inherent structural benefits of MoE alone
are insufficient, while task grouping and three-stage train-
ing paradigm can substantially enhance model performance
while alleviating gradient conflicts. The number of experts
is configured to 40.

we propose a three-stage training mechanism, with distinct
training processes designed for the backbone, experts, and
router, each trained separately. The overall training process
is illustrated in Figure 4.

Backbone training with minimal gradient conflicts. We
first train Prompt-DT on all tasks to capture shared knowl-
edge, enabling it to embed information and predict actions
across tasks, which serves as the backbone architecture for
M3DT. This training process results in intense gradient con-
flicts, as illustrated in Figure 2. To gain deeper insight into
the progression of gradient conflicts during training, we

5

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

Table 1: Comparison of M3DT with baselines of varying sizes across three task scales. M3DT consistently outperforms
other baselines and achieves remarkable task scalability, which is attributed to its parameter scalability, as shown in Figure 6.

Task Scale 10 Tasks 80 Tasks 160 Tasks

Method Score Parameters Score Parameters Score Parameters

MTDT-Small 82.75± 2.29 1.47M 66.65± 0.43 1.47M 59.19± 1.77 1.47M
MTDT-Large 88.92± 0.98 173.30M 74.38± 1.33 173.30M 70.65± 1.67 173.30M
PromptDT-Small 82.41± 1.47 1.47M 65.11± 2.65 1.47M 61.46± 1.78 1.47M
PromptDT-Large 88.17± 1.41 173.30M 75.70± 1.62 173.30M 71.65± 1.13 173.30M
HarmoDT-Small 79.75± 1.32 1.47M 60.71± 3.91 1.47M 57.27± 0.84 1.47M
HarmoDT-Large 86.63± 1.28 173.30M 75.56± 1.69 173.30M 72.80± 2.89 173.30M

M3DT-Random (Ours) 89.09± 1.20 47.87M 78.92± 1.21 98.37M 76.74± 0.94 174.12M
M3DT-Gradient (Ours) 89.23 ± 1.12 47.87M 80.66 ± 0.97 98.37M 78.21 ± 0.47 174.12M

conduct experiments that illustrate how performance and
gradient conflicts develop across training iterations in Fig-
ure 7 (left). Initially, the model’s performance improves
rapidly with gradient conflicts escalate from a low initial
value, enabling fast knowledge acquisition. However, as
training progresses, gradient conflicts rapidly reach the peak,
leading to diminishing performance gain. Based on this, we
restrict training of the backbone to the early stage before
gradient conflicts reach their peak. This strategy allows the
model to efficiently learn shared knowledge, ensuring the
shared parameters align with the solution space while pre-
venting excessive updates on dominant tasks, thereby mini-
mizing negative interference with conflicting tasks. More
discussion is detailed in Section 5.2. This approach provides
a solid foundation for the subsequent expert training.

Task grouping and experts individually training. We
employ task grouping and then train the experts on smaller
task subsets, which not only reduces the task load to achieve
better performance, but also mitigates the severe gradient
conflicts that arise in shared parameters after a certain stage
of training. We begin by proposing two task grouping meth-
ods: (1) random grouping: based on the satisfactory results
on few tasks as illustrated in Figure 2, we randomly divide
all tasks into equally sized subsets for naively reducing the
task number to a lower value; (2) gradient-based grouping:
we first calculate the agreement vectors (Hu et al., 2024)
(as detailed in Appendix C) for each task in the current
backbone as a measure of task similarity, and then apply
K-means to group these vectors and the corresponding tasks.
After obtaining the task subsets, we introduce a dedicated
expert for each subset. The expert module is trained on its
specific task subset with the backbone parameters frozen,
preserving the shared knowledge while allowing the expert
to focus on learning task-specific information. By limiting
the size of each task subset, we can ensure effective learn-
ing on these parameter subsets. Additionally, training each
expert independently helps mitigate the issue of imbalanced
updates among experts in MoE. Consequently, when dealing
with large-scale tasks, we can expand the number of experts

and task groups to mitigate the severe performance drop.
Figure 5 illustrates that grouping tasks and independently
training distinct experts can significantly alleviate gradient
conflicts within the expert modules, resulting in notable
improvements in the overall performance.

Router training. Finally, we train the router on all tasks,
enabling it to dynamically assign weights to different well-
trained experts for various tasks based on the hidden states
from the backbone, , integrating all sub-policies into a uni-
fied strategy without requiring task IDs. In this stage, we
freeze the parameters of both the backbone and all experts,
allowing only the router to be optimized. This strategy
significantly simplifies the training of the MoE while pre-
serving the knowledge already acquired by the model.

5. Experiments and Analysis
In this section, we conduct extensive experiments to answer
the following questions: (1) How does M3DT compare to
other baselines in the massive multi-task regime? (2) Does
M3DT exhibit task scalability and parameter scalability?
(3) What makes M3DT effective? The detailed implementa-
tions1, including the baselines and environments, are illus-
trated in Appendix A.

5.1. M3DT helps Task and Parameter Scalability

In this study, we benchmark M3DT and its variants against
baselines on different task scales. We compare the perfor-
mance of the baselines at their default size and a expanded
size. The variants of M3DT considered in this evaluation
include M3DT-Random, which employ random grouping
to obtain task subsets and train experts; M3DT-Gradient,
which utilizes gradient information for grouping.

As shown in Table 1, M3DT-Random surpasses all other
methods at all task scales, achieving a 0.1%, 4.3% and 5.4%

1Our code is available at: https://github.com/
KongYilun/M3DT

6

https://github.com/KongYilun/M3DT
https://github.com/KongYilun/M3DT

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

47.87M (8)
73.12M (16)

98.37M (24)
123.62M (32)

Model Size (Expert Num)

73

74

75

76

77

78

79

80

81

N
or

m
al

iz
ed

 S
co

re

PromptDT-L on 40 tasks

PromptDT-L on 80 tasks

Parameter scalability on 80 tasks

mt80-gradient
mt80-random
mt160-gradient
mt160-random

47.87M (8)
73.12M (16)

98.37M (24)
123.62M (32)

148.87M (40)
174.12M (48)

Model Size (Expert Num)

71

72

73

74

75

76

77

78

79

PromptDT-L on 80 tasks

PromptDT-L on 160 tasks

Parameter scalability on 160 tasks

Figure 6: By increasing the number of experts, M3DT ef-
fectively unlocks the parameter scalability, further helping
to tackle task scalability.

improvement in 10, 80 and 160 tasks, respectively, com-
pared to the best baseline. The advantages of our method
become more pronounced as the number of tasks increases.
By employing random grouping, M3DT-Random already
effectively competes with the current state-of-the-art tech-
niques, highlighting the significant effectiveness of introduc-
ing parameter subsets and reducing corresponding task load.
Furthermore, M3DT-Gradient enhances the performance by
identifying better task groups to mitigate learning complex-
ity, resulting in substantial gains of 6.6% and 7.5% in 80
tasks and 160 tasks, respectively. M3DT also effectively
alleviates the performance degradation with increasing task
numbers. Compared to the severe performance drop of
around 20% observed in other baselines when scaling tasks
numbers from 10 to 160, our approach only experienced
a 12.3% decline. And M3DT achieves a higher score on
160 tasks than other baselines do on 80 tasks, demonstrating
remarkable scalability across task numbers.

The scalability of M3DT in handling massive tasks is at-
tributed to its parameter scalability, which can meanwhile
reduce the task load on each parameter subset by increasing
the number of experts, thereby enhancing overall perfor-
mance. We conduct experiments on the number of experts
across 80 tasks and 160 tasks, as shown in Figure 6. For
10 tasks, 8 experts already yield excellent results, achieving
scores of 89.09 and 89.23 with 47.87M parameters. In 80
and 160 tasks, expanding the parameter size within a certain
range through increasing the number of experts can signifi-
cantly improve model performance, achieving a 11.2% and
11.7% improvement, separately. Since both M3DT-Random
and M3DT-Gradient show diminishing performance gains
after reaching 40 experts on 160 tasks, we use 40 experts in
subsequent experiments unless stated otherwise. Addition-
ally, we analyze the reasons why increasing the number of
experts cannot continually improve performance and even-
tually reaches a performance ceiling in later experiments.

5.2. Further Analysis

Is grouped training important? To investigate whether
the success of M3DT is primarily due to the explicit task

Table 2: Ablation study on different training process of
M3DT, which illustrate the effectiveness of our dedicated
three-stage training mechanism.

Method Normalized Score

M3DT-R 76.67± 0.29
M3DT-G 77.89± 0.47
M3DT w/o 3-stage training 71.90± 0.70
M3DT w/o grouping 67.34± 0.56
M3DT-R w/o expert freezing 71.89± 0.63
M3DT-G w/o expert freezing 71.88± 0.62

grouping and three-stage training mechanism, or the inher-
ent advantages of the MoE architecture itself, we conduct
a detailed ablation study, as illustrated in Table 2. Despite
utilizing the MoE structure, the absence of our meticulously
designed training strategy leads to a substantial performance
degradation. Training a PromptDT with MoE end-to-end
from scratch (i.e. M3DT w/o 3-stage training) only yields
results similar to those of a standalone PromptDT with the
same parameter scale, while freezing the trained backbone
and jointly training all experts and the router on all tasks (i.e.
M3DT w/o grouping) results in a worse performance, with
a score of 67.34. The comparison of gradient conflicts is
shown in Figure 5. In addition, after training the experts in
groups, simultaneously fine-tuning them when training the
router (i.e. both M3DT-R/G w/o expert freezing) also leads
to suboptimal results. This further underscores the validity
of our entire framework.

0 0.2 0.4 0.6 0.8 1
Iterations of Backbone Training (In millions)

0

0.2

0.4

0.6

0.8

G
ra

di
en

t C
on

fli
ct

s

Training curves of the PromptDT

0.2 0.4 0.6 0.8 1
Iterations of Backbone Training (In millions)

72

73

74

75

76

77

78

N
or

m
al

iz
ed

 S
co

re

PromptDT-L on 160 tasks

Ablation on Backbone training duration

M3DT-R
M3DT-G0

20

40

60

80

Performance
Gradient Conflicts

Figure 7: (left) Training curves of the PromptDT, where the
early stage exhibits mild gradient conflicts with swift per-
formance gain; (right) The overall performance of M3DT
varies with the number of training steps applied to the back-
bone, with optimal performance occurring just as gradient
conflicts reach the peak.

Is early stopping of backbone training truly effective?
As illustrated in Figure 7 (left), the gradient conflicts in
the PromptDT backbone progressively escalate with train-
ing duration, eventually reaching a peak, after which the
performance improvements become notably sluggish. To
assess the efficacy of early stopping, which is employed
to mitigate these severe gradient conflicts at the expense

7

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

25 50 75 100 125 150 175 200
Model Size (M)

67.5

70.0

72.5

75.0

77.5

80.0

82.5

85.0

N
or

m
al

iz
ed

 S
co

re

Average Single-Task Performance with totally 235.2M parameters

M3DT-R
M3DT-G
M3DT-R-Small
M3DT-G-Small

Overall Performance
Oracle Expert Selection

Figure 8: Performance curves of M3DT with increasing
model size (i.e., the number of experts) across different base
sizes, where each point denotes the addition of 8 experts.

of some performance gains, we conduct a comparison of
M3DT using PromptDT trained for varying steps as back-
bone. The results are depicted in Figure 7 (right). M3DT
consistently achieves strong performance across various
training durations, with early stopping at 400k steps, just
as gradient conflicts peak, yielding the most optimal results.
This demonstrates the robustness of M3DT in the initial
training phase. Training for only 200k steps prevents the
backbone from fully learning the shared knowledge, causing
the parameters to deviate from the optimal solution space,
resulting in suboptimal performance. On the other hand,
continuing training beyond 400k steps, when gradient con-
flicts are extremely severe, also leads to a decline in M3DT’s
performance. This is likely due to the parameters become
overfitted to tasks whose gradients dominate, causing them
to deviate further from the solution space of other conflicting
tasks. Introducing expert modules at this time for grouped
task learning also falls victim to this issue, as they unable to
learn the specific knowledge on these conflicting tasks, thus
failing to alleviate the performance drop.

What affects parameter expansion? In this study, we in-
troduce: Oracle Expert Selection: manually selecting each
test task’s corresponding expert based on Task ID, individu-
ally evaluating their performance on each task, calculate the
averaged results as the upper-bound performance of M3DT,
as task IDs are unavailable in overall method evaluation and
real-world applications; Small: a scaled-down version of
M3DT, where the width of backbone, experts, and router
are all proportionally reduces. As shown in Figure 8, the
main factors influencing the parameter scalability of M3DT
are threefold: (1) Model width: With the number of experts
increasing, M3DT-Small achieves significant performance
improvements with modest growth in parameters. How-
ever, due to the constrains of the small model width on the
capacity of each module, its scalability to the number of
experts is poor, reaching the performance ceiling at only 24
experts. As a result, its parameter scalability is inherently
constrained. (2) Router: The performance gap between

8 16 24 32 40
Expert Num

64

66

68

70

72

74

76

78

N
or

m
al

iz
ed

 S
co

re

M3DT-G M3DT-G-Top4

Figure 9: Top-K routing selects the router’s top-k outputs,
applies softmax to obtain probabilities, and computes the
weighted sum of the corresponding expert outputs. M3DT
with Top-4 router fails to scale with the number of experts.

the dashed and solid lines reflects the performance loss at-
tributed to the router. When the number of experts is small,
the router can easily allocate weights across the few ex-
perts, resulting in minimal performance loss or even better
results. As the number of experts increases, the difficulty of
assigning weights to the experts grows, resulting in a pro-
gressively larger performance gap, which peaks when the
expert performance continues to improve while the overall
performance plateaus or even drops. Thus, it is reasonable
and tolerable that the framework’s overall performance may
be lower than the ideal case of perfect expert switch, as
increasing the number of experts inherently raises the diffi-
culty of optimal weight allocation. (3) Backbone + Expert:
Expert performance also tends to plateau when the number
of experts becomes sufficiently large. This is primarily due
to the shared knowledge learned by the backbone across
all tasks is limited, which restricts further performance im-
provements, regardless of the expert’s capabilities. Addi-
tionally, when the number of experts is large enough and
each expert already faces a sufficiently small task subset,
further increasing the number of experts yields diminishing
returns in reducing the task load.

Router design. We compare the Top-K routing (Shazeer
et al., 2017) strategy to investigate whether reducing the
number of activated experts can enhance the scalability of
expert number. In this experiment, we employed Top-4
routing, and the results are presented in Figure 9. Although
our proposed three-stage training mechanism significantly
simplifies the training of MoE, Top-4 router fails to scale the
number of experts, and performance deteriorates as expert
number increases. This is attributed to improper routing load
balancing, where certain routes are excessively optimized,
combined with the instability in router training induced by
sparsity. This finding is consistent with prior work demon-
strating the difficulty in scaling up deep RL networks with
Top-K router (Obando-Ceron et al., 2024). While it is pos-
sible some losses (Riquelme et al., 2021; Mustafa et al.,
2022) may result in better Top-K performance, this find-
ing suggests that M3DT benefits from having a weighted
combination of all experts from all task subsets.

8

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

6. Related Work
Multi-Task RL Multi-task RL aims to learn a shared policy
for a diverse set of tasks. One of the most straightforward
approaches to MTRL is to formulate the multi-task model
as task-conditional sequence modeling (Xu et al., 2022;
Reed et al., 2022; Lee et al., 2022; He et al., 2023; Hu
et al., 2024). Some methods also focus on handling gradient
conflicts among different tasks (Yu et al., 2020a; Chen et al.,
2020; Liu et al., 2021). On the other hand, some methods
employed a dedicated shared structure to leverage the shared
knowledge (D’Eramo et al., 2024; Yang et al., 2020; Sun
et al., 2022). While most of these methods address tens or
even less tasks, we focus on scaling to a significantly larger
number of tasks, achieving task scalability.

Mixture-of-Experts MoEs have recently helped scaling
language models up to trillions of parameters thanks to their
modular nature (Lepikhin et al., 2020; Fedus et al., 2022).
MoEs also help performance in multi-task settings (Fan
et al., 2022; Ye & Xu, 2023; Dou et al., 2024). There have
been few works exploring MoEs in RL for single (Akrour
et al., 2021; Obando-Ceron et al., 2024) and multi-task
learning (Hendawy et al., 2023; Huang et al., 2024). While
M3DT explicitly assign tasks to specific experts and train
each expert independently to handle multi-task problems.

7. Limitation
We primarily focus on the challenges in MTRL, analyze the
scalability of task numbers and parameter size , and propose
a paradigm that increases model parameters to achieve task
scalability. However:

(1) we did not focus on fine-grained network architecture
design, such as the expert and router modules. Fur-
ther optimization of these components could potentially
improve performance while reducing model size.

(2) While we leave held-out task generalization and con-
tinual learning unexplored, our method’s modular pa-
rameterization and group-wise learning naturally sup-
ports solutions like held-out task adaptation via expert
learning, dynamic router-based skill composition for
held-out tasks, and forgetting mitigation mechanisms
for the router for past tasks. Since generalization and
continual learning are highly critical in RL, resolving
them presents promising future works.

(3) Scaling experts with task count raises inference costs.
While we prioritize algorithm performance above all
else, we experimented with activating Top-k experts
with fixed k to control inference overhead, but it de-
grades the performance. A more tailored Top-k gating
mechanism, better aligned with our three-stage training
paradigm, could enhance the practical applicability of
our method.

8. Conclusion
In this study, we first delve into the challenges of sequence
modeling in MTRL, analyze the performance degradation
and gradient conflicts with increasing task numbers, and
identify the limited effectiveness of naively scaling parame-
ter in MTRL. Based on these insights, we introduce M3DT,
a novel approach designed to unlock the parameter scalabil-
ity for handling massive tasks. By employing task grouping
and MoE, M3DT significantly reduces the task load as-
signed to each parameter subset while enhancing the overall
performance through the expansion of experts. We pro-
pose a three-stage training mechanism that allows explicit
task assignment to each expert, enabling sequential training
of different modules without interference. Our empirical
evaluations across diverse task scales underscore M3DT’s
superior performance compared to existing baselines, estab-
lishing its state-of-the-art effectiveness in MTRL scenarios.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgement
This work is supported by STI 2030-Major Projects (No.
2021ZD0201405), Shenzhen Basic Research Project (Natu-
ral Science Foundation) Basic Research Key Project (NO.
JCYJ20241202124430041), National Research Foundation,
Singapore, under its NRF Professorship Award No. NRF-
P2024-001.

References
Akrour, R., Tateo, D., and Peters, J. Continuous action

reinforcement learning from a mixture of interpretable
experts. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 44(10):6795–6806, 2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Chen, Z., Ngiam, J., Huang, Y., Luong, T., Kretzschmar,
H., Chai, Y., and Anguelov, D. Just pick a sign: Opti-

9

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

mizing deep multitask models with gradient sign dropout.
Advances in Neural Information Processing Systems, 33:
2039–2050, 2020.

D’Eramo, C., Tateo, D., Bonarini, A., Restelli, M., and
Peters, J. Sharing knowledge in multi-task deep rein-
forcement learning. arXiv preprint arXiv:2401.09561,
2024.

Dou, S., Zhou, E., Liu, Y., Gao, S., Shen, W., Xiong, L.,
Zhou, Y., Wang, X., Xi, Z., Fan, X., et al. Loramoe:
Alleviating world knowledge forgetting in large language
models via moe-style plugin. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1932–1945,
2024.

Fan, Z., Sarkar, R., Jiang, Z., Chen, T., Zou, K., Cheng, Y.,
Hao, C., Wang, Z., et al. M3vit: Mixture-of-experts vision
transformer for efficient multi-task learning with model-
accelerator co-design. Advances in Neural Information
Processing Systems, 35:28441–28457, 2022.

Fedus, W., Zoph, B., and Shazeer, N. Switch transformers:
Scaling to trillion parameter models with simple and ef-
ficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional conference on machine learning, pp. 1126–1135.
PMLR, 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Hansen, N., Su, H., and Wang, X. Td-mpc2: Scalable, ro-
bust world models for continuous control. arXiv preprint
arXiv:2310.16828, 2023.

He, H., Bai, C., Xu, K., Yang, Z., Zhang, W., Wang, D.,
Zhao, B., and Li, X. Diffusion model is an effective
planner and data synthesizer for multi-task reinforcement
learning. Advances in neural information processing
systems, 36:64896–64917, 2023.

Hendawy, A., Peters, J., and D’Eramo, C. Multi-task rein-
forcement learning with mixture of orthogonal experts.
arXiv preprint arXiv:2311.11385, 2023.

Hu, S., Fan, Z., Shen, L., Zhang, Y., Wang, Y., and
Tao, D. Harmodt: Harmony multi-task decision trans-
former for offline reinforcement learning. arXiv preprint
arXiv:2405.18080, 2024.

Huang, S., Zhang, Z., Liang, T., Xu, Y., Kou, Z., Lu, C.,
Xu, G., Xue, Z., and Xu, H. Mentor: Mixture-of-experts
network with task-oriented perturbation for visual rein-
forcement learning. arXiv preprint arXiv:2410.14972,
2024.

Janner, M., Li, Q., and Levine, S. Offline reinforcement
learning as one big sequence modeling problem. Ad-
vances in neural information processing systems, 34:
1273–1286, 2021.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Kong, Y., Mao, H., Qi, Z., Zhang, B., Ruan, J., Shen, L.,
Chang, Y., Wang, X., Zhao, R., and Tao, D. QPO: Query-
dependent prompt optimization via multi-loop offline re-
inforcement learning. Transactions on Machine Learn-
ing Research, 2025. ISSN 2835-8856. URL https:
//openreview.net/forum?id=bqMJToTkvT.

Lee, K.-H., Nachum, O., Yang, M. S., Lee, L., Free-
man, D., Guadarrama, S., Fischer, I., Xu, W., Jang, E.,
Michalewski, H., et al. Multi-game decision transformers.
Advances in Neural Information Processing Systems, 35:
27921–27936, 2022.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. Gshard: Scaling
giant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Liu, B., Liu, X., Jin, X., Stone, P., and Liu, Q. Conflict-
averse gradient descent for multi-task learning. Advances
in Neural Information Processing Systems, 34:18878–
18890, 2021.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig,
G. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. ACM
Computing Surveys, 55(9):1–35, 2023.

Mustafa, B., Riquelme, C., Puigcerver, J., Jenatton, R., and
Houlsby, N. Multimodal contrastive learning with limoe:
the language-image mixture of experts. Advances in
Neural Information Processing Systems, 35:9564–9576,
2022.

Obando-Ceron, J., Sokar, G., Willi, T., Lyle, C., Farebrother,
J., Foerster, J., Dziugaite, G. K., Precup, D., and Castro,
P. S. Mixtures of experts unlock parameter scaling for
deep rl. arXiv preprint arXiv:2402.08609, 2024.

10

https://openreview.net/forum?id=bqMJToTkvT
https://openreview.net/forum?id=bqMJToTkvT

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

Reed, S., Zolna, K., Parisotto, E., Colmenarejo, S. G.,
Novikov, A., Barth-Maron, G., Gimenez, M., Sulsky,
Y., Kay, J., Springenberg, J. T., et al. A generalist agent.
arXiv preprint arXiv:2205.06175, 2022.

Riquelme, C., Puigcerver, J., Mustafa, B., Neumann, M.,
Jenatton, R., Susano Pinto, A., Keysers, D., and Houlsby,
N. Scaling vision with sparse mixture of experts. Ad-
vances in Neural Information Processing Systems, 34:
8583–8595, 2021.

Rothfuss, J., Lee, D., Clavera, I., Asfour, T., and Abbeel,
P. Promp: Proximal meta-policy search. arXiv preprint
arXiv:1810.06784, 2018.

Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le,
Q., Hinton, G., and Dean, J. Outrageously large neural
networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Sun, L., Zhang, H., Xu, W., and Tomizuka, M. Paco:
Parameter-compositional multi-task reinforcement learn-
ing. Advances in Neural Information Processing Systems,
35:21495–21507, 2022.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Xu, M., Shen, Y., Zhang, S., Lu, Y., Zhao, D., Tenenbaum,
J., and Gan, C. Prompting decision transformer for few-
shot policy generalization. In international conference
on machine learning, pp. 24631–24645. PMLR, 2022.

Yang, R., Xu, H., Wu, Y., and Wang, X. Multi-task rein-
forcement learning with soft modularization. Advances in
Neural Information Processing Systems, 33:4767–4777,
2020.

Ye, H. and Xu, D. Taskexpert: Dynamically assembling
multi-task representations with memorial mixture-of-
experts. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 21828–21837, 2023.

Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K.,
and Finn, C. Gradient surgery for multi-task learning.

Advances in Neural Information Processing Systems, 33:
5824–5836, 2020a.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalua-
tion for multi-task and meta reinforcement learning. In
Conference on robot learning, pp. 1094–1100. PMLR,
2020b.

11

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

A. Experimental Details
A.1. Detailed Environments

We consider a total of 160 continuous control tasks from 3 task domains: Meta-World (Yu et al., 2020b), DMControl (Tassa
et al., 2018), Mujoco Locomotion (Todorov et al., 2012). This section provides an exhaustive introduction of the tasks
considered, including their observation and action dimensions, and the calculation of normalized score. Our goal is not to
propose a new benchmark with 160 tasks, but rather to use a sufficiently large number of tasks to explore the impact of task
quantity.

A.1.1. META-WORLD

The Meta-World benchmark encompasses a diverse array of 50 distinct manipulation tasks, unified by shared dynamics.
These tasks involve a Sawyer robot engaging with a variety of objects, each distinguished by unique shapes, joints, and
connective properties. The complexity of this benchmark lies in the heterogeneity of the state spaces and reward functions
across tasks, as the robot is required to manipulate different objects towards varying objectives. The robot operates with a
4-dimensional fine-grained action input at each timestep, which controls the 3D positional movements of its end effector and
modulates the gripper’s openness. The state space is unified into 39 dimension. In its original configuration, the Meta-World
environment is set with fixed goals, a format that somewhat limits the scope and realism of robotic learning applications. To
address this and align with recent advancements in the field, as noted in works by (Yang et al., 2020; Sun et al., 2022; He
et al., 2023; Hu et al., 2024), we have modified all tasks to incorporate a random-goal setting. For the offline dataset, we
follow the works (He et al., 2023; Hu et al., 2024) and utilize their dataset with the near-optimal trajectories, which consists
of the experience from random to expert (convergence) in SAC-Replay (Haarnoja et al., 2018). The primary metric for
evaluating performance in this benchmark is the average success rate across all tasks, providing a comprehensive measure of
the robotic system’s adaptability and proficiency in varied task environments. We directly use the success rate on each task
as its normalized score.

A.1.2. DMCONTROL

The tasks in DMControl involve significantly more diverse embodiments, state spaces, action spaces, and reward functions,
which greatly increases their complexity. We consider a total of 30 continuous control tasks in the DMControl domain,
including 19 original DMControl tasks and 11 new (custom) tasks created specifically for M3DT benchmarking, following
the work (Hansen et al., 2023). We directly use the dataset collected by (Hansen et al., 2023), and we only use the first
2,000 trajectories for each task to ensure consistency in dataset size with other tasks. We list all used DMControl tasks in
Table 3. For evaluation, we linearly scale the original reward range of [0,1000] to [0,100], using it as our normalized score.

A.1.3. MUJOCO LOCOMOTION

In this paper, we also employ a diverse array of meta-RL control tasks to construct a dataset with a sufficient number of
tasks for exploring the challenges of MTRL when confronted with a large number of tasks. We directly utilize the datasets
proposed by Xu et al. (2022). The tasks are detailed as follows:

• Cheetah-vel (Finn et al., 2017): It defines 40 unique tasks, each associated with a specific goal velocity, uniformly
distributed between 0 and 3 m/s. The agent’s performance is assessed based on the l2 error relative to the target velocity,
with a penalty for deviations. These 40 tasks share a unified state space of 20 and an action space of 6. Based on the
reward ranges of these environments, we linearly map the return values within the interval [-100, -30] to the normalized
range of [0, 100] as our normalized scores, while returns outside this range are directly capped at 0 or 100, respectively.

• Ant-dir (Rothfuss et al., 2018): We also use 40 tasks in this domain, each with a goal direction uniformly sampled in a
two-dimensional plane. The agent, an 8-jointed ant, is incentivized to attain high velocity in the designated direction.
The state space for these tasks has a dimensionality of 27, and the action space consists of 8 dimensions. We linearly
map the return values within the interval [0, 500] to the normalized range of [0, 100], while returns outside this range
are directly capped at 0 or 100, respectively, to calculate our normalized scores.

By using normalized scores, we can align tasks with initially inconsistent evaluation metrics, enabling us to assess the
model’s ability to simultaneously tackle multiple tasks. For the calculation of average normalized score, we assign equal
weight to each of the 160 tasks and compute the average of normalized scores.

12

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

Table 3: DMControl tasks used in this paper.

Task Observation dim Action dim New?

Acrobot Swingup 6 1 N
Cartpole Balance 5 1 N
Cartpole Balance Sparse 5 1 N
Cartpole Swingup 5 1 N
Cartpole Swingup Sparse 5 1 N
Cheetah Jump 17 6 Y
Cheetah Run 17 6 N
Cheetah Run Back 17 6 Y
Cheetah Run Backwards 17 6 Y
Cheetah Run Front 17 6 Y
Cup Catch 8 2 N
Cup Spin 8 2 Y
Finger Spin 9 2 N
Finger Turn Easy 12 2 N
Finger Turn Hard 12 2 N
Fish Swim 24 5 N
Hopper Hop 15 4 N
Hopper Hop Backwards 15 4 Y
Hopper Stand 15 4 N
Pendulum Spin 3 1 Y
Pendulum Swingup 3 1 N
Reacher Easy 6 2 N
Reacher Hard 6 2 N
Reacher Three Easy 8 3 Y
Reacher Three Hard 8 3 Y
Walker Run 24 6 N
Walker Run Backwards 24 6 Y
Walker Stand 24 6 N
Walker Walk 24 6 N
Walker Walk Backwards 24 6 Y

To address the inconsistency in state and action spaces across tasks, we zero-pad all states and actions to their largest
respective dimensions (i.e. 39 and 8, respectively), and mask out invalid action dimensions in predictions made by the policy
during both training and inference.

A.2. Baselines

We compare our proposed M3DT with the following DT-based baselines.

• MTDT: We extend the DT architecture (Chen et al., 2021) to learn from multitask data. Specifically, MTDT
concatenates an embedding z and a state s as the input tokens, where z is the encoding of task ID. In evaluation, the
reward-to-go and task ID are fed into the Transformer to provide task-specific information. Leveraging the scalability
of the Transformer architecture, we compare the performance of this method at both its default size (1.47M) and
expanded size (173.30M).

• PromptDT (Xu et al., 2022): PromptDT built on DT aims to learn from multi-task data and generalize the policy
to unseen tasks. It leverages short task trajectories as prompts to guide the model in identifying the current task.
PromptDT generates actions based on the trajectory prompts and reward-to-go. We compare the performance of this
method at both its default size (1.47M) and expanded size (173.30M).

• HarmoDT (Hu et al., 2024): HarmoDT built on PromptDT aims to lean a specific mask for each task, effectively
shielding the model’s parameters that conflict most with the task, thereby mitigating the severe gradient conflicts in

13

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

MTRL. During evaluation, HarmoDT also generates actions based on the trajectory prompts and reward-to-go. We
compare the performance of this method at both its default size (1.47M) and expanded size (173.30M).

A.3. Task Selection

To mitigate the impact of task selection and combination on performance, we use different task combinations for each
run seed in scenarios involving 10, 20, 40, 80, and 120 tasks. To fairly analyze the effects solely caused by task quantity,
we maintain consistent average task difficulty across various task scales and seeds. Specifically, we train 160 separate
PromptDT models for each of the 160 tasks and compute the score for each task, which serves as the task difficulty for that
task. When selecting tasks for different task scales, we ensure that the average task difficulty of the chosen task set aligns
with that of the complete set of 160 tasks. We use the 1.47M PromptDT model to compute the task difficulty and derive the
task sets for all task scales. Subsequently, all experiments are conducted using the same task set to eliminate potential bias.

In summary, to achieve methodological rigor in task selection, we follow three key criteria:

• Performance Balance: Based on single-task normalized score, the selected task subsets maintain average scores
comparable to the full set of 160 tasks, to eliminate the influence of task difficulty;

• Domain Ratio Preservation: We make the subset composition at different task scales approximately maintains the
original domain ratio (MW:DMC:Ant:Cheetah=5:3:4:4), in order to mitigate domain-specific biases;

• Subset Diversity: We employ distinct task subsets for each run with the same task scale to maximize coverage of the
full task pool, eliminating spurious correlations between specific tasks.

A.4. Gradient Simalarity

We compute the gradients for each task and calculate the mean gradient across all tasks. The gradient similarity is defined
as the average cosine similarity between this mean gradient and all tasks’ gradients. During training, we record this metric
every 1e4 steps to obtain a similarity curve. After smoothing to the stabilized phase of training, we use the plateau value as
our final gradient similarity. Gradient conflict is calculated as (1 - gradient similarity).

A.5. Implementation of Model Expansion

In this experiment, we do not invest significant effort into exploring the optimal structure for each baseline model at different
parameter scales. Instead, we adopt their default number of layers and attention heads, only increasing the width of the
models, i.e. the dimension of their hidden states. Although previous research (Kaplan et al., 2020) have shown that the model
structure has only a marginal impact on performance when the parameter size remains constant, we conduct experiments
with PromptDT to verify whether our expanding approach is reasonable in the context of MTRL. The results are shown
in Figure 10, where dmodel denotes the width of the model, nlayer and nhead denote the number of layers and attention
heads, respectively. In MTRL, the model performance is also weakly depends on the model architecture. We summarize the
specific structures of each scaled model in Table 4.

Table 4: DMControl tasks used in this paper.

Parameters Layers Attention Heads Model Width

1.47M 6 8 128
5.29M 6 8 256
20.02M 6 8 512
77.78M 6 8 1024
173.30M 6 8 1536

A.6. Experimental Setups, Hyper-parameters and Resources

In this section, we introduce the implementation for M3DT. We employ the PromptDT with 5.29M parameters as the
backbone of M3DT, with the structure outlined in Table 4. The structures of our introduced experts are identical to that
of the FFN in the backbone. We employ a 5-MLP as our router. The padded input and output dimensions are 39 and 8,

14

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

101 102

Aspect Ratio dmodel/nlayer

60

65

70

75

80

N
or

m
al

iz
ed

 S
co

re

101 102

Attention Head Dim dmodel/nhead

173M
77M

Figure 10: Performance depends very mildly on model shape when the total number of parameters is held fixed.

respectively, as illustrated in A.1. All experiment in this paper are run with 3 seeds. The specific model parameters and
hyper-parameters utilized in our training process are outlined in Table 5. We use NVIDIA GeForce RTX 4090 to train and
evaluate each model except HarmoDT-Large, while it is trained and evaluated on NVIDIA A100 40G due to its substantial
resource requirements.

Table 5: Hyper-parameters of M3DT in our experiments.

Parameter Value
Number of layers 6
Number of attention heads 8
Hidden dimension 256
Number of experts [8,16,24,32,40,48]
Nonlinearity function ReLU
Batch size 16
Prompt length K 20
Dropout 0.1
Learning rate 1.0e-4
Optimizer Adam
Total rounds 1e6

-Backbone training rounds 4e5
-Expert training rounds 2e5
-Router training rounds 4e5

B. More Experiments and Further Analysis
B.1. Domain-wise Analysis of the Scalability of Task Numbers and Model Size

We separately report the scores in respective domains to eliminate the potential conclusion bias caused by varying difficulty
levels across domains. The model is still trained on mixed tasks from all four domains (MW + DMC + Ant + Cheetah).
The Total number on the y-axis denotes the overall trained tasks from the four domains, while the Domain number in
parentheses indicates the number of tasks belonging to the specific domains in the training set, and the score represents
the average performance across these tasks. Both task scalability and parameter scalability exhibit the same trends as
demonstrated in the original paper.

For the parameter scalability, the performances on MW+DMC exhibit the same performance patterns as observed in Fig. 3.
For Ant+Cheetah, PromptDT achieves near-optimal performance at original size when trained on limited tasks, while
also shows the same pattern of rapidly reaching performance saturation with increased parameters under large-scale tasks.
These collectively confirm that including Ant and Cheetah as 80 tasks does not introduce bias to our parameter scalability
conclusion.

15

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

1.47M 5.29M 20.02M 77.78M 173.30M
Model Parameters

160(80)

120(60)

80(40)

40(20)

20(10)

10(5)To
ta

l (
Do

m
ai

n)
 Ta

sk
 N

um
be

rs 35.56 46.95 53.63 53.51 53.17

39.61 53.41 57.61 57.81 58.57

42.09 54.50 57.52 59.71 59.40

53.01 60.89 68.31 69.87 70.45

61.20 70.60 74.20 76.95 75.35

70.81 77.76 82.69 83.61 82.84

Normalized Score on MW+DMC

1.47M 5.29M 20.02M 77.78M 173.30M
Model Parameters

160(80)

120(60)

80(40)

40(20)

20(10)

10(5)To
ta

l (
Do

m
ai

n)
 Ta

sk
 N

um
be

rs 87.37 87.43 89.59 90.06 90.11

86.52 89.11 89.92 90.07 89.46

88.15 89.69 90.03 90.65 90.66

88.52 89.54 89.10 89.55 89.69

91.64 92.52 92.49 92.66 92.85

94.07 94.41 93.38 93.13 93.61

Normalized Score on Ant+Cheetah

40

50

60

70

80

87

88

89

90

91

92

93

94

Figure 11: The task scalability and parameter scalability exhibit the same trends as demonstrated in Section 3.

From the perspective of task scalability, with the criteria of Domain Ratio Consistency ensuring proportional task sampling
across different scales, both MW+DMC and Ant+Cheetah scores exhibit identical scaling patterns: sharp drop from 10 to 80
tasks and plateau from 80 to 160 tasks, which further confirms our conclusion.

B.2. Who blocks DT from scaling in MTRL

To further systematically investigate the limiting factors in DT model scaling, we conduct module-wise dimensional
expansion to analyze each component’s impact on MTRL performance. The results are illustrated in Figure 12.

Through layer-wise analysis of gradient similarity across Transformer blocks, we identify significantly stronger gradient
conflicts in MLP compared to Attention, as shown in Figure 12a. And Figure 12b and Figure 12c indicate that separately
expanding the dimensions of either MLP or attention layers demonstrates measurable efficacy in mitigating gradient conflicts
within their respective modules, albeit to varying degrees. Additionally, as seen in Figure 12d, independently enhancing the
dimensionality of either the MLP or attention layers can increase the overall gradient similarity of the model.

Nonetheless, the results in Figure 12d suggest that despite separate parameter expansion, the model’s overall gradient
conflict still converges to a fairly high value. In terms of model performance, while an initial expansion of the MLP
yields some improvement, continued enlargement results in performance degradation. On the other hand, expanding the
Attention module directly causes a performance drop, suggesting that the default-sized Attention already possesses sufficient
representation modeling capability. Given that the MLP is a key component for enhancing performance and mitigating
gradient conflicts, but merely expanding its parameters yields limited benefits, what approach should we take?

B.3. Domain-wise Main Results

We also separately report the normalized scores of our method and baselines in respective domains in Table 6 and Table 7.
M3DT shows more superior performance on complex tasks (MW+DMC).

B.4. Training Time Overhead and Computational Cost

Our experiments are conducted on RTX 4090 GPU. In the first stage, we train PromptDT-5M for 4e5 steps, which takes
approximately 5.2 hours. In the second stage, since each expert trains independently on its dedicated task group, all experts
train in parallel. We record the training time of the overall second stage as training a single expert for approximately 1.8
hours. In the third stage, we train the router for 4e5 steps, which takes 17.2 hours. The primary reason for the long training
time is our code implementation’s lack of parallel computation for experts. Code optimization may reduce this training
time. Thus, the total training time of our method amounts to approximately 24.2 hours. In comparison, training both
PromptDT-173M and MTDT-173M requires similar durations of around 21.3 hours, whereas training HarmoDT-173M
demands 95.6 hours.

16

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

0 1 2 3 4 5
Layer Index

0.09

0.10

0.11

0.12

0.13

0.14

0.15

Gr
ad

ie
nt

 S
im

ila
rit

y

Attention
MLP

(a)

0 1 2 3 4 5
Layer Index

0.10

0.12

0.14

0.16

0.18

M
LP

 L
ay

er
 G

ra
di

en
t S

im
ila

rit
y

Attention-256, MLP-256
Attention-256, MLP-2048
Attention-256, MLP-4096
Attention-256, MLP-8192

(b)

0 1 2 3 4 5
Layer Index

0.10

0.12

0.14

0.16

0.18

0.20

At
te

nt
io

n
La

ye
r G

ra
di

en
t S

im
ila

rit
y

Attention-256, MLP-256
Attention-2048, MLP-256
Attention-4096, MLP-256
Attention-8192, MLP-256

(c)

60

62

64

66

68

70

72

Norm
alized Score

256 2048 4096 8192
Dimension

0.16

0.17

0.18

0.19

0.20

0.21

0.22

Ov
er

al
l M

od
el

 G
ra

di
en

t S
im

ila
rit

y

MLP
Attention

(d)

Figure 12: (a) MLP layers exhibit more severe gradient conflicts compared to Attention layers within each Transformer
layer. (b) Expanding the dimension of MLP can mitigate gradient conflicts in the MLP layers. (c) Expanding the dimension
of Attention also helps alleviate gradient conflicts in the Attention layers. (d) Despite dimensional expansion across different
modules, the model’s overall gradient conflicts converge to a severe level, with limited practical performance gains.

B.5. Expert design.

Our proposed MoE architecture replaces the FFN with an MoE in each transformer block. This is based on what is
common practice when adding MoEs to transformer architectures, but is by no means the only way to utilize MoEs. Here
we investigate a variant: Big: Each expert is a full transformer architecture, where the embedding layer and prediction
layer are shared in the backbone. However, M3DT-Gradient-Big only results in a normalized score of 76.53, compared to
M3DT-Random scored 77.89, which confirms our intuition that employing normal MoE performs better.

C. Agreement Vector
This section elucidates the utilization of the Agreement Vector, as proposed by Hu et al. (2024), as a metric for task grouping.
For each task Ti, the agreement score vector is defined as follows: A(Ti) = gi ⊙ 1

N

∑N
i=1 gi, where gi denotes the gradient

of the parameters calculated from task Ti and N denotes the total number of tasks. This vector reflects the gradient similarity
between the task-specific and the average gradients, and further indicate the task similarity.

17

Mastering Massive Multi-Task Reinforcement Learning via Mixture-of-Expert Decision Transformer

Table 6: Normalized score on MW+DMC

Task Scale 10 Tasks 80 Tasks 160 Tasks

Method Score Parameters Score Parameters Score Parameters

MTDT-Small 70.97 1.47M 45.89 1.47M 35.34 1.47M
MTDT-Large 84.32 173.30M 59.01 173.30M 50.86 173.30M
PromptDT-Small 70.81 1.47M 42.09 1.47M 35.46 1.47M
PromptDT-Large 81.24 173.30M 59.40 173.30M 53.07 173.30M
HarmoDT-Small 65.13 1.47M 34.35 1.47M 28.05 1.47M
HarmoDT-Large 80.55 173.30M 59.91 173.30M 56.81 173.30M

M3DT-Random (Ours) 84.75 47.87M 66.93 98.37M 62.48 174.12M
M3DT-Gradient (Ours) 84.77 47.87M 70.52 98.37M 65.90 174.12M

Table 7: Normalized score on Ant+Cheetah

Task Scale 10 Tasks 80 Tasks 160 Tasks

Method Score Parameters Score Parameters Score Parameters

MTDT-Small 94.09 1.47M 86.82 1.47M 83.04 1.47M
MTDT-Large 93.89 173.30M 89.30 173.30M 90.43 173.30M
PromptDT-Small 94.47 1.47M 88.15 1.47M 87.37 1.47M
PromptDT-Large 93.61 173.30M 90.66 173.30M 90.11 173.30M
HarmoDT-Small 93.83 1.47M 86.31 1.47M 86.54 1.47M
HarmoDT-Large 92.61 173.30M 90.75 173.30M 90.19 173.30M

M3DT-Random (Ours) 93.34 47.87M 90.55 98.37M 90.97 174.12M
M3DT-Gradient (Ours) 93.52 47.87M 90.41 98.37M 90.53 174.12M

18

